2016年全国数学建模竞赛论文
2016年全国大学生数学建模竞赛获奖论文

小区开放对道路通行的影响评价模型摘要本文针对小区开放对道路的影响进行了研究,建立了层次分析模型、通行能力评价模型,使用了MATLAB、EXCEL等软件,得出小区开放在不同条件下会对道路交通产生不同的影响。
首先运用层次分析法,分析得出整体一般情况下小区开放有利于周边道路交通的结论。
之后构建了不同类型的小区,并分析得出小区开放的效果与小区结构及周边道路结构、车流量有关,因此小区开放不能盲目采取,要因地制宜。
最后根据分析结果,从交通通行的角度,向城市规划和交通管理部门提出了关于小区开放的合理化建议。
本文的突出特点是使用了层次分析法定量的比较了小区开放前后道路合理性,构建了对于研究该问题具有代表性的三种类型的小区,并建立了影响评估模型,客观的对不同小区结构及周边道路结构、车辆通行的影响进行评价。
针对问题一,首先查阅相关资料选取影响道路通行的指标,并对选取的指标进行筛选,然后运用各项指标进行层次分析,通过小区开放和小区封闭对道路交通和理性的判断来分析小区开放对道路通行的影响最后得出从整体看来,小区开放有利于道路通行。
针对问题二,通过查阅有关道路通行能力的相关资料建立了通行能力评价模型,首先根据模型求出道路基本通行能力的表达式,基本通行能力是理想状态下的通行能力,与实际情况分析对比存在差异。
因此基于差异,通过各实际因素对道路通行能力的影响进行修正,得到实际道路通行能力的数据。
最终计算出小区开放前后实际通行能力的相对系数。
针对问题三,构建了三种类型的小区,不同类型的小区具有不同的结构及不同的周边道路结构、车流量,应用问题二建立的模型分别对三种小区开放和封闭条件下周边道路的实际通行能力进行了计算,通过相对系数评价不同类型的小区开放对道路通行的影响,分析得出小区开放与地理位置、内部结构等因素有关,不能一概而论。
针对问题四,结合前述模型结果分析结果,从交通出行角度对城市规划部门和交通管理部门提出了合理化意见。
小区开放要合理的实施以体现小区开放的意义。
2016国赛A题国家一等奖论文

x0 , y0
T1 Ti i
D l0
§6 模型的建立与求解
5.1 问题一的分析与求解 5.1.1. 模型的分析 问题一要求我们在给定的一些参数下,假设海水静止,分别计算海面风速为 12m/s 和 24m/s 时钢桶、各节钢管、锚链等的一些指标。首先,我们对整个系泊系统建立直角 坐标系,然后对整个系统做受力分析。设计算法流程,先初始化参数 x0 , y0 ,然后计 算每个物体的 Ti ,i 和 xi , yi ,在通过与海水深度比较,不断修正 y0 和相应的 xn ,使整 体达到最优[3]。 5.1.2. 模型的建立与求解 (1)构建整体坐标系 以锚垂直于海平面向上为 y 轴的正方向,以海面风向为 x 轴,建立二维平面直角坐 标系 xoy 。根据假设条件,浮标系统整体如图 2 所示
图 3 浮标受力分析图
由浮标质量得出,得出其所受重力 G1 m1 g ;浮标所受的浮力(当浮标的吃水深度 D 不断变化时排开水体积用积分表示) : F1 g ( ) 2 h ;由近海风荷载的近似公式可得 2 2 浮标所受的风力: Fw 0.625D(h0 h)vw ;考虑到浮标最终处于静力平衡状态,由静力 学平衡方程有: F1 G1 T1 sin 1
关键词:系泊系统,动力系统,多目标优化,GA 算法
1
§1 问题的重述
1.1 研究问题的背景是什么? 1.1.1 总背景介绍 伴随着世界经济的快速发展, 人们更是逐步加强对海洋领域的探索。为收集海洋环 境的数据资料,人们开始应用浮标系统,同时在开发利用时,都离不开观测设备,如海 底观测站,水下探测器等[1][2]。然而这些设备无一例外的需要系泊系统定位。近浅海观 测网的传输节点由浮标系统、 系泊系统和水声通讯系统组成,简化的某型号输节点的系 泊系统可以如图 1 所示。传统的浮标系统都是由简单的锚—锚链—浮标构成。而这里, 我们研究的浮标系统在锚与浮标之间有一个钢桶(用于安装水声通讯系统) 。钢桶与电 焊锚链链接处悬挂了重物球,是为了控制钢桶的倾斜角度,钢桶的倾斜角度越大,设备 的工作效果较差。 而且钢桶与浮标之间是通过四节相同的钢管连接的。钢管与钢管之间 的连接是可以有偏转角度的。
2016年全国大学生数学建模竞赛获奖论文

1.2 要解决的问题
针对题目所提出的要求,本文主要关注以下问题: 首先,针对“请选取合适的评价指标体系,用以评价小区开放对周边道路通 行的影响”问题,如何挑选出若干个有效的相关指标,作为道路通行情况的不同 属性, 采用可行的赋权方法为这些指标分别赋予权重,最后将这些指标加权汇总 为一个综合指标, 从而产生一个完整的评价指标体系,用以评价小区开放与否对 周边道路通行情况产生的影响。 其次, 如何尽量模拟真实交通环境, 充分考虑各种影响道路通车情况的因素,
设计通行能力是固定的,则高峰时段实际单位时 间内交通量越大道路越拥堵。一般在 0.5-0.7 比较合
起点与终点固定后,人类心理趋向是选择实际行 驶道路长度最短的路径,而当道路拥堵时,人们则会 绕路行驶,选择车流量较少的路径,则路网非直线系 数增大。所以路网非直线系数越大道路越拥堵。
M4
路网密度 M 5
M1
直观反映道路通行能力以及道路的实时路况,当 交通量超过某一数值时,则认为发生拥堵
M2
行驶总距离一定时,行程车速与行驶总时间成反 比关系,行驶总时间包括无障碍行驶时间、路阻时间
7
(km/h)
和交叉路口延误时间。所以当道路拥堵时,路阻时间 和交叉口延误时间增长,则行程车速降低。
饱和度 M 3 适。 路网非直线系数
M6
交通运行指数
交通状况越拥堵行程车速越小,拥堵里程比例越 大,则交通运行指数越大,得到拥堵等级越高。
sumc
h1 suml h2
mjl mjs
m n
1
T
4
xn
MSA 算法中 n 次循环后各个路段 分配的流量集合
d1
交叉口平均延误时间
四、模型的建立与分析 4.1 问题一综合评价指标体系的建立
2016年全国大学生数学建模竞赛获奖论文

5
图 3 第一小问求解思路图
5.1.1.1 多项式函数与高斯函数拟合对比 运用 MATLAB 工具箱对在电流强度为 20A 的数据进行多项式函数和高斯函数的拟 合,得到两个拟合图像如图 4 所示:
多项式函数拟合的图像
高斯函数拟合的图像
图 4 两种函数的拟合图像
根据观察 20A 电流情况下两种拟合函数的放电图像, 发现两种函数的放电图像无明 显差别,无法看出哪种函数的拟合效果好,所以本文用两种函数拟合的拟合精度进行比 较,见表 2:
3
第二小问首先利用 EXCEL 筛选出 231 个电压样本点,采取相对误差是绝对误差与 实际数据的比值的方法,求出 231 个相对误差,取平均即为 MRE . 第三小问是建立在第一小问的基础上, 将数值 9.8V 带入初等函数模型, 求出在 30A, 40A,50A,60A,70A 的电流强度下电池的剩余放电时间. 2.2.2 问题二的分析 问题二要建立适用于任一电流强度在任一时刻的的放电时间,但题中所给数据只有 几个特殊的电流强度,因此利用这些数据来建立任意时刻的模型,就是要建立起任意时 刻都能找到与已有数据的关系,文中引进比例分电压点来建立起这个联系,较好的解决 了不能实现任意时刻的放电时间的计算, 并且与现有数据始终相关, 拟合数据偏差较小. 2.2.3 问题三的分析 对于问题三直接使用衰减状态 3 的数据会导致拟合效果不达要求, 由于新电池状态、 衰减 1 状态和衰减 2 状态使用二次函数拟合效果较好,题目所给是同一电池,因此衰减 状态三应也是与前三个状态变化相似,所以利用前三个状态的与衰减状态 3 现有数据来 作差,进行拟合,补全缺失数据的差值,将补全的差值进行还原,得到衰减状态 3 的缺 失数据,并用 MATLAB 进行四种状态的拟合,结果发现效果较好,
2016年数学建模竞赛A题优秀论文

2016年数学建模竞赛A题优秀论文基于力学分析的系泊系统设计摘要关于系泊系统的设计问题,需要对稳态下的各个物体进行受力分析和力矩分析,建立力学分析模型来求解问题。
针对问题1,先对稳态下的各个物体进行受力分析和力矩分析,建立满足受力平衡和力矩平衡的力学模型。
再以浮标的吃水深度为搜索变量,采用二分法,计算海水深度为18m时所对应的吃水深度和各物体的倾角。
利用MATLAB软件求解可得,风速为12m/s时,钢桶与竖直方向的夹角为1.2319°,钢管与竖直方向的夹角依次为1.2064°,1.2064°,1.2148°,1.2233°。
浮标的吃水深度和游动半径分别为0.6715m,14.6552m。
风速为24m/s时,钢桶夹角为4.6763°,钢管夹角依次为4.5360°,4.5836°,4.6141°,4.6450°;浮标的吃水深度和游动半径分别为0.6857m,17.7614m。
针对问题2,可利用问题1中建立的数学模型,利用MATLAB进行求解,可得风速为36m/s时,钢桶夹角9.6592°;钢管夹角依次为9.4814°,9.4814°,9.5399°,9.5992°;浮标的吃水深度和游动半径分别为0.7086m,18.4906m;最后一节锚链与水平面的夹角为20.9997°故以钢桶夹角小于5°和锚链夹角小于16°为约束条件,逐步增加重物球的质量,采用二分法向水深18m进行逼近。
当重物球的质量为2280kg时,浮标的吃水深度为0.9848m;钢桶夹角为4.4737°;锚链夹角为15.9748°;为使通讯设备的工作效果增强,重物球的质量可以在2280kg的基础上进行适当增加。
针对问题3,可在问题1的受力分析时加入水流力的作用,以最大风速36m/s,最大水流速度1.5m/s为设计指标,通过控制单一变量的方式可确定链条的型号为Ⅴ型的电焊锚链。
2016年全国数学建模竞赛B题一等奖论文1

5.1.4 评价指标体系的建立 综上所述,道路通行状态评价指标体系如图所示:
7
图 1 道路通行状态评价指标体系
5.2 问题二的分析与建模
5.2.1 基于 MSA 算法下的平衡分配模型
针对问题三,通过网络搜集和交通仿真软件得到小区开放前后的模型参数, 并基于模型一对各类型小区进行定量分析,判断小区开放对周边道路通行能力的 影响;其次基于模型二,对小区开放前后的车速进行作图分析,直观地反映出小 区开放前后道路通行能力的变化。
针对问题四,结合了问题一的指标和问题二的模型以及问题三中的研究结果, 从交通通行的角度向城市规划和交通管理部门提出了关于小区开放的合理化建 议。如向城市规划提出(1)在小区内适当建设公交站点;(2)不同类型的小区 应用不同的开放程度等,向交通管理部门提出(1)限制车辆在小区内的行驶速 度;(2)多处设置交通信号和交警等建议。
1
一. 问题重述
1.1 问题背景 改革开放以来,我国经济快速发展,城市化进程加速,人均汽车拥有量不断
增长,但是由于道路资源和格局的制约,城市交通问题日益严峻。而交通对于国 家的经济发展具有重要的意义。传统的封闭式小区因其用地性质的特殊性,将城 市土地分割成不规则的块状格局,降低了支路网密度,形成稀疏的道路网络,使 城市道路的通行能力下降。在交通问题备受关注的背景下,小区的开放问题引起 了广泛的讨论。
3
xij
路段 i 至路段 j 的流量
l
流量
密度
v
速度
sn'
车距
un'
2016年数学建模国赛A题一等奖论文

摘要
近海系泊系统作为气象监控、海洋探测的主要载体工具,对工程的实际应用 有一定的积极作用[1],研究系泊系统在不同环境状况下的内在关系,进而给出适 应不同情况的设计方案,并编写相应的应用软件,有着不能忽视的现实意义[2]。
针对问题一,在整个系泊系统处于最终平衡状态下,从系统的上部钢管开始 受力分析计算,建立不同方向上力的平衡方程和以下部链结点为取距中心的力矩 平衡方程,求得钢管倾斜角度以及下部单元间相互作用拉力,进而计算出钢管的 相对位置改变量。继续分析下部单元的受力情况,建立相同的平衡方程组并求解, 通过反复迭代计算,建立以浮标吃水深度为自变量的迭代代数模型,可求得河道 底部的链环倾斜角度以及整个系泊系统的垂悬高度。进而利用粒子群算法优化上 部浮标的吃水深度,并经过多次迭代优化,最终得到水深 18 米并且风速为 12m/s 和 24m/s 时,浮标吃水深度分别为 0.7348 米和 0.7489 米,同时算出各节钢管的 倾斜角度和各单元的位置坐标(附录及支撑材料),以及浮标游动区域半径 14.2005 米和 17.3203 米。结合理想状态下的锚链悬链线方程拟合位置坐标数据 得出良好的锚链形状曲线方程(式 1.16-1.17),并利用 CAD 软件绘制了所得结 果下的系泊系统 3-维立体分布示意图(图 10)。
在系泊系统中,锚的质量为600kg ,锚链选用无档普通链环。锚与锚链末端 链接,要求链接处的切线方向与海床的夹角不超过 16 度,否则锚会被拖行,致 使节点移位丢失。钢管共 4 节,每节长度 1m ,直径为 50mm ,每节钢管的质量 为10kg。钢桶上接第 4 节钢管,下接电焊锚链。钢桶竖直时,水声通讯设备的 工作效果最佳,钢桶的倾斜角度超过 5 度时,设备的工作效果较差。为了控制钢 球桶的倾斜角度,钢桶与电焊锚链接处可悬挂重物球。
2016年数学建模竞赛A题优秀论文

将(1)式代入得:
dy mg T1 sin 1
dx
T1 cos1
(2)
对于锚链,m=σs ,其中 s 是 AB 锚链的长度,σ是锚链的线密度,即单位长
度锚链的质量[1]。代入(2)式得:
dy sg T1 sin 1
(3)
dx
T1 cos1
根据勾股定理可以得到弧长公式:
ds
1
dy dx
dp dx
T1
cos1
g
1 p2
然后对 x 和 p 分离变量并对两端进行积分得到:
dp
1 p2
T1
g cos 1
dx
即:sinh 1
p
g T1
x
C1
(4)
其中 C1 可以由 x=0,y=0 时的值确定,原点 A 处 p y ' tan 1 ,可得 C1 为:
当海面风速一定且海水静止时,钢桶和各节钢管的倾斜角度、锚链形状、浮 标的吃水深度和游动区域,与锚链线的方程、系泊系统各部分之间的受力平衡和 力矩平衡的约束密切相关。由于传输节点各部分相互影响,根据力学相关知识, 可以按照锚链→钢桶和重物球→钢管→浮标的顺序依次进行受力分析,从而得到 各部分受力平衡时的定量解析式,通过这些表达式可以确定钢桶和各节钢管的倾 斜角度、锚链形状。由于吃水深度与浮标受力直接相关,还可以确定浮标的吃水 深度。对于浮标的游动区域,可以由稳定后系泊系统各个部分在水平方向投影的 总长度来计算游动区域的最大半径。
2016年全国大学生数学建模竞赛c题获奖论文【最新】

通过安全生产监管执法计划的实施,生产经营单位安全生产主体责任进一步落实,全区 安全生产杜绝重特大事故,遏制较大生产安全事故,减少一般生产安全事故,各类生产安全 事故指标控制在市政府下达的考核指标内。全区安全生产高危领域和重点监管单位的监管面 达到 100%。
三、主要任务
(员搜索
0.31 0.00
0231
1
342米。
经过以上分析得到,最慢与最快的人员相差 3040 米,平均得:每人之间相差 160 米。即,增加的人员要帮在拐第一个弯时外侧第二个人员节约至少
160 0.31- 0.63600 0.24 小 时 。 即 , 要 帮 助 拐 第 一 个 弯 时 外 侧 第 二 个 人 员 搜 索
在问题一中我们把该区域分为 126 个 800 800 的网格,只有 20 人的时候探测范围 为 800 米,所以我们把 50 人的队伍分为 20、20、10,通过对图一的分析,我们得到图 四为本题的路线(图中红线区域将 800800 的正方形细分为 400 400 的)。
终
起
点
点
5
10 人
20 人(一组)
1
§1 问题的重述
5.12 汶川大地震使震区地面交通和通讯系统严重瘫痪。救灾指挥部紧急派出多支 小分队,到各个指定区域执行搜索任务,以确定需要救助的人员的准确位置。在其它场 合也常有类似的搜索任务。在这种紧急情况下需要解决的重要问题之一是:制定搜索队 伍的行进路线,对预定区域进行快速的全面搜索。通常,每个搜索人员都带有 GPS 定 位仪、步话机以及食物和生活用品等装备。队伍中还有一定数量的卫星电话。GPS 可以 让搜索人员知道自己的方位。步话机可以相互进行通讯。卫星电话用来向指挥部报告搜 索情况。
2016年全国大学生数学建模竞赛获奖论文

3470.00 3468.00 3466.00 3464.00 3462.00 3460.00 3458.00 3456.00 3454.00 3452.00 3450.00 3448.00 3446.00 3444.00 3442.00 3440.00 3438.00 3436.00 3434.00 3432.00 3430.00 3428.00 3426.00 3424.00 3422.00 3420.00 3418.00 3416.00 3414.00 3412.00 3410.00 3408.00 3406.00 3404.00 3402.00 3400.00 3398.00 3396.00 3394.00 3392.00 3390.00 3388.00 3386.00
电池剩余放电时间预测模型
摘要
本文针对放电曲线预测问题,在不同情况下,建立出合理模型,并依据所给 条件,运用 Matlab、Lingo、Excel 等工具,得出了问题的相关结果。 对于问题一, 本文首先剔除放电初期的不稳定数据, 建立了二元抛物线模型 一: U ( I , T) a(Tmax ( I ) T )b U m ,通过固定电流强度 I ,利用非线性参数拟合, 得出放电曲线;再利用三样条插值,得出插值点,计算出对应 MRE 为(0.15%, 0.20%,0.20%,0.15%,0.13%,0.26%,0.24%,0.25%) , U 9.8 下的剩余放电 时间为(937.96,608.06,440.50,333.37,280.54,261.65,237.75,212.82, 197.33 ) ;接着在模型一的基础上通过增加震荡函数,建立模型二:
其中 a, b 为系数。
(1)
4.1.2 模型一求解
2016数学建模B题一等奖论文

小区开放对道路通行影响评价模型摘要本文主要研究了封闭式小区开放对其周围路段交通通行影响的问题,针对不同方面产生的影响建立了相应评价指标,使用VISSIM仿真、MATLAB软件计算,得出了不同条件下小区开放对周围道路交通的定量影响。
针对问题一,本文采用主成分分析方法,选取路段情况、路网情况、交通便捷性和网络脆弱性四个评价机制下的12个评价指标作为小区开放对周围道路影响的分析因子。
基于北京10个小区的抽样调查,用MATLAB进行计算分析,通过其贡献率高低的排序筛选出综合评价的标准,即得到完整的评价指标体系。
针对问题二,本文选取整体评价机制中评价交通流量优劣的出行时间总和评价模型,来对比研究小区开放前后对于车辆通行的影响。
本文又选择了长沙一小区的开放前附近交通量数据,并按照其内部改造规划和网络流分配原理用VISSIM仿真出了开放后交通量的数据,使用出行时间总和评价模型比较前后总的车行时间和,得出该小区的开放改建是有利于提高周边道路通行速度的。
针对问题三,本文将小区结构、周边道路结构和车流量分别抽象为小区开放不同数量的出入口、小区位于节点度不同的路网和具备不同复杂程度的内部结构三个参数,并赋予它们相互关联的数值。
利用VISSIM仿真软件在控制变量的基础上进行数据分析,并使用节点度方差指标评价仿真的结果。
将不同小区开放后内外整体网络脆弱性高低的指标作为对道路通行影响的评价机制,得出以下结论:小区结构对周围交通的影响依赖于道路结构;小区周围道路的结构越简单,对小区开放后周围交通运行更有利;车流量越小对小区开放后的周围交通越有利,且一定阈值内交通性能提升与开放程度正相关。
本文所建立的各模型之间联系紧密,且理论性强,涵盖面广,能体现真实情况,也保证了一定的可靠性。
对城市道路的评价及交通出行研究都具有一定的参考价值。
关键词:封闭小区开放主成分分析网络流节点度方差交通仿真1.问题的简述1.1题目所给的信息封闭住宅小区的逐步开放,对交通情况的改善能力如何,成为当今的热点话题之一。
2016年全国大学生数学建模竞赛获奖论文

小区开放对道路通行的影响评价模型摘要本文针对小区开放对道路的影响进行了研究,建立了层次分析模型、通行能力评价模型,使用了MATLAB、EXCEL等软件,得出小区开放在不同条件下会对道路交通产生不同的影响。
首先运用层次分析法,分析得出整体一般情况下小区开放有利于周边道路交通的结论。
之后构建了不同类型的小区,并分析得出小区开放的效果与小区结构及周边道路结构、车流量有关,因此小区开放不能盲目采取,要因地制宜。
最后根据分析结果,从交通通行的角度,向城市规划和交通管理部门提出了关于小区开放的合理化建议。
本文的突出特点是使用了层次分析法定量的比较了小区开放前后道路合理性,构建了对于研究该问题具有代表性的三种类型的小区,并建立了影响评估模型,客观的对不同小区结构及周边道路结构、车辆通行的影响进行评价。
针对问题一,首先查阅相关资料选取影响道路通行的指标,并对选取的指标进行筛选,然后运用各项指标进行层次分析,通过小区开放和小区封闭对道路交通和理性的判断来分析小区开放对道路通行的影响最后得出从整体看来,小区开放有利于道路通行。
针对问题二,通过查阅有关道路通行能力的相关资料建立了通行能力评价模型,首先根据模型求出道路基本通行能力的表达式,基本通行能力是理想状态下的通行能力,与实际情况分析对比存在差异。
因此基于差异,通过各实际因素对道路通行能力的影响进行修正,得到实际道路通行能力的数据。
最终计算出小区开放前后实际通行能力的相对系数。
针对问题三,构建了三种类型的小区,不同类型的小区具有不同的结构及不同的周边道路结构、车流量,应用问题二建立的模型分别对三种小区开放和封闭条件下周边道路的实际通行能力进行了计算,通过相对系数评价不同类型的小区开放对道路通行的影响,分析得出小区开放与地理位置、内部结构等因素有关,不能一概而论。
针对问题四,结合前述模型结果分析结果,从交通出行角度对城市规划部门和交通管理部门提出了合理化意见。
小区开放要合理的实施以体现小区开放的意义。
2016全国大学生数学建模竞赛A题论文

系泊系统的设计摘要本文为系泊系统的设计问题,根据题目要求建立了数学模型,计算出系泊系统在不同条件下的具体参数,并利用模型对系泊系统进行优化分析,使其能运用到更广的领域。
针对问题一,首先分析了锚链的形状,利用微积分原理求出锚链的静态方程,用Matlab 画出锚链形状,得出锚链的形状所符合悬链线方程。
然后把钢管、钢桶看成一个整体,并忽略钢管和钢桶倾斜引起的锚链上端高度的变化,分析出锚链的长度和锚链末端与海平面的夹角对吃水深度的影响,又对钢桶、钢管和浮标进行了受力和力矩分析。
最后建立了数学模型,计算出风速为12m/s 和24m/s 时,钢桶和各节钢管的倾斜角度(见表2),浮标吃水深度分别为0.737m 、0.752m ,浮标的浮动区域(此浮动区域是以锚为圆心的圆)面积分别为、,锚链的形状如图(5-11)、(5-12)所示。
针对问题二,由问题一中建立的系泊系统的模型,计算风速为36m/s 时钢桶和各节钢管的倾斜角度、锚链形状和浮标的游动区域。
得到了钢桶和各节钢管的倾斜角度如(表3),浮标吃水深度:0.787m ,以及游动区域面积:1229.39m 。
由于重物球的质量变化影响锚点与海床的夹角,可以通过调节重物球的质量控制锚点与海床的夹角。
分析得出当锚点与海床的夹角处于临界点(即16度)时,重物球的最小质量为1756.8kg ;当浮标刚好没入水中时,重物球的最大质量为5335.8kg 。
针对问题三,以钢桶、钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域为目标函数,分析动态优化问题。
与问题一、二不同的是:此问题给定了水深、海水速度、风速的取值范围,属于模型动态变化问题。
所以对模型进行了动态分析,求得钢桶、钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域的取值范围,进而分析水深、海水速度、风速对结果的影响,这有利于系泊系统的调整和应用。
本文所建立的模型对相关问题在理论上作了证明,虽然对部分模型进行了简化,但是实用性很强,而且易于推广,能够扩展到其他系泊系统。
【全国大学生数学建模竞赛获奖优秀论文作品学习借鉴】2016国赛C题推荐国家一等奖1

3.根据同一电池在不同衰减状态下以同一电流强度从充满电开始放电的记录,预测 电池衰减状态 3 的剩余放电时间。
2
符号
MRE t ai ti ti' N TS bi A U T u Ct et St
【关键字】 电池 放电曲线
Matlab 回归分析 预测
1
一、 问题重述
蓄电池是一种直流电源,是化学能转变为电能的一种装置。1860 年法国普兰特发明 铅酸蓄电池,经过一百多年生产应用得到了不断改进,开始应用于工业、农业、交通运 输、邮电通讯科研等领域。随着汽车、摩托车、电动车、邮电通讯和计算机事业迅速发 展,铅酸蓄电池的需求量逐年增加。自铅酸蓄电池被发明以来,因其价格低廉、原料易 得、性能可靠、容易回收和适于大电流放电等特点,已成为世界上产量最大、用途最广 泛的蓄电池品种,被广泛用于工业、军事、日常生活中。在铅酸电池以恒定电流强度放 电过程中,电压随放电时间单调下降,直到额定的最低保护电压(Um,本文中为 9V)。 从充满电开始放电,电压随时间变化的关系称为放电曲线。电池在当前负荷下还能供电 多长时间(即以当前电流强度放电到 Um 的剩余放电时间)是我们研究的对象。电池通 过较长时间使用或放置,充满电后的荷电状态会发生衰减。
时间与电压电流的相关关系,逐步得出以 20A 到 100A 之间任一恒定电流强度放电时的 放电曲线模型。并用 MRE 评估模型的精度,以达到获得更为精准的数据。55A 时的放电 曲线。进一步提高模型的拟合度,完善模型。
4.4 问题三分析 本文抽取同一电池在不同衰减状态下以同一电流强度从充满电开始放电的记录数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。