算法分析与设计学习总结及试卷

合集下载

《算法设计与分析》考试题目及答案(DOC)

《算法设计与分析》考试题目及答案(DOC)

《算法设计与分析》考试题目及答案(DOC)D. 预排序与递归调用7. 回溯法在问题的解空间树中,按(D)策略,从根结点出发搜索解空间树。

A.广度优先B. 活结点优先 C.扩展结点优先 D. 深度优先8. 分支限界法在问题的解空间树中,按(A)策略,从根结点出发搜索解空间树。

A.广度优先B. 活结点优先 C.扩展结点优先 D. 深度优先9. 程序块(A)是回溯法中遍历排列树的算法框架程序。

A.B.C.D. void backtrack (int t){if (t>n) output(x);elsefor (int i=t;i<=n;i++) {swap(x[t], x[i]);if (legal(t)) backtrack(t+1); swap(x[t], x[i]);}}void backtrack (int t){if (t>n) output(x);elsefor (int i=0;i<=1;i++) {x[t]=i;if (legal(t)) backtrack(t+1); }}10. 回溯法的效率不依赖于以下哪一个因素?(C )A.产生x[k]的时间;B.满足显约束的x[k]值的个数;C.问题的解空间的形式;D.计算上界函数bound的时间;E.满足约束函数和上界函数约束的所有x[k]的个数。

F.计算约束函数constraint的时间;11. 常见的两种分支限界法为(D)A. 广度优先分支限界法与深度优先分支限界法;B. 队列式(FIFO)分支限界法与堆栈式分支限界法;C. 排列树法与子集树法;D. 队列式(FIFO)分支限界法与优先队列式分支限界法;12. k带图灵机的空间复杂性S(n)是指(B)A.k带图灵机处理所有长度为n的输入时,在某条带上所使用过的最大方格数。

B.k带图灵机处理所有长度为n的输入时,在k条带上所使用过的方格数的总和。

C.k带图灵机处理所有长度为n的输入时,在k条带上所使用过的平均方格数。

算法设计与分析期末试卷A卷

算法设计与分析期末试卷A卷

算法设计与分析期末试卷A卷一、选择题1.二分搜索算法是利用(A)实现的算法。

A、分治策略B、动态规划法C、贪心法D、回溯法解析:二分搜索是一种基于分治策略的算法。

2.回溯法解旅行售货员问题时的解空间树是(A)。

A、子集树B、排列树C、深度优先生成树D、广度优先生成树解析:旅行售货员问题的解空间树是子集树,因为每个结点代表一个城市的集合。

3.下列算法中通常以自底向上的方式求解最优解的是(B)。

A、备忘录法B、动态规划法C、贪心法D、回溯法解析:动态规划法通常以自底向上的方式求解最优解。

4.下面不是分支界限法搜索方式的是(D)。

A、广度优先B、最小耗费优先C、最大效益优先D、深度优先解析:分支界限法搜索方式包括广度优先、最小耗费优先和最大效益优先,但不包括深度优先。

5.采用贪心算法的最优装载问题的主要计算量在于将集装箱依其重量从小到大排序,故算法的时间复杂度为(B)。

A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)解析:最优装载问题采用贪心算法的主要计算量在于将集装箱依其重量从小到大排序,因此时间复杂度为O(nlogn)。

6.分支限界法解最大团问题时,活结点表的组织形式是(B)。

A、最小堆B、最大堆C、栈D、数组解析:分支限界法解最大团问题时,活结点表的组织形式是最大堆。

7、下面问题(B)不能使用贪心法解决。

A 单源最短路径问题C 最小花费生成树问题B N皇后问题D 背包问题解析:N皇后问题不能使用贪心法解决。

8.下列算法中不能解决0/1背包问题的是(A)A 贪心法B 动态规划C 回溯法D 分支限界法解析:贪心法不能解决0/1背包问题。

9.背包问题的贪心算法所需的计算时间为(B)A、O(n2n)B、O(nlogn)C、O(2n)D、O(n)解析:背包问题的贪心算法所需的计算时间为O (nlogn)。

二、填空题1.算法的复杂性有时间复杂性和空间复杂性之分。

2.算法是由若干条指令组成的有穷序列,且要满足输入、输出、确定性和有穷性四条性质。

算法设计期末大题分析总结

算法设计期末大题分析总结

算法设计期末大题分析总结1. 前言在本次算法设计期末大题分析中,我将对所给的几个算法问题进行详细的分析和总结。

这几个算法问题涉及了各个领域,包括图论、动态规划、字符串处理等等。

在解决这些问题的过程中,我运用了所学的算法知识和编程技巧,通过合理的算法设计和优化,解决了这些问题。

2. 问题1:最小生成树给定一个无向图,每个边都有一个正的权值。

我们需要找到一个最小生成树,使得所有边的权值之和最小。

这是一个非常经典的图论问题,常用的解决方法包括Kruskal算法和Prim算法。

在本次问题中,我使用了Prim算法来解决这个问题。

Prim算法的基本思想是从一个顶点开始,逐渐构造最小生成树,每次选择一个与当前顶点距离最短的边。

通过运用堆数据结构来加速选取最短边的过程,使得算法能够在较短的时间内求解问题。

3. 问题2:最长递增子序列给定一个序列,我们需要找到一个最长的递增子序列,即该子序列中的元素按照从小到大的顺序排列。

这是一个动态规划问题,常用的解决方法是使用动态规划算法来求解。

在本次问题中,我使用了动态规划算法来解决这个问题。

动态规划算法的基本思想是将一个大问题划分成若干个相同或者类似的子问题,并且逐步求解这些子问题,最终得到整个问题的解。

为了实现这个算法,我设计了一个动态规划数组dp,其中dp[i]表示以第i个元素结尾的最长递增子序列的长度。

通过不断更新dp数组中的值,最终可以得到最长递增子序列的长度。

4. 问题3:字符串替换给定一个字符串S和两个子串A和B,我们需要将字符串S中所有的子串A都替换成子串B。

这是一个字符串处理问题,常用的解决方法是使用字符串匹配算法来求解。

在本次问题中,我使用了KMP算法来解决这个问题。

KMP算法的基本思想是通过预处理模式串来减少匹配的次数,从而提高算法的效率。

为了实现这个算法,我设计了一个next 数组,其中next[i]表示在模式串的第i个字符之前的子串中,最长的相等的前缀和后缀的长度。

算法设计与分析考试题目与答案

算法设计与分析考试题目与答案

《算法分析与设计》期末复习题一、选择题1.应用Johnson 法则的流水作业调度采用的算法是(D )A. 贪心算法B. 分支限界法C.分治法D. 动态规划算法2.Hanoi 塔问题如下图所示。

现要求将塔座A 上的的所有圆盘移到塔座B 上,并仍按同样顺序叠置。

移动圆盘时遵守Hanoi 塔问题的移动规则。

由此设计出解Hanoi 塔问题的递归算确的为:(B )Hanoi 塔A. void hanoi(int n, int A, int C, int B) {if (n > 0) {hanoi(n-1,A,C, B); move(n,a,b);hanoi(n-1, C, B, A); } B. void hanoi(int n, int A, int B, int C) {if (n > 0) {hanoi(n-1, A, C, B); move(n,a,b);hanoi(n-1, C, B, A); }C. void hanoi(int n, int C, int B, int A){if (n > 0){hanoi(n-1, A, C, B);move(n,a,b);hanoi(n-1, C, B, A);}D. void hanoi(int n, int C, int A, int B){if (n > 0){hanoi(n-1, A, C, B);move(n,a,b);hanoi(n-1, C, B, A);}3.动态规划算法的基本要素为(C)A. 最优子结构性质与贪心选择性质B.重叠子问题性质与贪心选择性质C.最优子结构性质与重叠子问题性质D. 预排序与递归调用4. 算法分析中,记号O表示(B),记号Ω表示(A),记号Θ表示(D)。

A.渐进下界B.渐进上界C.非紧上界D.紧渐进界E.非紧下界5. 以下关于渐进记号的性质是正确的有:(A)A.f(n)(g(n)),g(n)(h(n))f(n)(h(n))=Θ=Θ⇒=ΘB.f(n)O(g(n)),g(n)O(h(n))h(n)O(f(n))==⇒=C. O(f(n))+O(g(n)) = O(min{f(n),g(n)})D. f(n)O(g(n))g(n)O(f(n))=⇔=6. 能采用贪心算法求最优解的问题,一般具有的重要性质为:(A)A. 最优子结构性质与贪心选择性质B.重叠子问题性质与贪心选择性质C.最优子结构性质与重叠子问题性质D. 预排序与递归调用7. 回溯法在问题的解空间树中,按(D)策略,从根结点出发搜索解空间树。

《算法分析与设计》期末试题及参考答案

《算法分析与设计》期末试题及参考答案

《算法分析与设计》期末试题及参考答案一、简要回答下列问题:1.算法重要特性是什么?2.算法分析的目的是什么?3.算法的时间复杂性与问题的什么因素相关?4.算法的渐进时间复杂性的含义?5.最坏情况下的时间复杂性和平均时间复杂性有什么不同?6.简述二分检索(折半查找)算法的基本过程。

7.背包问题的目标函数和贪心算法最优化量度相同吗?8.采用回溯法求解的问题,其解如何表示?有什么规定?9.回溯法的搜索特点是什么?10.n皇后问题回溯算法的判别函数place的基本流程是什么?11.为什么用分治法设计的算法一般有递归调用?12.为什么要分析最坏情况下的算法时间复杂性?13.简述渐进时间复杂性上界的定义。

14.二分检索算法最多的比较次数?15.快速排序算法最坏情况下需要多少次比较运算?16.贪心算法的基本思想?17.回溯法的解(x1,x2,……x n)的隐约束一般指什么?18.阐述归并排序的分治思路。

19.快速排序的基本思想是什么。

20.什么是直接递归和间接递归?消除递归一般要用到什么数据结构?21.什么是哈密顿环问题?22.用回溯法求解哈密顿环,如何定义判定函数?23.请写出prim算法的基本思想。

二、复杂性分析1、MERGESORT(low,high)if low<high;then mid←(low,high)/2;MERGESORT(low,mid);MERGESORT(mid+1,high);MERGE(low,mid,high);endifend MERGESORT2、procedure S1(P,W,M,X,n)i←1; a←0while i≤ n doif W(i)>M then return endifa←a+ii←i+1 ;repeatend3.procedure PARTITION(m,p)Integer m,p,i;global A(m:p-1)v←A(m);i←mlooploop i←i+1 until A(i) ≥v repeatloop p←p-1 until A(p) ≤v repeatif i<pthen call INTERCHANGE(A(i),A(p))else exitendifrepeatA(m) ←A(p);A(p) ←vEnd PARTITION4.procedure F1(n)if n<2 then return(1)else return(F2(2,n,1,1))endifend F1procedure F2(i,n,x,y)if i≤nthen call F2(i+1,n,y,x+y)endifreturn(y)end F25.procedure MAX(A,n,j)xmax←A(1);j←1for i←2 to n doif A(i)>xmax then xmax←A(i); j←i;endif repeatend MAX6.procedure BINSRCH(A,n,x,j)integer low,high,mid,j,n;low←1;high←nwhile low≤high domid←|_(low+high)/2_|case:x<A(mid):high←mid-1:x>A(mid):low←mid+1:else:j ←mid; returnendcase repeat j ←0 end BINSRCH三、算法理解1、写出多段图最短路经动态规划算法求解下列实例的过程,并求出最优值。

(完整版)算法设计与分析考试题及答案

(完整版)算法设计与分析考试题及答案

一、填空题(20分)1.一个算法就是一个有穷规则的集合,其中之规则规定了解决某一特殊类型问题的一系列运算,此外,算法还应具有以下五个重要特性:_________,________,________,__________,__________。

2.算法的复杂性有_____________和___________之分,衡量一个算法好坏的标准是______________________。

3.某一问题可用动态规划算法求解的显著特征是____________________________________。

4.若序列X={B,C,A,D,B,C,D},Y={A,C,B,A,B,D,C,D},请给出序列X 和Y的一个最长公共子序列_____________________________。

5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至少应包含___________。

6.动态规划算法的基本思想是将待求解问题分解成若干____________,先求解___________,然后从这些____________的解得到原问题的解。

7.以深度优先方式系统搜索问题解的算法称为_____________。

8.0-1背包问题的回溯算法所需的计算时间为_____________,用动态规划算法所需的计算时间为____________。

9.动态规划算法的两个基本要素是___________和___________。

10.二分搜索算法是利用_______________实现的算法。

二、综合题(50分)1.写出设计动态规划算法的主要步骤。

2.流水作业调度问题的johnson算法的思想。

3.若n=4,在机器M1和M2上加工作业i所需的时间分别为a i和b i,且(a1,a2,a3,a4)=(4,5,12,10),(b1,b2,b3,b4)=(8,2,15,9)求4个作业的最优调度方案,并计算最优值。

4.使用回溯法解0/1背包问题:n=3,C=9,V={6,10,3},W={3,4,4},其解空间有长度为3的0-1向量组成,要求用一棵完全二叉树表示其解空间(从根出发,左1右0),并画出其解空间树,计算其最优值及最优解。

(完整版)算法设计与分析考试题及答案,推荐文档

(完整版)算法设计与分析考试题及答案,推荐文档
法好坏的标准是______________________。 3.某一问题可用动态规划算法求解的显著特征是
____________________________________。 4.若序列 X={B,C,A,D,B,C,D},Y={A,C,B,A,B,D,C,D},请给出序列
X 和 Y 的一个最长公共子序列_____________________________。 5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至

之分。
5、 f(n)= 6×2n+n2,f(n)的渐进性态 f(n)= O(
)
6、 贪心算法总是做出在当前看来
的选择。也就是说贪心算法并不从整体最优考
虑,它所做出的选择只是在某种意义上的

7、 许多可以用贪心算法求解的问题一般具有 2 个重要的性质:
性质和
性质。
二、简答题(本题 25 分,每小题 5 分)
五、算法理解题(本题 5 分) 设有 n=2k 个运动员要进行循环赛,
现设计一个满足以下要求的比赛日程表:
①每个选手必须与其他 n-1 名选手比赛各一次; ②每个选手一天至多只能赛一次;
③循环赛要在最短时间内完成。
我去(人1)如也果 就n=2k有,循人环赛!最少为需要U进R行扼几天腕; 入站内信不存在向你偶同意调剖沙 (2)当 n=23=8 时,请画出循环赛日程表。
六、算法设计题(本题 15 分) 分别用贪心算法、动态规划法、回溯法设计 0-1 背包问题。要求:说明所使用的算法
策略;写出算法实现的主要步骤;分析算法的时间。 七、算法设计题(本题 10 分)
建议收藏下载本文,以便随时学习! 通过键盘输入一个高精度的正整数 n(n 的有效位数≤240),去掉其中任意 s 个数字后, 剩下的数字按原左右次序将组成一个新的正整数。编程对给定的 n 和 s,寻找一种方案, 使得剩下的数字组成的新数最小。 【样例输入】 178543 S=4 【样例输出】 13

算法分析与设计综合试卷

算法分析与设计综合试卷

算法与分析综合试卷一、选择题1.算法分析是()。

A.将算法用某种程序设计语言恰当地表示出来B.在抽象数据集合上执行程序,以确定是否会产生错误的结果C.对算法需要多少计算时间和存储空间作定量分析D.证明算法对所有可能的合法输入都能算出正确的答案2.算法确认是()。

A.将算法用某种程序设计语言恰当地表示出来B.证明算法对所有可能的合法输入都能算出正确的答案C.对算法需要多少计算时间和存储空间作定量分析D.在抽象数据集合上执行程序,以确定是否会产生错误的结果3.算法与程序的区别在于算法具有()。

A.能行性B.确定性C.有穷性D.输入和输出4.设A[1..60]={11,12,…,70}。

算法BINARYSEARCH在A上搜索x=33、7、70、77时执行的元素比较次数分别为a、b、c、d,则()。

A.a<b<c<d B.a>b=c=d C.a<b=c=d D.a<c<b=d5.算法INSERTIONSORT 在A[1..8]={45,33,24,45,12,12,24,12}上运行时执行的元素比较次数为()。

A.14 B.28 C.7 D.226.当A[1..n]中元素取值在范围()时,算法RADIXSORT 的时间复杂度为T(nlogn)。

A.A.[1..n] B.[n..2n] C.[1..n2] D.[1.. 2n]7.设待排序的序列A[1..n]中元素取值于[1..n!],则下列哪一个算法最坏情况下排序更慢?A.SELECTIONSORT B.INSERTIONSORTC.RADIXSORT D.BUBBLESORT8.一个排序算法如果能够使得序列中相同元素的位置次序在排序前后保持一致,则称之为稳定的排序算法。

下列几种排序算法中哪一种不是稳定的?A.SELECTIONSORT B.RADIXSORTC.BUBBLEBSORT D.BOTTOMUPSORT9.使用算法EXP来计算下列哪一个整数次幂所花费的乘法次数最多?A.35B.36C.37D.3810.算法MAJORITY在下列哪一个输入上执行时最后j=n,count=1,且c是主元素?A.{5,7,5,4,5} B.{5,7,5,4,8} C.{2,4,1,4,4,4,6,4} D.{1,2,3,4,5} 11.用贪心法设计算法的关键是()。

计算机算法设计与分析期末试题4套(含答案)

计算机算法设计与分析期末试题4套(含答案)

计算机算法设计与分析期末试题4套(含答案)(1)用计算机求解问题的步骤: 1问题分析2、数学模型建立3、算法设计与选择4、算法指标5、算法分析6、算法实现7、程序调试8、结果整理文档编制(2)算法定义:算法是指在解决问题时,按照某种机械步骤一定可以得到问题结果的处理过程(3)算法的三要素1操作2、控制结构3、数据结构算法具有以下5个属性:有穷性:一个算法必须总是在执行有穷步之后结束,且每一步都在有穷时间内完成。

确定性:算法中每一条指令必须有确切的含义。

不存在二义性。

只有一个入口和一个出口可行性:一个算法是可行的就是算法描述的操作是可以通过已经实现的基本运算执行有限次来实现的。

输入:一个算法有零个或多个输入,这些输入取自于某个特定对象的集合。

输出:一个算法有一个或多个输出,这些输出同输入有着某些特定关系的量。

算法设计的质量指标:正确性:算法应满足具体问题的需求;可读性:算法应该好读,以有利于读者对程序的理解;健壮性:算法应具有容错处理,当输入为非法数据时,算法应对其作出反应,而不是产生莫名其妙的输出结果。

效率与存储量需求:效率指的是算法执行的时间;存储量需求指算法执行过程中所需要的最大存储空间。

一般这两者与问题的规模有关。

经常采用的算法主要有迭代法、分而治之法、贪婪法、动态规划法、回溯法、分支限界法利用迭代算法解决问题,需要做好以下三个方面的工作:一、确定迭代模型。

在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。

二、建立迭代关系式。

所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。

迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。

三、对迭代过程进行控制。

在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。

不能让迭代过程无休止地重复执行下去。

迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定。

算法与分析期末报告总结

算法与分析期末报告总结

算法与分析期末报告总结一、引言算法与分析作为计算机科学中的核心课程之一,主要介绍了算法设计与分析方法以及常见的算法模型和技术。

通过本学期的学习,我对算法设计与分析的基本概念和原理有了更深入的理解,并掌握了一些常用的算法和数据结构,提高了解决实际问题的能力。

二、算法设计与分析方法在本学期的课程中,我们学习了多种算法设计与分析方法,包括贪心算法、动态规划、分治法和回溯法。

这些方法具有不同的特点和适用范围,在解决问题时可以根据实际情况选择合适的方法。

1. 贪心算法贪心算法是一种简单、高效的算法设计与分析方法,它通过每一步选择局部最优解来达到全局最优解。

贪心算法通常用来求解优化问题,如最小生成树、最短路径和背包问题等。

在贪心算法的设计中,我们需要注意选择局部最优解是否能够推导出全局最优解,即贪心选择性质。

同时,我们还需要证明贪心算法的正确性和计算复杂度。

2. 动态规划动态规划是一种将复杂问题分解成子问题的方法,并将子问题的解保存起来,避免重复计算。

通过动态规划,我们可以得到问题的最优解。

动态规划的核心思想是利用子问题的解构建更大规模问题的解,通常需要定义递推关系和边界条件,以计算出每个子问题的解。

动态规划算法通常需要使用一个表格来保存子问题的解,从而提高计算效率。

3. 分治法分治法是一种将复杂问题分解成相互独立且相同结构的子问题的方法,并将子问题的解合并起来获得原问题的解。

分治法通常用递归的方式实现。

分治算法的核心思想是将问题分解成多个规模较小且结构相同的子问题,并通过递归求解子问题。

最后将子问题的解合并起来,得到原问题的解。

分治算法通常能够有效地降低问题的规模,提高算法的效率。

4. 回溯法回溯法是一种通过试错方法搜索问题的解空间的方法。

回溯法通过不断地回退和尝试可行的解,来找到问题的解。

回溯算法的核心思想是通过深度优先搜索的方式来遍历问题的解空间,并通过剪枝操作来减少无效的搜索。

回溯法通常需要使用递归的方式实现。

(完整版)算法设计与分析期末考试卷及答案a

(完整版)算法设计与分析期末考试卷及答案a

考生 信 息 栏 ______学院______系______专业______年级姓名______学号_____ 装 订 线考 生信 息 栏 ______学院______系______专业______年级姓名______学号_____ 装 订 线 pro2(n) ex1(n/2) end if return end ex1 3.用Floyd 算法求下图每一对顶点之间的最短路径长度,计算矩阵D 0,D 1,D 2和D 3,其中D k [i, j]表示从顶点i 到顶点j 的不经过编号大于k 的顶点的最短路径长度。

三.算法填空题(共34分) 1.(10分)设n 个不同的整数按升序存于数组A[1..n]中,求使得A[i]=i 的下标i 。

下面是求解该问题的分治算法。

算法 SEARCH 输入:正整数n ,存储n 个按升序排列的不同整数的数组A[1..n]。

输出:A[1..n]中使得A[i]=i 的一个下标i ,若不存在,则输出 no solution 。

i=find ( (1) ) if i>0 then output i else output “no solution” end SEARCH 过程 find (low, high) // 求A[low..high] 中使得A[i]=i 的一个下标并返回,若不存在,考生 信息 栏 ______学院______系______ 专业 ______年级姓名______学号_____ 装订线《算法设计与分析》期考试卷(A)标准答案 一. 填空题:1. 元运算 考生 信 息 栏 ______学院______系______ 专业 ______年级姓名______ 学号_____ 装订线2. O3.∑∈n D I I t I p )()(4. 将规模为n 的问题分解为子问题以及组合相应的子问题的解所需的时间5. 分解,递归,组合6. 在问题的状态空间树上作带剪枝的DFS 搜索(或:DFS+剪枝)7. 前者分解出的子问题有重叠的,而后者分解出的子问题是相互独立(不重叠)的8. 局部9. 高10. 归并排序算法11. 不同12. v=random (low, high); 交换A[low]和A[v]的值随机选主元13. 比较n二. 计算题和简答题:1. 阶的关系:(1) f(n)= O(g(n))(2) f(n)=Ω(g(n))(3) f(n)=Ω(g(n))(4) f(n)= O(g(n))(5) f(n)=Θ(g(n))阶最低的函数是:100阶最高的函数是:n 32. 该递归算法的时间复杂性T(n)满足下列递归方程:⎩⎨⎧>+===1n ,n log T(n/2)T(n)1n , 1T(n)2 将n=k2, a=1, c=2, g(n)=n log 2, d=1代入该类递归方程解的一般形式得: T(n)=1+∑-=1k 0i i 22n log =1+k n log 2-∑-=1k 0i i =1+ k n log 2-2)1k (k -=n log 2122+n log 212+1 所以,T(n)= n log 2122+n log 212+1=)(log 2n Θ。

算法与分析考试题及答案

算法与分析考试题及答案

算法与分析考试题及答案一、选择题(每题2分,共10分)1. 以下哪个选项不是算法的特性?A. 有穷性B. 确定性C. 可行性D. 随机性答案:D2. 在分析算法时间复杂度时,通常使用哪种方法?A. 循环不变式B. 递归树C. 模拟运行D. 动态规划答案:B3. 快速排序算法的平均时间复杂度是?A. O(n)B. O(n log n)C. O(n^2)D. O(2^n)答案:B4. 以下哪个排序算法不是基于比较的排序算法?A. 快速排序B. 归并排序C. 堆排序D. 计数排序答案:D5. 在图的遍历算法中,深度优先搜索(DFS)和广度优先搜索(BFS)的主要区别是什么?A. DFS使用栈,BFS使用队列B. DFS使用队列,BFS使用栈C. DFS和BFS都使用栈D. DFS和BFS都使用队列答案:A二、填空题(每题3分,共15分)1. 算法的时间复杂度通常用大O表示法来描述,其中O表示______。

答案:上界2. 在算法分析中,我们通常忽略常数因子和______。

答案:低阶项3. 动态规划算法的核心思想是______。

答案:分治4. 在图的表示方法中,邻接矩阵适用于表示______图。

答案:稠密5. 哈希表的平均查找时间复杂度是______。

答案:O(1)三、简答题(每题10分,共20分)1. 请简述分治法的基本步骤。

答案:分治法的基本步骤包括分解、解决和合并。

首先将原问题分解成若干个规模较小但结构与原问题相同的子问题;然后递归地解决这些子问题;最后将子问题的解合并成原问题的解。

2. 什么是贪心算法?请举例说明。

答案:贪心算法是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是全局最好或最优的算法。

例如,活动选择问题,其中可以选择结束时间最早的活动,以最大化可以安排的活动数量。

四、计算题(每题15分,共30分)1. 给定一个序列{3, 7, 2, 5, 8, 4, 6},请使用快速排序算法对其进行排序,并说明排序过程中的划分操作。

算法设计与分析试卷试题(A)(附答案)

算法设计与分析试卷试题(A)(附答案)

chengcheng算法分析考试试卷(A卷)课程名称算法分析编号题号一二三四总分得分评阅人一、填空题(每小题3分,共30分)1、一个算法的优劣可以用空间复杂度与时间复杂度来衡量。

2、这种不断回头寻找目标的方法称为回溯法。

3、直接或间接地调用自身的算法称为递归算法。

4、 记号在算法复杂性的表示法中表示紧致界。

5、由分治法产生的子问题往往是原问题较小模式,这就为使用递归技术提供了方便。

6、建立计算模型的目的是为了使问题的计算复杂性分析有一个共同的客观尺度。

7、下列各步骤的先后顺序是②③④①。

①调试程序②分析问题③设计算法④编写程序。

8、最优子结构性质的含义是问题最优解包含其子问题最优解。

9、贪心算法从初始阶段开始,每一个阶段总是作一个使局部最优的贪心选择。

10、拉斯维加斯算法找到的解一定是正确的。

二、选择题(每小题2分,共20分)1、哈夫曼编码可利用( C )算法实现。

A、分治策略B、动态规划法C、贪心法D、回溯法2、下列不是基本计算模型的是( B )。

A、RAMB、ROMC、RASPD、TM3、下列算法中通常以自顶向下的方式求解最优解的是( C)。

A、分治法B、动态规划法C、贪心法D、回溯法chengcheng 4、在对问题的解空间树进行搜索的方法中,一个活结点有多次机会成为活结点的是( A )A、回溯法B、分支限界法C、回溯法和分支限界法D、动态规划5、秦始皇吞并六国使用的远交近攻,逐个击破的连横策略采用了以下哪种算法思想? BA、递归;B、分治;C、迭代;D、模拟。

6、FIFO是( A )的一搜索方式。

A、分支界限法B、动态规划法C、贪心法D、回溯法7、投点法是( B )的一种。

A、分支界限算法B、概率算法C、贪心算法D、回溯算法8、若线性规划问题存在最优解,它一定不在( C )A.可行域的某个顶点上 B.可行域的某条边上 C.可行域内部 D.以上都不对9、在一般输入数据的程序里,输入多多少少会影响到算法的计算复杂度,为了消除这种影响可用( B )对输入进行预处理。

算法设计与分析(试题A卷)

算法设计与分析(试题A卷)

四川师范大学成教×××专业×××层次半脱产形式期末考试期末试卷第1页( 共6页)《算法设计与分析》课程试卷(A)答卷说明:1、考试方式 闭卷2、满分100分一、单项选择题(每小题3分,共30分)1、动态规划算法的基本要素为( )。

A 、最优子结构性质与贪心选择性质B 、重叠子问题性质与贪心选择性质C 、最优子结构性质与重叠子问题性质D.、预排序与递归调用2、算法分析中,记号O 表示( ),记号Ω表示( ),记号Θ表示( )。

A 、渐进下界B 、渐进上界C 、非紧上界D 、紧渐进界E 、非紧下界3、以下关于渐进记号的性质是正确的有:( )A 、f (n)(g(n)),g(n)(h(n))f (n)(h(n))=Θ=Θ⇒=ΘB 、f (n)O(g(n)),g(n)O(h(n))h(n)O(f (n))==⇒=C 、O(f(n))+O(g(n)) = O(min{f(n),g(n)})D 、f (n)O(g(n))g(n)O(f (n))=⇔=4、下列算法中通常以自底向上的方式求解最优解的是( )。

四川师范大学成教××专业××层次××形式期末考试 ××试卷 第2页( 共6页) A 、备忘录法 B 、动态规划法 C 、贪心法 D 、回溯法5、衡量一个算法好坏的标准是( )。

A 、运行速度快B 、占用空间少C 、时间复杂度低D 、代码段6、实现棋盘覆盖算法利用的算法是( )。

A 、分治法B 、动态规划法C 、贪心法D 、回溯法7、下面关于NP 问题说法正确的是( )。

A 、NP 问题都是不可能解决的问题B 、P 类问题包含在NP 类问题中C 、NP 完全问题是P 类问题的子集D 、NP 类问题包含在P 类问题中8、矩阵连乘问题的算法可由( )设计实现。

A 、分支界限算法B 、动态规划算法C 、贪心算法9、( )是贪心算法与动态规划算法的共同点。

(完整版)算法设计与分析期末考试卷及答案a

(完整版)算法设计与分析期末考试卷及答案a

e i rb ei n一.填空题: 1. 元运算2. O 3.∑∈nD I I t I p )()(4. 将规模为n 的问题分解为子问题以及组合相应的子问题的解所需的时间5. 分解,递归,组合6. 在问题的状态空间树上作带剪枝的DFS 搜索(或:DFS+剪枝)7. 前者分解出的子问题有重叠的,而后者分解出的子问题是相互独立(不重叠)的8. 局部9. 高10. 归并排序算法11. 不同12. v=random (low, high); 交换A[low]和A[v]的值 随机选主元13. 比较n二.计算题和简答题:1. 阶的关系:(1) f(n)= O(g(n))(2) f(n)=(g(n))Ω (3) f(n)=(g(n))Ω (4) f(n)= O(g(n))3. (1) i>=1 (2)k[i]+1 (3) 1(4) i+1 (5) k[i]=0 (6) tag[x, y]=0(7) x=x-dx[k[i]]; y=y-dy[k[i]]四.算法设计题:1. 贪心选择策略:从起点的加油站起每次加满油后不加油行驶尽可能远,直至油箱中的油耗尽前所能到达的最远的油站为止,在该油站再加满油。

算法MINSTOPS输入:A、B两地间的距离s,A、B两地间的加油站数n,车加满油后可行驶的公里数m,存储各加油站离起点A的距离的数组d[1..n]。

输出:从A地到B地的最少加油次数k以及最优解x[1..k](x[i]表示第i次加油的加油站序号),若问题无解,则输出no solution。

d[n+1]=s; //设置虚拟加油站第n+1站。

for i=1 to nif d[i+1]-d[i]>m thenoutput “no solution”; return //无解,返回end ifend fork=1; x[k]=1 //在第1站加满油。

s1=m //s1为用汽车的当前油量可行驶至的地点与A点的距离i=2while s1<sif d[i+1]>s1 then //以汽车的当前油量无法到达第i+1站。

算法设计与分析复习题目及答案

算法设计与分析复习题目及答案

算法设计与分析复习题目及答案一、算法的基本概念1、什么是算法?算法是指解决特定问题的一系列明确步骤,它具有确定性、可行性、有穷性、输入和输出等特性。

例如,计算两个数的最大公约数的欧几里得算法,就是通过反复用较小数去除较大数,然后将余数作为新的较小数,直到余数为 0,此时的除数就是最大公约数。

2、算法的复杂度包括哪些?它们的含义是什么?算法的复杂度主要包括时间复杂度和空间复杂度。

时间复杂度是指算法执行所需要的时间量,通常用大 O 记号来表示。

例如,一个算法的时间复杂度为 O(n),表示其执行时间与输入规模 n成正比。

空间复杂度则是算法在运行过程中所需要的额外存储空间的大小。

比如说,一个算法需要创建一个大小为 n 的数组来存储数据,那么其空间复杂度就是 O(n)。

二、分治法1、分治法的基本思想是什么?分治法的基本思想是将一个规模为 n 的问题分解为 k 个规模较小的子问题,这些子问题相互独立且与原问题结构相同。

然后分别求解这些子问题,最后将子问题的解合并得到原问题的解。

2、请举例说明分治法的应用。

例如归并排序算法。

将一个未排序的数组分成两半,对每一半分别进行排序,然后将排好序的两部分合并起来。

其时间复杂度为 O(nlogn),空间复杂度为 O(n)。

三、动态规划1、动态规划的基本步骤有哪些?动态规划的基本步骤包括:(1)定义问题的状态。

(2)找出状态转移方程。

(3)确定初始状态。

(4)计算最终的解。

2、解释最长公共子序列问题,并给出其动态规划解法。

最长公共子序列问题是指找出两个序列的最长公共子序列的长度。

假设我们有两个序列 X 和 Y,用 dpij 表示 X 的前 i 个字符和 Y 的前 j 个字符的最长公共子序列长度。

状态转移方程为:如果 Xi 1 == Yj 1,则 dpij = dpi 1j 1 + 1否则 dpij = max(dpi 1j, dpij 1)四、贪心算法1、贪心算法的特点是什么?贪心算法在每一步都做出当前看起来最优的选择,希望通过这种局部最优选择达到全局最优解。

算法分析与设计重点知识及试题

算法分析与设计重点知识及试题

递归:直接或间接的调用自身算法称为递归算法;用函数自身给出定义的函数称为递归函数。

分治法的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。

分治法(divide-and-conquer)的基本思想:A分割成k个更小规模的子问题。

B对这k 个子问题分别求解。

假如子问题的规模仍旧不够小,则再划分为k个子问题,如此递归的进行下去,直到问题规模足够小,很简单求出其解为止。

C将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来问题的解。

设计动态规划算法的步骤(1)找出最优解的性质,并刻划其结构特征。

(2)递归地定义最优值。

(3)以自底向上的方式计算出最优值。

(4)依据计算最优值时得到的信息,构造最优解。

最优子结构性质:矩阵连乘计算次序问题的最优解包含着其子问题的最优解。

递归算法求解问题时,每次产生的子问题并不总是新问题,有些子问题被反复计算多次。

这种性质称为子问题的重叠性质贪心算法: 贪心算法总是作出在当前看来最好的选择,它并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。

活动支配问题就是要在所给的活动集合中选出最大的相容活动子集合,是可以用贪心算法有效求解的很好例子。

贪心算法:贪心算法求解的这类问题一般具有2个重要的性质:贪心选择性质和最优子结构性质。

贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到。

当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质贪心算法及动态规划算法的差异:贪心算法和动态规划算法都要求问题具有最优子结构性质,这是2类算法的一个共同点。

动态规划算法通常以自底向上的方式解各子问题,而贪心算法则通常以自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为规模更小的子问题。

0-1背包问题:给定n种物品和一个背包。

物品i的重量是Wi,其价值为Vi,背包的容量为C。

《算法分析与设计》期末考试复习题

《算法分析与设计》期末考试复习题

《算法分析与设计》期末考试复习题《算法分析与设计》期末复习题贪⼼法的当前选择可能要依赖已经作出的所有选择,但不依赖于有待于做出的选择和⼦问题。

因此贪⼼法⾃顶向下,⼀步⼀步地作出贪⼼选择;⽽分治法中的各个⼦问题是独⽴的(即不包含公共的⼦问题),因此⼀旦递归地求出各⼦问题的解后,便可⾃下⽽上地将⼦问题的解合并成问题的解。

不⾜之处:如果当前选择可能要依赖⼦问题的解时,则难以通过局部的贪⼼策略达到全局最优解;如果各⼦问题是不独⽴的,则分治法要做许多不必要的⼯作,重复地解公共的⼦问题。

解决上述问题的办法是利⽤动态规划。

该⽅法主要应⽤于最优化问题,这类问题会有多种可能的解,每个解都有⼀个值,⽽动态规划找出其中最优(最⼤或最⼩)值的解。

若存在若⼲个取最优值的解的话,它只取其中的⼀个。

在求解过程中,该⽅法也是通过求解局部⼦问题的解达到全局最优解,但与分治法和贪⼼法不同的是,动态规划允许这些⼦问题不独⽴,(亦即各⼦问题可包含公共的⼦问题)也允许其通过⾃⾝⼦问题的解作出选择,该⽅法对每⼀个⼦问题只解⼀次,并将结果保存起来,避免每次碰到时都要重复计算。

因此,动态规划法所针对的问题有⼀个显著的特征,即它所对应的⼦问题树中的⼦问题呈现⼤量的重复。

动态规划法的关键就在于,对于重复出现的⼦问题,只在第⼀次遇到时加以求解,并把答案保存起来,让以后再遇到时直接引⽤,不必重新求解。

⼀、选择题1.应⽤Johnson 法则的流⽔作业调度采⽤的算法是(D )A. 贪⼼算法B. 分⽀限界法C.分治法D. 动态规划算法2.Hanoi 塔问题如下图所⽰。

现要求将塔座A 上的的所有圆盘移到塔座B 上,并仍按同样顺序叠置。

移动圆盘时遵守Hanoi 塔问题的移动规则。

由此设计出解Hanoi 塔问题的递归算法正确的为:(B )Hanoi 塔A. void hanoi(int n, int A, int C, int B) { if (n > 0) {hanoi(n-1,A,C, B); move(n,a,b);hanoi(n-1, C, B, A); } }B. void hanoi(int n, int A, int B, int C) {if (n > 0) {hanoi(n-1, A, C, B); move(n,a,b);hanoi(n-1, C, B, A); } }C. void hanoi(int n, int C, int B, int A){if (n > 0) {hanoi(n-1, A, C, B);move(n,a,b);hanoi(n-1, C, B, A);}D. void hanoi(int n, int C, int A, int B){ if (n > 0){ hanoi(n-1, A, C, B); move(n,a,b);hanoi(n-1, C, B, A);}}3. 动态规划算法的基本要素为(C)A. 最优⼦结构性质与贪⼼选择性质B.重叠⼦问题性质与贪⼼选择性质C.最优⼦结构性质与重叠⼦问题性质D. 预排序与递归调⽤4. 算法分析中,记号O表⽰(B),记号Ω表⽰(A),记号Θ表⽰(D)。

算法分析期末试题集答案(6套)1

算法分析期末试题集答案(6套)1

《算法分析与设计》一、解答题 1. 机器调度问题。

问题描述:现在有n 件任务和无限多台的机器,任务可以在机器上得到处理。

每件任务的开始时间为s i ,完成时间为f i ,s i <f i 。

[s i ,f i ]为处理任务i 的时间范围。

两个任务i ,j 重叠指两个任务的时间范围区间有重叠,而并非指i ,j 的起点或终点重合。

例如:区间[1,4]与区间[2,4]重叠,而与[4,7]不重叠。

一个可行的任务分配是指在分配中没有两件重叠的任务分配给同一台机器。

因此,在可行的分配中每台机器在任何时刻最多只处理一个任务。

最优分配是指使用的机器最少的可行分配方案。

问题实例:若任务占用的时间范围是{[1,4],[2,5],[4,5],[2,6],[4,7]},则按时完成所有任务最少需要几台机器?(提示:使用贪心算法)画出工作在对应的机器上的分配情况。

2. 已知非齐次递归方程:f (n)bf (n 1)g(n)f (0)c =-+⎧⎨=⎩,其中,b 、c 是常数,g(n)是n 的某一个函数。

则f(n)的非递归表达式为:nnn i i 1f (n)cb b g(i)-==+∑。

现有Hanoi 塔问题的递归方程为:h(n)2h(n 1)1h(1)1=-+⎧⎨=⎩,求h(n)的非递归表达式。

解:利用给出的关系式,此时有:b=2, c=1, g(n)=1, 从n 递推到1,有:n 1n 1n 1i i 1n 1n 22n h(n)cbb g(i)22 (22121)----=--=+=+++++=-∑3. 单源最短路径的求解。

问题的描述:给定带权有向图(如下图所示)G =(V,E),其中每条边的权是非负实数。

另外,还给定V 中的一个顶点,称为源。

现在要计算从源到所有其它各顶点的最短路长度。

这里路的长度是指路上各边权之和。

这个问题通常称为单源最短路径问题。

解法:现采用Dijkstra 算法计算从源顶点1到其它顶点间最短路径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档