七年级数学上册竞赛试题及附答案

合集下载

秋季学期七年级数学上册竞赛试题有答案

秋季学期七年级数学上册竞赛试题有答案

秋季学期七年级数学上册竞赛试题有答案2021年秋季学期七年级数学上册竞赛试问题(附答案)七年级学科知识竞赛数学试卷(2021.12)一、多项选择题(该题有10个子题,每个子题得3分,共30分)1。

-相反的数字是3(▲) a、 3b。

C-D-32某地区的总人口是190000人,用科学计数法表示为()a.人b.人c.人d.人3.实数为0,,,0.211211211111。

(每两个“2”之间再加一个“1”),无理数的个数是()a.1,b.2c 3 d.4d()a.±9b 9c的平方根是多少。

±3d。

三5.下列判断正确的个数有()① 没有根符号的数必须是有理数;② 如果③ 有无数的实数大于或小于;④ 两个无理数之和必须是无理的;⑤ 如果a>b>0,则>a、1个b、2个c、3个d、4个6.若a0b,则的结果是(▲)a.0b.abc.1d.-ab7.计算结果为()(a)1(b)-1(c)0(d)28绝对值等于自身的数字为()a、正数或零b、负数或零c、零d、正数9.直放站的售价为1元,利润为成本的20%。

如果利润增加到成本的30%,则销售价格()为a、B、C、D10.如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形状和方形地砖。

一层从内到外包括6个正方形和6个等边三角形,二层包括6个三角形个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是()a、 54 b.90 c.102 d.114二、填空题(本题有8小题,每小题3分,共24分)11.若盈利50万元记作+50万元,那么亏损20万元可记作:▲万元.12.大约12000,精确到▲13.在代数式中,含的项的系数是___________.14.如果已知3x | n1 |+5=0是一个单变量方程,那么n=15。

设a和B为有理数,并指定16.在如图所示的数轴上,点b与点c到点a的距离相等,a、 B两点对应的实数为1,C点对应的实数为▲. 17方程的解_____18.代数式|x-1|-|x+6|-5的最大值是________。

七年级上学期数学竞赛试题(含答案)

七年级上学期数学竞赛试题(含答案)

学习资料七年级数学竞赛试题(一)一、精心选一选(将唯一正确答案的代号填在题后的答题卡中 12×3分=36分) 1、43-的绝对值是( ) A 、34- B 、34 C 、43- D 、432、下列算式正确的是( ) A 、239-= B 、()1414⎛⎫-÷-= ⎪⎝⎭C 、5(2)3---=-D 、()2816-=- 3、如果x 表示有理数,那么x x +的值( )A 、可能是负数B 、不可能是负数C 、必定是正数D 、可能是负数也可能是正数 4、下列各题中计算结果正确的是( )A 、0275.3=-ab ab B 、xy y x 532=+C 、2245a b ab ab -=-D 、2x x +=3x5、如图,数轴上的点A 所表示的数为k ,化简1k k +-的结果为( ) A 、1 B 、21k - C 、21k + D 、12k-6、一商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是( ) A 、125元 B 、135元 C 、145元 D 、150元 7、儿子今年12岁,父亲今年39岁,( )父亲的年龄是儿子的年龄的4倍. (A )3年后; (B )3年前; (C )9年后; (D )不可能. 8、老师讲了多项式的加减,放学后,某同学回家拿出笔记,认真地复习老师讲的内容,他突然发现一道题222221131(3)(4)2222x xy y x xy y x -+---+-=- +2y 空格的地方被钢笔水弄污了,那么空格中的一项是( ) A 、7xy - B 、7xy C 、xy D 、xy - 9、把方程17.012.04.01=--+x x 中分母化整数,其结果应为( ) A 、17124110=--+x x B、107124110=--+x xC、1710241010=--+x x D、10710241010=--+x x10、观察下列算式:331=,932= ,2733=,8134=,24335=,72936=,218737=,656138=…………;那么20113的末位数字应该是( )A 、 3B 、 9C 、 7D 、 111、七年级的两名爱好数学的学生,在学完第三章《一元一次方程》后,一位同学对另一个同学说:“方程x x x -+-=--321312与方程4223324xk kx --=+-的解相同,k 的值是多少?”( )A 、0B 、 2C 、 1D 、–112、某出租车的收费标准是:起步价7元(即行驶距离不超过3km 都需付7元车费),超过3km 以后,每增加1km ,加收2.4元(不足1km 按1km 计). 某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程的最大值是( ) A 、11 B 、8 C 、7 D 、5 二、细心填一填(6×3分=18分) 13、211-的相反数是 ,倒数是 ,绝对值是 . 14、若x 2+3x -5的值为7,则2-9x -3x 2的值为__________. 15、一个长方形的周长26cm ,这个长方形的长减少1cm ,宽增2cm ,就可成为一个正方A学习资料00201003...-x002003..-形,设长方形的长为x cm ,可列方程是______________________________. 16、已知362y x 和-313m nx y 是同类项,则29517m mn --的值是 . 17、观察下列各式:2311=,233321=+,23336321=++,23333104321=+++,………根据观察,计算:333310321++++ 的值为______________. 18、一系列方程:第1个方程是32=+x x ,解为2=x ;第2个方程是532=+xx ,解为6=x ;第3个方程是743=+xx ,解为12=x ;…,根据规律,第10个方程是___________,其解为____________.三、用心做一做(本大题共7小题,满分46分) 19、计算:(每题4分,共8分)(1) 12524()236-⨯+-; (2) )3()4()2(8102-⨯---÷+-20、化简:(每题3分,共6分)(1) )]3(33[2b a b a ---- ; (2) )]3-(-7[-122222b a ab b a ab21、解方程:(每题3分,共6分) (1) (2)22、(6分)先化简,再求值:2223(2)x y x y +--(),其中21=x ,1-=y .23、( 6分)在广州亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子的丝巾1 200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?24、( 6分)如图所示,是某年12月份的日历,用一个矩形在日历内任圈出4个数。

七年级数学上册竞赛试卷及答案

七年级数学上册竞赛试卷及答案

1
A.30 根 B.31 根 C.32 根 D.33 根 10、整式 mx 2n 的 值随 x 的取值不同而不同,下表是 当 x 取不同值时对应的整 式的 值,则关于 x 的方程 mx 2n 4 的解为 x -2 -1 0 1 2 ( ) A.-1 B.-2 mx 2n 4 0 -4 -8 -12 C.0 D.为其它的值 11、某商品进价 a 元,商店将价格提高 30%作零售价销售,在销售旺季过后,商 店以 8 折(即售价的 80%)的价格开展促销活动,这时一件商品的售价为( ) A.a 元; B.0.8a 元 C.1.04a 元; D.0.92a 元 12、下列 结论:w ww. 12999. com ①若 a+b+c=0,且 abc≠0,则方程 a+bx+c=0 的解是 x=1; ②若 a(x-1)=b(x-1)有唯一的解,则 a≠b; 1 ③若 b=2a, 则关于 x 的方程 ax+b=0(a≠0)的解为 x=- ; 2 ④若 a+b+c=1 ,且 a≠0,则 x=1 一定是方程 ax+b+c=1 的解; 其中结论正确个数有( ) A.4 个 B. 3 个 C. 2 个; D. 1 个 二、 填空题: (本大题共 4 小题, 每小题 4 分, 共 16 分, 请将你的答案写在 “____” 处) 13、写出满足下列条件的一个一元一次方程:①未知数的系数是-1;②方程 的解是 3,这样的方程可以是:____________ . 14 、设某数为 x ,它的 2 倍是它的 3 倍与 5 的差,则列出的方程为 ______________ . 4 x 6的 值 为 9 , 则 多 项 式 x 2 x 6 的 值 为 15 、 若 多 项 式 3x 2 4 3 ______________ . 16、某商场推出了一促销活动:一次购物少于 100 元的不优惠;超过 100 元 (含 100 元)的按 9 折付款。小明买 了一件衣服,付款 99 元,则这件衣服的原 价是___________元。 三、 解答题 (共 48 分) 17、 (本题 6 分)计算题(每小题 3 分) 7 1 3 (1) 18 (14) (18) 13 (2) ( ) 6 6 14

江西吉安市遂川县2024-2025学年上学期七年级数学竞赛试卷(含答案)

江西吉安市遂川县2024-2025学年上学期七年级数学竞赛试卷(含答案)

学校班级姓名准考证号………………………………………密………………………………封………………………………线……………………………………2024年下学期七年级上册数学竞赛试题卷(考试时间45分钟,总分100分)一、选择题(本大题共4小题,每小题6分,共24分.每小题只有一个正确选项)1.如图是4×3的正方形网格,选择两个空白小正方形,能与阴影部分组成正方体展开图的方法有( )A . 6B . 7C . 8D . 92.一串数字如下:1,-3,5,-7,9,-11…如此下去,则第2023个数字与第2024个数字的和等于( )A .-4045 B .-2 C .-8092 D .23.有理数a 、b 、c 在数轴上对应点的位置如图所示,若|b |>|c |,则下列结论中正确的是( )A . B . C . D .4.有下列说法:①若a 与b 互为相反数,则a +b =0;②若,则a =b ;③若,则a =b ;④若,则;其中正确的有( )A . 1个 B . 2个 C . 3个 D . 4个二、填空题(本大题共4小题,每小题6分,共24分)5678.甲、乙两人分别从点A 、B 同时出发,沿边长为100米的正方形ABCD 的边线走一圈,已知甲的速度是20米/分,乙的速度是30米/分,则经过 分钟后两人首次相遇. (多填题)三、(本大题共4小题,每小题10分,共40分)9. 在实数范围内定义运算“※”:,例如:.(1)若,,计算的值;(2)若,求的值.10. 七年级学生在5名教师的带领下去公园秋游,公园的门票为每人30元.现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都按7折收费.(1)若有m 名学生,用代数式表示两种方案各需多少元;(2)当m =80时,采用哪种方案更优惠.11.如图,是的平分线,是的平分线.(1)若,求的度数;(2)若,求的度数.0abc <0b c +<0a c +>ac ab>=a b 22a b =10a b -<<<11a b<12a b ab a b =-+※132323242=⨯-+⨯=※5a =4b =-a b ※8a b -=a b b a -※※OB AOC ∠OD COE ∠40,140AOB AOE ∠=︒∠=︒BOD ∠,AOB AOE αβ∠=∠=BOD ∠12.知识回顾:七年级学习代数式求值时,遇到过这样一类题“代数式的值与x 的取值无关,求a 的值”,通常的解题方法是把x ,y 看作字母,a 看作系数,合并同类项,因为代数式的值与x 的取值无关,所以含x 项的系数为,即原式,所以,则.理解应用:(1)若关于x 的多项式的值与x 的取值无关,求m 的值;(2)已知:,.①计算:;②若的值与的取值无关,求的值.四、(本大题共12分)13.如图,数轴上点表示数,点表示数,且满足.点为数轴上一动点,其对应的数为.(1)点表示的数为_______;点表示的数为_______;若点为线段的中点,则点对应的数_______;(2)点在移动的过程中,其到点、点的距离之和为8,求此时点对应的数;(3)对于数轴上的三点,给出如下定义:若当其中一个点与其他两个点的距离恰好满足2倍关系时,则称该点是其他两个点的“2倍点”.如图,原点是点的“2倍点”.现在,点、点分别以每秒4个单位长度和每秒1个单位长度的速度同时向右运动,同时点以每秒3个单位长度的速度从表示数5的点向左运动.设出发后,点恰好是点的“2倍点”,请直接写出此时的值.6351ax y x y -++--0()365a x y =+-+30a +=3a =-()22335m x m x ---22231A x xy y =++-2B x xy =-2A B -2A B -y x A a B b a b 、()2240a b ++-=P P x A B P AB P P A B P P x O A B ,A B P s t P A B ,t2024年下学期七年级上册数学竞赛试题卷参考答案一、选择题(本大题共4小题,每小题6分,共24分.每小题只有一个正确选项)1.C 2.B 3.B 4.A二、填空题(本大题共4小题,每小题6分,共24分)5. 6.10 7.93 8.2或6或10(对1个得2分)三、(本大题共4小题,每小题10分,共40分)9.(1)解:当、时,. …………5分(2)解: ,当时,原式.……10分10.(1)甲:24m ,乙:21m+105, …………………6分(2)当m =80时,甲:24m=1920,乙:21m+105=1785.∵1920>1785,∴选乙方案更优惠.…………10分11.(1)解:∵是的平分线,∴,∴. …………………………………………………3分∵是的平分线,∴∴. …………………………………………………5分(2)解:∵是的平分线,∴,∴. …………………………………………………7分∵OD 是的平分线,∴,∴. ………………………………………10分12.(1)解:原式, …………2分∵其值与的取值无关,∴,解得, 即当时,多项式的值与的取值无关; …………4分(2)解:①; …………7分②,∵的取值与y 的值无关,∴,解得:. ………………10分四、(本大题共12分)13.(1),4,1(2)或5(3)的值为或或(1)解:数轴上点表示数,点表示数,且满足,,且,解得, ……………1分点表示的数为;点表示的数为;点为线段的中点,点对应的数为,故答案为:,4,1; ……………………4分(2)解:根据题意,分三种情况讨论:当时,,则,解得; ………………………………5分当时,,不存在这样的; ………………………………6分当时,,则,解得; ………………………………7分综上所述,此时点对应的数是或5; …………………………………………………8分(3)解:设出发后,表示的数是、表示的数是、表示的数是,根据题意分情况讨论:(1)当位置如图所示:则、,由点是点的“2倍点”,数形结合得,即,解得(负值,合题意,舍去); ……………………9分(2)当位置如图所示:则、,由点是点的“2倍点”,数形结合,分两种情况:①,即,解得;②,即,解得;…10分(3)当位置如图所示:则、,由点是点的“2倍点”,数形结合得,即,解得;…………11分(4)当位置如图所示:则、,由点是点的“2倍点”,数形结合得,即,解得(负值,不合题意,舍去);综上所述,的值为或或.(写出1个得1分,2个得3分,3个得4分) …………12分53.8410´5a =4b =-()()11545420522722a b ab a b =-+=⨯--+⨯-=---=-※()113222a b b a ab a b ab b a a b -=-+-+-=--※※8a b -=38122=-⨯=-OB AOC ∠40BOC AOB ∠=∠=︒14060COE AOB BOC ∠=︒-∠-∠=︒OD COE ∠130,2COD COE ∠=∠=︒403070BOD BOC COD ∠=∠+∠=︒+︒=︒OB AOC ∠BOC AOB α∠=∠=2COE AOB BOC ββα∠=-∠-∠=-COE ∠()11222COD COE βα∠=∠=-()11222BOD BOC COD αβαβ∠=∠+∠=+-=()2223355323m x m mx m x m m =--+=-+-x 530m -=35m =35m =()22335x x m x ---x ()22222312431A B x xy y x xy xy y -=++---=+-()2431A B x y -=+-2A B -430x +=34x =-2-3-t 35131056A aB b a b 、()2240a b ++-=20a ∴+=40b -=2,4a b =-=∴A 2-B 4 P AB ∴P 2412-+=2-2P x <-8PA PB +=()()248P P x x --+-=3P x =-24P x -≤≤()426PA PB +=--=P x 4P x >8PA PB +=()()248P P x x --+-=5P x =P P x 3-s t A 24t -+B 4t +P 53t -A B P 、、()()532477AP t t t =---+=-()()53414BP t t t =--+=-P A B ,2PA PB =()77214t t -=-5t =-A B P 、、()()532477AP t t t =---+=-()()45314BP t t t =+--=-+P A B ,2PA PB =()77214t t -=-+35t =2PA PB =()27714t t -=-+56t =A B P 、、()()245377AP t t t =-+--=-+()()45314BP t t t =+--=-+P A B ,2PA PB =()27714t t -+=-+1310t =A B P 、、()()245377AP t t t =-+--=-+()()45314BP t t t =+--=-+P A B ,2PA PB =()77214t t -+=-+5t =-t 35561310。

人教版七年级数学上册竞赛试卷及答案

人教版七年级数学上册竞赛试卷及答案

人教版七年级数学上册竞赛试卷及答案一.选择题(共10小题,共30分)1.如果温度上升3C ︒,记作3C ︒+,那么温度下降2C ︒记作( )A .2C ︒-B .2C ︒+ C .3C ︒+D .3C ︒-2.中华民族的母亲河黄河,发源于巴颜喀拉山脉北麓,注入渤海,流域面积约为750000千米2.将750000千米2用科学记数法表示为( )A .47.510⨯千米2;B .57.510⨯千米2;C .47510⨯千米2;D .57510⨯千米23.在下列生活、生产现象中,不可以用基本事实“两点确定一条直线”来解释的有( )A .1个B .2个C .3个D .4个4.早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是( ) A .3(2)+- B .3(2)-- C .3(2)⨯- D .(3)(2)-÷-5.点A 在数轴上,点A 所对应的数用21a +表示,且点A 到原点的距离等于3,则a 的值为( )A .2-或1B .2-或2C .2-D .16.如图:CD 是直角三角形ABC 的高,将直角三角形ABC 按以下方式旋转一周可以得到右侧几何体的是( )A .绕着AC 旋转B .绕着AB 旋转C .绕着CD 旋转 D .绕着BC 旋转 7.若单项式12m a b -与212n a b 的和仍是单项式,则m n 的值是( )A .3B .6C .8D .9 8.下列结论中不能由0a b +=得到的是( )A .2a ab =-B .||||a b =C .0a =,0b =D .22a b =9.在解方程13132x x x -++=时,方程两边同时乘以6,去分母后,正确的是( ) A .2163(31)x x x -+=+ B .2(1)63(31)x x x -+=+ C .2(1)3(31)x x x -+=+ D .(1)3(1)x x x -+=+10.点C 是线段AB 的中点,点D 是线段AC 的三等分点.若线段12AB cm =,则线段BD 的长为( )A .10cmB .8cmC .10cm 或8cmD .2cm 或4cm 二.填空题(共5小题,15分)11.如图,数轴上A 、B 两点所表示的数分别是4-和2,点C 是线段AB的中点,则点C 所表示的数是 .12.某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打 折.13.往返于甲、乙两地的列车,中途需要停靠4个车站,如果每两站的路程都不相同,要准备 种不同的车票.14.请你只在“加、减、乘、除和括号”中选择使用,可以重复,将四个数2-,4,6-,8组成算式(四个数都用且每个数只能用一次),使运算结果为24,你列出的算式是 (只写一种)15.如图.在正方形ABCD 的边长为3,以A 为圆心,2为半径作圆弧.以D 为圆心,3为半径作圆弧.若图中阴影部分的面积分为1S 、2S .则12S S -= .三.解答题(共8小题,共75分)16.(8分)先化简,再求值:223(2)2(3)x xy y x y ----,其中1x =-,2y =.学校:______________ 班级:___________ 姓名:_____________ 考场_____________ 学号:___________........................... 装.......................订.........................线......................17.(9分)平面上有A ,B ,C ,D 四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池,不考虑其他因素,请你画图确定蓄水池H 的位置,使它与四个村庄的距离之和最小(A ,B ,C ,D 四个村庄的地理位置如图所示),你能说明理由吗?18.(9分)已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2,求1(1)322a b cd x+---的值. 19.(9分)先阅读理解, 再回答问题 .计算:12112()()3031065-÷-+- 解:原式的倒数为211212112()()()(30)310653031065-+-÷-=-+-⨯-203512=-+-+10=-,故原式110=-;请阅读上述材料, 选择合适的方法计算:11322()()4261437-÷-+-.20.(9分)已知有理数a 、b 、c 在数轴上的位置,(1)a b + 0;a c + 0;b c - 0;(用“>,<,=”填空) (2)试化简||||||a b a c b c +-++-.21.(10分)已知代数式231A x x =-+,马小虎同学在做整式加减运算时,误将“A B -”看成“A B +”了,计算的结果是2232x x --. (1)请你帮马小虎同学求出正确的结果;(2)x 是最大的负整数,将x 代入(1)问的结果求值. 22.(10分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元; (2)求明年改装的无人驾驶出租车是多少辆. 23.(11分)如图:A 、B 、C 、D 四点在同一直线上. (1)若AB CD =.①比较线段的大小:AC BD (填“>”、“ =”或“<” );②若34BC AC =,且12AC cm =,则AD 的长为 cm ; (2)若线段AD 被点B 、C 分成了3:4:5三部分,且AB 的中点M 和CD 的中点N 之间的距离是16cm ,求AD 的长.参考答案1.如果温度上升3C ︒,记作3C ︒+,那么温度下降2C ︒记作( ) A .2C ︒- B .2C ︒+ C .3C ︒+ D .3C ︒-【解答】解:“正”和“负”相对,如果温度上升3C ︒,记作3C ︒+, 温度下降2C ︒记作2C ︒-. 故选:A .2.中华民族的母亲河黄河,发源于巴颜喀拉山脉北麓,注入渤海,流域面积约为750000千米2.将750000千米2用科学记数法表示为( )A .47.510⨯千米2B .57.510⨯千米2C .47510⨯千米2D .57510⨯千米2 【解答】解:数据750000用科学记数法可表示57.510⨯, 故选:B .3.在下列生活、生产现象中,不可以用基本事实“两点确定一条直线”来解释的有( )A .1个B .2个C .3个D .4个【解答】解:第一、二、三幅图中的生活、生产现象可以用基本事实“两点确定一条直线”来解释,第四幅图中利用的是“两点之间,线段最短”的知识. 故选:A .4.早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是( )A .3(2)+-B .3(2)--C .3(2)⨯-D .(3)(2)-÷- 【解答】解:.3(2)1A +-=,故A 不符合题意; .3(2)325B --=+=,故B 不符合题意; .3(2)6C ⨯-=-,故C 符合题意;D .(3)(2) 1.5-÷-=,故D 不符合题意.综上,只有C 计算结果为负. 故选:C .5.点A 在数轴上,点A 所对应的数用21a +表示,且点A 到原点的距离等于3,则a 的值为( )A .2-或1B .2-或2C .2-D .1 【解答】解:由题意得, |21|3a +=,解得,1a =或2a =-, 故选:A .6.如图:CD 是直角三角形ABC 的高,将直角三角形ABC 按以下方式旋转一周可以得到右侧几何体的是( )A .绕着AC 旋转B .绕着AB 旋转C .绕着CD 旋转 D .绕着BC 旋转【解答】解:将直角三角形ABC 绕斜边AB 所在直线旋转一周得到的几何体是,故选:B .7.若单项式12m a b -与212n a b 的和仍是单项式,则m n 的值是( )A .3B .6C .8D .9 【解答】解:单项式12m a b -与212n a b 的和仍是单项式,∴单项式12m a b -与212n a b 是同类项,12m ∴-=,2n =, 3m ∴=,2n =,8m n ∴=.故选:C .8.下列结论中不能由0a b +=得到的是( )A .2a ab =-B .||||a b =C .0a =,0b =D .22a b =【解答】解:A 、2a ab =-,即20a ab +=,即()0a a b +=,当0a b +=时,2a ab =-一定成立,故选项一定能由0a b +=得到;B 、因为a b =-,即a 与b 互为相反数,根据互为相反数的两个数的绝对值相等,得到||||a b =; C 、因为a b =-,即a 与b 互为相反数,则0a =,0b =不一定成立,故不能由0a b +=得到;D 、因为a b =-,即a 与b 互为相反数,则22a b =,一定成立,故能由0a b +=得到. 故只有C 不一定能由0a b +=得到. 故选:C .9.在解方程13132x x x -++=时,方程两边同时乘以6,去分母后,正确的是( ) A .2163(31)x x x -+=+ B .2(1)63(31)x x x -+=+ C .2(1)3(31)x x x -+=+ D .(1)3(1)x x x -+=+【解答】解:方程两边同时乘以6得:2(1)63(31)x x x -+=+,故选:B .10.点C 是线段AB 的中点,点D 是线段AC 的三等分点.若线段12AB cm =,则线段BD 的长为( )A .10cmB .8cmC .10cm 或8cmD .2cm 或4cm 【解答】解:C 是线段AB 的中点,12AB cm =, 11126()22AC BC AB cm ∴===⨯=, 点D 是线段AC 的三等分点, ①当13AD AC =时,如图,26410()3BD BC CD BC AC cm =+=+=+=; ②当23AD AC =时,如图, 1628()3BD BC CD BC AC cm =+'=+=+=.所以线段BD 的长为10cm 或8cm , 故选:C .二.填空题(共5小题)11.如图,数轴上A 、B 两点所表示的数分别是4-和2,点C 是线段AB 的中点,则点C 所表示的数是 1- .【解答】解:数轴上A ,B 两点所表示的数分别是4-和2,∴线段AB 的中点所表示的数1(42)12=-+=-. 即点C 所表示的数是1-. 故答案为:1-12.某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打 8 折. 【解答】解:设商店打x 折, 依题意,得:180********%10x⨯-=⨯, 解得:8x =. 故答案为:8.13.往返于甲、乙两地的列车,中途需要停靠4个车站,如果每两站的路程都不相同,问要准备 种不同的车票. 【解答】解:(1)如图:根据线段的定义:可知图中共有线段有AC ,AD ,AE ,AF ,AB ,CD 、CE ,CF 、CB 、DE ,DF 、DB 、EF ,EB ,FB 共15条,有15种不同的票价;因车票需要考虑方向性,如,“A C →”与“C A →”票价相同,但车票不同,故需要准备30种车票. 故答案为: 30.14.请你只在“加、减、乘、除和括号”中选择使用,可以重复,将四个数2-,4,6-,8组成算式(四个数都用且每个数只能用一次),使运算结果为24,你列出的算式是 8(6)[4(2)]24⨯-÷÷-= (只写一种) 【解答】解:8(6)[4(2)]24⨯-÷÷-= 故答案为:8(6)[4(2)]24⨯-÷÷-=.(答案不唯一) 15.如图.在正方形ABCD 的边长为3,以A 为圆心,2为半径作圆弧.以D 为圆心,3为半径作圆弧.若图中阴影部分的面积分为1S 、2S .则12S S -=1394π- .【解答】解:339S =⨯=正方形,290393604ADC S ππ⨯==扇形, 2902360EAF S ππ⨯==扇形,()129139944EAF ADC S S S S S πππ⎛⎫∴-=--=--=- ⎪⎝⎭正方形扇形扇形. 故答案为:1394π-.三.解答题(共8小题)16.先化简,再求值:223(2)2(3)x xy y x y ----,其中1x =-,2y =. 【解答】解:原式2233626x xy y x y =---+23x xy =-,把1x =-,2y =代入223(1)3(1)27x xy -=--⨯-⨯=.17.平面上有A ,B ,C ,D 四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池,不考虑其他因素,请你画图确定蓄水池H 的位置,使它与四个村庄的距离之和最小(A ,B ,C ,D 四个村庄的地理位置如图所示),你能说明理由吗?【解答】解:如答图所示,连接AC ,BD ,它们的交点是H ,点H 就是修建水池的位置,这一点到A ,B ,C ,D 四点的距离之和最小.18.已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2,求1(1)322a b cd x +---的值.【解答】解:a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2, 0a b ∴+=,1cd =,2x =±,当2x =时,111(1)32(01)31227222a b cd x +---=⨯--⨯-⨯=-;当2x =-时,111(1)32(01)312(2)222a b cd x +---=⨯--⨯-⨯-=.19.先阅读理解, 再回答问题 .计算:12112()()3031065-÷-+- 解: (方 法一) 原式12112151()[()()]()()30361053062=-÷++--=-÷-1330=-⨯110=-(方 法二) 原式的倒数为211212112()()()(30)310653031065-+-÷-=-+-⨯-203512=-+-+ 10=-故原式110=-请阅读上述材料, 选择合适的方法计算:11322()()4261437-÷-+-.【解答】解: 原式的倒数为13221()()6143742-+-÷-1322()(42)61437=-+-⨯- 79281214=-+-+=-故原式114=-.20.已知有理数a 、b 、c 在数轴上的位置,(1)a b + < 0;a c + 0;b c - 0;(用“>,<,=”填空) (2)试化简||||||a b a c b c +-++-.【解答】解:(1)由数轴可得:0c a b <<<, 0a b ∴+<,0a c +<,0b c ->,(2)0a b +<,0a c +<,0b c ->, ||||||0a b a c b c a b a c b c ∴+-++-=--+++-=.故答案为:(1)<;<;>.21.已知代数式231A x x =-+,马小虎同学在做整式加减运算时,误将“A B -”看成“A B +”了,计算的结果是2232x x --.(1)请你帮马小虎同学求出正确的结果;(2)x 是最大的负整数,将x 代入(1)问的结果求值. 【解答】解:(1)根据题意知22232(31)B x x x x =----+ 2223231x x x x =---+- 223x x =---,则22(31)(23)A B x x x x -=-+---- 223123x x x x =-++++244x x =++;(2)x 是最大的负整数, 1x ∴=-,则原式24(1)14=⨯--+414=-+ 7=.22.粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元; (2)求明年改装的无人驾驶出租车是多少辆.【解答】解:(1)50(150%)25⨯-=(万元).故明年每辆无人驾驶出租车的预计改装费用是25万元;(2)设明年改装的无人驾驶出租车是x 辆,则今年改装的无人驾驶出租车是(260)x -辆,依题意有50(260)259000x x -+=,解得160x =.故明年改装的无人驾驶出租车是160辆.23.如图:A 、B 、C 、D 四点在同一直线上. (1)若AB CD =.①比较线段的大小:AC = BD (填“>”、“ =”或“<” );②若34BC AC =,且12AC cm =,则AD 的长为 cm ; (2)若线段AD 被点B 、C 分成了3:4:5三部分,且AB 的中点M 和CD 的中点N 之间的距离是16cm ,求AD 的长.【解答】解:(1)①AB CD =, AB BC CD BC ∴+=+, 即,AC BD =, 故答案为:=;②34BC AC =,且12AC cm =, 3129()4BC cm ∴=⨯=,1293()AB CD AC BC cm ∴==-=-=, 12315()AD AC CD cm ∴=+=+=,故答案为:15; (2)如图,设每份为x ,则3AB x =,4BC x =,5CD x =,12AD x =, M 是AB 的中点,点N 是CD 的中点N , 32AM BM x ∴==,52CN DN x ==, 又16MN =, ∴3541622x x x ++=, 解得,2x =,1224()AD x cm ∴==,答:AD 的长为24cm.。

七年级数学上册竞赛试卷附答案

七年级数学上册竞赛试卷附答案

ABC D 2 1 七年级数学上册竞赛试卷(时间30分钟,满分100分)姓名_________ 小组_________ 总分________ 卷面分5分一、选择题(每小题3分,共30分)1.下列各图中,∠1与∠2是对顶角的是( )2.下列说法正确的是 ( )A 、 如果∠1=∠2,则∠1和∠2是对顶角B 、 如果∠1和∠2有公共的顶点,则∠1和∠2是对顶角C 、 对顶角都是锐角D 、锐角的对顶角也是锐角3.有一点A ,与点A 的距离是5cm 的直线可画( ) A. 1条 B. 2条 C. 3条 D. 无数条4.如图,直线AB 与直线CD 相交于点O ,E 是∠AOD 内一点,已知OE ⊥AB ,∠BOD =45°,则∠COE 的度数是( )第4题图A .125°B .135°C .145°D .155°5.下列选项中,过点P 画AB 的垂线CD ,三角板放法正确的是( )6.甲、乙、丙、丁四位学生在判断时钟的时针与分针互相垂直的时刻,他们每个人说了两个时刻,说对的是( )A 、甲说3点和3点半B 、乙说6点和6点15分C 、丙说8点半和10点一刻D 、丁说3点和9点7.如图∠1与∠2是哪两条直线被哪一条直线所截形成的内错角( )(3分)A, DC,AD 被AC 所截 B. AD,AB 被AC 所截C. DC,BC 被AC 所截D. AD,BC 被AC 所截8.在同一平面内,不重合的两条直线的位置关系是 ( )A.平行或垂直B.平行或相交C.垂直或相交D.平行、垂直或相交9.如图,下列说法错误的是( )A .∠2和∠3是同旁内角B .∠A 和∠3是内错角C .∠1和∠3是内错角D .∠C 和∠3是同位角第9题图 10.如图,已知直线和相交于点,是直角,平分,,则的大小为( )A.B.C.D.二、填空题(每小题3分,共18分)11.如图,从书店到公路最近的是________号路线,数学道理是____________.第11题图第12题图12.如图,已知点O 在直线AB 上,OC ⊥OD ,若∠1=37°,∠2=________. 13.a ,b ,c 为同一平面内的三条直线,已知a ⊥b ,a ∥c ,则直线b 与c 的位置关系为________. 14.如图,若AO ⊥OC ,DO ⊥OB ,∠AOB ∶∠BOC=32∶13,则∠COD= . 15.如图,三条直线AB 、CD 、EF 相交于同一点O ,如果∠AOE=2∠AOC ,∠COF=23∠AOE ,那么∠DOE= .16.如图,∠A 与 是内错角,∠B 的同位角是 ,直线AB 和CE 被直线BC 所截得到的同旁内角是 。

七年级数学上册竞赛试题(包含答案)

七年级数学上册竞赛试题(包含答案)

一、选择题1、已知代数式3x y +的值是4,则代数式261x y ++的值是( ) A 、10 B 、9C 、8D 、不能确定【答案】2、用四舍五入得到的近似数中,含有三个有效数字的是( ) A 、0.5180 B 、0.02380C 、800万D 、4.0012【答案】3.某项科学研究,以45分钟为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正,例如9∶15记为-1,10∶45记为1等等,依此类推,上午7∶45应记为( ) A 、3 B 、-3C 、-2.15D 、-7.45【答案】4、x 、y 、z 在数轴上的位置如图所示,则化简y z y x -+-的结果是( )A 、x z -B 、z x -C 、2x z y +-D 、以上都不对【答案】5、观察下列图形,并阅读图形下面的相关文字两直线相交,最多1个交点 三条直线相交最多有3个交点 四条直线相交最多有6个交点像这样的十条直线相交最多的交点个数为( ) A 、40个 B 、45个 C 、50个 D 、55个 【答案】6、如图棋盘上有黑、白两色棋子若干,找出所有只要有三颗颜色相同的棋并且在同一直线上的直线,这样直线共有多少条?.( ) A 、2条 B 、3条 C 、4条 D 、5条 【答案】7、一台电视机成本价为a 元,销售价比成本价增加25%,因库存积压, 所以就按销售价的70%出售。

那么每台实际售价为( ). A 、(1+25%)(1+70%)a 元 B 、70%(1+25%)a 元 C 、(1+25%)(1-70%)a 元 D 、(1+25%+70%)a 元 【答案】8、现定义两种运算“⊕”,“*”。

对于任意两个整数,1a b a b ⊕=+-,1a b a b *=⨯-, 则(6⊕8)*(3⊕5)的结果是( ) A 、60 B 、69 C 、112 D 、90【答案】9、在一次“人与自然”知识竞赛中,竞赛试题共有25道题.每道题都给出4个答案,其中只有一个答案正确.要求学生把正确答案选出来.每道题选对得4分,不选或选错倒扣2分.如果一个学生在本次竞赛中的得分不低于60分;那么,他至少选对了多少道题?( )A 、15B 、16C 、19D 、20 【答案】10、如图,已知每个小正方形的边长为1,则数轴上 点A 表示的数为( )A 、5B 、C 、 【答案】 二、填空题:11、已知()2230x y -++=,则xy =__ __【答案】12、关于x 的一元一次方程(2m -6)x │m │-2=m 2的解为 . 【答案】13、某商品价格为a 元, 降低10%后, 又降低10%, 销售量猛增, 于是商店决定再提价20%,此时这种商品的价格为___ ___元. 【答案】14、根据下图程序,当输入n =5时,输出的值为 。

(名师整理)数学七年级竞赛试题及答案解析

(名师整理)数学七年级竞赛试题及答案解析

七年级上数学竞赛试题(考试时间:90分钟满分:100分)学校班级姓名一、选择题(每小题3分,共30分)1.已知,且a>b,那么a+b的值等于()A. 或B. 或C. 或D. 或2.如图,数轴上每个刻度为1个单位长,则A,B分别对应数a,b,且b-2a=7,那么数轴上原点的位置在()A. A 点B. B 点C. C 点D. D 点3.下列语句中:(1)线段AB就是A,B两点间的距离;(2)画射线AB=10cm;(3)A,B两点之间的所有连线中,最短的是A,B两点间的距离;(4)在直线上取A,B,C三点,使得AB=5cm,BC=2cm,则AC=7cm。

其中正确的有()A.1 个B.2 个C.3 个D.4 个4.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂重物的质量x(kg)有下面的关系,( )A.y=x +12B.y=0.5x+12C.y=0.5x+10D.y=x+10.55.港珠澳大桥于2018年10月24日正式通车,该工程总投资额为1269亿元,将1269亿用科学记数法表示为().A.12.69×1010B.1.269×1011C.1.269×1012D.0.1269×10136.若(m-2)x|2m-3|=6是关于x的一元一次方程,则m的值是()A. 1B. 任何数 C. 2 D. 1或27.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是()A. B. C.D.8.如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从A出发爬到B,则( )122503.002.003.05.09.0x 4.0-=+-+x xA.乙比甲先到B.甲和乙同时到C.甲比乙先到D.无法确定9.如图,线段AB 和线段CD 的重合部分CB 的长度是线段AB 长的,M 、N 分别是线段AB 和线段CD 的中点,AB=18,MN=13,则线段AD 的长为( ) A. 31 B. 33 C. 32 D. 34 10.如图所示的立方体,如果把它展开,可以是下列图形中的( )A. B. C. D.二、填空题(每小题3分,共24分)11.数轴上表示-2的点距离3个长度单位的点所表示的数是________. 12.钟表上的时间是2时30分,此时时针与分针所成的夹角是________ 度. 13.现在网购越来越多地成为人们的一种消费方式,刚刚过去的2015年的“双11”网上促销活动中,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为____ ____.14.观察下列算式:21=2、22=4、23=8、24=16、25=32、26=64、27=128、28=256….观察后,用你所发现的规律写出223的末位数字是________. 15.已知m=,n=, 则代数式(m+2n )﹣(m ﹣2n )的值为________16.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是________.18.你会玩“二十四点”游戏吗?现有“2,-3,-4, 5,”四个数,每个数用且只用一次进行加、减、乘、除,使其结果为24,写出你的算式(只写一个即可):________=24. 17.如图,OA ⊥OC ,OB ⊥OD ,下面结论:①∠AOB=∠COD ;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC-∠COD=∠BOC 中,正确的有________ (填序号).三、计算题(共3题;共15分)19.解方程:20.计算:(1)×24-×(-2.5)×(-8).(2).四、解答题(共5题;共31分)21.设B为线段AC上的一点,AB=8cm,BC=2cm,M、N分别为AB、AC的中点.求MN的长.22.已知a,b互为相反数,c,d互为倒数,m的倒数等于本身,求代数式的值.23.小李到某城市行政中心大楼办事,假定乘电梯向上一楼记为+1,向下一楼记为–1.小李从1楼出发,电梯上下楼层依次记录如下(单位:层):+5,–3,+10,–8,+12,–6,–10.(1)请你通过计算说明小李最后是否回到出发点1楼;3(2)该中心大楼每层高2.8m,电梯每上或下1m需要耗电0.1度.根据小李现在所处的位置,请你算一算,当他办事时电梯需要耗电多少度?24.如图,直线AB、CD相交于点O,OE平分∠AOD,∠FOC=90°,∠1=40°,求∠2和∠3的度数.25.坟中安葬着丢番图,多么令人惊讶,他忠实地记录了所经历的道路.上帝给予的童年占六分之一,又过了十二分之一,两颊长胡,再过七分之一,点燃结婚的蜡烛,五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入坟墓,悲伤只有用数论研究去弥补,又过四年,他也走完了人生的旅途。

七年级上数学竞赛试题含答案(专家推荐)

七年级上数学竞赛试题含答案(专家推荐)

七年级上册数学 知识竞赛试题(时间90分钟,满分100分)班级: 姓名: 得分:一、选择题(每小题4分,共40分) 1、(-0.125)2007×(-8)2008的值为( )(A )-4 (B )4 (C)-8 (D)82、任意有理数a ,式子1,1,,1a a a a a -+-++中,值不为0的是( ) (A )1a - (B )1a + (C )a a -+ (D )1a +3、若,,,a b c m 是有理数,且23,2a b c m a b c m ++=++=,那么b 与c ( ) (A )互为相反数 (B )互为倒数 (C )互为负倒数 (D )相等4、要使不等式753246a a a a a a a <<<<<<<成立,有理数a 的取值范围是( )(A )01a << (B )1a > (C )10a -<< (D )1a <-5、把14个棱长为1的正方体,在地面上堆叠成如图1所示的立方体,然后将露出的表面部分涂成红色,那么红色部分的面积为( )(A )21 (B )24 (C )33 (D )376、如果m 是大于1的偶数,那么m 一定小于它的( ) A 、相反数 B 、倒数 C 、绝对值 D 、平方7、当x=-2时, 37ax bx +-的值为9,则当x=2时,37ax bx +-的值是( )A 、-23B 、-17C 、23D 、178、255,344,533,622这四个数中最小的数是………………….. ( ) A. 255B. 344C. 533D. 6229、有理数的大小关系如图2所示,则下列式子中一定成立的是( )A 、c b a ++>0B 、c b a <+C 、c a c a +=-D 、a c c b ->-10、已知一个多项式与x x 932+的和等于1432-+x x ,则这个多项式是( )图2图1A 、15--xB 、15+xC 、113--xD 、113+x 二、填空题(每小题4分,共20分)11、三个有理数a、b、c之积是负数,其和是正数,当x =cc bb aa ++时,则______29219=+-x x 。

七年级数学竞赛试题(含答案)

七年级数学竞赛试题(含答案)

七年级数学竞赛试题一、选择题(本大题共5小题,每小题4分,共20分)1.下面四个所给的选项中,能折成如图给定的图形的是( )A .B .C .D . 2.若定义“⊙”:a ⊙b=b a ,如3⊙2=23=8,则3⊙等于( )A .B .8C .D .3.已知x+y=7,xy=10,则3x 2+3y 2=( )A .207B .147C .117D .874.一天有个年轻人来到李老板的店里买了一件礼物,这件礼物成本是18元,标价是21元.结果是这个年轻人掏出100元要买这件礼物.李老板当时没有零钱,用那100元向街坊换了100元的零钱,找给年轻人79元.但是街坊后来发现那100元是假钞,李老板无奈还了街坊100元.现在问题是:李老板在这次交易中到底损失( )A .179元B .97C .100元D .118元5.如图,直线a ∥b ,那么∠x 的度数是( )A .72°B .78°C .108°D .90°二、填空题(本大题共8小题,每小题4分,共32分) 6.若()()1532-+=++mx x n x x ,则m 的值为___________。

7.已知4433553,5,2===c b a ,则a ,b ,c 的大小关系(从小到大排列,用“<”连接)__________________。

8.如果代数式535-++cx bx ax ,当x=﹣2时该式的值是7,那么当x=2时该式的值是__________。

9.若()0862=+++-y y x ,则xy=__________。

10. 如图的号码是由14位数字组成的,每一位数字写在下面的方格中,若任何相邻的三个数字之和都等于14,则x 的值等于__________。

11. 已知多项式162++px x 是完全平方式,则p 的值为___________。

12.己如,△ABC 的面积为1,分别延长AB 、BC 、CA 到D 、E 、F ,使AB=BD ,BC=CE ,CA=AF ,连DE 、EF 、FD ,则△DEF 的面积为___________。

七年级上册数学竞赛题 附答案(推荐文档)

七年级上册数学竞赛题 附答案(推荐文档)

1.x 是任意有理数,则2|x |+x 的值( ).A .大于零B . 不大于零C .小于零D .不小于零2.在-0.1428中用数字3替换其中的一个非0数码后,使所得的数最大,则被替换的数字是( )A .1B .4C .2D .83.桌上放着4张扑克牌,全部正面朝下,其中恰有1张是老K 。

两人做游戏,游戏规则是:随机取2张牌并把它们翻开,若2张牌中没有老K ,则红方胜,否则蓝方胜。

则赢的机会大的一方是( )A .红方B .蓝方C .两方机会一样D .不知道4.如果在正八边形硬纸板上剪下一个三角形(如图①中的阴影部分),那么图②,图③,图④中的阴影部分,均可由这个三角形通过一次平移、对称或旋转而得到.要得到图②,图③,图④中的阴影部分,依次进行的变换不可行...的是( )A.平移、对称、旋转 B.平移、旋转、对称C.平移、旋转、旋转 D.旋转、对称、旋转5.如图,三个天平的托盘中相同的物体质量相等。

图⑴、⑵所示的两个天平处于平衡状态要使第三个天平也保持平衡,则需在它的右盘中放置( )(3)(2)(1)A. 3个球B. 4个球C. 5个球D. 6个球6.用火柴棒搭三角形时,大家都知道,3根火柴棒只能搭成1种三角形,不妨记作它的边长分别为1,1,1;4根火柴棒不能搭成三角形;5根火柴棒只能搭成一种三角形,其边长分别为2,2,1;6根火柴棒只能搭成一种三角形,其边长分别为2,2,2;7根火柴棒只能搭成2种三角形,其边长分别为3,3,1和3,2,2;…;那么30根火柴棒能搭成三角形个数是( )A .15B .16C .18D .197、在数轴上,A 、B 是两个定点,A 表示1,B 表示一4,P 到A 、B 的距离和为9,则P 表示的数是 .8.若A 、B 、C 、D 、E 五名运动员进行乒乓球单循环赛(即每两人赛一场),比赛进行一段图① 图② 图③ 图④那么与E 进行过比赛的运动员是 。

9.如果实数a 、b 、c 满足a +2b +3c =12,且a 2+b 2+c 2=ab +ac +bc ,则代数值a +b 2+c 3 的值为 。

七年级上数学竞赛试题及答案

七年级上数学竞赛试题及答案

七年级上数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列哪个选项是正确的?A. 2 + 3 = 5B. 3 × 4 = 12C. 5 - 2 = 3D. 6 ÷ 2 = 3答案:C3. 一个数的平方等于9,这个数是多少?A. 3B. -3C. 3和-3D. 只有3答案:C4. 以下哪个选项是完全平方数?A. 4B. 9C. 15D. 16答案:D5. 一个数的绝对值是5,这个数是多少?A. 5B. -5C. 5或-5D. 只有5答案:C6. 下列哪个选项是奇数?A. 2B. 4C. 6D. 7答案:D7. 一个数的立方等于-27,这个数是多少?A. 3B. -3C. 3或-3D. 只有-3答案:D8. 计算下列哪个选项是正确的?A. 2 × 3 ÷ 2 = 3B. 4 + 5 - 6 = 3C. 8 ÷ 2 × 2 = 4D. 10 - 2 × 3 = 4答案:A9. 下列哪个选项是偶数?A. 1B. 2C. 3D. 4答案:D10. 一个数的倒数是1/2,这个数是多少?A. 2B. 1/2C. 1D. 0答案:A二、填空题(每题4分,共20分)1. 一个数的平方根是4,这个数是________。

答案:162. 3的平方是________。

答案:93. 5的倒数是________。

答案:1/54. 一个数的绝对值是8,这个数可以是________。

答案:8或-85. 一个数的立方是64,这个数是________。

答案:4三、解答题(每题10分,共50分)1. 计算:(3 + 5) × 2 - 6答案:162. 一个数的两倍加上5等于15,求这个数。

答案:53. 计算:(-2) × (-3) ÷ (-1) + 4答案:104. 一个数的三倍减去7等于8,求这个数。

(完整版)七年级上学期数学竞赛试题(含答案),推荐文档

(完整版)七年级上学期数学竞赛试题(含答案),推荐文档

七年级数学竞赛试题(一)一、精心选一选(将唯一正确答案的代号填在题后的答题卡中 12×3分=36分)1、的绝对值是( )43-A 、B 、C 、D 、34-3443-432、下列算式正确的是( )A 、B 、C 、D 、239-=()1414⎛⎫-÷-= ⎪⎝⎭5(2)3---=-()2816-=-3、如果表示有理数,那么的值( )x x x +A 、可能是负数 B 、不可能是负数 C 、必定是正数 D 、可能是负数也可能是正数4、下列各题中计算结果正确的是( )A 、B 、0275.3=-ab ab xy y x 532=+C 、2245a b ab ab -=- D 、2x x +=3x 5、如图,数轴上的点A 所表示的数为,化简k 的结果为( )1k k +-A 、1 B 、 C 、 D 、21k -21k +12k-6、一商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是( )A 、125元 B 、135元 C 、145元 D 、150元7、儿子今年12岁,父亲今年39岁,( )父亲的年龄是儿子的年龄的4倍.(A )3年后; (B )3年前; (C )9年后; (D )不可能.8、老师讲了多项式的加减,放学后,某同学回家拿出笔记,认真地复习老师讲的内容,他突然发现一道题222221131(3)(4)2222x xy y x xy y x -+---+-=-+空格的地方被钢笔水弄污了,那么空格中的一项是( ) 2y A 、 B 、 C 、 D 、7xy -7xy xy xy -9、把方程中分母化整数,其结果应为( )17.012.04.01=--+x x A 、 B、17124110=--+x x 107124110=--+x x C、 D、1710241010=--+x x 10710241010=--+x x 10、观察下列算式:,331=932=,,,,,2733=8134=24335=72936=,…………;那么的末位数字应该是( )218737=656138=20113A 、 3 B 、 9 C 、 7 D 、 111、七年级的两名爱好数学的学生,在学完第三章《一元一次方程》后,一位同学对另一个同学说:“方程x xx -+-=--321312与方程4223324xk kx --=+-的解相同,k 的值是多少?”( ) A 、0 B 、 2 C 、 1 D 、–112、某出租车的收费标准是:起步价7元(即行驶距离不超过3km 都需付7元车费),超过3km 以后,每增加1km ,加收2.4元(不足1km 按1km 计). 某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程的最大值是( )A 、11B 、8C 、7D 、5二、细心填一填(6×3分=18分)13、的相反数是 ,倒数是 ,绝对值是 .211-14、若x 2+3x -5的值为7,则2-9x -3x 2的值为__________.15、一个长方形的周长26cm ,这个长方形的长减少1cm ,宽增2cm ,就可成为一个正方形,设长方形的长为x cm ,可列方程是______________________________.16、已知和-是同类项,则的值是 .362y x 313m n x y 29517m mn--17、观察下列各式:建议收藏下载本文,以便随时学习!我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙龙课反倒是龙卷风前一天,,,,………2311=233321=+23336321=++23333104321=+++根据观察,计算:的值为______________.333310321++++ 18、一系列方程:第1个方程是,解为;第2个方程是,32=+x x 2=x 532=+xx 解为;第3个方程是,解为;…,根据规律,第10个方6=x 743=+xx 12=x 程是___________,其解为____________.三、用心做一做(本大题共7小题,满分46分)19、计算:(每题4分,共8分)(1) ; (2) 12524(236-⨯+-)3()4()2(8102-⨯---÷+-20、化简:(每题3分,共6分)(1) ; (2) )]3(33[2b a b a ----)]3-(-7[-122222b a ab b a ab 21、解方程:(每题3分,共6分)(1) (2)22、(6分)先化简,再求值:,其中,.2223(2)x y x y +--()21=x 1-=y 23、( 6分)在广州亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子的丝巾1 200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?24、( 6分)如图所示,是某年12月份的日历,用一个矩形在日历内任圈出4个数。

七年级上学期数学竞赛试题(含答案)

七年级上学期数学竞赛试题(含答案)

七年级数学竞赛试题(一)一、精心选一选(将唯一正确答案的代号填在题后的答题卡中 12×3分=36分) 1、43-的绝对值是( ) A 、34- B 、34 C 、43- D 、432、下列算式正确的是( ) A 、239-= B 、()1414⎛⎫-÷-= ⎪⎝⎭C 、5(2)3---=-D 、()2816-=- 3、如果x 表示有理数,那么x x +的值( )A 、可能是负数B 、不可能是负数C 、必定是正数D 、可能是负数也可能是正数 4、下列各题中计算结果正确的是( )A 、0275.3=-ab ab B 、xy y x 532=+ C 、2245a b ab ab -=- D 、2x x +=3x5、如图,数轴上的点A 所表示的数为k ,化简1k k +-的结果为( )A 、1B 、21k -C 、21k +D 、12k-6、一商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是( )A 、125元B 、135元C 、145元D 、150元 7、儿子今年12岁,父亲今年39岁,( )父亲的年龄是儿子的年龄的4倍.(A )3年后; (B )3年前; (C )9年后; (D )不可能.8、老师讲了多项式的加减,放学后,某同学回家拿出笔记,认真地复习老师讲的内容,他突然发现一道题222221131(3)(4)2222x xy y x xy y x -+---+-=- +2y 空格的地方被钢笔水弄污了,那么空格中的一项是( ) A 、7xy - B 、7xy C 、xy D 、xy - 9、把方程17.012.04.01=--+x x 中分母化整数,其结果应为( ) A 、17124110=--+x x B、107124110=--+x xC、1710241010=--+x x D、10710241010=--+x x10、观察下列算式:331=,932= ,2733=,8134=,24335=,72936=,218737=,656138=…………;那么20113的末位数字应该是( )A 、 3B 、 9C 、 7D 、 111、七年级的两名爱好数学的学生,在学完第三章《一元一次方程》后,一位同学对另一个同学说:“方程x xx -+-=--321312与方程4223324xk kx --=+-的解相同,k 的值是多少”( ) A 、0 B 、 2 C 、 1 D 、–112、某出租车的收费标准是:起步价7元(即行驶距离不超过3km 都需付7元车费),超过3km 以后,每增加1km ,加收元(不足1km 按1km 计). 某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程的最大值是( )A 、11B 、8C 、7D 、5 二、细心填一填(6×3分=18分) 13、211-的相反数是 ,倒数是 ,绝对值是 . A00201003...-x 0020003...-14、若x 2+3x -5的值为7,则2-9x -3x 2的值为__________.15、一个长方形的周长26cm ,这个长方形的长减少1cm ,宽增2cm ,就可成为一个正方形,设长方形的长为x cm ,可列方程是______________________________.16、已知362y x 和-313m nx y 是同类项,则29517m mn --的值是 . 17、观察下列各式:2311=,233321=+,23336321=++,23333104321=+++,………根据观察,计算:333310321++++ 的值为______________.18、一系列方程:第1个方程是32=+xx ,解为2=x ;第2个方程是532=+x x ,解为6=x ;第3个方程是743=+xx ,解为12=x ;…,根据规律,第10个方程是___________,其解为____________.三、用心做一做(本大题共7小题,满分46分)19、计算:(每题4分,共8分) (1) 12524()236-⨯+-; (2) )3()4()2(8102-⨯---÷+-20、化简:(每题3分,共6分)(1) )]3(33[2b a b a ---- ; (2) )]3-(-7[-122222b a ab b a ab21、解方程:(每题3分,共6分) (1) (2)22、(6分)先化简,再求值:2223(2)x y x y +--(),其中21=x ,1-=y .23、( 6分)在广州亚运会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1 800条或者脖子的丝巾1 200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾24、( 6分)如图所示,是某年12月份的日历,用一个矩形在日历内任圈出4个数。

2023年沪科版七年级数学上册竞赛试题及详解

2023年沪科版七年级数学上册竞赛试题及详解

沪科版七年级数学上册竞赛试题及详解一.选择题(共10小题)1.(2023•佛山)据佛山日报2023年4月4日报道,佛山市今年拟投入70亿元人民币建设人民满意政府,其中民生项目资金占99%,用科学记数法表达民生项目资金是()A.70×108元B.7×108元C.6.93×108元D.6.93×109元2.(2023•台湾)若整数a的所有因子中,小于25的正因子为1、2、3、4、6、8、12、16、24,则a与720的最大公因子为什么?()A.24 B.48 C.72 D.2403.(2023•扬州一模)计算机中常用的十六进制是一种逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数字的相应关系如下表:十六进制0 1 2 3 4 5 6 7十进制0 1 2 3 4 5 6 7十六进制8 9 A B C D E F十进制8 9 10 11 12 13 14 15例如,用十六进制表达E+D=1B,用十进制表达也就是13+14=1×16+11,则用十六进制表达A×B=()A.6E B.72 C.5F D.B04.2023年8月8日晚上8时,第29届奥运会开幕式在北京“鸟巢”举行,开幕式宏伟壮观,大气磅礴,给世人留下了深刻的印象,据悉,这部盛典的幕后工作者是中国航天人,他们使用了大量载人航天技术和火箭技术,给奥运场馆装上了“大脑”,实现“不同地区、不同场馆”的信息集成,以保证零失误,可想而知,其中的程序设计多么复杂.现在请同学们体会一个小小的程序设计.如图,若开始输入的x值为96,我们发现得到的结果为48,第2次得到的结果为24…,通过探索可知,第2023次得到的结果为()A.3B.6C.8D.15.(2023•淄博)当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是()A.7B.3C.1D.﹣76.(2023•绍兴)如图1,天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧秤盘中也有一袋玻璃球,尚有2个各20克的砝码.现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图2,则被移动的玻璃球的质量为()A.10克B.15克C.20克D.25克7.(2023•台湾)桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15公分,各装有10公分高的水,且表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为3:4:5.若不计杯子厚度,则甲杯内水的高度变为多少公分?()底面积(平方公分)甲杯60乙杯80丙杯100A.5.4 B.5.7 C.7.2 D.7.58.(2023•永州)如图,一枚棋子放在七角棋盘的第0号角,现依逆时针方向移动这枚棋子,其各步依次移动1,2,3,…,n个角,如第一步从0号角移动到第1号角,第二步从第1号角移动到第3号角,第三步从第3号角移动到第6号角,….若这枚棋子不断地移动下去,则这枚棋子永远不能到达的角的个数是()A.0B.1C.2D.39.(2023•栖霞区一模)连接边长为1的正方形对边中点,可将一个正方形提成2个大小相同的长方形,选右边的长方形进行第二次操作,又可将这个长方形提成2个更小的正方形…反复这样的操作,通过仔细地观测与思考,猜想的值等于()A.1B.C.D.10.如图棋盘上有黑、白两色棋子若干,找出所有三颗颜色相同的棋并且在同一直线上的直线,这样直线共有多少条()A.2条B.3条C.4条D.5条二.填空题(共8小题)11.(2023•临沂)为保证信息安全,信息需加密传输,发送方由明文⇒密文(加密),接受方由密文⇒明文(解密),已知加密规则为:明文a,b,c,d相应密文a+2b,2b+c,2c+3d,4d.例如,明文1,2,3,4相应密文5,7,18,16.当接受方收到密文14,9,23,28时,则解密得到的明文为_________.12.(2023•连云港)a、b两数在一条隐去原点的数轴上的位置如图所示,下列4个式子:①a﹣b<0;②a+b<0;③ab<0;④ab+a+b+1<0中一定成立的是_________.(只填序号,答案格式如:“①②③④”).13.(2023•随州)某综合性大学拟建校园局域网,将大学本部A和所属专业学院B、C、D、E、F、G之间用网线连接起来,通过测算,网线费用如图所示(单位:万元),每个数字表达相应网线(线段)的费用,实际建网时部分网线可以省略不建,但本部及所属专业学院之间可以传递信息,那么建网所需的最少网线费用为_________万元.14.(2023•孝感)如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,则第6个五边形数是_________.15.(2023•随州)一项工程,甲工程队工作10天后,因另有任务离开,由乙工程队接着完毕.整个工作量作“1”,如图是完毕的工作量y随时间x(天)变化的图象,假如两个工程队合做,完毕这项工程所需的天数是_________天.16.(2023•舟山)三个同学对问题“若方程组的解是,求方程组的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应当是_________.17.(2023•江西)如图,已知方格纸中的每个小方格都是相同的正方形.∠ACB画在方格纸上,请在小方格的顶点上标出一个点P,使点P落在∠ACB的平分线上._________.18.两个完全相同的长方体的长、宽、高分别是5cm、4cm、3cm,把它们叠放在一起组成一个新的长方体,在这些新的长方体中,表面积最大是_________cm2.三.解答题(共8小题)19.阅读理解:给定顺序的n个数a1,a2,…,a n,记S k=a1+a2+…a k,为前k个数的和(1≤k≤n),定义A=(S1+S2+…+Sn)÷n称它们的“凯森和”,如a1=2,a2=3,a3=3,则s1=2,s2=5,s3=8,凯森和A=(2+5+8)÷3=5,若有99个数a1,a2,…,a99的“凯森和”为100,则添上21后的100个数21,a1,a2,…,a99的凯森和为_________.20.(2023•湛江)先观测下列等式,然后用你发现的规律解答下列问题.┅┅(1)计算=_________;(2)探究=_________;(用品有n的式子表达)(3)若的值为,求n的值.21.(2023•恩施州)下图的数阵是由全体奇数排成:(1)图中平行四边形框内的九个数之和与中间的数有什么关系?(2)在数阵图中任意作一类似(1)中的平行四边形框,这九个数之和尚有这种规律吗?请说出理由;(3)这九个数之和能等于1998吗?2023,1017呢?若能,请写出这九个数中最小的一个;若不能,请说出理由.22.(2023•青岛)我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”.数学中,数和形是两个最重要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以互相转化,互相渗透.数形结合的基本思想,就是在研究问题的过程中,注意把数和形结合起来考察,斟酌问题的具体情形,把图形性质的问题转化为数量关系的问题,或者把数量关系的问题转化为图形性质的问题,使复杂问题简朴化,抽象问题具体化,化难为易,获得简便易行的成功方案.例如:求1+2+3+4+…+n的值,其中n是正整数.对于这个求和问题,假如采用纯代数的方法(首尾两头加),问题虽然可以解决,但在求和过程中,需对n的奇偶性进行讨论.假如采用数形结合的方法,即用图形的性质来说明数量关系的事实,那就非常的直观.现运用图形的性质来求1+2+3+4+…+n的值,方案如下:如图,斜线左边的三角形图案是由上到下每层依次分别为1,2,3,…,n个小圆圈排列组成的.而组成整个三角形小圆圈的个数恰为所求式子1+2+3+4+…+n的值.为求式子的值,现把左边三角形倒放于斜线右边,与原三角形组成一个平行四边形.此时,组成平行四边形的小圆圈共有n行,每行有(n+1)个小圆圈,所以组成平行四边形小圆圈的总个数为n(n+1)个,因此,组成一个三角形小圆圈的个数为,即1+2+3+4+…+n=.(1)仿照上述数形结合的思想方法,设计相关图形,求1+3+5+7+…+(2n﹣1)的值,其中n是正整数.(规定:画出图形,并运用图形做必要的推理说明)(2)试设计此外一种图形,求1+3+5+7+…+(2n﹣1)的值,其中n是正整数.(规定:画出图形,并运用图形做必要的推理说明)23.(2023•无锡)十一届全国人大常委会第二十次会议审议的个人所得税法修正案草案(简称“个税法草案”),拟将现行个人所得税的起征点由每月2023元提高到3000元,并将9级超额累进税率修改为7级,两种征税方法的1~5级税率情况见下表: 税级 现行征税方法草案征税方法 月应纳税额x税率速算扣除数月应纳税额x 税率 速算扣除数 1 x ≤5005% 0 x ≤1500 5% 0 2 500<x ≤2023 10% 25 1500<x ≤4500 10%_________ 3 2023<x ≤5000 15% 125 4500<x ≤9000 20%_________ 4 5000<x ≤20230 20% 375 9000<x ≤35000 25% 975520230<x ≤4000025%1375 35000<x ≤5500030% 2725注:“月应纳税额”为个人每月收入中超过起征点应当纳税部分的金额. “速算扣除数”是为快捷简便计算个人所得税而设定的一个数.例如:按现行个人所得税法的规定,某人今年3月的应纳税额为2600元,他应缴税款可以用下面两种方法之一来计算:方法一:按1~3级超额累进税率计算,即500×5%+1500×10%+600×15%=265(元). 方法二:用“月应纳税额x 合用税率﹣速算扣除数”计算,即2600×15%﹣125=265(元). (1)请把表中空缺的“速算扣除数”填写完整;(2)甲今年3月缴了个人所得税1060元,若按“个税法草案”计算,则他应缴税款多少元?(3)乙今年3月缴了个人所得税3千多元,若按“个税法草案”计算,他应缴的税款恰好不变,那么乙今年3月所缴税款的具体数额为多少元?24.(2023•乐山)阅读下列材料:我们知道|x|的几何意义是在数轴上数x 相应的点与原点的距离;即|x|=|x ﹣0|,也就是说,|x|表达在数轴上数x 与数0相应点之间的距离;这个结论可以推广为|x1﹣x2|表达在数轴上数x1,x2相应点之间的距离;在解题中,我们会经常运用绝对值的几何意义:例1:解方程|x|=2.容易得出,在数轴上与原点距离为2的点相应的数为±2,即该方程的x=±2;例2:解不等式|x﹣1|>2.如图,在数轴上找出|x﹣1|=2的解,即到1的距离为2的点相应的数为﹣1,3,则|x﹣1|>2的解为x<﹣1或x>3;例3:解方程|x﹣1|+|x+2|=5.由绝对值的几何意义知,该方程表达求在数轴上与1和﹣2的距离之和为5的点相应的x的值.在数轴上,1和﹣2的距离为3,满足方程的x相应点在1的右边或﹣2的左边.若x相应点在1的右边,如图可以看出x=2;同理,若x相应点在﹣2的左边,可得x=﹣3.故原方程的解是x=2或x=﹣3.参考阅读材料,解答下列问题:(1)方程|x+3|=4的解为_________;(2)解不等式|x﹣3|+|x+4|≥9;(3)若|x﹣3|﹣|x+4|≤a对任意的x都成立,求a的取值范围.25.(2023•遵义)某中学准备改造面积为1080m2的旧操场,现有甲、乙两个工程队都想承建这项工程.经协商后得知,甲工程队单独改造这操场比乙工程队多用9天;乙工程队天天比甲工程队多改造10m2;甲工程队天天所需费用160元,乙工程队天天所需费用200元.(1)求甲乙两个工程队天天各改造操场多少平方米?(2)在改造操场的过程中,学校要委派一名管理人员进行质量监督,并由学校承担他天天25元的生活补贴费,现有以下三种方案供选择.第一种方案:由甲单独改造;第二种方案:由乙单独改造;第三种方案:由甲、乙一起同时进行改造;你认为哪一种方案既省时又省钱?试比较说明.26.(2023•岳阳)某体育彩票经销商计划用45000元从省体彩中心购进彩票20扎,每扎1000张,已知体彩中心有A、B、C三种不同价格的彩票,进价分别是A彩票每张1.5元,B彩票每张2元,C彩票每张2.5元.(1)若经销商同时购进两种不同型号的彩票20扎,用去45000元,请你设计进票方案;(2)若销售A型彩票一张获手续费0.2元,B型彩票一张获手续费0.3元,C型彩票一张获手续费0.5元.在购进两种彩票的方案中,为使销售完时获得手续费最多,你选择哪种进票方案?(3)若经销商准备用45000元同时购进A、B、C三种彩票20扎,请你设计进票方案.沪科版七年级数学上册1-4单元竞赛试题参考答案与试题解析一.选择题(共10小题)1.(2023•佛山)据佛山日报2023年4月4日报道,佛山市今年拟投入70亿元人民币建设人民满意政府,其中民生项目资金占99%,用科学记数法表达民生项目资金是()A.70×108元B.7×108元C.6.93×108元D.6.93×109元考点:科学记数法—表达较大的数.分析:用总投入乘以99%,再根据科学记数法的表达形式为a×10n的形式,其中1≤|a|<10,n为整数解答.解答:解:7 000 000 000×99%=6 930 000 000=6.93×109.故选:D.点评:此题考察科学记数法表达较大的数的方法,准确地拟定a与n值是关键.2.(2023•台湾)若整数a的所有因子中,小于25的正因子为1、2、3、4、6、8、12、16、24,则a与720的最大公因子为什么?()A.24 B.48 C.72 D.240考点:有理数的乘法.分析:根据有理数的乘法,求出所有因子的最小公倍数,然后求出与720的最大公因数,即为最大公因子.解答:解:1、2、3、4、6、8、12、16、24最小公倍数是48,48与720的最大公因数是48,所以,a与720的最大公因子是48.故选B.点评:本题考察了有理数的乘法,拟定出所有因子的最小公倍数是解题的关键.3.(2023•扬州一模)计算机中常用的十六进制是一种逢16进1的计数制,采用数字0~9和字母A~F共16个计数符号,这些符号与十进制的数字的相应关系如下表:十六进制0 1 2 3 4 5 6 7十进制0 1 2 3 4 5 6 7十六进制8 9 A B C D E F十进制8 9 10 11 12 13 14 15例如,用十六进制表达E+D=1B,用十进制表达也就是13+14=1×16+11,则用十六进制表达A×B=()A.6E B.72 C.5F D.B0考点:有理数的混合运算.专题:压轴题;新定义.分析:在表格中找出A和B所相应的十进制数字,然后根据十进制表达出A×B,根据表格中E相应的十进制数字可把A×B用十六进制表达.解答:解:∵表格中A相应的十进制数为10,B相应的十进制数为11,∴A×B=10×11,由十进制表达为:10×11=6×16+14,又表格中E相应的十进制为14,∴用十六进制表达A×B=6E.故选A.点评:此题属于新定义的题型,此类题重要是弄清题意,理解新定义,解本题的关键是从表格中找出十六进制与十进制间的转换关系.4.2023年8月8日晚上8时,第29届奥运会开幕式在北京“鸟巢”举行,开幕式宏伟壮观,大气磅礴,给世人留下了深刻的印象,据悉,这部盛典的幕后工作者是中国航天人,他们使用了大量载人航天技术和火箭技术,给奥运场馆装上了“大脑”,实现“不同地区、不同场馆”的信息集成,以保证零失误,可想而知,其中的程序设计多么复杂.现在请同学们体会一个小小的程序设计.如图,若开始输入的x值为96,我们发现得到的结果为48,第2次得到的结果为24…,通过探索可知,第2023次得到的结果为()A.3B.6C.8D.1考点:代数式求值.专题:压轴题;规律型.分析:根据所给程序计算,寻找规律,就可求出第2023次得到的结果.解答:解:根据所给程序计算当x=96时,第一次输出为x=48,48为偶数,第二次输出是x=24,24是偶数,第三次输出是x=12,12是偶数,第四次输出是6,6是偶数,第五次输出为3,3是奇数,第六次输出是x+5=8,8是偶数,第七次输出是4,4是偶数,第八次输出是2,2是偶数,第九次输出是1,1是奇数,第十次输出是6.开始循环,规律是6、3、8、4、2、1.故(2023﹣4)÷6,余数是1.所以第2023次输出的结果是3.故选A.点评:此类题一般都有规律,要能分析出几个一循环就可迎刃而解.5.(2023•淄博)当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是()A.7B.3C.1D.﹣7考点:代数式求值.专题:整体思想.分析:把x=1代入代数式求出a、b的关系式,再把x=﹣1代入进行计算即可得解.解答:解:x=1时,ax3﹣3bx+4=a﹣3b+4=7,解得a﹣3b=3,当x=﹣1时,ax3﹣3bx+4=﹣a+3b+4=﹣3+4=1.故选:C.点评:本题考察了代数式求值,整体思想的运用是解题的关键.6.(2023•绍兴)如图1,天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧秤盘中也有一袋玻璃球,尚有2个各20克的砝码.现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图2,则被移动的玻璃球的质量为()A.10克B.15克C.20克D.25克考点:一元一次方程的应用.专题:计算题.分析:根据天平仍然处在平衡状态列出一元一次方程求解即可.解答:解:设左、右侧秤盘中一袋玻璃球的质量分别为m克、n克,根据题意得:m=n+40;设被移动的玻璃球的质量为x克,根据题意得:m﹣x=n+x+20,x=(m﹣n﹣20)=(n+40﹣n﹣20)=10.故选:A.点评:本题考察了一元一次方程的应用,解题的关键是找到等量关系.7.(2023•台湾)桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15公分,各装有10公分高的水,且表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为3:4:5.若不计杯子厚度,则甲杯内水的高度变为多少公分?()底面积(平方公分)甲杯60乙杯80丙杯100A.5.4 B.5.7 C.7.2 D.7.5考点:一元一次方程的应用.专题:应用题.分析:根据甲、乙、丙三杯内水的高度比变为3:4:5,设后来甲、乙、丙三杯内水的高度为3x、4x、5x,由表格中的数据列出方程,求出方程的解得到x的值,即可拟定出甲杯内水的高度.解答:解:设后来甲、乙、丙三杯内水的高度为3x、4x、5x,根据题意得:60×10+80×10+100×10=60×3x+80×4x+100×5x,解得:x=2.4,则甲杯内水的高度变为3×2.4=7.2(公分).故选:C.点评:此题考察了一元一次方程的应用,找出题中的等量关系是解本题的关键.8.(2023•永州)如图,一枚棋子放在七角棋盘的第0号角,现依逆时针方向移动这枚棋子,其各步依次移动1,2,3,…,n个角,如第一步从0号角移动到第1号角,第二步从第1号角移动到第3号角,第三步从第3号角移动到第6号角,….若这枚棋子不断地移动下去,则这枚棋子永远不能到达的角的个数是()A.0B.1C.2D.3考点:规律型:图形的变化类.专题:压轴题.分析:因棋子移动了k次后走过的总格数是1+2+3+…+k=k(k+1),然后根据题目中所给的第k次依次移动k个顶点的规则,可得到不等式最后求得解.解答:解:因棋子移动了k次后走过的总格数是1+2+3+…+k=k(k+1),应停在第k(k+1)﹣7p格,这时P是整数,且使0≤k(k+1)﹣7p≤6,分别取k=1,2,3,4,5,6,7时,k(k+1)﹣7p=1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k≤10,设k=7+t(t=1,2,3)代入可得,k(k+1)﹣7p=7m+t(t+1),由此可知,停棋的情形与k=t时相同,故第2,4,5格没有停棋,即:这枚棋子永远不能到达的角的个数是3.故选D.点评:本题考察理解题意能力,关键是知道棋子所停的规则,找到规律,然后得到不等式求解.9.(2023•栖霞区一模)连接边长为1的正方形对边中点,可将一个正方形提成2个大小相同的长方形,选右边的长方形进行第二次操作,又可将这个长方形提成2个更小的正方形…反复这样的操作,通过仔细地观测与思考,猜想的值等于()A.1B.C.D.考点:规律型:数字的变化类.专题:压轴题;探究型.分析:由图中可知:=1﹣;=1﹣;…,故左侧式子的和等于1减去最后一个加数,据此求解.解答:解:根据题意可得,;=1﹣;=1﹣;…故=1﹣.故选D.点评:通过观测,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应当具有的基本能力.10.如图棋盘上有黑、白两色棋子若干,找出所有三颗颜色相同的棋并且在同一直线上的直线,这样直线共有多少条()A.2条B.3条C.4条D.5条考点:直线、射线、线段.分析:根据棋盘的边和对角线查找.解答:解:如图,共有5条.故选D.点评:从对角线上找比较困难,这就规定同学们在平时的学习中提高自身能力.二.填空题(共8小题)11.(2023•临沂)为保证信息安全,信息需加密传输,发送方由明文⇒密文(加密),接受方由密文⇒明文(解密),已知加密规则为:明文a,b,c,d相应密文a+2b,2b+c,2c+3d,4d.例如,明文1,2,3,4相应密文5,7,18,16.当接受方收到密文14,9,23,28时,则解密得到的明文为6,4,1,7.考点:有理数的混合运算.专题:应用题;压轴题.分析:根据密文规则a+2b,2b+c,2c+3d,4d列出等式,求解即可得到明文a、b、c、d的值.解答:解:根据题意,得①a+2b=14,②2b+c=9,③2c+3d=23,④4d=28,解④得,d=7,把d=7代入③得,c=1,把c=1代入②得,b=4,把b=4代入①得,a=6.所以明文为6,4,1,7.点评:本题是信息给予题,读懂题目信息是解题的关键.12.(2023•连云港)a、b两数在一条隐去原点的数轴上的位置如图所示,下列4个式子:①a﹣b<0;②a+b<0;③ab<0;④ab+a+b+1<0中一定成立的是①②④.(只填序号,答案格式如:“①②③④”).考点:有理数大小比较;数轴.专题:压轴题.分析:一方面可以根据数轴得到a,b之间的关系的对的信息,然后结合数的运算法则进行分析.解答:解:根据数轴得a<﹣1<b,|a|>|b|.①中,a﹣b<0,故①对的;②中,a+b<0,故②对的;③中,由于b的符号无法拟定,所以ab<0不一定成立,故③错误;④中,ab+a+b+1=(b+1)(a+1)<0,故④对的.所以一定成立的有①②④.故答案为:①②④.点评:此题综合考察了数轴、绝对值、有理数的运算法则的有关内容.特别注意④中,可以运用因式分解的知识分解成积的形式,再分别判断两个因式的符号.13.(2023•随州)某综合性大学拟建校园局域网,将大学本部A和所属专业学院B、C、D、E、F、G之间用网线连接起来,通过测算,网线费用如图所示(单位:万元),每个数字表达相应网线(线段)的费用,实际建网时部分网线可以省略不建,但本部及所属专业学院之间可以传递信息,那么建网所需的最少网线费用为9万元.考点:有理数的混合运算;有理数大小比较.专题:应用题;压轴题.分析:根据题意可得:此题规定两点:(1)将A和B、C、D、E、F、G之间用网线连接起来;(2)所需的最少网线费用即各段数字之和最小.分析比较建网所需的费用后得结论.解答:解:实际建网线路为C﹣D﹣E﹣A﹣F﹣G﹣B,网线费用为2+2+1+2+1+1=9,故填9.点评:本题立意较新奇,规定学生能从题目中,获取必要的信息,再进行分析,本题还规定进行验证比较,最后得出结论.14.(2023•孝感)如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,则第6个五边形数是51.考点:规律型:图形的变化类.专题:压轴题;规律型.分析:计算不难发现,相邻两个图形的小石子数的差值依次增长3,根据此规律依次进行计算即可得解.解答:解:∵5﹣1=4,12﹣5=7,22﹣12=10,∴相邻两个图形的小石子数的差值依次增长3,∴第5个五边形数是22+13=35,第6个五边形数是35+16=51.故答案为:51.点评:本题是对图形变化规律的考察,仔细观测图形求出相邻两个图形的小石子数的差值依次增长3是解题的关键.15.(2023•随州)一项工程,甲工程队工作10天后,因另有任务离开,由乙工程队接着完毕.整个工作量作“1”,如图是完毕的工作量y随时间x(天)变化的图象,假如两个工程队合做,完毕这项工程所需的天数是10天.考点:二元一次方程组的应用.专题:压轴题.分析:本题可设乙工程队天天完毕的工作量是x,由图象可知,甲队5天做了,则天天做,并且甲、乙两队各做10天,把工程做完,依此可列出方程求解,然后再代入求假如两个工程队合做,完毕这项工程所需的天数.解答:解:设乙工程队天天完毕的工作量是x,因甲队5天做了,则天天做.根据题意:得,解得:x=.∴假如两个工程队合做,完毕这项工程所需的天数是1÷=10天.故填10.点评:此类题目属于数形结合,需仔细分析图象,寻找信息,再运用方程解决问题.16.(2023•舟山)三个同学对问题“若方程组的解是,求方程组的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应当是.考点:二元一次方程组的解.专题:压轴题;阅读型.分析:把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决.解答:解:两边同时除以5得,,和方程组的形式同样,所以,解得.故答案为:.点评:本题是一道材料分析题,考察了同学们的逻辑推理能力,需要通过类比来解决有一定的难度.17.(2023•江西)如图,已知方格纸中的每个小方格都是相同的正方形.∠ACB画在方格纸上,请在小方格的顶点上标出一个点P,使点P落在∠ACB的平分线上.请参见解答.考点:作图—基本作图.专题:压轴题;网格型;开放型.分析:CA,CB上分别取点A,B使CA=CB=5;以点A、B、C为顶点,作菱形即可找到P点.解答:解:作法:点评:考察了格点中角平分线的画法;注意尽量运用格点构造菱形.18.两个完全相同的长方体的长、宽、高分别是5cm、4cm、3cm,把它们叠放在一起组成一个新的长方体,在这些新的长方体中,表面积最大是164cm2.考点:几何体的表面积.专题:压轴题.分析:把长、宽、高分别为5,4,3cm的两个面叠放在一起组成一个新的长方体的表面积最大,就规定把两个面积最小的面组合在一起.解答:解:根据以上分析:表面积最大的是2×(4×3)+4×(5×4+5×3)=164cm2.故答案为:164cm2.点评:长方体的表面积=2×(长×宽+长×高+宽×高).三.解答题(共8小题)19.阅读理解:给定顺序的n个数a1,a2,…,a n,记S k=a1+a2+…a k,为前k个数的和(1≤k≤n),定义A=(S1+S2+…+Sn)÷n称它们的“凯森和”,如a1=2,a2=3,a3=3,则s1=2,s2=5,s3=8,凯森和A=(2+5+8)÷3=5,若有99个数a1,a2,…,a99的“凯森和”为100,则添上21后的100个数21,a1,a2,…,a99的凯森和为120.考点:有理数的混合运算.专题:压轴题;阅读型;新定义.分析:一方面求出s1+s2+s3+…+s99的值,然后再求添上21后的100个数21,a1,a2,…,a99的凯森和.解答:解:∵99个数a1,a2,…,a99的“凯森和”为100,∴(S1+S2+…+S99)÷99=100,∴S1+S2+…+S99=9900,(21+S1+21+S2+21+…+S99+21)÷100=(21×100+S1+S2+…+S99)÷100=(21×100+9900)÷100=21+99=120.故填120.点评:对的理解凯森和的含义是解答本题的关键.20.(2023•湛江)先观测下列等式,然后用你发现的规律解答下列问题.┅┅(1)计算=;(2)探究=;(用品有n的式子表达)(3)若的值为,求n的值.。

七年级数学上册竞赛试题及附答案

七年级数学上册竞赛试题及附答案

七年级数学上册竞赛试题及附答案一、选择题,(3′×10=30分)1.如图1是一个长为a,宽为b的矩形,两个阴影图形都是一对以c为底,边在矩形对边上的平行四边形,则矩形中未涂阴影部分的面积为()A.B.CD.2.两个同样大小的正方形状的积木每个正方体上相对的两个面上写的数之和都等于—1,现将两个正方体并列放置,看得见的五个面上的数字如图2所示,则看不见的七个面上的数的和等于()A.—21B.—19C.—5D.—13.如图3,a,b为数轴上的两个点表示的有理数,在,,中,负数的个数有()A.1个B.2个C.3个D.4个4.若=,则等于()A.或B.C.D.零5.若,则一定是()A.正数B.负数C.非负数D.非正数6.…=()A.153B.150C.155D.1607.奶奶说:“如果不算星期天的话,我84岁了”她实际上有多少岁?()A.90B.91C.96D.988.、都是钝角,甲、乙、丙、丁计算的结果依次为:50°,26°,72°,90°.其中所得结果正确的是()A.甲B.乙C.丙D.丁9.已知a是任意有理数,在下面各题中,结论正确的个数是() (1)方程的解是,(2)方程的解是,(3)方程的解是,(4)方程的解是。

A.0B.1C.2D.310.甲、乙两人沿边长为90米的正方形,按A→B→C→D→A…方向,甲从A以65米/分的速度,乙从B以下72米/分的速度行走,当乙第一次追上甲时在正方形的()A.AB边上B.DA边上一、填空题(每小题4分,共40分)1.甲、乙、丙、丁四个数之和等于-90,甲数减-4,乙数加-4,丙数乘-4,丁数除-4彼比相等,则四个数中的最大的一个数比最小的一个数大__2.计算(-2124+7113÷24113-38)÷1512=___。

3.已知与是同类项,则=__。

4.有理数在数轴上的位置如图1所示,化简5.某班学生去参加义务劳动,其中一组到一果园去摘梨子,第一个进园的学生摘了1个梨子,第二个学生摘了2个,第三个学生摘了3个,……以此类推,后来的学生都比前面的学生多摘1个梨子,这样恰好平均每个学生摘了6个梨子,请问这组学生的人数为____.6.小明骑车自甲地经乙地,先上坡后下坡,到达乙地后立即返回甲地,共用34分钟,已知上坡速度是400米/分,下坡速度是450米/分,则甲地到乙地的路程是__米。

人教版七年级上册数学竞赛、培优强化训练试卷及答案(共15份)

人教版七年级上册数学竞赛、培优强化训练试卷及答案(共15份)

人教版七年级上册数学竞赛、培优强化训练试卷培优强化训练11.下列关于单项式的说法中,正确的是 ( )A .系数是3,次数是2B .系数是,次数是2C .系数是,次数是3D .系数是,次数是32.下列四个平面图形中,不能折叠成无盖的长方体盒子的是( )A B C D3.某顾客以八折的优惠价买了一件商品,比标价少付了30元,那么他购买这件商品花了( )A .70元B .120元C .150元D .300元 4.若,则 。

5.如图,点A 在射线OX 上,OA 的长等于2cm 。

如果OA 绕点O 按逆时针方向旋转30°到,那么点的位置可以用(2,30°)表示。

如果将再沿逆时针方向继续旋转45°,到,那么点的位置可以用( , )表示。

6.已知线段AB=20cm ,直线..AB 上有一点C ,且BC=6cm , M 是线段AC 的中点,则AM= cm 。

7.某校的一间阶梯教室,第1排的座位数为12,从第2排开始,每一排都比前一排增加a 个座位。

532xy -535353-021=+a =3a /OA /A /OA //OA //A XA /A O(1)请你在下表的空格里填写一个适当的代数式:(2)已知第15排座位数是第5排座位数的2倍,求a 的值,并计算第21排有多少个座位?8.在平整的地面上,有若干个完全相同的棱长为10cm 的小正方体堆成一个几何体,如图所示。

(1)这个几何体由 个小正方体组成,请画出这个几何体的三视图。

主视图 左视图 俯视图(2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有 个正方体只有一个面是黄色,有 个正方体只有两个面是黄色,有 个正方体只有三个面是黄色。

(3分)(3)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加几个小正方体?这时如果要重新给这个几何体表面喷上红漆,需要喷漆的面积比原几何体增加还是减少了?增加或减少了多少cm 2?(4分)数学培优强化训练(一)答案1.下列关于单项式的说法中,正确的是 ( D )A .系数是3,次数是2B .系数是,次数是2532xy 53C .系数是,次数是3D .系数是,次数是32.下列四个平面图形中,不能折叠成无盖的长方体盒子的是 ( A )A B C D3.某顾客以八折的优惠价买了一件商品,比标价少付了30元,那么他购买这件商品花了 (B )A .70元B .120元C .150元D .300元 4.若,则 。

第1-23届 希望杯数学竞赛初一七年级真题及答案(完整版)

第1-23届   希望杯数学竞赛初一七年级真题及答案(完整版)

“希望杯”全国数学竞赛(第1-23届)初一年级/七年级第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题............................................. 003-0052.希望杯第一届(1990年)初中一年级第二试试题............................................. 010-0123.希望杯第二届(1991年)初中一年级第一试试题............................................. 018-0204.希望杯第二届(1991年)初中一年级第二试试题............................................. 024-0265.希望杯第三届(1992年)初中一年级第一试试题............................................. 032-0326.希望杯第三届(1992年)初中一年级第二试试题............................................. 038-0407.希望杯第四届(1993年)初中一年级第一试试题............................................. 048-0508.希望杯第四届(1993年)初中一年级第二试试题............................................. 056-0589.希望杯第五届(1994年)初中一年级第一试试题............................................. 064-06610.希望杯第五届(1994年)初中一年级第二试试题 .......................................... 071-07311.希望杯第六届(1995年)初中一年级第一试试题........................................... 078-080 12希望杯第六届(1995年)初中一年级第二试试题........................................... 085-08713.希望杯第七届(1996年)初中一年级第一试试题........................................... 096-09814.希望杯第七届(1996年)初中一年级第二试试题........................................... 103-10515.希望杯第八届(1997年)初中一年级第一试试题............................................ 111-11316.希望杯第八届(1997年)初中一年级第二试试题........................................... 118-12017.希望杯第九届(1998年)初中一年级第一试试题........................................... 127-12918.希望杯第九届(1998年)初中一年级第二试试题........................................... 136-13819.希望杯第十届(1999年)初中一年级第二试试题........................................... 145-14720.希望杯第十届(1999年)初中一年级第一试试题........................................... 148-15121.希望杯第十一届(2000年)初中一年级第一试试题....................................... 159-16122.希望杯第十一届(2000年)初中一年级第二试试题....................................... 167-16923.希望杯第十二届(2001年)初中一年级第一试试题....................................... 171-17424.希望杯第十二届(2001年)初中一年级第二试试题....................................... 176-17825.希望杯第十三届(2002年)初中一年级第一试试题....................................... 182-18426.希望杯第十三届(2001年)初中一年级第二试试题....................................... 186-18927.希望杯第十四届(2003年)初中一年级第一试试题....................................... 193-19628.希望杯第十四届(2003年)初中一年级第二试试题....................................... 198-20029.希望杯第十五届(2004年)初中一年级第一试试题 (203)30.希望杯第十五届(2004年)初中一年级第二试试题 (204)31.希望杯第十六届(2005年)初中一年级第一试试题....................................... 213-21832.希望杯第十六届(2005年)初中一年级第二试试题 (204)33.希望杯第十七届(2006年)初中一年级第一试试题....................................... 228-23334.希望杯第十七届(2006年)初中一年级第二试试题....................................... 234-23835.希望杯第十八届(2007年)初中一年级第一试试题....................................... 242-246 26.希望杯第十八届(2007年)初中一年级第二试试题....................................... 248-25137.希望杯第十九届(2008年)初中一年级第一试试题....................................... 252-25638.希望杯第十九届(2008年)初中一年级第二试试题....................................... 257-26239.希望杯第二十届(2009年)初中一年级第一试试题....................................... 263-26620.希望杯第二十届(2009年)初中一年级第二试试题....................................... 267-27121.希望杯第二十一届(2010年)初中一年级第一试试题................................... 274-27622.希望杯第二十二届(2011年)初中一年级第二试试题................................... 285-28823.希望杯第二十三届(2012年)初中一年级第二试试题................................... 288-301希望杯第一届(1990年)初中一年级第1试试题一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么( )A.a,b都是0.B.a,b之一是0.C.a,b互为相反数.D.a,b互为倒数.2.下面的说法中正确的是( )A.单项式与单项式的和是单项式.B.单项式与单项式的和是多项式.C.多项式与多项式的和是多项式.D.整式与整式的和是整式.3.下面说法中不正确的是( )A. 有最小的自然数.B.没有最小的正有理数.C.没有最大的负整数.D.没有最大的非负数.4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么( )A.a,b同号.B.a,b异号.C.a>0.D.b>0.5.大于-π并且不是自然数的整数有( )A.2个.B.3个.C.4个.D.无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是( )A.0个.B.1个.C.2个.D.3个.7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-a.B.a小于-a.C.a大于-a或a小于-a.D.a不一定大于-a.8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数.B.乘以同一个整式.C.加上同一个代数式.D.都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A.一样多. B.多了.C.少了.D.多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A.增多.B.减少.C.不变.D.增多、减少都有可能.二、填空题(每题1分,共10分)1. 21115160.01253(87.5)(2)4571615⨯-⨯-÷⨯+--= ______. 2.198919902-198919892=______. 3.2481632(21)(21)(21)(21)(21)21+++++-=________. 4. 关于x 的方程12148x x +--=的解是_________. 5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-24125时,代数式(3x 3-5x 2+6x -1)-(x 3-2x 2+x -2)+(-2x 3+3x 2+1)的值是____. 7.当a=-0.2,b=0.04时,代数式272711()(0.16)()73724a b b a a b --++-+的值是______.8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的13.如果工作4天后,工作效率提高了15,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0<t.因此河水速增大所用时间将增多,选A.二、填空题提示:2.198919902-198919892=(19891990+19891989)×(19891990-19891989) =(19891990+19891989)×1=39783979.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%解得:x=45000(克).10.在4时整,时针与分针针夹角为120°即希望杯第一届(1990年)初中一年级第2试试题一、选择题(每题1分,共5分)以下每个题目里给出的A,B,C,D四个结论中有且仅有一个是正确的.请你在括号填上你认为是正确的那个结论的英文字母代号.1.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是( )A.a%.B.(1+a)%. C.1100aa+D.100aa+2.甲杯中盛有2m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯倒出a毫升到乙杯里, 0<a<m,搅匀后,又从乙杯倒出a毫升到甲杯里,则这时( )A.甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B.甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C.甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.3.已知数x=100,则( )A.x是完全平方数.B.(x-50)是完全平方数.C.(x-25)是完全平方数.D.(x+50)是完全平方数.4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111,,ab b a c-的大小关系是( )A.111ab b a c<<-; B.1b a-<1ab<1c; C.1c<1b a-<1ab; D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有( )A.2组.B.6组.C.12组.D.16组.二、填空题(每题1分,共5分)1.方程|1990x-1990|=1990的根是______.2.对于任意有理数x,y,定义一种运算*,规定x*y=ax+by-cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1*2=3,2*3=4,x*m=x(m≠0),则m的数值是______.3.新上任的宿舍管理员拿到20把钥匙去开20个房间的门,他知道每把钥匙只能开其中的一个门,但不知道每把钥匙是开哪一个门的钥匙,现在要打开所有关闭着的20个房间,他最多要试开______次.4.当m=______时,二元二次六项式6x2+mxy-4y2-x+17y-15可以分解为两个关于x,y的二元一次三项式的乘积.5.三个连续自然数的平方和(填“是”或“不是”或“可能是”)______某个自然数的平方.三、解答题(写出推理、运算的过程及最后结果.每题5分,共15分)1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回?离出发地点最远的那辆车一共行驶了多少公里?2.如图2,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.答案与提示一、选择题1.D 2.C 3.C 4.C 5.D提示:1.设前年的生产总值是m,则去年的生产总值是前年比去年少这个产值差占去年的应选D.2.从甲杯倒出a毫升红墨水到乙杯中以后:再从乙杯倒出a毫升混合墨水到甲杯中以后:乙杯中含有的红墨水的数量是①乙杯中减少的蓝墨水的数量是②∵①=②∴选C.∴x-25=(10n+2+5)2可知应当选C.4.由所给出的数轴表示(如图3):可以看出∴①<②<③,∴选C.5.方程2x2+5xy+3y2=30可以变形为(2x+3y)(x+y)=1·2·3·5∵x,y是整数,∴2x+3y,x+y也是整数.由下面的表可以知道共有16个二元一次方程组,每组的解都是整数,所以有16组整数组,应选D.二、填空题提示:1.原方程可以变形为|x-1|=1,即x-1=1或-1,∴x=2或0.2.由题设的等式x*y=ax+by-cxy及x*m=x(m≠0)得a·0+bm-c·0·m=0,∴bm=0.∵m≠0,∴b=0.∴等式改为x*y=ax-cxy.∵1*2=3,2*3=4,解得a=5,c=1.∴题设的等式即x*y=5x-xy.在这个等式中,令x=1,y=m,得5-m=1,∴m=4.3.∵打开所有关闭着的20个房间,∴最多要试开4.利用“十字相乘法”分解二次三项式的知识,可以判定给出的二元二次六项式6x2+mxy-4y2-x+17y-15中划波浪线的三项应当这样分解:3x -52x +3现在要考虑y,只须先改写作然后根据-4y2,17y这两项式,即可断定是:由于(3x+4y-5)(2x-y+3)=6x2+5xy-4y2-x+17y-15就是原六项式,所以m=5.5.设三个连续自然数是a-1,a,a+1,则它们的平方和是(a-1)2+a2+(a+1)2=3a2+2,显然,这个和被3除时必得余数2.另一方面,自然数被3除时,余数只能是0或1或2,于是它们可以表示成3b,3b+1,3b+2(b是自然数)中的一个,但是它们的平方(3b)2=9b2(3b+1)2=9b2+6b+1,(3b+2)2=9b2+12b+4=(9b2+12b+3)+1被3除时,余数要么是0,要么是1,不能是2,所以三个连续自然数平方和不是某个自然数的平方.三、解答题1.设两辆汽车一为甲一为乙,并且甲用了x升汽油时即回返,留下返程需的x桶汽油,将多余的(24-2x)桶汽油给乙.让乙继续前行,这时,乙有(24-2x)+(24-x)=48-3x桶汽油,依题意,应当有48-3x≤24,∴x≥8.甲、乙分手后,乙继续前行的路程是这个结果中的代数式30(48-4x)表明,当x的值愈小时,代数式的值愈大,因为x≥8,所以当x=8时,得最大值30(48-4·8)=480(公里),因此,乙车行驶的路程一共是2(60·8+480)=1920(公里).2.由题设可得即2S-5S3=8……②∴x,y,z都>1,因此,当1<x≤y≤z时,解(x,y,z)共(2,4,12),(2,6,6),(3,3,6),(3,4,4)四组.由于x,y,z在方程中地位平等.所以可得如下表所列的15组解.希望杯第二届(1991年)初中一年级第1试试题一、选择题(每题1分,共15分)以下每个题目的A,B,C,D四个结论中,仅有一个是正确的,请在括号内填上正确的那个结论的英文字母代号.1.数1是( )A.最小整数.B.最小正数.C.最小自然数.D.最小有理数.2.若a>b,则( )A.11a b; B.-a<-b.C.|a|>|b|.D.a2>b2.3.a为有理数,则一定成立的关系式是( )A.7a>a.B.7+a>a.C.7+a>7.D.|a|≥7.4.图中表示阴影部分面积的代数式是( )A.ad+bc.B.c(b-d)+d(a-c).C.ad+c(b-d).D.ab-cd.5.以下的运算的结果中,最大的一个数是( )A.(-13579)+0.2468; B.(-13579)+1 2468;C.(-13579)×12468; D.(-13579)÷124686.3.1416×7.5944+3.1416×(-5.5944)的值是( ) A.6.1632. B.6.2832.C.6.5132.D.5.3692.7.如果四个数的和的14是8,其中三个数分别是-6,11,12,则笫四个数是( )A.16. B.15. C.14. D.13.8.下列分数中,大于-13且小于-14的是( )A.-1120; B.-413; C.-316; D.-617.9.方程甲:34(x-4)=3x与方程乙:x-4=4x同解,其根据是( )A.甲方程的两边都加上了同一个整式x .B.甲方程的两边都乘以43x; C. 甲方程的两边都乘以43; D. 甲方程的两边都乘以34. 10.如图: ,数轴上标出了有理数a ,b ,c 的位置,其中O 是原点,则111,,a b c的大小关系是( ) A.111a b c>>; B.1b >1c >1a ; C. 1b >1a >1c ; D. 1c >1a >1b .11.方程522.2 3.7x =的根是( ) A .27. B .28. C .29. D .30. 12.当x=12,y=-2时,代数式42x y xy -的值是( )A .-6.B .-2.C .2.D .6.13.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( )A .225.B .0.15.C .0.0001.D .1.14.不等式124816x x x xx ++++>的解集是( ) A .x <16. B .x >16.C .x <1. D.x>-116. 15.浓度为p%的盐水m 公斤与浓度为q%的盐水n 公斤混合后的溶液浓度是 ( ) A.%2p q +; B.()%mp nq +; C.()%mp nq p q ++;D.()%mp nq m n++.二、填空题(每题1分,共15分)1. 计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______. 2. 计算:-32÷6×16=_______.3.计算:(63)36162-⨯=__________.4.求值:(-1991)-|3-|-31||=______.5.计算:111111 2612203042-----=_________.6.n为正整数,1990n-1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009.则n的最小值等于______.7. 计算:19191919199191919191⎛⎫⎛⎫---⎪ ⎪⎝⎭⎝⎭=_______.8. 计算:15[(-1989)+(-1990)+(-1991)+(-1992)+(-1993)]=________.9.在(-2)5,(-3)5,512⎛⎫-⎪⎝⎭,513⎛⎫-⎪⎝⎭中,最大的那个数是________.10.不超过(-1.7)2的最大整数是______.11.解方程21101211,_____. 3124x x xx-++-=-=12.求值:355355113113355113⎛⎫---⎪⎝⎭⎛⎫- ⎪⎝⎭=_________.13.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______.14.一个数的相反数的负倒数是119,则这个数是_______.15.如图11,a,b,c,d,e,f均为有理数.图中各行,各列、两条对角线上三个数之和都相等,则ab cd efa b c d e f+++++++=____.答案与提示一、选择题1.C 2.B 3.B 4.C 5.C 6.B 7.B 8.B 9.C 10.B 11.D 12.A 13.B 1 4.A 15.D提示:1.整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D.1是最小自然数.选C.有|2|<|-3|,排除C;若2>-3有22<(-3)2,排除D;事实上,a>b必有-a<-b.选B.3.若a=0,7×0=0排除A;7+0=7排除C|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B.4.把图形补成一个大矩形,则阴影部分面积等于ab-(a-c)(b-d)=ab-[ab-ad-c(b-d)]=ab-ab+ad+c(b-d)=ad+c(b-d).选C.5.运算结果对负数来说绝对值越小其值越大。

七年级上册数学竞赛试题附答案

七年级上册数学竞赛试题附答案

七年级上册数学竞赛试题附答案一、选择题(每题2分,共20分)1、下列哪个不是有理数?A. 0.5B. -3C. 0.D. -0.75正确答案是:C. 0.。

因为0.是无限循环小数,所以不是有理数。

故选C。

2、下列哪个是质数?A. 11B. 19C. 20D. 27正确答案是:B. 19。

11的因数是1和11,因此是质数。

19的因数是1和19,因此是质数。

20的因数是1,2,4,5,10,20,因此不是质数。

27的因数是1,3,9,27,因此不是质数。

故选B。

二、填空题(每题4分,共40分)1、计算: =___________.正确答案是:因为绝对值都是正数或0,所以原式=+2=2。

故答案为:2。

2、下列哪个数字是偶数?A. 5768B.正确答案是:B. 。

偶数是指能被2整除的整数。

因此,如果一个数字是偶数,那么它的个位数必须是0、2、4、6或8。

在给定的选项中,只有数字的个位数是7,所以它是偶数。

因此,答案为B。

故答案为:B。

一个正方形的边长是3厘米,周长是( )厘米。

在一个等腰三角形中,已知两条边的长度分别是5厘米和10厘米,这个三角形的周长是( )厘米。

一个等腰三角形的顶角是90度,它的一条底边长是8厘米,这个三角形的周长是( )厘米。

一个平行四边形的两条邻边分别是6厘米和8厘米,高是6厘米,它的面积是( )平方厘米。

一个梯形的上底是7厘米,下底是11厘米,高是7厘米,这个梯形的面积是( )平方厘米。

A.有一个角是锐角的三角形B.有一个角是钝角的三角形C.两个锐角相等的三角形D.三个角都是锐角的三角形A.边长为4厘米的正方形B.半径为4厘米的圆C.长为8厘米,宽为4厘米的长方形一个直角三角形的三条边分别是6厘米、8厘米和10厘米,求这个三角形的面积。

一个正方形的周长是20厘米,求这个正方形的边长和面积。

一个平行四边形的高是6厘米,底是10厘米,求这个平行四边形的面积。

一个三位数,它是3的公倍数,这个三位数最大是(),最小是()。

(名师整理)数学七年级竞赛试题及答案解析

(名师整理)数学七年级竞赛试题及答案解析

1七年级上数学竞赛试题1.若方程3x-5=4和方程0331=--x a 的解相同,则a 的值为多少?2.已知:z x <<0,0>xy ,且x z y >>, 求y x z y z x --+++的值3.a 、b 、c 、d 为实数,现规定一种新的运算 bc ad d c b a-=. (1)求2121-的值;(2)当185)1(42=-x 时,求x 的值.24. 已知012=-+a a ,求2007223++a a 的值.5.若多项式()x y x x x mx 537852222+--++-的值与x 无关,求()[]m m m m +---45222的值.6. A 和B 两家公司都准备向社会招聘人才,两家公司招聘条件基本相同,只有工资待遇有如下差异:A 公司,年薪一万元,每年加工龄工资200元;B 公司,半年薪五千元,每半年加工龄工资50元。

从年收入的角度考虑,选择哪家公司有利?若干年后两公司的年收入会相同吗?列式子说明。

7.已知甲数的绝对值是乙数绝对值的3倍,两点之间的距离为8,(1)若在数轴上表示这两数的点位于原点的两侧,求这两个数;(2)若数轴上表示这两数的点位于原点同侧,求这两个数;8.小杰到食堂买饭,看到A、B两窗口前面排队的人一样多,就站在A窗口队伍的里面,过了2分钟,他发现A窗口每分钟有4人买了饭离开队伍,B窗口每分钟有6人买了饭离开队伍,且B窗口队伍后面每分钟增加5人。

此时,若小李迅速从A窗口队伍转移到B窗34口后面重新排队,将比继续在A 窗口排队提前30秒买到饭,求开始时,有多少人排队。

参考答案1.解:3x-5=4, 3x=9, x=3因为3x-5=4与方程 0331=--x a 的解相同 所以把x=3代人0331=--x a 中 即03331=--a 得3-3a+3=0,-3a=-6,a=2 2.解:由题意,x 、y 、z 在数轴上的位置如图所示:所以 0)()(=--+-+=--+++y x z y z x yx z y z x53.解:(1)即a=1,b=2,c=-1,d=2, 因为bc ad d c ba -=,所以2121-=2-(-2)=4(2)由185)1(42=-x 得:10-4(1-x )=18所以10-4+4x=18,解得x=34.解: (降次、消元):12=+a a (消元、、减项)20082007120072007)(20072007222222323=+=++=+++=+++=++a a a a a a a a a a a5.解:多项式的值与x 无关,即含x 的项系数均为零因为()()83825378522222++-=+--++-y x m x y x x x mx所以 m=4将m=4代人,()[]44161644452222-=-+-=-+-=+---m m m m m m6.解:分别列出第一年、第二年、第n 年的实际收入(元) 第一年:A 公司 10000; B 公司 5000+5050=10050第二年:A 公司 10200; B 公司 5100+5150=10250第n 年:A 公司 10000+200(n-1);6B 公司:[5000+100(n-1)]+[5000+100(n-1)+50] =10050+200(n-1) 由上可以看出B 公司的年收入永远比A 公司多50元,如不细心考察很可能选错。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学上册竞赛试题及附答案
七年级数学上册竞赛试题及附答案
一、选择题,(3′×10=30分)
1.如图1是一个长为a,宽为b的矩形,两个阴影图形都是
一对以c为底,边在矩形对边上的平行四边形,
则矩形中未涂阴影部分的面积为()
A.B.
CD.
2.两个同样大小的正方形状的积木每个正方体上相对的两个面上写的数之和都等于—1,现将两个正方体并列放置,看得见的五个面上的数字如图2所示,则看不见的七个面上的数的和等于()
A.—21
B.—19
C.—5
D.—1
3.如图3,a,b为数轴上的两个点表示的有理数,在,,中,负数的个数有()
A.1个
B.2个
C.3个
D.4个
4.若=,则等于()
A.或
B.
C.
D.零
5.若,则一定是()
A.正数
B.负数
C.非负数
D.非正数
6.…=()
A.153
B.150
C.155
D.160
7.奶奶说:“如果不算星期天的话,我84岁了”她实际上有多少岁?
()
A.90
B.91
C.96
D.98
8.、都是钝角,甲、乙、丙、丁计算的结果依次为:50°,26°,72°,90°.其中所得结果正确的是()
A.甲
B.乙
C.丙
D.丁
9.已知a是任意有理数,在下面各题中,结论正确的个数是()
(1)方程的解是,(2)方程的解是,
(3)方程的解是,(4)方程的解是。

A.0B.1C.2D.3
10.甲、乙两人沿边长为90米的正方形,按A→B→C→D→A…方向,甲从A以65米/分的速度,乙从B以下72米/分的速度行走,当乙第一次追上甲时在正方形的
()
A.AB边上
B.DA边上
一、填空题(每小题4分,共40分)
1. 甲、乙、丙、丁四个数之和等于-90,甲数减-4,乙数加-4,丙数乘-4,丁数除-4彼比相等,则四个数中的最大的一个数比最小的一个数大__
2.计算(-2124 +7113 ÷24113 -38 )÷1512 =___。

3. 已知与是同类项,则=__。

4. 有理数在数轴上的位置如图1所示,化简
5.某班学生去参加义务劳动,其中一组到一果园去摘梨子,第一个进园的学生摘了1个梨子,第
二个学生摘了2个,第三个学生摘了3个,……以此类推,后来的学生都比前面的学生多摘1个梨子,这样恰好平均每个学生摘了6个梨子,请问这组学生的人数为____.
6. 小明骑车自甲地经乙地,先上坡后下坡,到达乙地后立即返回甲地,共用34分钟,已知上坡速度是400米/分,下坡速度是450米/分,则甲地到乙地的路程是__米。

7. 学校开运动会,班长想分批买汽水给全班50名师生喝,喝完的空瓶根据商店规定每5个
空瓶又可换一瓶汽水,则至少要买瓶汽水,才能保证每人喝上一瓶汽水.
8. 有这样一个衡量体重是否正常的简单算法。

一个男生的标准体重(以公斤为单位)是其身高(以厘米为单位)减去110。

正常体重在标准体重减标准体重的10%和加标准体重的10之间。

已知甲同
学身高161厘米,体重为W,如果他的体重正常,则W的公斤数的取值范围是_____.
9. m、n、l 都是二位的正整楼,已知它们的最小公倍数是385,则m+n+l的最大值是__。

10. 已知x=5时,代数式ax +bx-5的值是10,当x=-5时,代数式ax +bx+5=__。

二、选择题(每小题5分,共30分)
1.-|-3|的相反数的负倒数是()
(A)-13 (B)13 (C)-3 (D)3
2. 如图2所示,在矩形ABCD中,AE=B=BF= AD= AB=2,
E、H、G在同一条直线上,则阴影部分的面积等于( )
(A)8. (B)12. (C)16. (D)20.
3. 十月一日亲朋聚会,小明统计大家的平均年龄恰是38岁,老爷爷说,两年前的十月一日也是这些人相聚,那么两年前相聚时大家的平均年龄是()岁。

(A)38 (B)37 (C)36 (D)35
4.探险队要达到目的地需要坐船逆流而上,途中不小心把地图掉入水中,当有人发现后,船立即
掉头追这张地图,已知,船从掉头到追上地图共用了5分钟,那么,这个人发现地图掉到水中是().
(A)4分钟后(B)5分钟后(C)6分钟后(D)7分钟后
5. 秋季运动会上,七年级(1)班的萌萌、路佳、王玉三人一起进行百米赛跑(假定三人
均为匀速直线运动).如果当萌萌到达终点时,路佳距终点还有米,王玉距终点还有
米.那么当路佳到达终点时,王玉距终点还有()
A.米B.米C.米D.无法确定
6.已知a≤2,b≥-3,c≤5,且a-b+c=10,则a+b+c的.值等于()。

(A)10 (B)8 (C)6 (D)4
三、解答题(每小题10分,共30分)
1. 一根长度为1米的木棍,第一次截去全长的12 ,第二次截去余下的13 ,第三次截去第二次截
后余下的14 ,……,第n次截去第(n-1)次截后余下的1n+1 。

若连续截2007次,共截去多少米?
2.在5时到6时之间,某人看表时,由于不慎将时针看成分针,造成他看到的时间比正确的时间早了57分钟。

试问正确时间是几时几分?
3. 冬季将至,甲、乙、丙三家商场为争夺市场,对羽绒服的销售采取了不同的促销方式.一种标价为元的羽绒服,甲商场的销售方法为买送,乙商场的销售方法为一律折销售,丙商场的销售方法为
买够件羽绒服则折优惠.如果现在有元人民币,要你去买件羽绒服,你认为去哪个商场买最合算?
说出你的理由.
答案与提示
一.1. 204 2. -.32 3.-8 4.-2 5. 11 6. 7200 7. 40 8. 45.9~56.1 9. 167 10. -20
二. 1. A 2.B 3. C 4. B 5. C 6. D
三.1. 20072008 2. 5时24分
3. (1)300×8=2400(元)
(2)2700×8.5=2295(元)
(3)300×10×0.8=2400(元)
8.5×300=280(元)
2400-280=2120(元)
所以去丙店购买最合算
C.BC边上
D.CD边上
二、填空题(4′×10=40分)
1.已知数轴上有A.B两点,A、B之间距离为1,点A与原点O的距离为3,那么所有满足条件的点B与原点B与原点O的距离和等于.
2.如果数轴上点A到原点的距离为3,点B到原点距离为5,那么A、B两点的距离为.
3.已知,且,那么.
4.若有理数m,n,p满足,则.
5.设,则.
6.已知和满足,则当时,代数式.
7.已知一个角的补角等于这个角余角的6倍,那么这个角等于.
8.方程的解为.
9.已知关于的方程的解是4,则.
10.一般轮船从A港到B港顺水航行需6小时,从B港到A港逆水行进需8小时,若在静水条件下,从A港到B港需小时.
三、大题.(10′×3=30分)
1.如果,
求……的值.
2.已知∠1和∠2互补,∠3和∠2互余.
求证:∠3=(∠1—∠2).
3.一座桥的一部分横跨35m宽的河面,桥的的长度在河的一边,20%的长度在河的另一边,请问桥有多长?。

相关文档
最新文档