散热器选择及散热计算
散热器选择及散热计算
![散热器选择及散热计算](https://img.taocdn.com/s3/m/6da3c67ca9956bec0975f46527d3240c8447a1c8.png)
散热器选择及散热计算
摘要:
散热器是工业生产过程中非常重要的设备,它能有效地降低设备温度,提高设备的工作效率和寿命。
本文将介绍散热器的选择原则和散热计算方法,以便工程师和设计师能够正确选用散热器并进行散热设计。
1.引言
散热器在工业生产中的重要性和应用领域。
选择合适的散热器能有效提高设备的工作效率。
2.散热器的选择原则
根据散热器的工作原理和设计参数,选择合适的散热器。
考虑到散热器的材料、结构和散热介质等因素。
综合考虑散热器的性能和经济性。
3.散热计算方法
根据设备的功率和工作环境等因素,进行散热计算。
介绍常用的散热计算公式和方法。
通过实例说明散热计算的步骤和注意事项。
4.散热器参数的调整和优化
根据实际需求和工作环境,调整散热器的参数。
介绍影响散热器性能的因素和调整方法。
通过实验和模拟计算,优化散热器的设计。
5.实例分析
选取一个实际工程案例,介绍散热器选择和散热计算的具体过程。
分析不同散热器参数对散热效果的影响。
总结散热器设计和选用的经验和教训。
6.结论
通过本文的介绍,工程师和设计师可了解散热器的选择原则和散热计算方法。
正确选用和设计散热器,能提高设备的工作效率和寿命。
本文详细介绍了散热器的选择原则和散热计算方法,并通过实例分析和实验验证,阐述了散热器参数的调整和优化,以期帮助工程师和设计师正确选用和设计散热器,提高设备的工作效率和寿命。
散热器尺寸设计计算方法
![散热器尺寸设计计算方法](https://img.taocdn.com/s3/m/c79b7ea06394dd88d0d233d4b14e852458fb39c5.png)
散热器尺寸设计计算方法1.散热器面积计算:散热器的面积是散热效果的关键因素之一、根据散热器的材料、形状和工况要求,可以计算出散热器需要的面积。
常用的计算公式如下:A=Q/(U*ΔT)其中,A为散热器面积(m^2),Q为需要散热的功率(热量,W),U为散热器的总传热系数(J/(m^2·s·K)),ΔT为散热器的温差(K)。
2.散热器尺寸计算:散热器的尺寸也是影响散热效果的重要参数。
常用的尺寸设计计算方法有以下几种:(1)翅片间距计算:翅片间距是翅片散热器的一个重要参数,影响散热器的散热面积。
一般情况下,翅片间距需要与相邻的翅片高度相等,以确保散热面积充分利用。
翅片间距计算公式如下:S=H/(N+1)其中,S为翅片间距(m),H为散热器的高度(m),N为翅片数量。
(2)翅片厚度计算:翅片厚度会影响散热器的散热效果和机械强度,一般情况下,翅片厚度越小,散热效果越好。
根据散热器的散热面积和翅片的数量,可以计算出翅片的厚度。
翅片厚度计算公式如下:T=A/(N*L)其中,T为翅片厚度(m),A为散热器的面积(m^2),N为翅片数量,L为散热器的长度(m)。
(3)散热管直径计算:散热管的直径也是散热器的一个重要尺寸参数。
直径越大,散热效果越好,但同时也会增加材料成本。
根据散热器的总传热系数和散热管的数量,可以计算出散热管的直径。
D=sqrt((4Q)/(P*π*N))其中,D为散热管的直径(m),Q为需要散热的功率(W),P为散热管的壁厚(m),N为散热管的数量。
除了上面介绍的计算方法,根据具体的散热要求和特殊情况,也可以采用一些其他的尺寸设计计算方法。
需要根据实际情况选择合适的计算方法,确保散热器的散热效果和稳定性。
散热器的选型与计算
![散热器的选型与计算](https://img.taocdn.com/s3/m/8cfb49a955270722182ef7b8.png)
散热器的选型与计算以7805为例说明问题.设I=350mA,Vin=12V,则耗散功率Pd=(12V-5V)*0.35A=2.45W按照TO-220封装的热阻θJA=54℃/W,温升是132℃,设室温25℃,那么将会达到7805的热保护点150℃,7805会断开输出.正确的设计法是:首先确定最高的环境温度,比如60℃,查出7805的最高结温TJMAX=125℃,那么允的温升是65℃.要求的热阻是65℃/2.45W=26℃/W.再查7805的热阻,TO-220封装的热阻θJA=54℃/W,均高于要求值,都不能使用,所以都必须加散热片,资料里讲到加散热片的时候,应该加上4℃/W的壳到散热片的热阻.计算散热片应该具有的热阻也很简单,与电阻的并联一样,即54//x=26,x=50℃/W.其实这个值非常大,只要是个散热片即可满足.散热器的计算:总热阻RQj-a=(Tjmax-Ta)/PdTjmax :芯组最大结温150℃Ta :环境温度85℃Pd : 芯组最大功耗Pd=输入功率-输出功率={24×0.75+(-24)×(-0.25)}-9.8×0.25×2=5.5℃/W总热阻由两部分构成,其一是管芯到环境的热阻RQj-a,其中包括结壳热阻RQj-C和管壳到环境的热阻RQC-a.其二是散热器热阻RQd-a,两者并联构成总热阻.管芯到环境的热阻经查手册知RQj-C=1.0 RQC-a=36 那么散热器热阻RQd-a应<6.4. 散热器热阻RQd-a=[(10/kd)1/2+650/A]C其中k:导热率铝为2.08d:散热器厚度cmA:散热器面积cm2C:修正因子取1按现有散热器考虑,d=1.0A=17.6×7+17.6×1×13算得散热器热阻RQd-a=4.1℃/W,散热器选择及散热计算目前的电子产品主要采用贴片式封装器件,但大功率器件及一些功率模块仍然有不少用穿式封装,这主要是可便地安装在散热器上,便于散热。
设备散热器风扇的选型和设计计算
![设备散热器风扇的选型和设计计算](https://img.taocdn.com/s3/m/191e7e1f302b3169a45177232f60ddccdb38e658.png)
设备散热器风扇的选型和设计计算一、了解设备散热需求首先,需要准确了解设备的散热需求。
散热需求取决于设备的功率消耗、温度要求和工作环境等因素。
通常,功率消耗越高、温度要求越低、工作环境越苛刻,散热需求就越大。
二、计算散热功率在了解设备散热需求后,需要计算所需的散热功率。
散热功率的计算可以使用下述公式:Q=P×(T2-T1)/η其中,Q为散热功率(单位为瓦特),P为功率消耗(单位为瓦特),T2为设备工作温度(单位为摄氏度),T1为环境温度(单位为摄氏度),η为设备的热效率。
三、确定散热器类型根据散热功率和设备系统的特点,选择合适的散热器类型。
常见的散热器类型包括散热片(fin heat sink)、板式散热器(plate heat sink)、液冷散热器(liquid cooling heat sink)等。
四、计算散热器尺寸根据散热功率和散热器类型,计算散热器的尺寸。
散热器尺寸的计算可以使用估算法或者CFD模拟仿真方法。
估算法通常是基于实验数据和经验公式,而CFD模拟仿真方法可以提供更精确的结果。
五、选择合适的风扇根据散热器尺寸和散热需求,选择合适的风扇。
风扇的选型要考虑风量、风压、噪音、寿命等因素。
一般而言,风量和风压越大,散热效果越好,但噪音也会增加。
六、确定风扇位置和安装方式风扇的位置和安装方式对散热效果有重要影响。
一般而言,风扇应尽可能靠近散热表面并与之紧密结合,以提高热量传递效率。
此外,还需要保证风扇的气流方向和设备散热方向一致。
七、进行散热系统热流仿真分析为了验证散热系统的设计效果,可以进行热流仿真分析。
通过仿真分析,可以获得散热器各部位的温度分布和热流路径,从而优化设计。
以上是设备散热器的选型和设计计算的一般原理和步骤。
在实际应用中,还需要根据具体设备的要求和限制进行合理调整和优化。
此外,还需要注意散热系统的维护和保养,以确保其长期稳定工作。
散热器的计算公式
![散热器的计算公式](https://img.taocdn.com/s3/m/510afba450e79b89680203d8ce2f0066f53364e8.png)
散热器的计算公式
散热器是一种用来散发热量的设备,广泛应用于各个领域,包
括建筑、工业、汽车等。
计算散热器的散热能力对于确保设备正常
运作非常重要。
以下是一些常用的散热器计算公式。
1. 热功率计算
散热器的主要功能是散发热量,因此计算热功率是散热器设计
的关键。
热功率可根据以下公式计算:
热功率 (W) = 热量传导系数 (U) ×温度差(ΔT) × 表面积 (A)
其中,热量传导系数是指散热器材料的热导率,温度差是散热
器表面的温度与周围环境温度之差,表面积是指散热器的外表面积。
2. 散热器尺寸计算
散热器尺寸的计算涉及到散热片的数量和间距。
以下是一些常
用的散热器尺寸计算公式:
- 散热片数量 (N) = 热功率 (W) / 单个散热片的散热能力 (Q)
其中,单个散热片的散热能力可由散热片的热导率 (K) 和表面积 (A) 计算得出。
- 散热片间距 (D) = 散热器高度 (H) / (散热片数量 (N) - 1)
3. 散热器材料选择
散热器材料的选择是散热器设计中的另一个重要因素。
常用的散热器材料包括铝、铜、不锈钢等。
根据散热需求和成本考虑,选择适当的材料是非常关键的。
4. 其他因素考虑
除了以上的计算公式外,散热器设计还需要考虑其他因素,例如流体流量、风速、散热器的布局等。
这些因素会对散热器的散热能力产生影响,需要进行综合考虑。
综上所述,散热器设计的计算公式涉及热功率、散热器尺寸、材料选择等因素。
根据实际需求合理使用这些公式可以确保散热器的有效运作。
散热器选型散热面积理论计算及风扇选择
![散热器选型散热面积理论计算及风扇选择](https://img.taocdn.com/s3/m/28c4ba2711a6f524ccbff121dd36a32d7375c73f.png)
散热器选型散热面积理论计算及风扇选择散热器的选型主要涉及两个关键因素:散热面积和风扇选择。
为了确保计算准确,我们需要先了解散热器的工作原理和散热器的设计参数。
散热器的工作原理是通过扩大散热面积和促进空气流动来降低设备内部的温度。
散热面积越大,散热效果越好。
因此,散热面积的计算是选型的重要部分。
散热面积的计算需要考虑以下几个因素:1.设备的功耗:设备功耗越大,所需的散热面积也越大。
2.设备的温度限制:不同设备有不同的温度限制,一般来说,设备的温度限制越低,所需的散热面积越大。
3.散热器的材料和结构:散热器的材料和结构也会影响散热面积的计算。
通常,散热器由铝、铜等金属制成,具有一定的散热效果。
4.环境温度:散热器运行的环境温度也会影响散热效果,通常情况下,环境温度越高,所需的散热面积也越大。
在开始散热面积的计算之前,我们需要确认设备的功耗和温度限制。
然后,我们可以根据以下公式计算散热面积:散热面积=(设备功耗*热阻系数)/(设备温度限制-环境温度)其中,热阻系数是散热器材料和结构的参数,反映了散热器的散热效果。
热阻系数可以通过厂商提供的数据手册或实验来确定。
在确定散热面积之后,我们可以开始选择适合的风扇。
风扇的选择主要需要考虑以下几个因素:1.风扇的风量:风量是风扇的一个重要参数,表示单位时间内风扇能够吹过的空气体积。
风量越大,风扇的散热效果越好。
2.风扇的噪音:风扇的噪音也是选择的一个重要因素,特别是对于需要安静环境的设备。
一般来说,风扇噪音越低越好。
3.风扇的电源和控制方式:不同的设备可能对风扇的电源和控制方式有不同的要求。
需要根据实际情况选择合适的风扇电源和控制方式。
4.风扇的尺寸和安装方式:风扇的尺寸和安装方式也需要与散热器相匹配,确保能够有效地进行散热。
在选择风扇之前,我们需要根据散热面积和设备功耗计算所需的风量。
通常情况下,风量可以通过下面的公式计算:风量=散热面积*设备功耗*风量系数其中,风量系数是根据散热器和风扇的特性确定的参数。
设备散热器风扇的选型和设计计算
![设备散热器风扇的选型和设计计算](https://img.taocdn.com/s3/m/fe59674977c66137ee06eff9aef8941ea76e4ba1.png)
设备散热器风扇的选型和设计计算一、选型1.确定散热要求:首先需要确定设备的散热要求,包括散热功率和散热温度。
散热功率指设备在工作状态下产生的热量,一般单位为瓦特(W)。
可以通过设备的技术规格书或者测试数据来获取。
散热温度指设备的工作温度,一般以最高工作温度为基准。
如果设备的工作温度过高,可能会导致设备的性能下降或者故障。
2.风扇的空气流量:在选型过程中,需要确定所需要的风扇的空气流量。
空气流量是风扇在单位时间内能够移动的空气体积。
一般单位为立方米/小时(m³/h)。
空气流量的大小跟设备的散热功率有关,可以通过下面的公式计算:空气流量=散热功率/(ΔT*空气比热)其中,ΔT为散热温度和环境温度之差,单位为摄氏度(℃),空气比热一般为1.007J/g℃。
3.风扇的静压:静压是风扇在单位面积上产生的压力。
它决定了风扇能否将空气有效地送到散热器上,影响了散热器的散热效果。
一般单位为帕斯卡(Pa)。
散热器的阻力越大,所需的风扇静压越大。
可以通过设备的技术规格书或者测试数据来获取。
4.根据散热器的尺寸和安装位置来确定风扇的尺寸和形式。
风扇的尺寸和形式需要与散热器相匹配,以确保能够充分利用空间,并且方便安装。
二、设计计算1.根据选型得到的风扇空气流量,可以计算风扇的转速。
转速=空气流量/(π*风叶半径²*风叶速度)*60其中,π为圆周率,风叶半径为风扇风叶的半径,风叶速度为风叶转速的线速度。
2.根据选项得到的风扇静压,可以计算风扇的功率。
风扇功率=风扇静压*空气流量/风扇效率风扇功率可以根据设备的电源容量来选择。
3.确定散热器的设计参数,包括材质、散热片面积和散热片厚度。
散热器的材质需要具有良好的导热性能,一般选择铝合金或铜。
散热片的面积越大,散热效果越好。
根据散热要求,可以计算散热片的面积。
散热片的厚度一般选择1-5mm,最大不宜超过10mm。
过厚可能导致热阻增加。
4.根据散热器的面积和散热管的数量和直径,可以计算热阻。
散热器的选型与计算..-共15页
![散热器的选型与计算..-共15页](https://img.taocdn.com/s3/m/b0a3a1ed76eeaeaad1f33099.png)
散热器的选型与计算以7805为例说明问题.设I=350mA,Vin=12V,则耗散功率Pd=(12V-5V)*0.35A=2.45W按照TO-220封装的热阻θJA=54℃/W,温升是132℃,设室温25℃,那么将会达到7805的热保护点150℃,7805会断开输出.正确的设计方法是:首先确定最高的环境温度,比如60℃,查出7805的最高结温TJMAX=125℃,那么允许的温升是65℃.要求的热阻是65℃/2.45W=26℃/W.再查7805的热阻,TO-220封装的热阻θJA=54℃/W,均高于要求值,都不能使用,所以都必须加散热片,资料里讲到加散热片的时候,应该加上4℃/W的壳到散热片的热阻.计算散热片应该具有的热阻也很简单,与电阻的并联一样,即54//x=26,x=50℃/W.其实这个值非常大,只要是个散热片即可满足.散热器的计算:总热阻RQj-a=(Tjmax-Ta)/PdTjmax :芯组最大结温150℃Ta :环境温度85℃Pd : 芯组最大功耗Pd=输入功率-输出功率={24×0.75+(-24)×(-0.25)}-9.8×0.25×2=5.5℃/W总热阻由两部分构成,其一是管芯到环境的热阻RQj-a,其中包括结壳热阻RQj-C和管壳到环境的热阻RQC-a.其二是散热器热阻RQd-a,两者并联构成总热阻.管芯到环境的热阻经查手册知RQj-C=1.0 RQC-a=36 那么散热器热阻RQd-a应<6.4. 散热器热阻RQd-a=[(10/kd)1/2+650/A]C其中k:导热率铝为2.08d:散热器厚度cmA:散热器面积cm2C:修正因子取1按现有散热器考虑,d=1.0 A=17.6×7+17.6×1×13算得散热器热阻RQd-a=4.1℃/W,散热器选择及散热计算目前的电子产品主要采用贴片式封装器件,但大功率器件及一些功率模块仍然有不少用穿孔式封装,这主要是可方便地安装在散热器上,便于散热。
散热器分类、散热器选择、散热器计算方法
![散热器分类、散热器选择、散热器计算方法](https://img.taocdn.com/s3/m/e6ef44c1ce2f0066f4332203.png)
散热器技术参数(2008-6-5 15:03:24 阅读V 64次)在使用功率器件时最重要的是如何使其产生的热量有效地散发出去,以获得高可靠性。
散热的最一般方法是把器件安装在散热器上,散热板将热量辐射到周围的空气中去,以及通过自然对流来散发热量。
一般地说,从散热器到周围的空气的热流量(P)可由下例表示。
P=hA η△T式中h为散热器总的传热导率(W/cm2℃),A为散热器的表面积(cm2),η为散热器效率,△T为散热器的最高温度与环境温度之差(℃)。
上式中h是由辐射及对流来决定,η是由散热器的形成来决定。
总之,散热器的表面积越大,与环境温度之差越大,散热板的热量辐射越有效。
(1)辐射散热下述近似式表示辐射散热hr=2.3×10-11×ε(△T/2+237)3(W/cm2℃)式中ε是表面辐射率,随散热器的表面状况而变化。
表面研磨光洁的产品ε=0.05~0.1也就是说辐射率极差。
然而,散热器表面涂以涂料,经氧化可使ε=1。
(2)对流散热功率器件安装在装置的框架上时,采用对流散热比辐射散热更有效。
在一个大气压的空气中,采用对流散热器的传导率近似地由下式表示。
hc=4.3×10-4×(△T/H)1/4(W/cm2 ℃)式中,H是散热器垂直方向长于水平方向更为有效。
(3)散热器效率η若用薄材料制成散热器,则离热源越远,表面温度越低,散热效果也越差。
上述公式是假定温度都是均在分布的,而实际上在散热板的边缘部位表面温度越低。
这种由散热器本身温度确定的系数就是散热器效率,它表示散热板实际传递的热量与器材安装部位最高温度视为均匀分布时的热量之比。
η主要是由所用散热器的材料大小与厚度来决定的。
一般地说,热传导率高的材料如铝(2.12W/cm2 ℃)及铜(3.85W/cm2 ℃)而钢(0.46W/cm2 ℃)就相当差了。
另外,散热器的厚度以厚些为好,并以跟散热器的长度平方成比例为最佳。
散热器的选型与计算
![散热器的选型与计算](https://img.taocdn.com/s3/m/f6d83556caaedd3383c4d396.png)
散热器的选型与计算以7805为例说明问题.设I=350mA,Vin=12V,则耗散功率Pd=(12V-5V)*0.35A=2.45W按照TO-220封装的热阻θJA=54℃/W,温升是132℃,设室温25℃,那么将会达到7805的热保护点150℃,7805会断开输出.正确的设计方法是:首先确定最高的环境温度,比如60℃,查出7805的最高结温TJMAX=125℃,那么允许的温升是65℃.要求的热阻是65℃/2.45W=26℃/W.再查7805的热阻,TO-220封装的热阻θJA=54℃/W,均高于要求值,都不能使用,所以都必须加散热片,资料里讲到加散热片的时候,应该加上4℃/W的壳到散热片的热阻.计算散热片应该具有的热阻也很简单,与电阻的并联一样,即54//x=26,x=50℃/W.其实这个值非常大,只要是个散热片即可满足.散热器的计算:总热阻RQj-a=(Tjmax-Ta)/PdTjmax :芯组最大结温150℃Ta :环境温度85℃Pd : 芯组最大功耗Pd=输入功率-输出功率={24×0.75+(-24)×(-0.25)}-9.8×0.25×2=5.5℃/W总热阻由两部分构成,其一是管芯到环境的热阻RQj-a,其中包括结壳热阻RQj-C和管壳到环境的热阻RQC-a.其二是散热器热阻RQd-a,两者并联构成总热阻.管芯到环境的热阻经查手册知RQj-C=1.0 RQC-a=36 那么散热器热阻RQd-a应<6.4. 散热器热阻RQd-a=[(10/kd)1/2+650/A]C其中k:导热率铝为2.08d:散热器厚度cmA:散热器面积cm2C:修正因子取1按现有散热器考虑,d=1.0 A=17.6×7+17.6×1×13算得散热器热阻RQd-a=4.1℃/W,散热器选择及散热计算目前的电子产品主要采用贴片式封装器件,但大功率器件及一些功率模块仍然有不少用穿孔式封装,这主要是可方便地安装在散热器上,便于散热。
散热器散热计算公式:
![散热器散热计算公式:](https://img.taocdn.com/s3/m/c5e042cdd05abe23482fb4daa58da0116c171f24.png)
(一)散热器选择通用原则 散热器热阻Rsa 是选择散热器的主要依据。
Rsa=c ajm P TT−-(R jc+R cs)式中:R sa────散热器热阻,℃/W;R jc────半导体器件结壳热阻,℃/W;R cs────接触热阻,℃/W;T jm ────半导体器件最高工作结温,℃;T a────环境温度,℃;P c ────半导体器件耗散功率,W;T jm,P c,R jc可以从器件技术参数表中查到,或计算得到;T a是实际工作环境温度;R cs与接触材料的种类和接触压力有关,可以根据接触材料(如硅脂)的热阻参数估算得到。
所选择的散热器,其热阻值应小于以上的计算值,就可满足散热的要求。
散热器的热阻与材质,结构,表面状态,表面颜色,几何尺寸及冷却条件等有关;应该按照有关的标准用实验的方法测试得到,常用的散热器热阻曲线有3种,(1)热阻——长度曲线,(2)热阻——风速曲线,(3)功耗——温升曲线。
用CFD技术模拟仿真运算可以得到散热器的热阻值,风压及温度分布状况,为散热器选择提供参考依据。
(二)电力半导体用散热器的选择和使用原则 摘自JB/T9684-2000一﹑散热器选择的基本原则电力半导体器件用散热器选择要根据器件的耗散功率,器件结壳热阻,接触热阻,以及器件最高工作结温和冷却介质温度来综合考虑。
选用散热器时要了解散热器的散热能力范围,冷却方式,技术参数和结构特点,一种器件仅从热阻参数看,可能有多种散热器均能满足散热要求,但应结合冷却,安装,通用互换和经济性来综合考虑。
二﹑器件与散热器紧固力的要求为使器件与散热器组装后又良好的热接触,必须采用合适的安装力或安装力矩,其值由器件制造厂或器件标准给出,具有较小的范围,组装时应严格遵守不要超出范围,当器件厂未给出紧固力时,按照器件管壳与散热器接触的面积,可采用1~1.5KN/cm2的紧固力。
为了改善散热器与器件的接触,增加有效接触面积,提高散热效果,在散热器和器件之间可涂一薄层导电导热性物质如硅脂。
散热器选型散热面积理论计算及风扇选择
![散热器选型散热面积理论计算及风扇选择](https://img.taocdn.com/s3/m/2ec62f08ce84b9d528ea81c758f5f61fb6362873.png)
散热器选型散热面积理论计算及风扇选择散热器的目的是将设备产生的热量有效地传递到周围环境中去。
选择适当的散热器需要考虑到散热器的材料、面积和设计等因素。
首先,计算散热面积的理论值需要知道设备的功耗和散热器的材料热导率。
功耗是设备在运行时产生的热量,以单位为瓦(W)表示。
热导率是材料传导热量的能力,以单位为瓦特尔(W/m·K)表示。
常见散热器材料的热导率如下:铜:400W/m·K铝:200W/m·K钢铁:50W/m·K塑料:0.2W/m·K根据设备的功耗和材料的热导率,可以计算散热器的表面积。
散热面积理论值(A)=设备功耗/(散热器材料热导率×温度差)其中,功耗以瓦特(W)为单位,热导率以瓦特尔(W/m·K)为单位,温度差以摄氏度(℃)为单位。
例如,如果我们有一个设备的功耗是100W,使用铝散热器,温度差为50℃,那么散热面积的理论值为:A=100/(200×50)=0.010m2接下来,选择合适的散热器。
散热器的选择需要考虑到散热器表面积、设计和材料等因素。
散热器的表面积应大于等于散热面积的理论值。
同时,散热器的设计也影响了散热效果。
常见的散热器设计包括:片状散热器、塔式散热器和液冷散热器等。
不同的设计适用于不同的场景,需要根据具体的需求进行选择。
此外,散热器的材料也是选择散热器时需要考虑的重要因素。
铜和铝是常用的散热器材料,铜具有更高的热导率,但价格较高;铝的热导率较低,但价格较便宜。
根据具体的需求和预算,选择适合的材料。
最后,选择适当的风扇。
风扇的作用是强制空气流过散热器,帮助散热。
选择适当的风扇需要考虑到风扇的风量和噪音产生。
风量是风扇单位时间内产生的气流量,以立方米每小时(m3/h)表示。
通常情况下,风扇的风量应大于散热器需要的风量,以确保足够的气流流过散热器。
此外,风扇的噪音也需要考虑。
噪音是以分贝(dB)为单位表示的。
散热器设计的基本计算
![散热器设计的基本计算](https://img.taocdn.com/s3/m/a28d5567a4e9856a561252d380eb6294dd8822a3.png)
散热器设计的基本计算1.散热功率计算:散热器主要的功能是将设备产生的热量迅速散发出去。
在设计散热器时,首先需要计算散热功率,即设备需要散发的热量。
散热功率的计算公式为:Q=P×R其中,Q为散热功率,单位为W;P为设备的功率,单位为W;R为散热器的散热系数,单位为W/℃。
2.散热面积计算:散热面积是散热器的一个重要参数。
散热面积越大,散热器的散热效果越好。
散热面积的计算公式为:A=Q/(h×ΔT)其中,A为散热面积,单位为m²;Q为散热功率,单位为W;h为热对流换热系数,单位为W/(m²·℃);ΔT为设备的工作温度与环境温度之差,单位为℃。
3.散热器材料选择:散热器的材料也会影响其散热性能。
一般来说,散热器的材料应具有良好的导热性能和强度。
常用的散热器材料有铝、铜、铝合金等。
不同的材料具有不同的热传导系数,选择合适的材料可以提高散热器的散热效果。
4.热传导性能计算:热传导性能是指散热器材料的导热能力。
我们可以通过热阻来衡量热传导性能。
热阻的计算公式为:Rt=L/(k×A)其中,Rt为热阻,单位为℃/W;L为材料的长度,单位为m;k为材料的热导率,单位为W/(m·℃);A为散热器的截面面积,单位为m²。
5.散热器的结构设计:散热器的结构设计也是散热器设计的重要部分。
在结构设计时,需要考虑到散热面积的最大化和散热器的流体阻力。
通常,散热器的散热面积可以通过增加散热片的数量和密度来实现。
而流体阻力则可以通过优化散热片的形状和间距来降低。
总之,散热器的设计需要考虑到多个因素,包括散热功率、散热面积、材料选择、热传导性能和结构设计等。
通过合理的计算和设计,可以达到提高散热效果的目的。
散热器的选型与计算
![散热器的选型与计算](https://img.taocdn.com/s3/m/59b48a16657d27284b73f242336c1eb91a37332f.png)
散热器的选型与计算首先,在选型之前需要明确以下几个参数:1.散热功率:散热器的选型首先需要知道要散热的设备的散热功率。
散热功率是指设备在运行过程中产生的热量,通常以瓦特(W)为单位。
2.散热器的工作环境温度:散热器所处的环境温度对散热器的散热效果有直接影响,需要在选型时考虑。
接下来,可以根据散热功率和工作环境温度来进行散热器的选型计算。
1.确定散热器的散热面积:散热面积是指散热器能够散热的有效表面积,通常以平方米(㎡)为单位。
根据散热功率和设备工作环境温度,可以通过下面的公式来计算散热面积:散热面积=散热功率/散热系数/温度差其中,散热系数是指散热器在给定条件下的散热能力,单位为瓦特/平方米/摄氏度(W/㎡/℃)。
2.确定散热器的材料和结构:散热器的材料和结构也会对散热效果产生影响。
常见的散热器材料有铝合金、铜和不锈钢等,其中铝合金是最常用的材料,因为它的散热性能好且价格相对较低。
散热器的结构有多种选择,例如片式散热器、鳍片散热器和壳管式散热器等。
3.确定散热器的尺寸和密度:散热器的尺寸和密度也会对散热效果产生影响。
尺寸的选择需要考虑设备的安装空间和散热面积的要求,密度的选择需要根据散热强度和散热空间的限制来确定。
最后,选型完成后还需要进行散热器的设计和安装。
1.散热器的设计需要考虑散热器的散热效果、风道的设计和风扇的选择等。
设计时可以借助计算机辅助设计(CAD)软件对风道进行流体模拟分析,以提高散热效果。
2.散热器的安装需要考虑散热器与设备之间的接触面和安装方式。
接触面直接影响到散热器的散热效果,安装方式需要保证散热器能够有效地散热并且稳固可靠。
总结起来,散热器的选型与计算需要明确散热功率和工作环境温度等参数,并根据这些参数来计算散热面积,然后确定散热器的材料和结构,最后进行散热器的设计和安装。
通过合理的选型与计算,可以提高散热器的散热效果,保证设备的运行稳定性。
汽车散热器选择的计算方法
![汽车散热器选择的计算方法](https://img.taocdn.com/s3/m/67d20704bf1e650e52ea551810a6f524cdbfcb45.png)
汽车散热器选择的计算方法
选择汽车散热器的计算方法是非常重要的,因为一个合适的散热器可
以有效地降低汽车发动机的温度,保障发动机正常运行。
以下将介绍汽车
散热器选择的计算方法。
第一步:计算散热量
计算散热器的第一步是确定所需的散热量。
散热量取决于发动机的功
率和工作环境的温度。
发动机的功率通常可以从发动机制造商的技术手册
中获得,而工作环境的温度可以通过测量周围的温度并考虑到日常驾驶条
件来确定。
通常情况下,散热量约为发动机功率的30%到50%。
第二步:计算冷却水流量
冷却水流量是指通过散热器的冷却水的量。
冷却水的流量取决于发动
机的功率和缸体的数量。
可以通过以下公式计算:
Q=Cp*m*ΔT
其中,Q是冷却水的热量(即所需的散热量),Cp是冷却水的比热容,m是冷却水的流量,ΔT是冷却水的温差。
第三步:计算冷却水的速度
冷却水的速度是指通过散热器的冷却水的速度。
冷却水的速度取决于
冷却水的流量和散热器的截面积。
可以通过以下公式计算:
v=m/A
其中,v是冷却水的速度,m是冷却水的流量,A是散热器的截面积。
第四步:选择合适的散热器
最后一步是选择合适的散热器。
散热器的选择取决于冷却水的速度和散热器的设计。
选取的散热器必须能够满足冷却水的速度要求,并且应具有良好的散热性能和结构强度。
此外,还应考虑散热器的重量、尺寸和成本等因素。
散热器如何选型及计算
![散热器如何选型及计算](https://img.taocdn.com/s3/m/50f0dc5a15791711cc7931b765ce05087732757f.png)
散热器如何选型及计算散热器是用来散热的设备,广泛应用于电子设备、机械设备、汽车等各个行业。
选型和计算散热器的主要目的是确保设备能够良好地散热,避免过热导致设备故障或者损坏。
以下是关于散热器选型和计算的详细内容。
一、散热器选型:1.确定散热器类型:根据具体的应用场景和要求,选择合适的散热器类型,如散热片、风冷散热器、水冷散热器等。
2.计算散热器尺寸:根据散热器所能承载的功率和散热区域的限制,计算散热器的尺寸,包括长度、宽度和高度等。
3.确定散热器材质:根据具体的散热要求和环境条件,选择合适的散热器材质,如铜、铝、不锈钢等。
4.确定散热器安装方式:根据散热器的应用场景和要求,确定散热器的安装方式,如板式安装、贴片安装等。
5.考虑附件需求:根据具体的应用场景和要求,考虑是否需要配备散热风扇、水泵等附件,以提高散热效果。
二、散热器计算:1.确定散热功率:根据设备的功率消耗和工作条件,计算散热器所需的散热功率。
常用公式为:散热功率=(设备最高工作温度-设备环境温度)/散热器散热系数。
2.计算散热面积:根据散热功率和材料的导热性能,计算散热器所需的散热面积。
常用公式为:散热面积=散热功率/(材料导热系数×温度差)。
3.确定散热器尺寸:根据散热面积和散热器的设计限制,计算散热器的尺寸。
通常,散热器的表面积越大,散热效果越好。
4.选择散热器材料和结构:根据散热功率和散热器尺寸,选择合适的散热器材料和结构。
铜和铝是常用的散热材料,具有良好的导热性能。
5.考虑散热风扇或水泵:根据散热要求和工作条件,选择合适的散热风扇或水泵。
风扇的选择要考虑空气流量和风压,水泵的选择要考虑水流量和扬程。
散热器数量的选择及计算方法
![散热器数量的选择及计算方法](https://img.taocdn.com/s3/m/c40d8121b90d6c85ec3ac628.png)
暖气片十大品牌数量的选择及计算方法有些家庭装修后,发现金旗舰暖气片很热但是屋里不热。
是什么原因造成的呢?其实就是暖气片组数选择少了。
那么到底选择多少组好呢,这里给大家一个参考算法:1.算面积:计算卧室、起居室、卫生间等面积,作为测算的基础数据。
2.算瓦数(W):“W”(瓦)是暖气的供暖量,多大“W”可以温暖多大面积的房间有计算依据,我们可根据以下民用建筑供暖热指标测算参考数据,暖气片十大品牌金旗舰暖气片,一线明星代言,暖通O2O第一品牌。
来计算出应购暖气的数量。
住宅45-70,办公室、学校40-80,医院、幼儿园65-80,单层住宅80-105,食堂、餐厅115-140(单位:W/平方米)。
以上仅为理论数值,实际生活中可能还会有所变化。
一般情况下,把边、阴面、顶楼、底楼要冷一些,在计算供暖量的时候要考虑富裕量。
可再适当加上10%~20%作为富裕量,以免暖气在冷天时热量不够。
供热不足也要适量增加。
3.算片数:当需要的总瓦数计算出来后,就可以换算出需要购买暖气的片数,进而可以计算出需要购买暖气的组数。
(购买暖气都有散热功率的)。
4.安装注意不要影响暖气的散热空气对流5.实例计算 20平米客厅(阴面)按照住宅热值中间值60w/平暖气选用75*75/400的柱形铜铝暖气(散热功率107w/柱)暖气组数n=20*60*1.2/107=13.45 取整数14柱如果选用75*75/1600的柱形铜铝暖气(散热功率366w/柱)暖气组数n=20*60*1.2/366=3.9 取整数4柱。
如何计算确定自家各个房间所需暖气片的数量近一段时间很多的网友通过各种渠道(电话、QQ、msn、Email)咨询我购买暖气的数量,几乎第一句话就是:“你家暖气怎么卖?多少钱一组?稍微在市场上转了转的是这么说的:你家暖气一片能管多大面积?”要知道这么问是很不科学的,为何这么说呢?因为确实暖气最终装到家里面是按照组来计算的,但是是要按照片来换算的。
散热器如何选型及计算
![散热器如何选型及计算](https://img.taocdn.com/s3/m/e549330c82c4bb4cf7ec4afe04a1b0717ed5b376.png)
散热器如何选型及计算散热器的选型和计算对于电子设备的正常工作和寿命有着重要的影响。
下面将通过以下几个方面来详细介绍如何选型和计算散热器。
1.热量产生量的计算:首先,需要计算电子设备产生的热量。
可以通过以下公式来计算:Q=P*t其中,Q表示热量(单位为焦耳J),P表示功率(单位为瓦特W),t表示时间(单位为秒s)。
通常情况下,可以根据设备的额定功率来计算。
2.散热器的热阻计算:散热器的热阻(单位为摄氏度/W)表示散热器对热量的传导能力。
热阻越小,散热能力越强。
通过以下公式来计算:R=(Tj-Ta)/P其中,R表示散热器的热阻,Tj表示芯片的最高温度(单位为摄氏度℃),Ta表示环境温度(单位为摄氏度℃),P表示功率。
3.散热器的尺寸和形状:散热器的选择应根据设备的尺寸和形状来确定。
尺寸和形状不仅应能适应设备的安装空间和外观要求,还应兼顾散热效果。
通常来说,散热器的表面积越大,散热能力越强。
同时,散热器的形状也会影响散热效果,如片状、鳍片状、风扇式等。
4.散热器材料的选择:散热器的材料也会影响散热效果。
常见的材料包括铝合金、铜、铜/铝复合材料等。
铜的导热性能较好,但成本较高;铝合金成本较低,但导热性能相对较差。
选择材料时需要综合考虑造价和散热效果。
5.辅助散热措施:散热器常常需要与风扇、散热片等辅助措施配合使用,以增强散热效果。
风扇的选择应注意风量、转速和噪音等因素;散热片的选择应考虑散热面积和形状。
同时,也可以采用其他辅助散热措施,如热管、热界面材料等。
6.测试和验证:在选型和计算完成后,还需要进行测试和验证,以确保散热器的散热效果符合要求。
可以通过测量芯片温度和散热器表面温度来评估散热效果,并根据需求进行调整。
综上所述,选型和计算散热器需要考虑热量产生量、热阻、尺寸和形状、材料选择、辅助散热措施等因素,同时还需要进行测试和验证。
只有在综合考虑了这些因素并进行了合理的计算和选型后,才能选择到适合设备需求的散热器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
暖气片散热片选择及散热计算
热性能相同发热元器件布置:显示PCB上安装IC(0.3W),LSI(1.5W)时温度上升的实测值。
按(a)排列,IC的温度上升值是18℃-30℃,LSI温度上升值是50℃。
按(b)排列,LSI温度上升值是40℃,比(a)排列还要低10℃。
因此,具有相同水平的耐热元件混合排列时,基本排列顺序是:耗电大的元件、散热性差的元件应装在上风处。
2 高发热器件加散热器、导热板
当PCB中有少数器件发热量较大时(少于3个)时,可在发热器件上加散热器或导热管,当温度还不能降下来时,可采用带风扇的散热器,以增强散热效果。
当发热器件量较多时(多于3个),可采用大的散热罩(板),它是按PCB板上发热器件的位置和高低而定制的专用散热器或是在一个大的平板散热器上抠出不同的元件高低位置。
将散热罩整体扣在元件面上,与每个元件接触而散热。
但由于元器件装焊时高低一致性差,散热效果并不好。
通常在元器件面上加柔软的热相变导热垫来改善散热效果。
2通过PCB板本身散热
目前广泛应用的PCB板材是覆铜/环氧玻璃布基材或酚醛树脂玻璃布基材,还有少量使用的纸基覆铜板材。
这些基材虽然具有优良的电气性能和加工性能,但散热性差,作为高发热元件的散热途径,几乎不能指望由PCB本身树脂传导热量,而是从元件的表面向周围空气中散热。
但随着电子产品已进入到部件小型化、高密度安装、高发热化组装时代,若只靠表面积十分小的元件表面来散热是非常不够的。
同时由于QFP、BGA等表面安装元件的大量使用,元器件产生的热量大量地传给PCB板,因此,解决散热的最好方法是提高与发热元件直接接触的PCB自身的散热能力,通过PCB板传导出去或散发出去。
1 选用导热性良好的板材
现今大量使用的环氧玻璃布类板材,其导热系数一股为0.2W/m℃。
普通的电子电路由于发热量小,通常采用环氧玻璃布类基材制作,其产生的少量热量一般通过走线热设计和元器件本身散发出去。
随着元件小型化、高集成化,高频化,其热密度明显加大,特别是功率器件的使用,为满足这种高散热要求后来开发出了一些新型导热性板材。
如美国研制的T-Lam 板材,它是在树脂内填充了高导热性的氮化硼粉,使其导热系数提高到4W/m℃,是普通环氧玻璃布类基材的20倍。
美国Rogers公司开发的复合基材RO4000系列和TMM系列,它是在改性树脂中添加了陶瓷粉,使其导热系数提高到(0.6-1)W/m℃,是普通环氧玻璃布类基材的3—5倍,也是一种不错的选择。
还有就是陶瓷基板,它是由纯度为92%-96%的氧化铝(AI2O3)制成,其导热系数提高到10W/m℃,是普通环氧玻璃布类基材的50倍,它大量使用在混合IC,微波集成器件以及功率组件中,是导热性良好基板材料。
还有就是导热性较好的SiC和AIN等材料,其作为PCB基材应用还在进一步研究中。
2采用合理的走线设计实现散热
由于板材中的树脂导热性差,而铜箔线路和孔是热的良导体,因此提高铜箔剩余率和增加导热孔是散热的主要手段。
评价PCB的散热能力,就需要对由导热系数不同的各种材料构成的复合材料一一PCB用绝缘基板的等效导热系数(九eq)进行计算。
PCB板的等效导热系数见图6所示。
从表2我们可以看出板厚度越小,铜箔越厚,铜箔剩余率越高,层数越多,其等效导热系数越大,P C B板的导(散)热效果越好。
PCB厚度方向的导热系数比表面的导热系数小得多。
为了改善厚度方向的导热性,可采用导热孔。
导热孔是穿过:PCB的金属化小孔(1.0mm-0.4mm)。
其效果相当于一个细铜导管沿
PCB厚度方向从其表面穿透,使PCB正背面的热量发生
短路,发热元件的热量向PCB背面迅速逃逸或传导给其它散热层。
如安从表2我们可以看出板厚度越小,铜箔越厚,铜箔剩余率越高,层数越多,其等效导热系数越大,P C B板的导(散)热效果越好。
PCB厚度方向的导热系数比表面的导热系数小得多。
为了改善厚度方向的导热性,可采用导热孔。
导热孔是穿过:PCB的金属化小孔(1.0mm-0.4mm)。
其效果相当于一个细铜导管沿PCB厚度方向从其表面穿透,使PCB正背面的热量发生短路,发热元件的热量向PCB背面迅速逃逸或传导给其它散热层。
如安装在PCB上的IC裸芯片,在其正下方的PCB板上设置无数个导热孔的设计方案正在普及。
因此,在PCB走线时为提高散热能力,应采用粗线、厚铜箔、薄板、多层、大面积铺铜、加导热孔设计方案。
2.2.3 采用金属基(芯)POB板进行散热
金属基多层印制板是指在多层板的某一面衬上金属板,通过金属板向外散热或直接与外接散热装置相连起到快速散热的效果。
目前市面上已有标准的单面铝基覆铜箔板材出售,并在开关电源、汽车、飞机发动机的驱动电路上大量使用。
当电路密度较高,有双面SMT要求或通孔插装元件较多时,必须采用高导热型金属芯多层板来实现。
它是将导热性较好的
金属板嵌入多层印制板的中间,其典型结构如图7金属芯板本身也可作为地层使用,其上下层可通过金属化孔(与芯板绝缘)互联,并通过导热孔实现热量在金属芯板内层和表面的传递。
如图7所示,发热元件可通过底部和导热孔直接焊接在板面上,发热器件产生的热直接传递到金属芯板,由金属芯板经导热孔传给
接触的安装机箱而散发出去;热量较大时可铣去芯板两边的绝缘层,通过边缘裸露的金属芯板与机座接触散热,因此具有良好的散热效果。
对处于密闭机箱中的电路散热是一种较好的选择金属芯PCB的芯材通常有铝、铜、钢等,后来开发出了覆铜因瓦复合材料(CIC),它不仅具有良好的导热性,而且其热膨胀系数与半导体器件匹配性好,所制成的CIC金属芯板可应用于要求高可靠性、高组装密度、高功率、高性能的军用电子设备中。
在调试或维修电路的时候,我们常提到一个词“**烧了”,这个**有时是电阻、有时是保险丝、有时是芯片,可能很少有人会追究这个词的用法,为什么不是用“坏”而是用“烧”?其原因就是在机电产品中,热失效是最常见的一种失效模式,电流过载,局部空间内短时间内通过较大的电流,会转化成热,热**不易散掉,导致局部温度快速升高,过高的温度会烧毁导电铜皮、导线和器件本身。
所以电失效的很大一部分是热失效。
那么问一个问题,如果假设电流过载严重,但该部位散热极好,能把温升控制在很低的范围内,是不是器件就不会失效了呢?答案为“是”。
由此可见,如果想把产品的可靠性做高,一方面使设备和零部件的耐高温特性提高,能承受较大的热应力(因为环境温度或过载等引起均可);另一方面是加强散热,使环境温度和过载引起的热量全部散掉,产品可靠性一样可以提高。
下面介绍下热设计的常规方法。
我们机电设备常见的是散热方式是散热片和风扇两种散热方式,有时散热的程度不够,有时又过度散热了,那么何时应该散热,哪种方式散热最合适呢?这可以依据热流密度来评估,热流密度=热量/ 热通道面积。