第十一讲 功率衰减器
衰减器课程设计的基本原理及电路图
衰减器课程设计的基本原理及电路图信号衰减器原理及设计衰减器是在指定的频率范围内,⼀种⽤以引⼊⼀预定衰减的电路,⼀般以所引⼊衰减的分贝数及其特性阻抗的欧姆数来标明。
衰减器⼴泛地应⽤于电⼦设备中,它的主要⽤途是:(1)调整电路中信号的⼤⼩;(2)改善阻抗匹配,若某些电路要求有⼀个⽐较稳定的负载阻抗时,则可在此电路与实际负载阻抗之间插⼊⼀个衰减器,能够缓冲阻抗的变化。
通常,衰减器接于信号源和负载之间,衰减器是由电阻元件组成的⼆端⼝⽹络,它的特性阻抗、衰减量都是与频率⽆关的常数,相移等于零。
实际应⽤中,有固定衰减器和可变衰减两⼤类。
1、固定衰减器的设计常⽤的固定衰减器有对称型的T型、∏型、桥T型和倒L型(不对称型)等⼏种结构,其电路形式和计算公式如下。
图1. T型衰减器图2. ∏型衰减器1211221-=+R N N R R C C 1 1 2 1 2 2 1-+ = -= N N R R N N R R C C 1 )1 ( 2 1-= -RR CC图3. 桥T 型衰减器图4. 倒L 型衰减器式中,Rc 为⼆端⼝⽹络的特性阻抗(对称时),即输⼊输出阻抗,Rc1和Rc2两侧特性阻抗,分别为⾮对称衰减器的输⼊输出阻抗;2010A N =,为输⼊电压与输出电压之⽐,A 为衰减的分贝数。
电压⽐分贝:dB=20lg (Uo/Ui )以上衰减器中,T 型、∏型、桥T 型属于对称衰减器,主要⽤于衰减。
⽽倒L 型属于不对称衰减器,主要⽤于阻抗匹配。
倒L 型不对称衰减器构成阻抗匹配器,与对称衰减器所不同的是,不能指定衰减量,其输⼊输出阻抗确定后,其衰减量也就确定了。
其衰减值见下表。
表1 倒L 型衰减器衰减值与输⼊输出阻抗⽐的关系值得注意的是,桥T 型衰减器中,有两个电阻的值即为特性阻抗(输⼊输出电阻),且计算公式简洁,⽤于组成可调衰减器⾮常⽅便。
例1:设计⼀衰减器,匹配于信号源内阻R S =800欧与负载电阻R L =150欧之间,其衰减量为30dB 。
功率衰减器参数及检测
1 / 5功率衰减器参数与检测TP-LINK 内销PE 李悦一、概述在无线系统测试中常常需要对从一个设备到另一个设备的信号进行衰减。
例如,射频发射机测试中,涉及的功率等级常常从几瓦到几百瓦甚至上千瓦,这么大功率的信号必须得经过衰减以后才可以连接到大部分的测试设备中,否则会对测试设备有损害。
一种叫做衰减器的简单电路常常能用来减少信号幅度,而且衰减器不但可以把信号电压衰减到一定值还可以对阻抗值进行变换。
衰减器的技术指标包括衰减器的工作频带、衰减量、功率容量、回波损耗等。
工作频带是指在给定频率范围内使用衰减器,衰减量才能达到指标值;衰减量是指输入信号与输出信号功率的对数值之差;功率容量就是衰减器正常工作时能够承受的最大功率损耗,衰减器是一种能量消耗元件,功率消耗后变成热量。
可以想象,材料结构确定后,衰减器的功率容量就确定了;回波损耗指的是传输信号被反射到发射端的比例,可以用驻波比来形容,对于功率衰减器,要求其两端的输入输出驻波比应尽可能小;衰减器是一个功率消耗元件,不能对两端电路有影响,也就是说,与两端电路都是匹配的。
二、两个重要指标进行衰减器设计时,最基础的两个指标要求如下:2.1衰减量无论构成功率衰减的机理和具体结构如何,总是可以用下图所示的二端口网络来描述衰减器。
图中,信号输入端的功率为P 1,而输出端的功率为P 2,衰减器的功率衰减量为A(dB)。
若P 1、P 2以分贝毫瓦(dBm)表示,则两端功率间的关系为: 即: 可以看出,衰减量描述功率通过衰减器后功率的变小程度。
衰减量的大小由构成衰减器的材料和结构确定。
衰减量用分贝作单位,便于整机指标计算。
2.2阻抗匹配利用电阻构成的T 型或П型网络实现集总参数衰减器,通常情况下,衰减量是固定的,且由三个电阻值决定。
两种电路拓扑下图所示。
图中Z 1、 Z 2是电路输入端、 输出端的特性阻抗。
T 型功率衰减器; π型功率衰减器12()()10lg ()P mW A dB P mW=(a )(b )Port ‐2 P2Port ‐1 P1 ()()()21P dBm =P dBm -A dB对衰减器输入而言,输入阻抗要与信号源的输出阻抗匹配;对衰减器输出而言,输出阻抗要与负载阻抗匹配。
衰减器原理及其设计
衰减器原理及其设计时间:2012-01-07 来源:作者:关键字:衰减器原理衰减器广泛地应用于电子设备中,它的主要用途是:(1)调整电路中信号的大小;(2)在比较法测量电路中,可用来直读被测网络的衰减值;(3)改善阻抗匹配,若某些电路要求有一个比较稳定的负载阻抗时,则可在此电路与实际负载阻抗之间插入一个衰减器,能够缓冲阻抗的变化。
通常,衰减器接于信号源和负载之间,衰减器是由电阻元件组成的四端网络,它的特性阻抗、衰减都是与频率无关的常数,相移等于零。
实际应用中,有固定衰减器和可变衰减两大类。
1、固定衰减器的设计常用的固定衰减器有L型、T型、X型和桥T型等几种结构,其电路形式和计算公式见表5.1-16。
注:RC为特性阻抗;RC1、RC2为两侧特性阻抗,B为固有衰减值N=EB。
其中L型属于不对称衰减器,主要用于阻抗匹配,而T型、X型、桥T型属于对称衰减器,主要用于衰减。
一端接地的衰减器称为不平衡衰减器;反之,两端不接地的衰减器称为平衡衰减器。
例:设计一衰减器,匹配于信号源内阻RS-600欧与负载电阻RL=150欧之间,其衰减量为30DB。
解计算过程:(1)因为RS、RL不相等,所以选用一节倒L型和一节对称T型号组成衰减器,如图5.1-19A所示倒L型电路计算:(2)T型电路计算:由于总衰减量为30DB,所以T型衰减量为(3)电路简化:对设计电路进行变换,进而得到简化电路,由图5.1-19A变换为图B及图C的形式。
2、可变衰减器的设计可变衰减器,一般是指特性阻抗值恒定的,而它的衰减值是可变的衰减器,此外,还有一种分压式可变衰减器,由于它的负载往往是高阻抗,因此对这种分压式可变衰减器的特性阻抗就没有什么具体要求。
1)可变桥T型衰减器可变桥T型衰减器的电路结构如图5.1-20所示。
图5.1-20 可变T型衰减器采用这种可变衰减器电路的优点是,电路中只有两个可变化部分而可变T型号或可变X 型衰减将有三个可变部分),而且R为固定电阻,可以避免因旋钮换档时,由于旋钮触点接触不良而引起电路中断现象。
衰减器课程设计的基本原理及电路图
通常,衰减器接于信号源和负载之间,衰减器是由电阻元件组成的二端口网络,它的特 性阻抗、衰减量都是与频率无关的常数,相移等于零。
实际应用中,有固定衰减器和可变衰减两大类。
1、固定衰减器的设计 常用的固定衰减器有对称型的 T 型、型、桥 T 型和倒 L 型(不对称型)等几种结构, 其电路形式和计算公式如下。
RC 2
1
ห้องสมุดไป่ตู้
RC1
R2 RC 2
RC 1 RC1 RC 2
图 4. 倒 L 型衰减器 式中,Rc 为二端口网络的特性阻抗(对称时),即输入输出阻抗,Rc1 和 Rc2 两侧特性
A
阻抗,分别为非对称衰减器的输入输出阻抗; N 10 20 ,为输入电压与输出电压之比,A
为衰减的分贝数。
R2 RC 2
RC1 75 RC1 RC 2
600 600 75
80.18
N1 1
1
RC 2 RC1
1
1
1
75 600
1
15.48
(2)桥 T 型电路计算: 由于总衰减量 A=30dB,N=10^(30/20)=31.62;所以桥 T 型衰减量 N2 为
电压比分贝:dB=20lg(Uo/Ui) 以上衰减器中,T 型、型、桥 T 型属于对称衰减器,主要用于衰减。而倒 L 型属于不 对称衰减器,主要用于阻抗匹配。
倒 L 型不对称衰减器构成阻抗匹配器,与对称衰减器所不同的是,不能指定衰减量, 其输入输出阻抗确定后,其衰减量也就确定了。其衰减值见下表。
表 1 倒 L 型衰减器衰减值与输入输出阻抗比的关系
信号衰减器原理及设计
衰减器是在指定的频率范围内,一种用以引入一预定衰减的电路,一般以所引入衰 减的分贝数及其特性阻抗的欧姆数来标明。
衰减器设计
Lumped-components
Ctrl+R旋转 器件
Simulation-S_param
练习:设计10dB П型同阻式(Z1=Z2=50Ω)固定衰减器。
A 1010 1 Rs Z 0 2 1 R p1 R p 2 Z 0 1
3. T型异阻式
A 1010 R 2 Z1 Z 2 p 1 a 1 Rs1 Z1 Rp 1 Rs 2 Z 2 a 1 R p 1 1 Z1 Z 2 s 2 1 1 a 1 1 R p1 Z 1 R s 1 1 1 a 1 1 R p 2 Z 1 R 2 s
例子:测衰减器在30MHz-3198MHz的插损、驻波和回损。
(1)按《菜单》按钮,选择扫频方案1。 (2)在主菜单下设置初始频率(30MHz)、频率间隔(39.6MHz)和终止频率 (3198MHz)。 (3)在主菜单下按〖↓〗键将光标移到《测:A B》下, 按〖→〗或〖←〗键使A下为 《插损》,B下空白。 (4)接法如下图,为了衰减器能直接对接以减小测试误差,可先将两个衰减器对接 起来,再通过双阴与接到A口的电缆接上,然后按【执行】键完成直通校正。
3 衰减器的主要用途
(1)控制功率电平: 在微波超外差接收机中对本振输出 功率进行控制,获得最佳噪声系数和变频损耗,达到最佳 接收效果。在微波接收机中,实现自动增益控制,改善动 态范围。 (2) 去耦元件: 作为振荡器与负载之间的去耦合元件。 (3) 相对标准: 作为比较功率电平的相对标准。 (4) 用于雷达抗干扰中的跳变衰减器: 是一种衰减量能 突变的可变衰减器,平时不引入衰减,遇到外界干扰时, 突然加大衰减。
衰减器的技术指标
衰减器的技术指标衰减器适用于0—2GHZ频率范围,输入电平,小于或等于10V的任何50Ω阻抗的电子仪器和电子设备的机内配套和单独测量使用,可实现电平控制和进行灵敏度及线型测量。
工作频带衰减器的工作频带是指在给定频率范围内使用衰减器,衰减器才能达到指标值。
由于射频/微波数字衰减器结构与频率有关,不同频段的元器件,结构不同,也不能通用。
现代同轴结构的衰减器使用的工作频带相当宽,设计或使用中要加以注意。
衰减量无论形成功率衰减的机理和具体结构如何,总是可以用下图所示的两端口网络来描述衰减器。
信号输入端的功率为P1,而输出端得功率为P2,衰减器的功率衰减量为A(dB)。
若P1、P2以分贝毫瓦(dBm)表示,则两端功率间的关系为P2(dBm)=P1(dBm)-A(dB)可以看出,衰减量描述功率通过衰减器后功率的变小程度。
衰减量的大小由构成衰减器的材料和结构确定。
衰减量用分贝作单位,便于整机指标计算。
功率容量衰减器是一种能量消耗元件,功率消耗后变成热量。
可以想象,材料结构确定后,衰减器的功率容量就确定了。
如果让衰减器承受的功率超过这个极限值,衰减器就会被烧毁。
设计和使用时,必须明确功率容量。
回波损耗回波损耗就是衰减器的驻波比,要求衰减器两端的输入输出驻波比应尽可能小。
我们希望的衰减器是一个功率消耗元件,不能对两端电路有影响,也就是说,与两端电路都是匹配的。
设计衰减器时要考虑这一因素。
功率系数当输入功率从10mW变化到额定功率时,衰减量的变化系数表示为dB/(dB*W)。
衰减量的变化值的具体算法是将系数乘以总衰减量功率(W)。
如:一个功率容量50W,标称衰减量为40dB的衰减器的功率系数为0.001dB/(dB*W),意味着输入功率从10mW加到50W时,其衰减量会变化0.001*40*50=2dB之多!性能特性衰减量程:101dB/0.1dB衰减精度:。
射频功率衰减器电阻值的确定
35Ω
图 5 阻抗 50Ω,衰减 10dB 的 T 型衰减器
4.3 π型衰减器与T型衰减器的比较 由以上计算可以看出,当衰减的分贝数较大时,在T型衰减器中R1将很小,由于受引线和焊 点的影响,阻值过小很难保证其精度,从而影响衰减的准确度。例如:输入输出阻抗为50Ω, 衰减为60dB时,T型衰减器中R≈50.1Ω,R1≈0.1Ω,而π型衰减器中R≈49.9Ω,R1≈25kΩ, 所以,当要求衰减较大时用π型衰减器较合适,一般衰减,π型衰减器和T型衰减器都适用。 5 结束语 衰减器可以组成级连形式,通过开关或继电器选择衰减量,以满足不同的衰减需要。射频 功率衰减器一定要进行屏蔽,并选用无感电阻,确保频响符合要求。为了承受相应的射频功率, 衰减器的电阻功率要有一定的余量。
4
(6) (7)
R1 //( R + R 0) R0 × × Vin R + R1 //( R + R 0) R + R 0 R + R1 //( R + R 0) R + R 0 Vin 即: × = = AT R1 //( R + R 0) R0 Vout R0 R + R0 把(6) 、 (7)式代入上式得: × = AT R0 − R R0 AT − 1 ⇒ R= R0 AT + 1 R1( R + R 0) 由(7)式得: = R0 − R R1 + ( R + R 0) Vout =
因为:
Vout =
(2)
(3)
(4)
所以π型电路的计算公式为:
2
AT + 1 R0 R= AT − 1 2 R1 = AT − 1 R 0 2 AT ⇒ 20 lgAT = 10dB AT ≈ 3.16 3.16 + 1 × 50Ω ≈ 96Ω R= 3.16 − 1 3.162 − 1 × 50Ω ≈ 71Ω R1 = 2 × 3.16
衰减器的技术指标
衰减器的技术指标衰减器,是一种将信号的功率减小的器件,它在电子测试、通信和微波系统设计中起着至关重要的作用。
衰减器的主要目的是减小信号的功率,并能够防止信号的反射和干扰,使信号在传输中能够保持稳定。
在衰减器的设计与选择中,需要注意不同的技术指标,以满足特定的需求。
下面介绍衰减器的常见技术指标:频率范围衰减器的频率范围是指它能够工作的频率范围,通常以GHz为单位。
在选择衰减器时,需要确保其频率范围符合需求,以确保其性能和稳定性。
衰减值衰减值是衰减器将信号减小的程度,通常以分贝(dB)为单位表示。
不同的应用需要不同的衰减值,因此在选择衰减器时需要根据实际需求进行选择。
相位稳定性衰减器的相位稳定性是指在不同的频率下,衰减器引起的信号相位变化的稳定度。
在一些应用中,相位稳定性比衰减值更重要,因此在选择衰减器时需要仔细考虑。
损耗损耗是指信号在通过衰减器时的功率损耗,一般以分贝为单位来表示。
在设计和选择衰减器时,需要尽可能减小损耗,以确保信号传输的稳定性和可靠性。
反射损耗反射损耗是指信号在通过衰减器时发生反射所引起的损失,通常以分贝为单位表示。
反射损耗的大小与衰减器的设计和质量有关,通常要求反射损耗小于20 dB。
插入损耗插入损耗包括衰减器本身引起的损耗以及与衰减器配合使用的连接器和电缆引起的损耗。
在选择衰减器时,需要注意插入损耗的大小,以及连接器和电缆的损耗。
温度系数衰减器的温度系数是指其衰减值随温度变化而产生的变化。
在一些应用中,需要考虑衰减器的温度系数,以确保其在不同的温度下表现稳定。
功率承受能力衰减器的功率承受能力是指其可以承受的最大功率级别。
在测试和通信应用中,需要选择功率承受能力足够大的衰减器,以避免超出其工作范围而出现故障。
以上就是衰减器的常见技术指标。
在选择和设计衰减器时,需要根据实际应用的需求来进行选择,以确保其性能和稳定性。
衰减器的标准
衰减器的标准衰减器是一种重要的电子元件,用于在电路中控制信号的幅度和电平。
为了确保衰减器的性能和可靠性,下面将介绍衰减器的一些关键标准。
1.频率范围频率范围是指衰减器能够正常工作的信号频率范围。
衰减器的频率范围应该覆盖所需的工作频率范围。
2.衰减值衰减值是衰减器的核心参数之一,它表示衰减器能够降低信号的幅度或功率。
衰减值通常以分贝(dB)为单位表示。
衰减器的衰减值应该符合设计要求,以确保信号的幅度和电平在所需范围内。
3.插入损耗插入损耗是指衰减器在插入电路后对信号产生的额外损耗。
插入损耗通常以分贝(dB)为单位表示。
衰减器的插入损耗应该尽可能小,以确保信号的质量和传输效率。
4.稳定性稳定性是指衰减器在长时间工作或环境变化时性能的稳定性。
衰减器的稳定性应该经过充分的测试和验证,以确保在各种情况下都能够稳定工作。
5.线性度线性度是指衰减器在不同输入信号幅度下衰减值的线性关系。
衰减器的线性度应该尽可能好,以确保信号的幅度和电平变化与输出信号成线性关系。
6.噪声系数噪声系数是指衰减器在传输信号时引入的噪声与输入信号的比率。
衰减器的噪声系数应该尽可能小,以确保信号的质量和信噪比。
7.温度系数温度系数是指衰减器在不同温度下的衰减值的变化情况。
衰减器的温度系数应该尽可能小,以确保在不同温度下都能够保持稳定的性能。
8.可靠性可靠性是指衰减器在长时间使用和多次使用时的可靠性和寿命。
衰减器的可靠性应该经过充分的测试和验证,以确保在预期的使用寿命内能够保持正常的性能。
2功率衰减器
2. 交流信号作用下的阻抗特性
频率较低时,正向导电,反向截止, 具有整流特 性。 频率较高时,正半周来不及复合,负半周不能完 全抽空,I区总有一定的载流子维持导通。
RF&MW
3. PIN二极管的特性 (1) 直流反偏时,对微波信号呈现很高的阻抗,
正偏时呈现很低的阻抗。可用小的直流(低频)功 率控制微波信号的通断,用作开关、 数字移相等。
A 10
(4-8)
RF&MW
2. П型异阻式
10 1 Z 1Z 2 Rs 2 1 1 1 1 R p1 Z 1 Rs 1 1 1 1 1 R p2 Z 1 Rs 2
i j 2 Z 0Y D 2 j 1 Z Y 0 D
移动
单片
吸收 薄片 转动
吸 收 薄 片 (刀 形 ) 轴
双片
(a )
(b )
图 4-11 吸收式衰减器结构示意图 (a) 固定式; (b) 可变式
RF&MW
2. 极化吸收式衰减器
圆柱波导旋转的角度θ可以用精密传动系统测量 并显示出来,角度的变化也就是极化面的变化。 极化衰减器的衰减量为 A=20 lg (cosθ) (4-10)
7 7 .1 1
1
R p2
1 1 1 Z 1 Rs 2
2 0 7 .4 5
RF&MW
步骤二: 利用ADS仿真。
图4-7 Π型同阻式固定衰减器电路图
RF&MW
图4-8 仿真结果
RF&MW
4.3 分布参数衰减器
衰减器课程设计的基本原理及电路图
信号衰减器原理及设计衰减器是在指定的频率范围内,一种用以引入一预定衰减的电路,一般以所引入衰减的分贝数及其特性阻抗的欧姆数来标明。
衰减器广泛地应用于电子设备中,它的主要用途是:(1)调整电路中信号的大小;(2)改善阻抗匹配,若某些电路要求有一个比较稳定的负载阻抗时,则可在此电路与实际负载阻抗之间插入一个衰减器,能够缓冲阻抗的变化。
通常,衰减器接于信号源和负载之间,衰减器是由电阻元件组成的二端口网络,它的特性阻抗、衰减量都是与频率无关的常数,相移等于零。
实际应用中,有固定衰减器和可变衰减两大类。
1、固定衰减器的设计常用的固定衰减器有对称型的T型、∏型、桥T型和倒L型(不对称型)等几种结构,其电路形式和计算公式如下。
图1. T型衰减器图2. ∏型衰减器1211221-=+-=NNRRNNRRCC1121221-+=-=NNRRNNRRCC1)1(21-=-=NRRNRR CC图3. 桥T 型衰减器图4. 倒L 型衰减器式中,Rc 为二端口网络的特性阻抗(对称时),即输入输出阻抗,Rc1和Rc2两侧特性阻抗,分别为非对称衰减器的输入输出阻抗;2010A N =,为输入电压与输出电压之比,A 为衰减的分贝数。
电压比分贝:dB=20lg (Uo/Ui )以上衰减器中,T 型、∏型、桥T 型属于对称衰减器,主要用于衰减。
而倒L 型属于不对称衰减器,主要用于阻抗匹配。
倒L 型不对称衰减器构成阻抗匹配器,与对称衰减器所不同的是,不能指定衰减量,其输入输出阻抗确定后,其衰减量也就确定了。
其衰减值见下表。
表1 倒L 型衰减器衰减值与输入输出阻抗比的关系Rc1/Rc2 20 15 10 9 8 7 654321衰减量39.49 29.49 19.49 17.48 15.48 13.4811.489.477.465.453.41值得注意的是,桥T 型衰减器中,有两个电阻的值即为特性阻抗(输入输出电阻),且计算公式简洁,用于组成可调衰减器非常方便。
理想衰减器的工作原理
理想衰减器的工作原理衰减器是一种能够调节信号强度的电子元件。
它一般用于将信号的强度降低到合适的水平,以满足特定的应用需求。
理想衰减器是指在频率范围内均匀地将信号衰减到目标强度的衰减器。
其工作原理可以通过两种方式进行解释:功率分配原理和返波系数原理。
功率分配原理是指将输入信号平均地分配到各个输出端口上,实现衰减的目的。
理想衰减器一般是多个单元级联组成的,每个单元实现一定的衰减量。
在每个单元中,输入信号被分为两路,一路为透射信号,一路为反射信号。
透射信号通过被衰减后输出,而反射信号则通过反向传输回上一个单元。
在理想衰减器中,透射信号和反射信号之间没有相互作用,即透射信号不会被反射信号干扰,反射信号也不会对透射信号产生影响。
每个单元的衰减值可通过设计单元的导纳阻抗和总体的衰减比来实现,以保证透射信号和反射信号达到期望的强度水平。
返波系数原理是指通过调整衰减器的内部结构和参数,使得在特定频率下输入信号的反射系数等于期望的值,从而实现衰减的目的。
返波系数是衡量信号在输入和输出端口之间反射程度的参数。
对于理想衰减器而言,输入信号的返波系数应为零。
实际上,理想衰减器是不存在的,因为频率对于电路元件而言是有一定限制的。
然而,对于特定范围内的频率,我们可以尽可能地接近理想衰减器的性能。
为了实现这一点,可以采用衰减器设计中常用的技术,如微带线、步阶衰减器、PIN二极管衰减器等。
微带线是一种低损耗、低成本的衰减器结构。
它是在介电基板上通过导电垂直接地的金属条来实现的。
微带线的宽度和长度决定了对信号的衰减程度。
通过调整微带线的尺寸和位置,可以实现不同的衰减量。
步阶衰减器是一种通过串联电阻来实现衰减的结构。
通过选择不同的电阻值和数量,可以得到不同的衰减量。
步阶衰减器在宽频段内均衡地衰减信号,但在高频段可能会引起传输线上的衰减造成信号失真。
PIN二极管衰减器是一种基于PIN二极管的可控衰减器。
通过改变PIN二极管的偏置电压,可以调整二极管的电导,从而改变信号的衰减量。
2019年最新-第十一讲功率衰减器-精选文档
去耦元件
作为振荡器与负载之间的去耦合元件。
相对标准
作为比较功率电平的相对标准。
用于雷达抗干扰中的跳变衰减器
是一种衰减量能突变的可变衰减器,平时不引入衰减, 遇到外界干扰时,突然加大衰减。
衰减器的技术指标
工作频带
由于射频/微波结构与频率有关,不同频段的元器件, 结构不同,也不能通用。
T型同阻式设计(Z1=Z2=Z0)
Z R / / RR Z 0 s 1 p s 2 0
对衰减器的要求是衰减量为 A=20lg|s21|(dB) 端口匹配10lg|s11|=-∞。
T型同阻式设计(Z1=Z2=Z0)
求解联立方程组就可解得各个阻值。 下面就是这种衰减器的设计公式:
R s1 1
1 R s 1 / R p 1/ Rp a11 a12 a 21 a 22
2 R s1 R / R p 1 R s1 / R p
s 21 s 12
2 ( a 11 a 12 a 12 a 21 ) a 11 a 12 a 21 a 22
10
A 10
2 Rp Z0 1 R s1 R s 2 Z 0
1 1
П型同阻式设计(Z1=Z2=Z0)
对于 П 型同阻式衰减器,取 Z1 Rs Rp1=Rp2 ,可以用上述 T 型同 阻式衰减器的分析和设计方 Rp1 法。 利用三个[ A ]参数矩阵相 A 乘的办法求出衰减器的[ A ] 1 0 10 参数矩阵,再换算成[ S ] 1 Rs Z0 矩阵,就能求出它的衰减量。 2
同阻式 异阻式
Z1、Z2是电路 输入端、输出 端的特性阻抗
高功率同轴衰减器简介及应用
概述:衰减器是一种能量损耗性射频微波元件,元件内部含有电阻性材料。
除了常用的电阻性固定衰减器外,还有电控快速调整衰减器。
衰减器广泛使用于需要功率电平调整的各种场合。
原理:衰减器是在指定的频率范围内,一种用以引入一预定衰减的电路。
一般以所引入衰减的分贝数及其特性阻抗的欧姆数来标明。
在有线电视系统里广泛使用衰减器以便满足多端口对电平的要求。
如放大器的输入端、输出端电平的控制、分支衰减量的控制。
衰减器有无源衰减器和有源衰减器两种。
有源衰减器与其他热敏元件相配合组成可变衰减器,装置在放大器内用于自动增益或斜率控制电路中。
无源衰减器有固定衰减器和可调衰减器。
高功率衰减器简介:衰减器是由电阻性材料构成。
通常的电阻是同轴衰减器的一种基本形式,由此形成的电阻衰减器网络就是集总参数衰减器。
通过一定的工艺把电阻材料放置到不同波段的射频微波电路结构中就形成了相应频率的衰减器。
如果是大功率衰减器,体积肯定要加大,关键就是散热设计。
市场上的大多数衰减器基于丝网印刷在或沉积在陶瓷基板(通常是氧化铍)上的厚或薄膜阻抗设计,这种技术需要特殊的处理、工艺和流程。
这种方法非常适合于小功率衰减器,但要达到1kW水平,会很困难也会很昂贵。
幸运的是,选用标准现成产品实现衰减器,以具成本效益的方式提供了大的平均功率和峰值功率处理能力。
衰减器是一种能量消耗元件,功率消耗后变成热量。
因此,材料结构确定后,衰减器的功率容量就确定了。
如果让衰减器承受的功率超过这个极限值,衰减器就会被烧毁。
下面简单介绍一款高功率衰减器:高功率(1000W)衰减器外形图:高功率(1000W)衰减器指标参数:高功率(1000W)衰减器规格尺寸:衰减器的应用:1、控制功率电平:在微波超外差接收机中对本振输出功率进行控制,获得佳噪声系数和变频损耗,达到佳接收效果。
在微波接收机中,从而使衰减器实现自动增益控制,改善动态范围。
2、去耦元件:衰减器可作为振荡器与负载之间的去耦合元件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
T型同阻式设计(Z1=Z2=Z0)
[A]矩阵相乘得:
1 Rs1 1 a 0 1 1/ R p 1 Rs1 / R p 1/ R p a11 a12 a21 a22 0 1 Rs1 1 0 1
P+ I N+
PIN二极管
交流信号作用下的阻抗特性
频率较低时,正向导电,反向截止,具有整流 特性。
频率较高时,正半周来不及复合,负半周不能 完全抽空,I区总有一定的载流子维持导通。
小信号时I区的载流子少,大信号时I区的载流子 多。所以,高频大信号时电阻大,小信号时电 阻小。
PIN二极管的特性
圆形截止波导
l 输入同轴线 输出同轴线
圆形截止波导
波导型衰减器
吸收式衰减器
最简单的波导吸收式衰减器是在波导中平行于 电场方向放置具有一定衰减量的吸收片组成的。 根据能够改变吸收片的位置和面积,可分为固 定式和可变式。 因为有损耗性薄膜或介质表面有—定电阻,所以 沿其表面的电磁波电场切向分量,将在其上引 起传导电流,形成焦耳热损耗并以热能的形式 散发掉。 只要控制衰减器衰减量,信号经过衰减器后就 被减弱到所需电平。
转化为[S]矩阵为:
a11 a12 a21 a22 s11 a11 a12 a21 a22 a11 a12 a21 a22 s22 a11 a12 a21 a22 2 s21 a11 a12 a21 a22 2(a11a12 a12a21 ) s12 a11 a12 a21 a22
直流反偏时,对微波信号呈现很高的阻抗,正偏时 呈现很低的阻抗。可用小的直流(低频)功率控制 微波信号的通断,用作开关、 数字移相等。 直流从零到正偏连续增加时,对微波信号呈现一个 线性电阻,变化范围从几兆欧到几欧姆,用作可调 衰减器。 只有微波信号时,I区的信号积累与微波功率有关, 微波功率越大,管子阻抗越大,用作微波限幅器。 大功率低频整流器,I区的存在使得承受功率比普 通整流管大的多。
1
14.01
集总参数衰减器设计实例 1
仿真结果分析:
由上述计算结果画出电路图,在Ansoft Designer或 Microwave Office上可得仿真结果.
集总参数衰减器设计实例 2
设计10dBП型同阻式(Z1=Z2=50Ω)固定衰 减器。 解:
同阻式集总参数衰减器A=10dB,由设计公式计 A 算元件参数: 10
衰减量
衰减量的大小由构成衰减器的材料和结构确定。衰减量 用分贝作单位,便于整机指标计算。
功率容量
材料结构确定后,衰减器的功率容量就确定了。如果让 衰减器承受的功率超过这个极限值,衰减器就会被烧毁。
回波损耗
两端的输入输出驻波比应尽可能小,以避免对两端电路 有影响,即两端电路都是匹配的
分布参数衰减器
同轴型衰减器 在同轴系统中,吸收式衰减器的结构有三种形式:
内外导体间电阻性介质填充 内导体串联电阻 带状线衰减器转换为同轴形式
(a)
(b)
(c)
(a) 填充; (b) 串联; (c) 带状线
分布参数衰减器
截止式衰减器 截止式衰减器又称“过极限衰减器”,是用截止波导制成的。 它是根据当工作波长远大于截止波长λc时,电磁波的幅度在 波导中按指数规律衰减的特性来实现衰减的。
同阻式 异阻式
Z1、Z2是电路 输入端、输出 端的特性阻抗
Rs1 Z1 Rp R Rp2 Z2
(b)
T型和Π型功率衰减器
集总参数衰减器的设计
同阻式衰减器两端的阻抗相同,即Z1=Z2, 不需要考虑阻抗变换,直接应用网络级联的 办法求出衰减量与各电阻值的关系。 异阻式衰减器级联后要考虑阻抗变换,可通 过增加阻抗变换即可利用同阻式衰减器的设 计方法进行设计。
求解联立方程组就可解得各个阻值。 下面就是这种衰减器的设计公式:
10
A 10
2 Rp Z0 1 Rs1 Rs 2 Z 0
1 1
П型同阻式设计(Z1=Z2=Z0)
对于П型同阻式衰减器,取 Z1 Rs Rp1=Rp2 ,可以用上述T型同 阻式衰减器的分析和设计方 Rp1 法。 利用三个[A]参数矩阵相 A 乘的办法求出衰减器的[A] 1010 参数矩阵,再换算成[S] 1 Rs Z 0 矩阵,就能求出它的衰减量。 2
吸收式衰减器
刀形旋转吸收片衰减器比横向移动吸收片衰减器显得优越,在结 构、安装等方面也比较简便。这种形式的衰减器结构简单加工容 易,适于成批生产。 横向移动式和刀片式衰减器都是粗调式,精度都不高,需要校准 曲线才有定量衰减。
移动
单片
吸收薄片 吸收薄片(刀形) 轴 转动
双片
(a)
(b)
极化吸收式衰减器
10 10
RS Z 0 2
1
71.15
R p1 R p 2 Z 0
1
a 1
96.25
集总参数衰减器设计实例 2
仿真结果分析:
由上述计算结果画出电路图,在Ansoft Designer或 Microwave Office上可得仿真结果.
集总参数衰减器设计实例 3
2 Ⅲ 输出段
Ⅱ
Ⅰ 输入段 1 E入 吸收片1
旋转段
E入
E|cos
E出
E|cos
吸收片2 吸收片3 旋转段 输出段
A=20 lg (cosθ)
微带型衰减器
在微带线的表面镀膜一层电阻材料即可实现 衰减,也可用涂覆方法实现衰减。 近代常用吸波橡胶材料,将其裁剪至合适尺 寸,用胶粘到电路上。在微波有源电路的调 整中,会用到吸波材料消除高次模、谐杂波 影响,控制组件泄露等。
作为振荡器与负载之间的去耦合元件。
相对标准
作为比较功率电平的相对标准。
用于雷达抗干扰中的跳变衰减器
是一种衰减量能突变的可变衰减器,平时不引入衰减, 遇到外界干扰时,突然加大衰减。
衰减器的技术指标
工作频带
由于射频/微波结构与频率有关,不同频段的元器件, 结构不同,也不能通用。
即衰减量为:
P2 (mW ) A(dB) 10 lg P (mW ) 1
1 P1
功率衰减器 A(dB)
2 P2
衰减器的主要用途
控制功率电平
在微波超外差接收机中对本振输出功率进行控制,获得 最佳噪声系数和变频损耗,达到最佳接收效果。在微波 接收机中,实现自动增益控制,改善动态范围。
去耦元件
R p1 R p 2 Z 0
Z2 Rp2
1 1
异阻式集总参数衰减器
设计异阻式集总参数衰减器时,级联后要考 虑阻抗变换。
10 2 Z1 Z 2 Rp 1 a 1 Rs1 Z1 Rp 1 a 1 Rs 2 Z 2 Rp 1
衰减器的基本构成
随着现代电子技术的发展,在许多场合要用 到快速调整衰减器。通常有两种实现方式:
半导体小功率快调衰减器,如PIN管或FET单片 集成衰减器; 开关控制的电阻衰减网络,开关可以是电子开 关,也可以是射频继电器。
集总参数衰减器
利用电阻构成的T型或П型网络 实现集总参数衰减器,通常情 况下,衰减量是固定的,由三 个电阻值决定。 电阻网络兼有阻抗匹配或变换 作用。 根据电路两端使用的阻抗不同, 可分为:
2 Rs1 Rs21 / R p 1 Rs1 / R p
T型同阻式设计(Z1=Z2=Z0)
Z0 Rs1 // Rp Rs 2 Z 0
对衰减器的要求是衰减量为 A=20lg|s21|(dB) 端口匹配10lg|s11|=-∞。
T型同阻式设计(Z1=Z2=Z0)
T型同阻式设计(Z1=Z2=Z0)
Rs1 Rs2 对于T型同阻式衰减器,取 Z1 Z2 Rs1=Rs2。 Rp 我们可以利用三个[A]参 数矩阵相乘的办法求出衰 减器的[A]参数矩阵,再 Rsi的传输矩阵: 1 Rsi 换算成[S]矩阵,就能求 a 0 1 出它的衰减量。 串联电阻和并联电阻的[A] Rp的传输矩阵: 网络参数如右: 0 1 a 1 / R p 1
A 10
T型异阻式
П型异阻式
集总参数衰减器设计实例 1
设计一个5dBT型同阻式(Z1=Z2=50Ω)固定 衰减器。 解:
同阻式集总参数衰减器A = 5dB,由设计公式计 A 算元件参数:
1010 3.16
2 Rp Z0 82.24 1 Rs1 Rs 2 Z 0 a 1
设 计 10dBП 型 异 阻 式 ( Z1=50Ω , Z2=75Ω ) 固 定衰减器。 解:
异阻式集总参数衰减器 A=10 dB,由设计公式计 算元件参数:
10 10
RS
A 10
1 Z1Z 2
2
87.14
1
1 a 1 1 R p1 77.11 Z 1 R s 1 Rp 2 1 a 1 1 Z 1 R 207.45 s 2
(b)
(c)
波导、同轴和微带匹配负载结构
PIN二极管电调衰减器
PIN二极管
PIN二极管就是在重掺杂P+、N+之间 夹了一段较长的本征半导体所形成的 半导体器件,中间I层长度为几到几 十微米。
直流偏置
在零偏与反偏下,PIN管均不能导 通,呈现大电阻。 正偏时,P+、N+分别从两端向I区 注入载流子,它们到达中间区域复 合。PIN管一直呈现导通状态,偏 压(流)越大,载流子数目越多, 正向电阻越小。