第二章 焰熔法合成宝石及鉴定
【宝石学】宝石的合成方法
经过几十年的努力,目前已能获得十几克拉大的晶体,但宝石级钻石合 成的成本仍很高,不能进行大批量的生产。2000年可切磨的合成钻石只有 3500ct,仅占当年天然宝石级钻石产量的0.01%。
占总重量百分比 0.15 0.1 2.0 0.13 0.1 0.1 0.3 0.3 0.15
0.09+0.15 1.1+1.1 0.15+1.0
0.08+0.08
晶体颜色 红色 黄色 紫色 淡黄色 粉红色 黄绿色
橄榄绿色 深紫色 淡绿色 攻瑰红色 淡蓝色 紫蓝色 棕色
四、助熔剂法
原理和方法
助熔剂法又称高温熔体溶液法,它是将晶体的 原成分在高温下溶解于低熔点助熔剂熔体中,形成 饱和的溶液(熔融液),然后缓慢冷却或恒温下蒸 发熔剂等方式,使晶体从过饱和熔融液中不断结晶 出来。与矿物晶体从岩浆中结晶的过程相似。
氧化锆粉末和稳定剂装在由冷却铜管组成的金 属杯内,在粉末中心放入引燃用的锆金属粉末 或锆金属棒。然后由高频线圈加热。
高频使锆金属熔化,熔化部分向外蔓延,引燃 周围的粉末。紧靠着杯壁的粉末在循环冷剂的 作用下保持固态,构成一层薄薄的外壳。
待坩埚内的物质达到完全熔融后,将坩埚从加 热区缓缓移开,坩埚内的物质开始冷却,结晶 从壳底开始,向上长出圆柱状的晶体,直到全 部结晶固化。
合成水晶的掺杂与颜色对照表
掺杂种类 Fe3+ Fe2+ Co2+ Mn4+ Al3+
质量分数% 0.1~0.7 0.1~0.6 0.1~0.4 0.2~0.5 0.1~0.2
焰熔法合成红宝石的工艺流程
焰熔法合成红宝石的工艺流程**Flame Fusion Synthesis of Ruby: A Detailed Process****1. Introduction**The art of creating gemstones, especially rubies, has fascinated mankind for centuries. One of the modern techniques employed in synthesizing rubies is the flame fusion method, also known as the Verneuil process. This process allows for the creation of high-quality rubies that closely resemble their natural counterparts. The Verneuil process involves heating a mixture of alumina powder and a small amount of chromium oxide to extremely high temperatures within a controlled flame environment. This reaction results in the formation of a ruby crystal, which is then cooled and shaped into the desired gemstone.**1. 引言**几个世纪以来,创造宝石,尤其是红宝石的艺术一直令人类着迷。
现代合成红宝石采用的方法之一是火焰熔融法,也称为维尔纽伊法。
这种方法可以制造出高质量的红宝石,其外观与天然红宝石非常相似。
维尔纽伊法涉及在一个受控的火焰环境中将氧化铝粉末和少量的铬氧化物加热到极高温度。
宝石合成方法及原理汇总情况
宝石合成原理与方法(汇总)第一章绪论要点人造宝石材料的重要性人造宝石材料的发展基本概念晶体生长基本理论一、人造宝石材料的重要性随着科学技术的发展,人民生活水平不断提高,人类对宝石的需求也逐渐增加。
然而天然宝石材料的资源毕竟是有限的,而人工宝石材料能够大批量生产,且价格低廉,故人工宝石材料在市场上占有较大的份额。
随着科学技术的发展,人工宝石材料的品种日益繁多,合成宝石的特性也越来越接近天然品种。
宝石学家不断面临鉴别新的人造宝石材料的挑战。
某些人工的晶体材料也用于工业产品及设备的制造及生产中。
例如,人造钇铝榴石被广泛用于激光工业,合成水晶是用作控制和稳定无线电频率的振荡片和有线电话多路通讯滤波元件及雷达、声纳发射元件等最理想的材料。
二、人造宝石材料的发展人工制造宝石的历史可追溯到1500年埃及人用玻璃模仿祖母绿、青金石和绿松石等。
人工合成宝石始于18世纪中期和19世纪,由于矿物学研究的发展以及化学分析方法取得的进展,使人们逐渐掌握了宝石的化学成分及性质,加上化学工业的发展以及对结晶过程的认识,人工合成宝石才变为现实。
1892年出现了闻名的“日内瓦红宝石”,这是用氢氧火焰使品质差的红宝石粉末及添加的致色剂铬熔融,再重结晶形成优质红宝石的方法。
随后,这种方法经改进并得以商业化。
1890年,助熔剂法合成红宝石获得成功;1900年助熔剂法合成祖母绿成功。
从此,宝石合成业飞速地发展起来。
合成尖晶石、蓝宝石、金红石、钛酸锶等逐渐面市。
1953年合成工业级钻石、1960年水热法合成祖母绿及1970年宝石级合成钻石也相继获得成功。
我国的人工宝石材料的生产起步较晚。
五十年代末,为了发展我国的精密仪器仪表工业,从原苏联引进了焰熔法合成刚玉的设备和技术,六十年代投产后,主要用于手表轴承材料的生产。
后来发展到有20多家焰熔法合成宝石的工厂,能生长出各种品种的刚玉宝石、尖晶石、金红石和钛酸锶等。
我国进行水热法生长水晶的研究工作,始于1958年。
焰熔法合成宝石
合成刚玉 合成红宝石 合成蓝宝石 合成黄色蓝宝石 合成紫色蓝宝石 合成变色蓝宝石 合成星光红宝石 合成星光蓝宝石
原料 Al2O3 ,另加致色元素如下 Cr2 O3, 1-3% Fe,Ti;0.3-0.5% Ni,Cr Cr Fe,Ti Cr2 O3,V2O5,3-4% TiO2 0.1-0.3%,Cr2 O3 1-3% FeO+TiO2:0.3-0.5%;TiO2 : 0.1-0.3%
合成金红石加入着色剂所呈现的颜色
加入的着色剂 呈现的颜色 加入的着色剂 呈现的颜色
优点 ①氢氧焰产生的温度高,可以合成高熔点的晶体; ②生长速度快,短时间内可以得到较大尺寸的晶体; ③生产设备简单,生产量大,适合工厂规模化生产。 缺点 ①火焰温度变化梯度较大,容易影响晶体质量; ②原料纯度及粒度要求严格。
二、焰熔法生长刚玉类晶体
品种有无色、彩色、星光等品种,主要化学 成分为Al2O3,不同品种,配料添加剂不同, 工艺流程基本相同。
孔;料筒中部贯通有一根震动装置使粉末少量、等量、
周期性地自动释放。
筛孔挡板
震荡器:使料筒不断抖动,以便原料的粉末能从
筛孔中释 和 Cr2 O3,三氧 化二铝可由铝铵矾加热获得;致色剂为Cr2 O3 1-3%,
维尔那叶炉结构图
b、燃烧系统
氧气管:从料筒一侧释放,与原料粉末一同下氧降气进;口 氢气管:在火焰上方喷嘴处与氧气混合燃烧。 通过控制管内流量来控制氢氧比例,O2:H2=1:3; 氢氧燃烧温度为2500oC,Al2O3粉末的熔点为氢2气05进0o口C; 冷却套:吹管至喷嘴处有一冷却水套,使氢气冷却和套氧及气 处于正常供气状态,保证火焰以上的氧管不被熔化循环水
内容
一、焰熔法生长宝石工艺 二、焰熔法生长刚玉类、金红石类、
焰熔法合成红宝石的工艺流程
焰熔法合成红宝石是一种制备红宝石的方法,具有生产效率高、生产周期短等特点,以下是其工艺流程:
1. 原材料制备:首先需要制备对应的原材料,其中主要原材料为铝矾土、氧化铝粉末和铬矿石,其中铝矾土为红宝石的主要成分,氧化铝粉末用于调节红宝石的颜色和质量,铬矿石用来控制红宝石的红色色调。
2. 混合和筛选:将铝矾土、氧化铝和铬矿石按照一定比例混合,并进行必要的筛选和研磨,以得到具有均匀颗粒大小和成分的混合物。
3. 加热熔融:将混合物放入具有高温和抗腐蚀性能的石英玻璃或陶瓷坩埚中,加热到适宜的温度,一般在1900-2000摄氏度之间,并通过氮气、氢气等气体控制坩埚内气氛的纯净度和氧化性,以避免混合物的氧化或还原。
4. 冷却和分离:经过一段时间的熔化和混合后,关闭坩埚加热电源,让熔融铝矾土等材料缓慢冷却,待其温度下降到1500℃左右时,将坩埚取出,将熔渣与红宝石晶体进行分离。
这个过程一般需要通过化学溶解、酸洗等工艺,去除残留在红宝石晶体中的杂质和熔渣。
5. 切割和加工:最后将分离出来的红宝石晶体进行切割、打磨、倒角、打底等加工工艺,制成适合用于首饰、钟表、光学器件等领域的红宝石制品。
需要注意的是,焰熔法合成红宝石需要用到高温、高压和有毒气体等危险因素,因此需要进行严格的安全保护和操作规范,以保证生产过程的安全和质量。
同时,焰熔法合成的红宝石其产量和品质也受到原材料质量、熔炼温度和气氛控制等多方面因素的影响。
合成宝石特征
合成宝石特征当代由于合成技术的发展,几乎所有天然宝石都可在实验室里合成,而且彼此的特征愈来愈接近,甚至达到难以分辨的程度。
一、合成金刚石(钻石)宝石级合成金刚石主要采用高温高压法(HTHP)的BARS压力机生产,目前首饰用合成钻石的主要生产国有俄罗斯、乌克兰、美国等。
HTHP合成钻石其主要物理、化学性质与天然钻石类似。
(一)晶种触媒法合成金刚石特征1.晶形一般为立方体{100}与八面体{111}的聚形。
“BARS”法合成的钻石晶形上可有轻微的歪曲树枝状花纹,波状附生像及残晶薄片,温度过低时晶面的边缘常有突出而中心凹陷,温度过高时,整个晶体变圆。
显微镜下可见生长纹理及不同生长区的颜色差异。
2.合成钻石晶体一般呈浅黄色、橘黄色、褐色。
低温生长者色较浅,高温生长者色较深。
颜色明显依赖于所采用的触媒合金。
若触媒为Fe-Al合金时,所生晶体为无色,含B(硼)元素其色为蓝,含Ni(镍)元素其色褐黄。
颜色分布不均匀,可见沿八面体晶棱平行排列的色带。
3.内含物主要是触媒金属,孤立或成群的出现于晶体表面或沿内部生长区间边界定向分布,呈浑圆状、拉长状、点状或似针状。
净度以P、SI为主。
HTHP 合成钻石生长纹发育,其特征因生长区而异。
八面体生长区的生长纹平直,并可有褐红色针状包体(仅在阴极发光下可见);立方体生长区无生长纹,但可有黑十字包体;四角三八面生长区边缘发育有平直生长纹。
4.光性特征:常有很弱的异常双折射。
干涉色颜色变化不明显,不如天然钻石明显。
5.发光性:在紫外灯下、X射线和阴极射线下均呈规则的分区分带发光,不同生长区发出不同颜色的光,且具有规则的几何图形。
6.吸收光谱:Ⅰb型者一般明显吸收,有时因生长过程中的冷却作用会造成658nm处的吸收;Ⅰb+Ⅰa型者在600-700nm处可见数条清晰的吸收线,而无天然钻石的415nm吸收线。
(见表2-5)(二)化学气相法合成金刚石薄膜(CVD合成钻石)1.物理性质:硬度、导热性、密度、弹性、透光性等物理性质接近或达到天然金刚石。
6宝石改善与人工合成 焰熔法
SG
3.63, 红色尖晶石:3.60-3.66; 仿青金岩的烧结蓝色尖晶石:3.52 蓝色者:Co谱,540, 580和 635nm处 有吸收带; 红色:红区只有一条荧光光谱线 浅黄绿色:445nm,422nm线
光谱
蓝色者:Fe谱,蓝区458nm有吸收带; 红色者:红区5条—管风琴状荧光谱线 (交叉滤色镜下观察)
荧光 及滤 色镜
正交 偏光 镜
无色者:SW下强蓝白色; 蓝色者:SW:红色或蓝白色,滤色镜 下变红 红色:红色荧光,滤色镜下变红
斑纹状消光 红色尖晶石例外
无色:惰性 蓝色:惰性,滤色镜下不变红 红色:红色荧光,滤色镜下变红
全消光ቤተ መጻሕፍቲ ባይዱ
合成尖晶石的斑纹状消光
•合成金红石的鉴定:根据密度、硬度、吸收光谱 常见颜色:浅黄色,也可有蓝、蓝绿、橙色。 光 泽:亚金刚光泽至亚金属光泽。 摩氏硬度:6~7。 密 度:4.26(+0.03,-0.03)g/cm3。 光性特征:非均质体,一轴晶,正光性。 多 色 性:很弱,浅黄,无色。 折 射 率:2.616~2.903。 双折射率:0.287。 紫外荧光:无。 吸收光谱:黄和蓝色在430nm以下全吸收。 放大检查:强重影,一般洁净,偶见有气泡。 特殊光学效应:色散强(0.330)。
焰熔法生长宝石晶体与鉴别
本章要点
1. 焰熔法基本原理、合成装置与条件、过程及 特点 2. 合成品种
3. 焰熔法合成宝石的鉴定
思考题
1. 2. 3. 4. 5. 6. 试述焰熔法生长宝石的工作原理。 焰熔法可以生长哪些宝石? 焰熔法生长的宝石晶体有哪些优缺点? 如何鉴别焰熔法生长的刚玉类宝石? 如何鉴别焰熔法生长的尖晶石及金红石晶体? 焰熔法生长宝石晶体的共同特征有哪些?
合成宝石学总结
合成宝石学复习提纲一、填空第二章熔体法—焰熔法(维尔纳叶法)1. 焰熔法基本原理:利用氢氧的高温,使疏松的粉料通过氢氧焰撒下、熔融,落在冷却的结晶杆上,结晶成单晶。
最早是1885年由弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)一起,利用氢氧火焰熔化天然的红宝石粉末与重铬酸钾而制成了当时轰动一时的“日内瓦红宝石”。
后来于1902年弗雷米的助手法国的化学家维尔纳叶(Verneuil)改进并发展这一技术使之能进行商业化生产。
2. 焰熔法生长宝石工艺:1)原料的制备与提纯2)粉料制备:高纯度,高分散性,均一性3)晶体生长:引晶,放肩,等径生长4)退火处理3. 维尔纳叶法生长刚玉晶体(1)原料的制备与提纯:●AI2(SO4)3 :(NH4)2SO4 = 2.5 : 1;●加1.5倍水,加热溶解,缓慢冷却结晶,得到铝铵矾晶体。
AI2(SO4)3 + (NH4)2SO4 + H2O —— (NH4)2AI2(SO4)4-24 H2O●PH>3.5,重结晶,可去除钾离子; PH<3.5,重结晶,可去除铁、钛、铜、锰、镁等离子。
●去离子水重结晶3~5次,铝铵矾纯度达99.9%以上。
(2)粉料制备:●铝铵矾脱水:(NH4)2AI2(SO4)4-24 H2O——— (NH4)2AI2(SO4)4 - H2O + 23 H2O ↑ (200 ℃) (NH4)2AI2(SO4)4 - H2O——— (NH4)2AI2(SO4)4 +H2O ↑(250~350 ℃) 脱水炉温 < 300℃,脱水率 < 60%,可以保证粉料较好的分散性和流动性。
●无水硫酸铝铵分解:(NH4)2AI2(SO4)4 ——AI2(SO4)3 + NH3 ↑ + SO3 ↑ + H2O ↑ (450~550℃)●硫酸铝分解:AI2(SO4)3 ——γ-Al2O3 + SO3 ↑ (650~850℃)(3)晶体生长:包括引晶、放肩、等径生长三个步骤。
合成宝石方法之焰熔法
雷米的助手法国的化学家维尔纳叶(Verneuil)
改进并发展这一技术使之能进行商业化生产。因
此,这种方法又被称为 维尔纳叶法。
1. 基本原理
焰熔法是从熔体中生长单晶体的方法。其原料
的粉末在通过高温的氢氧火焰后熔化,熔滴在
下落过程中冷却并在籽晶上固结逐渐生长形成
面有合宜的温度逐层生长。
焰熔法的特点
边转动边晶出的人工宝石具有如同唱片纹
的弧线生长纹或色带,以及珠形、蝌蚪状 气泡等特征;
不用坩埚。
焰熔法的发展史
最早是1885年由弗雷米(E. Fremy)、弗尔
(E. Feil)和乌泽(Wyse)一起,利用氢氧火焰
熔化天然的红宝石粉末与重铬酸钾而制成了当时
选种子宝石
检验
成品进库
焰熔法合成蓝宝石
焰熔法合成红宝石
焰熔法合 成的星光 石
合成星光刚玉与天然星光刚玉的区别
合成星光刚玉 天然星光刚玉 内含 大量气泡和未熔粉末; 各种晶体包体、气液包体、 物 金红石针极其微小,难 指纹状包体;金红石针较 以辨认;弯曲色带明显 粗,易识别;直角状或六 方色带 星光发自内部深处; 星带 星光浮于表面,星线直、 外观 匀、细,连续性好;中 星线中间粗,两端细,可 特征 心无宝光 以不连续;中心有宝光
定),氧气流量100 l/hr。
其工艺参数主要包括:
①氢氧比例,也就是气氛。
②生长速率就是设定好的下降速率。
③敲击速率就是下粉的速率,速率越高,下 粉越快。
④籽晶生长中籽晶的取向。
4.人造钛酸锶
焰熔法合成宝石技术(二)
中国宝玉石177期页2023年4月Apr. 2023CHINA GEMS & JADES焰熔法合成宝石技术(二)摘要:本文通过沈才卿组织的三次参观焰熔法合成宝石工厂的实际设备,以及与厂长孙广年先生座谈及参观答疑等,拍摄了大量焰熔法合成宝石车间的实物:包括氢气和氧气管道通入车间的方法,控制氢气和氧气量的方法,料斗的样机及敲击料斗下料的方法,籽晶插入的方法,晶体的退火方法,轴向劈开的晶体,非正常生长的晶体等等。
还有合成四方形的尖晶石晶体,红宝石和蓝宝石晶体,星光红宝石和星光蓝宝石晶体,金红石晶体,钛酸锶晶体等等。
介绍了这些晶体的合成方法,工艺要求及优缺点等,还介绍了50年前我国用焰熔法合成一米长激光红宝石长杆晶的生长工艺等。
68-76沈才卿1,陆太进2,沈湄3,刘结文41. 核工业北京地质研究院2. 国家珠宝玉石首饰检验集团有限公司①3. 台湾宝石学协会荣誉理事长②4. 原中恒誉资产评估公司第一作者介绍: 沈才卿,1942年出生于江苏无锡,1965年毕业于中国科学技术大学,核工业北京地质研究院高级工程师,中宝协人工宝石专业委员会常务副主任委员兼秘书长。
从事成矿模拟实验基础理论研究,宝玉石的人工合成与优化处理教育与研究。
①注: 陆太进原单位中宝协珠宝研究所于2022年3月23日改制挂牌,原来是自然资源部所属事业单位改制为自然资源部所属全资国企单位,单位名称改为“国家珠宝玉石首饰检验集团有限公司”。
②注: 沈湄在2022年6月台湾宝石学协会的改选中被推选为荣誉理事长。
台湾宝石学协会成立于2015年,沈湄于2016年至2022年连续当了二届理事长,不能再连任了。
由于贡献良好经大会同意,推选为终身的荣誉理事长。
目前在2011年沈湄自己创办的台湾宝石学院暨鉴定所工作。
焰熔法合成刚玉类宝石包括合成无色蓝宝石、各种彩色蓝宝石、不同红色的红宝石及合成星光红宝石和星光蓝宝石等宝石晶体,其工作原理及工艺过程同前所述。
第二章焰熔法合成宝石及鉴定
第二章.焰熔法及焰熔法合成宝石的鉴定要点:1.焰熔法基本原理、合成装置与条件、过程及特点2.合成品种3.焰熔法合成宝石的鉴定一、焰熔法合成方法最早是1885年由弗雷米(E. Fremy )、弗尔(E. Feil )和乌泽(Wyse) 一起,利用氢氧火焰熔化天然的红宝石粉末与重铬酸钾而制成了当时轰动一时的“日内瓦红宝石”。
后来于1902年弗雷米的助手法国的化学家维尔纳叶( Verneuil )改进并发展这一技术使之能进行商业化生产。
因此,这种方法又被称为维尔纳叶法。
1.基本原理焰熔法是从熔体中生长单晶体的方法。
其原料的粉末在通过高温的氢氧火焰后熔化,熔滴在下落过程中冷却并在籽晶上固结逐渐生长形成晶体。
2.合成装置与条件、过程维尔纳叶炉(图2-1 )中图2-1 维尔纳叶法合成装置(点击可进入多媒体演示)焰熔法合成装置由供料系统、燃烧系统和生长系统组成,合成过程是在 进行的。
A.供料系统原料:成分因合成品的不同而变化。
原料的粉末经过充分拌匀,放入料筒。
料筒(筛状底):圆筒,用来装原料,底部有筛孔;料筒中部贯通有一根震动装置使粉末少量、等量、周期性地自动释放。
震荡器:使料筒不断抖动,以便原料的粉末能从筛孔中释放岀来。
如果合成红宝石,则需要Al 203和Cr 2 O 3,三氧化二铝可由铝铵矶加热获得;致色剂为 62 O 3 1-3%,B. 燃烧系统:氧气管:从料筒一侧释放,与原料粉末一同下降;氢气管:在火焰上方喷嘴处与氧气混合燃烧。
通过控制管内流量来控制氢氧比例, Q : H 2===1 : 3;氢氧燃烧温度为 2500°C, AI2Q 粉末的熔点为2050°C;冷却套:吹管至喷嘴处有一冷却水套,使氢气和氧气处于正常供气状态,保证火焰以上的氧管不被熔化C.生长系统落下的粉末经过氢氧火焰熔融,并落在旋转平台上的籽晶棒上,逐渐长成一个晶棒(梨晶)。
水套下为一耐火砖围砌的保温炉,保持燃烧温度及晶体生长温度,近上部有一个观察孔,可了解晶体生长情况。
课件:焰熔法
然后降低pH值再溶解后重结晶,去杂质Fe、Ti和其它Cu2+ 、Mn4+、Ga3+、Cr3+、Mg2+、Na+、SiO2等,经三次重结 晶后残余量约为10-7~10-6g/L,不影响刚玉宝石的晶体生长。
2. 原料的制备与提纯
(1)铝铵矾的制备:以硫酸铝:硫酸铵=2.5:1的比例均匀 混合,然后按料水比为l:1.5配比,加热至沸,完全溶解后, 缓缓冷却析晶即成铝铵矾,其反应为:
A12(SO4)3 +(NH4)2SO4 + H2O → (NH4)2A12(SO4)3·24H2O
(2)铝铵矾的提纯:将合成的铝铵矾在蒸馏水中溶解-重结 晶3~5次,可得99.9%以上纯度的原料。
• 缺点
– 温度梯度大,生长晶体质量欠佳(光电材料不能用) – 不易控温,内应力大,位错密度高,须退火处理 – 对粉料纯度和粒度要求高,原料成本提高 – 不能生长易于挥发和氧化的宝石材料
焰熔法生长宝石的品种
• 焰熔法合成宝石的品种主要有:刚玉、尖晶石、金红 石、钛酸锶等多种品种。合成的刚玉族宝石有多种的 颜色,致色剂和天然的可以不同:
焰熔法生长宝石的工作原理
焰熔法(又称“维尔纳叶法”)是使原料
粉末在氢氧焰中,边投入边熔融进而结晶生
成宝石晶体的方法。
目前合成宝石的主要方法之一,可生产: 合成红、蓝宝石、合成星光红蓝宝石、合成 尖晶石、合成金红石、人造钛酸锶等。世界 上每年用此法合成的宝石大于10亿克拉。
氢氧火焰燃烧快,温度高。
粉料熔融时间短,晶体生长界面 附近的热辐射很强。造成结晶界面 的纵向温度梯度变化非常大,产生 大的热应力,使宝石梨晶沿劈裂面 开裂,产生晶体缺陷。为消除热应 力带来的晶体缺陷,要对梨晶进行 高温退火处理。
【宝石学】宝石的合成方法
提拉、转动机:一组精密机械装置。
提拉法生产晶体设备
钇铝榴石YAG
3、优缺点
优点: ⑴在生长过程中可以方便地观察晶体的生长状况; (2)晶体生长的完整性好,生长时间短,尺寸大,
应力小; (3)定向杆晶和“缩颈”工艺,保证了晶体位错密
度明显降低,提高了晶体的光学均匀性。
缺点:对于那些化学活性较强或熔点极高的材料, 很难找到不污染熔体的坩埚,这就限制了提拉法使 用的范围。
三、冷坩埚法生长CZ
CZ以其高硬度、高折射率、高色散、“火彩”好、耐酸碱的 特点,备受人们喜爱,畅销世界,成为目前产量最大的人工宝 石。冷坩埚法也因此而名声大噪。
冷坩埚法的晶体生长装置采用“引燃”技 术,将金属的锆片放在“坩埚”内的氧化锆材 料中,高频电磁场加热时,金属锆片升温熔融 为一个高温小熔池,形成大于1200℃的高温区, 氧化锆在1200℃以上时便有良好的导电性能, 在高频电磁场下导电和熔融,并不断扩大熔融 区,直至氧化锆粉料除熔壳外全部熔融。
3.生产过程
焰熔法合成晶体生产过程中
燃烧温度 2050-2150℃
生产过程结束
3、焰熔法生长晶体的优缺点 优点:
(1)采用无坩埚生长晶体,既节省坩埚材料又避免 了坩埚对晶体的污染。
(2)燃烧温度可达2500℃以上,对难熔氧化物晶体 生长十分有利。
(3)成本低、生长速度快,利于大规模生产。 (4)生产设备装置较简单,可生长出大尺寸的晶体。 例如,刚玉梨晶可达直径10~30mm,长500~1000mm 。 缺点:
二、晶体提拉法
提拉法又称丘克拉斯基法,是J.Czochralski在 1917年发明的。
大多数氧化物类晶体如蓝宝石、红宝石、钇铝榴 石(YAG,Y3Al5O12)、钆镓榴石(GGG, Gd3Ga5O12)、变石、尖晶石等都能用提拉法生长晶 体。
焰熔法合成宝石
焰熔法合成宝石利用氢氧火焰产生的高温,将用于合成宝石的原料粉末在频振料筒内下落过程中加热熔化,熔融的熔体,落在支架上的晶杆顶端的籽晶上,随着散热作用缓慢下降而冷凝结晶成梨状晶体(图2-1)。
该法生长晶体过程是模拟岩浆成矿作用中的液相(熔体)转变成晶相方式实现的。
1、工艺流程焰熔法生长宝石晶体的过程,主要有原料的提纯,粉料的制备,晶体生长和退火处理四个步骤。
(1)原料提纯要求原料是来源丰富,价格低廉,提纯方法简便有效。
(2)粉料的制备要求粉料纯度高,化学反应完全,体积容量小,晶体构型要有利于晶体生长。
(3)晶体生长晶体生长的过程可分接籽晶,扩大放肩,等径生长三个阶段。
在整个晶体生长过程中,要求供料系统给料均匀,保证粉料全部熔化成微小液珠;要求气体燃烧器温度达2900℃,并构成三层火焰的形状和温度的有序变化;要求结晶炉给生长的晶体创造良好保温条件,并便于气体流动和不积粉;要求下降机构保证起始位置能使晶体顶部温度高于晶体熔点而低于晶体沸点,并保证有2-3mm厚的熔融层。
(4)退火处理把合成晶体装入高温炉后缓慢升温至预定温度,然后进行长时间的恒温与缓慢退火,以释放合成宝石晶体热应力,防止晶体因受热而开裂。
2.生产设备(1)给料系统要求粉料下落流畅、均匀,经过燃烧器时能熔化成微小液珠。
(2)氢氧燃烧器要求气体结构良好,供气氢氧比例适当,火焰呈三层状,温度稳定在2900℃,应能尽量减少粉料缺失。
(3)结晶炉要求炉体保温稳定,炉膛呈流线型,不积粉,不使气体产生涡流,温度梯度小。
(4)下降机构应适应晶体生长温度,保证晶体的固液界面稳定,下降匀速平稳,与结晶速度相同。
并保证籽晶顶部有2-3mm熔融层。
3.具体实例:焰熔法合成刚玉类宝石(1)原料的选择目前,国内外焰熔法合成刚玉类宝石都采用硫酸铝铵(又名铝铵矾)作为制备γ-AI2O3粉料的首选原料,其优点如下:a.铝铵矾原料丰富,价格低廉,提纯方法简单有效;b.铝铵矾焙烧产物松散流动性好;c.铝铵矾溶解度大,可采用简单的结晶法进行提纯,而且在重结晶过程中,它的排杂效果很好,只需3~4次重结晶,铝铵矾的纯度就能达到99.9%~99.99%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章.焰熔法及焰熔法合成宝石的鉴定要点:1.焰熔法基本原理、合成装置与条件、过程及特点2.合成品种3.焰熔法合成宝石的鉴定一、焰熔法合成方法最早是1885年由弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)一起,利用氢氧火焰熔化天然的红宝石粉末与重铬酸钾而制成了当时轰动一时的“日内瓦红宝石”。
后来于1902年弗雷米的助手法国的化学家维尔纳叶(Verneuil)改进并发展这一技术使之能进行商业化生产。
因此,这种方法又被称为维尔纳叶法。
1.基本原理焰熔法是从熔体中生长单晶体的方法。
其原料的粉末在通过高温的氢氧火焰后熔化,熔滴在下落过程中冷却并在籽晶上固结逐渐生长形成晶体。
2.合成装置与条件、过程图2-1 维尔纳叶法合成装置(点击可进入多媒体演示)焰熔法合成装置由供料系统、燃烧系统和生长系统组成,合成过程是在维尔纳叶炉(图2-1)中进行的。
A.供料系统原料:成分因合成品的不同而变化。
原料的粉末经过充分拌匀,放入料筒。
料筒(筛状底):圆筒,用来装原料,底部有筛孔;料筒中部贯通有一根震动装置使粉末少量、等量、周期性地自动释放。
震荡器:使料筒不断抖动,以便原料的粉末能从筛孔中释放出来。
如果合成红宝石,则需要Al2O3和 Cr2O3,三氧化二铝可由铝铵矾加热获得;致色剂为Cr2 O3 1-3%,B.燃烧系统:氧气管:从料筒一侧释放,与原料粉末一同下降;氢气管:在火焰上方喷嘴处与氧气混合燃烧。
通过控制管内流量来控制氢氧比例,O2:H2===1:3;氢氧燃烧温度为25000C,Al2O3粉末的熔点为20500C;冷却套:吹管至喷嘴处有一冷却水套,使氢气和氧气处于正常供气状态,保证火焰以上的氧管不被熔化C.生长系统落下的粉末经过氢氧火焰熔融,并落在旋转平台上的籽晶棒上,逐渐长成一个晶棒(梨晶)。
水套下为一耐火砖围砌的保温炉,保持燃烧温度及晶体生长温度,近上部有一个观察孔,可了解晶体生长情况。
耐火砖:保证熔滴温度缓慢下降,以便结晶生长;旋转平台:安置籽晶棒,边旋转、边下降;落下的熔滴与籽晶棒接触称为接晶;接晶后通过控制旋转平台扩大晶种的生长直径,称为扩肩;然后,旋转平台以均匀的速度边旋转边下降,使晶体得以等径生长。
图2-2 焰熔法生长的各种梨晶梨晶:长出的晶体形态类似梨形,故称为梨晶。
梨晶大小通常为长23cm,直径2.5-5cm。
图2-2。
生长速度:1厘米/小时,一般6小时完成即可完成生长。
因为生长速度快,内应力很大,停止生长后,应该轻轻敲击,让它沿纵向裂开成两半以释放内应力,避免以后产生裂隙。
特点:方法特点:生长速度快、设备简单、产量大、便于商业化。
世界上每年用此法合成的宝石大于10亿克拉。
但用此方法合成的宝石晶体缺陷多、容易识别。
二、合成品种1.合成刚玉:合成红宝石:加入致色元素 Cr2 O31-3%合成蓝宝石:加入致色元素TiO2和FeO,但Ti和Fe的逸散作用,使合成蓝宝石常常有无色核心和蓝色表皮, 颜色分布不均匀;粉红色和紫红色:加入致色元素Cr、Ti、Fe;黄色:加入致色元素Ni和Cr;变色刚玉:加入V和Cr;显紫红色到蓝紫色的变色效应。
除祖母绿外,任何颜色的刚玉都可以合成。
星光刚玉:如需要合成星光刚玉,则需要在上述原料中再添加0.l一0.3%的TiO2,这样长成的梨晶中,TiO2呈固熔体分布于刚玉晶格中,并没有以金红石的针状矿物相析出。
必须在l300度恒温24小时,让金红石针沿六方柱柱面方向出溶,才能产生星光效应。
各种合成刚玉品种的致色元素总结于下表。
表2-1 各种合成刚玉的致色元素2.合成尖晶石:市场上所见到的合成尖晶石几乎全是由焰熔法生产,但也可用助熔剂法生产。
原料:红色: MgO:Al2O3==1:1,致色元素Cr2 O3;其它颜色的用1:1的比例难以合成,但红色尖晶石只有以1:1的比例才能合成。
由此合成的红色尖晶石性脆,所以市场上少见。
蓝色尖晶石的合成是人们在合成蓝宝石的实验中偶然获得的。
当时人们还不了解蓝宝石的致色元素是Ti和Fe,人们曾经尝试过加入致色元素V、Co、Fe、Mg等,当终于获得蓝色合成品时,人们以为是蓝宝石,结果是合成蓝色尖晶石。
蓝色:MgO:Al2O ===1:1.5-3.5,致色元素Co;绿色:MgO:Al2O ==1:3褐色:MgO:Al2O ==1:5粉红色:MgO:Al2O ===1:1.5-3.5 致色元素Cu;有月光效应的无色品种: 1:5,过多的氧化铝未熔形成无数细小针状包体导致月光效应,有时甚至形成星光。
烧结蓝色尖晶石:由钴致色,并加入金粉,用来仿青金岩。
3.金红石:图2-3 合成金红石的装置(马福炉)局部图天然的金红石常呈细小针状,以大晶体产出的多为褐红色而且多裂,很少有宝石级的材料。
合成金红石的目的不是为了替代天然金红石,而是为了模仿钻石。
在合成立方氧化锆出现后,合成金红石很少生产了。
因为TiO2在燃烧时易脱氧,所以需要充足的氧,在合成刚玉的装置上多加了一个氧管(见图2-3)。
TiO2的熔点为18400C,粉末熔化,再在支座的种晶上结晶。
获得的梨晶为蓝黑色,这是因为高温下形成了Ti33+和相应的氧空位。
通过在高温氧化环境中退火处理,退火温度为800-10000C,即可去除蓝黑色,变为淡黄色到近无色的透明晶体。
如果在原料中掺入Sc2O3,则可直接获得近无色的晶体。
这是因为掺入的Sc2O3在晶体中形成的氧空位会提高晶体中的氧的扩散系数,使晶体在降温过程中就完成氧的扩散和退色。
合成金红石的宝石学性质化学成分:TiO2;四方晶系光泽:金刚光泽;透明度:透明;颜色:无色者常带浅黄色调。
还可有红、橙、黄、蓝色者。
硬度:6-6.5;相对密度:4.25;双折射率:0.287;光性:一轴晶正光性;色散:极强,0.28-0.30;光谱:紫区末端有强吸收带,使其光谱看似被截短了;内含物:气泡、未熔粉末;合成金红石的鉴别合成金红石具有极高的色散值使其泛出五颜六色的火彩。
这种特征使之不易与其他任何材料相混淆。
此外,其极高的双折射率使其刻面棱重影异常清晰。
仅此二特征就足以确认它了。
4.钛酸锶:钛酸锶早在1955年人们就利用焰熔法生产出来,当时在自然界还没有发现天然的对应物。
尽管,1987年在俄罗斯发现了其天然对应物,矿物名为Tausonite,人们仍习惯把它归为人造宝石材料。
最初人们生产钛酸锶主要用于模仿钻石。
但自从立方氧化锆合成成功后,这种仿钻材料在宝石市场上很少见得到了。
但它透红外线的能力强,仍有生产用作红外光学透镜等。
与合成金红石一样,其合成装置也必须多加一根氧管,长出的晶体也是乌黑的,需要在氧化条件下退火(温度16000C),才能变成近无色的透明晶体。
所采用的原料为:SrO : TiO2 ==1:1钛酸锶的宝石学性质化学成分:SrTiO3;等轴晶系光泽:亚金刚-金刚光泽;透明度:透明;颜色:无色为主,偶见红、黄、蓝、褐色材料;硬度:5.5-6;比重:5.13;断口:贝壳状;色散:0.19,极强;内含物:气泡;钛酸锶的鉴别钛酸锶作为仿钻材料,极易识别。
钛酸锶极强的火彩使它明显不同于钻石。
尽管标准圆多面型的钛酸锶在线试验中不透光,但它明显较低的硬度使之表面显示出明显的磨损痕迹、圆滑的刻面棱和不平整的小面。
尽管反射仪上可获得与钻石相同的折射率,但热导仪检测时却无钻石反应。
卡尺法或静水称重都可测出未镶品的比重,从而确认它。
三、焰熔法合成宝石的鉴定1.原始晶形焰熔法合成的宝石原始晶形都是梨形。
而天然宝石的晶体形态为一定的几何多面体。
市场上也出现过将焰熔法合成的梨晶破碎,甚至经过滚筒磨成毛料,来仿称天然原料销售。
2.包裹体:图2-4 焰熔法合成红宝石中的气泡及弯曲生长纹合成红、蓝宝石中常可见气泡和未熔粉末出现,一般气泡小而圆,或似蝌蚪状;可单独或成群出现;合成尖晶石中气泡和未熔粉末较少出现,偶尔出现的气泡多为异形。
3.色带:红宝石中常常为细密的弧形生长纹,类似唱片纹;蓝宝石中色带较粗而不连续;黄色蓝宝石很少含有气泡,也难见色带。
天然红宝石和蓝宝石都显示直或角状或六方色带。
合成尖晶石很少显示色带。
4.吸收光谱:合成蓝宝石的光谱见不到天然蓝宝石通常可以见到的蓝区的吸收,或450nm的吸收带十分模糊。
合成蓝色尖晶石显示典型的钴谱(分别位于540、580、635nm的三条吸收带),天然蓝色尖晶石显示的是蓝区的吸收带,为铁谱。
5.荧光合成蓝宝石有时显示蓝白色或绿白色荧光,天然的为惰性;合成蓝色尖晶石为强的红色荧光,而天然的也为惰性。
合成红宝石通常比天然红宝石的红色荧光明显强。
6.帕拉图法:将刚玉浸于盛有二碘甲烷的玻璃器皿中,在显微镜下沿光轴方向,加上正交偏光片下,合成刚玉可以观察到两组夹角为1200的结构线(图2-5)图2-5 合成刚玉帕拉图法结构线7.焰熔法合成星光刚玉:表2-2 合成星光刚玉与天然星光刚玉的区别8.合成红、蓝宝石的加工质量:图2-6 焰熔法合成刚玉的梨晶与切磨方向示意图天然合成红、蓝宝石的加工质量通常较为精细,尤其是高质量的宝石,其台面通常垂直光轴,以显示最好的颜色。
而合成红、蓝宝石加工质量通常较差,常见火痕,更不会精确定向加工。
加上,合成梨晶通常因为应力作用会沿长轴方向裂开,其长轴方向与光轴方向夹角为60度,为了充分利用原料,其台面通常会平行长轴方向切磨(图2-6)。
所以合成刚玉在台面通常都可见多色性,而天然的则不然。
9.焰熔法合成尖晶石:表2-3 焰熔法合成尖晶石与天然尖晶石的区别图2-7 合成尖晶石的斑纹状消光。