己内酰胺工艺简述.doc

己内酰胺工艺简述.doc
己内酰胺工艺简述.doc

本项目是以苯为原料的10 万吨 / 年己内酰胺大型化工生产装置,包含的主要装置

有环己酮、环己酮肟化、己内酰胺精制、硫铵装置、双氧水制备装置等,与10 万吨 / 年己内酰胺工程相匹配的各装置生产能力及规模如表2-1 所示。

表 2-1 主要生产装置生产能力及规模表

产品名称

序号装置名称产品名称装置总能

单线能力

1 双氧水装置%双氧水130000 130000

2 环己酮肟化装置环己酮肟102200 102200

3 己内酰胺装置液态己内酰胺100000 100000

4 己内酰胺罐区及装卸

液态己内酰胺44000 44000 站

5 己内酰胺造粒装置固态己内酰胺28000 56000

6 废液浓缩装置废水60000 60000

7 硫铵装置硫铵160000 160000

环己酮肟化装置

(1)生产装置说明

根据业主提供相关资料,本项目己内酰胺装置采取氨肟化工艺,氨肟化工艺是近

几年开发出来的一种环己酮肟生产的新工艺,它采用双氧水、液氨、环己酮为原料,

一步反应直接生成环己酮肟,在发烟硫酸的作用下生产己内酰胺。因此生产流程短,

控制简便,设备、管线材质要求一般,三废排放量少,目前国内已有10 万吨 /年装置在生产。

拟建项目采用意大利安尼公司开发的氨肟化工艺技术。环己酮、双氧水、气氨、

叔丁醇加入到釜式反应器中( 1 开 1 备),在温度 85℃,压力,在催化剂(主要成分为

Ti )作用下,同时进行双氧水与氨反应合成羟胺和羟胺与环己酮的肟化反应,生成环

己酮肟,经分离催化剂、溶剂萃取和环己酮肟的蒸馏得到产品环己酮肟。其工艺过程

包括肟化反应、溶剂回收、双级萃取、洗涤、萃取剂回收净化、肟/酮蒸馏、尾气处理、

污水预处理等工序。氨肟化装置生产出的符合质量标准的环己酮肟全部用于生产己内

酰胺。

(2) 工艺流程简述

1、反应工段

精环己酮、双氧水及液氨等物料自装置外送到氨肟化反应器。环己酮过滤后,通

过一个环形分布器切线送入反应器。过氧化氢溶液(双氧水)从存储区出来后,首先

经过过滤,然后通过一个在合适紊流的环形(喇叭口形的)分布器输送到反应器。液

氨经过过滤,送入反应器底部的内盘管,并在此蒸发,除去部分反应热,然后通过一

个分布器送入反应器底部。非连续的新鲜(补充)溶剂(叔丁醇) ,与溶剂蒸馏塔顶出

来的循环回流溶剂,一并送入反应器。

在氨肟化反应器中,经钛催化剂的作用,各物料发生肟化反应,环己酮的转化率

大于 %。其反应原理如下:

主反应式:

副反应式:

4H O + 2NH

3

N

O + 7H

O

2 2

2

2

3H O + 2NH 3

N 2 + 6H

2

O 2

2

2HO 2 O

2+ 2H 2O

在氨肟化反应器顶部充入氮气稀释,避免形成爆炸气体混合物。反应器产生气相

含有 NH 3 、叔丁醇、水、 2 、 O 2 及 N 2 等组分,经过循环水冷凝器冷凝和脱盐水吸收

N O

塔吸收,全部回收其中的 NH 3 和叔丁醇。脱盐水吸收塔顶部排出的尾气 (G1)含有水、

N 2O 、O 2 及 N 2 等组分,进入尾气反应器进行催化处理。尾气反应器装有催化剂(该催

化剂是一种铑( %)∕Al 2 3 球形催化剂,可稳定使用 8000 小时以上)的绝热固定床反

O

应器, N 2O 分解率至少达到 %,处理后的尾气在用尾气吸收塔处理(采用活性炭吸附

处理),处理后尾气( G1)排空。

2、反应溶剂蒸馏工段

含肟反应液送到溶剂(叔丁醇)回收塔,回收的叔丁醇从该塔顶抽出,然后送回

肟化反应器。塔底肟和水则送到一个两级萃取系统,用适当萃取溶剂进行萃取。

3、双级萃取系统

用适量甲苯作萃取剂,通过一个双级系统萃取肟。通过第一级萃取(萃取罐),水溶液中的残余肟降至2%左右(重量百分比)。通过第二级萃取(水萃取塔),水溶液中的残余肟可以降低到约100ppmw(重量百分比)。

从第二级萃取段,萃取塔顶物流含萃取溶剂,其中含少量肟,然后回流至第一萃

取段;塔底部物流(主要含有水、萃取溶剂和少量肟)送该工段的洗涤塔,将分离水

中的萃取溶剂,水从塔底流出送入污水汽提装置,经汽提塔汽提后送入污水处理站。

4、废水汽提工段

废水汽提系统由废水汽提塔、废水汽提塔进料加热器、废水冷却器和废水泵组成。

由水萃取罐来的水是含有微量有机物的水,经废水槽送入本系统废水汽提塔后,经低

压蒸汽(直接蒸汽)加热废水汽提塔进料加热器以汽提回收水中的微量有机物甲苯、

叔丁醇等循环回萃取系统回收,汽提后的废水(W1)经废水泵去废水冷却器冷却后送往污水处理站进行生化处理。

废水汽提工段工艺流程及产污环节见图。

水洗段

双级萃取系统

甲苯、叔丁醇等

回收第一萃取工

废水汽提塔废水冷却器

W1

图废水汽提进生料产加工热艺流程及产污环节示意图

5、洗涤工段

从分离器流出的萃取溶剂和肟的液流,被送到洗涤工段经水洗后,由洗涤分离器分离有机相和水相,有机相主要是肟、萃取溶剂和环己酮,送第二聚结器再次分离,粗甲苯肟溶剂被送到“蒸馏净化系统” ,含少量肟的水相送废水汽提装置处理。

6、溶剂(甲苯)蒸馏净化系统

洗涤产生的有机相粗甲苯肟,进入第一精馏塔,首先分离出萃取溶剂甲苯及反应副产品,从塔顶部抽出进入脱肟塔脱肟,粗甲苯溶剂从塔顶抽出进入脱酮塔从塔底脱除醇酮后从塔顶进入甲苯罐后,用泵抽出用于第一萃取段的溶剂。脱肟塔塔底液和第一精馏塔含有肟及少量水和少量环己酮,进入环己酮∕肟蒸馏工段。

7、环己酮∕肟蒸馏工段

从萃取蒸馏净化系统来的粗品肟,进入第二精馏塔精馏,塔顶物流经过进一步冷

却和分离处理,去除其中的水后,有机相富含环己酮,其中有少量的肟,该有机相回

收至反应工段。从塔底得到纯肟。

(3)废水污染源汇总与分析

3

氨肟化装置废水主要是废水汽提塔废水(W1),产生量为62m/h ;该装置抽真空系统采用蒸汽喷射泵,主要是精馏抽真空,无抽真空废水排放。

己内酰胺制备装置

(1)工艺流程简述

拟建项目采用国内开发的重排加中和技术,多级精制工艺路线制取高品质的己内

酰胺。环己酮肟按设定的流量加入串联的多级重排反应器中,发烟硫酸加入第一反应

器,在温度 120℃,常压下进行重排反应,含有过量烟酸的重排液送硫铵回收工序。粗

己内酰胺溶液经过两级萃取、离子交换、加氢、蒸发、蒸馏得到液态己内酰胺产品。

液态己内酰胺经过造粒得到固态己内酰胺产品,经过计量、包装后作为产品外销。己

内酰胺重排精制工艺包括环己酮肟重排、己内酰胺萃取、离子交换、加氢、蒸发与精

馏及杂质萃取等工段。

1、环己酮肟重排

发烟硫酸与环己酮肟按一定比例分别加入重排罐进行重排反应,重排罐下部物料经

重排循环泵抽出,送入重排冷却器与管侧冷却水换热,移去反应热,保持重排罐内

的反应温度维持在 115℃左右。重排罐上部物料自流入重排液缓冲罐,重排液经粗己内酰胺泵抽出送入硫铵装置的中和结晶反应器去生成硫铵。经滗析器分离,己内酰胺水

溶液用泵送至粗己内酰胺水溶液缓冲罐内,再经己内酰胺泵送入己内酰胺萃取塔进行

萃取。

环己酮肟在强酸即发烟硫酸存在下,重排生成己内酰胺,其反应原理如下:

反应分两步进行:

第一步:环己酮肟与烟酸反应生成环己酮肟硫酸脂:

第二步:环己酮肟硫酸脂在烟酸作用下发生贝克曼重排反应,生成己内酰胺:

在反应条件控制不好的情况下,将发生 Neber 重排反应;如混合不均,使物料局部显碱性,环己酮肟磺脂转化成连氮化合物。

2、己内酰胺萃取与反萃

(1)己内酰胺萃取

粗己内酰胺水溶液从顶部进入己内酰胺萃取塔,萃取溶剂从苯贮槽用溶剂泵抽出

送入萃取塔底部,利用己内酰胺水相与油相的溶解度差异进行逆流萃取。

为使粗己内酰胺得到较好的萃取,己内酰胺萃取塔设置为特殊结构的“转盘塔” ,借助于装在塔中垂直轴上旋转圆盘的转动,使己内酰胺分散,以获得萃取所要求的细

小液滴。把浓度约为 70%的己内酰胺水溶液从水相萃取至油相,形成浓度约为 20%wt 的苯己溶液,由塔顶自流进入苯己内酰胺泵槽,通过苯己出料泵打入苯己贮槽。

含有不溶于苯的杂质残液(水相),从己内酰胺萃取塔底分离出来,送入冷凝液汽

提塔中,冷凝液汽提塔底部的再沸器中通入蒸汽,通过加热方式,使残存在残液的少量

溶剂和水分离出来,进入苯汽提塔,塔底废液进入废液浓缩塔。冷凝液汽提塔底的残液( S5)由冷凝液汽提塔出料泵送入废液浓缩装置。

(2)己内酰胺反萃取

把己内酰胺从苯己溶液中反萃取到工艺冷凝水(脱盐水)中,可使己内酰胺与油

溶性杂质分离。

苯己贮罐低层含硫铵的水溶液,用釜液泵抽出除去溶剂后送硫铵装置回收硫铵。

分离硫铵后的苯己溶液仍含有少量的水,经反萃取塔进料泵抽出,通过聚结器后进入

脉冲式反萃塔的底部。来自蒸发系统的工艺冷凝水加入到反萃塔顶,两相逆流接触,

己内酰胺被反萃到工艺冷凝水中。

为了获得所需规格的苯己液滴,反萃塔采取特殊脉冲结构使液滴分散并进行萃取。

反萃塔在 40℃左右下进行,苯己溶液为分散相,工艺冷凝液(脱盐水)为连续相。

从工艺冷凝水缓冲罐来的工艺冷凝水在进入反萃取塔前,先经过冷却器却至 40℃左右。

反萃取塔顶的苯与水己溶液的界面靠排出塔底的己水溶液量进行调节。

含油溶性杂质的有机苯溶液从反萃取塔塔顶流入苯泵槽,然后用苯出料泵送回苯贮

罐。苯己溶液中的己内酰胺被萃取到工艺冷凝液后以己水溶液形式从反萃取塔底排

出,这时己内酰胺溶液的浓度约为30%Wt,排至苯汽提塔继续去除己水溶液中微量苯。苯相送入粗苯贮罐。

(3)苯汽提

含微量苯己内酰胺水溶液经过苯汽提塔换热器后温度加热到93℃送入苯汽提塔,经汽提可达到去除己水溶液中微量苯的目的。在塔底加热器的作用下,苯汽提塔顶操

作条件为温度 96℃,塔底为 103℃。

汽化的微量苯从苯汽提塔顶排出,含苯的水蒸汽经冷凝液汽提塔进料预热器和冷

凝液汽提塔后冷凝器冷凝,并在冷凝液汽提塔冷却器中冷却,冷凝液自流进入苯水分

离器,分离出的苯流入苯泵槽并循环到苯贮罐。苯水分离器底部的水相排入冷凝液汽

提塔汽提,汽提出的塔顶含少量苯的水蒸气回流至苯汽提塔。

苯汽提塔底己内酰胺水溶液通过液位调节阀控制经泵送至苯汽提塔换热器冷却至

约 53℃后,进入离子交换系统的己- 水溶液缓冲罐。

(4)苯精制

经过上述步骤后,用于萃取己内酰胺的苯与用于杂质萃取的苯溶剂均含有一些油

溶性杂质,为了避免溶剂中杂质含量过高,溶剂须通过蒸馏方法进行连续净化。

从反萃取塔、杂质萃取塔及溶剂水分离罐来的苯自流入苯泵槽,经苯出料泵-2 输送至苯贮槽,在苯贮槽分出的水送至苯水分离罐。苯贮槽上层的苯溶剂,用苯泵送入

苯蒸馏塔,精制后的洁净苯溶剂,经过苯蒸馏进料加热器、苯蒸馏冷却器,流入苯泵

槽,用苯出料泵送至己内酰胺萃取塔己内酰胺的萃取。

在苯蒸馏塔中,经加热器加热蒸发,塔顶得到所需要的清洁苯溶剂,塔釜留下的

肟、己内酰胺、环己酮及缩合产物等重组分化合物,通过测定塔底部的温度,检查苯

受污染程度。如果塔底温度太高,表明苯受污染的危险性增大,此时须用残液泵将苯

蒸馏残液( S6)直接送入废液焚烧炉。

3、离子交换

萃取工序中苯汽提塔来的己内酰胺水溶液,首先经离子交换进料泵输送至离子交

换进料冷却器,冷却至45℃左右后进入离子交换塔中。使用离子交换塔的目的是为了

保证己内酰胺产品质量。阴离子和阳离子交换吸附树脂,主要去除残存于己内酰胺水

+2-

溶液中的 NH4、SO4

等微量离子及己水溶液中部分有机杂质,对己内酰胺水溶液进行提纯。为保证装置的正常运行,设有两套离子交换吸附设备。其中一套运行时,另一套

处于再生或备用状态。

己内酰胺水溶液送入装有阴离子交换树脂的离子交换器,溶液自上而下流经后,

再流入装有阳离子交换树脂的离子交换器中,液体是自上而下流过该塔,然后进入另

一个阴离子交换树脂的离子交换器。流经三个离子交换器后,己内酰胺经过滤器送入

高位槽,再送至加氢工序。经运行一定时间后,阴、阳离子交换树脂废弃,形成固废

(S2、S3)。

设置过滤器的目的是过滤残留在己内酰胺溶液中极细的树脂颗粒,高位槽的安装

位置应使得离子交换系统的静压任何时候都比再生液的进料压力高,这样可防止再生

液进入己内酰胺溶液中。

离子交换器的再生液收集在再生废水收集槽中,部分用废水泵送出界区,再生废

水( W2)经用碳酸钠中和后,用废水泵送到装置废水处理系统,进行集中处理。

4、己内酰胺水溶液加氢

己内酰胺加氢精制是在搅拌釜和磁稳定床中接力完成的。

离子交换后的己水溶液经进料预热器和加热器加热至90℃后,与催化剂配置槽送

出浓度为 %( wt)的催化剂混合后进入搅拌加氢反应釜中。氢气由气体分布器均匀加入

搅拌反应釜中,在搅拌和催化剂作用下,加氢反应在温度90℃、压力的条件下进行。

该工序产生的固体废物( S4)为废催化剂。

5、蒸发与精馏

从加氢系统出来的己 - 水溶液通过两道蒸发操作,浓度可达%。

蒸发:第一级蒸发系统由三效蒸发塔组成。浓度为30%的己 - 水溶液送入一效蒸发

塔浓缩至约为 38%wt。二效蒸发塔水 - 己溶液浓缩到大约 53%wt。三效蒸发塔浓缩至90%。

为了改善蒸发水的质量,三个蒸发塔都设有回流,回流来自冷凝缓冲罐的冷凝液,

冷凝液缓冲罐中的部分冷凝液也用作苯- 己溶液反萃塔的萃取剂。三效蒸发出来的工艺

冷凝水进入工艺冷凝水贮槽,供水反萃取塔和硫铵装置回用。

预蒸馏:三效蒸发后的己内酰胺水溶液送入闪蒸罐蒸发器,受热后的己水溶液在

闪蒸罐内闪蒸,闪蒸后的气体返回三效蒸发塔底,闪蒸罐底部物流经预蒸馏塔进料泵

送入预蒸馏塔,在高真空下,水分快速蒸发,使预蒸馏塔塔釜己内酰胺溶液的浓度升

至%,塔顶含低沸点的杂质经蒸汽喷射泵抽吸后送入杂质萃取塔回收有效成分。

己内酰胺精馏:

己内酰胺精馏塔蒸发器的进料液约70%于 118℃左右的温度下蒸发,精馏塔顶部气

体物料为己内酰胺气相,经己内酰胺精馏塔冷凝器中用热水冷凝,然后排入精己内酰

胺泵槽,再用己内酰胺贮槽进料泵将其送入成品槽,由己内酰胺输送泵作为产品送往

己内酰胺造粒装置。己内酰胺精馏分离器的下部溶液从分离器底部送入粗残液精馏蒸

发器。

如己内酰胺精馏塔分离器中的一样,约有进料液 70%的己内酰胺进料在粗残液精馏蒸发器中蒸发。顶部产物在粗残液精馏冷凝器中冷凝后,流入己内酰胺缓冲罐。粗残

液精馏分离器底部产物送入残液精馏蒸发器。大约 70%的残液在这里蒸发,顶部产物在残液精馏冷凝器中冷凝后,也流入己内酰胺缓冲罐。残液蒸馏分离器的底部产物排入

己内酰胺残液槽,己内酰胺残液送入硫酸铵中和。三个己内酰胺精馏塔都为真空操作,

其真空环境由己内酰胺精馏塔真空系统维持。

6、造粒工序

从精馏塔塔顶蒸出的纯己内酰胺经冷凝后进入成品槽,由泵送造粒装置。在造粒

装置中,纯己内酰胺以液相进入造粒喷嘴,己内酰胺物料经物料泵加压进入喷嘴的过

程中,采用低温冷冻水进行降温冷却,由液态己内酰胺变为固态己内酰胺,形成颗粒,

由物料传输带送入包装车间后包装入库。

7、废液浓缩工序

来自萃取工段冷凝液汽提塔底的苯萃残液送来后进入苯残液罐,苯萃残液进入废

液浓缩装置进行浓缩处理。残液先经原料进料泵送至 2#蒸发器加热器,加热后通过 2# 分离器分离,气相经冷凝、冷却后自流至 1#废水罐;液相通过 1#蒸发进料泵送至 1# 蒸发器加热器加热后,经 1#分离器分离,气相进入 2#蒸发器加热器,为 2#蒸发器加热器提供热源,冷凝后的废水也自流至 2#废水罐, 1#分离器底部液相即浓缩后的残液主要成分为(NH4) 2SO4和含苯等有机物,该浓缩残液和苯蒸残液一起进入废液焚烧装置焚烧处理。两效蒸发冷凝产生的废水( W3)均经泵输送至废水冷却器,冷却后进入污水处理系统。

(2)废水污染源汇总与分析

己内酰胺生产装置主要废水源为废液浓缩装置冷凝废水( W3)、离交废水( W4);该装置共有 5 套抽真空系统,其中 4 套蒸汽喷射泵抽真空和 1 套水环式真空泵,产生抽真空废水的仅有水环式抽真空系统,主要是水环式抽真空系统水封槽偶尔溢流出来的少量清水,正常情况下有抽真空循环水调节箱,正常生产情况下可保证不排水。

硫酸铵回收装置

(1)工艺流程简述

拟建工程硫酸铵回收装置采用新的中和结晶技术,充分利用硫酸与氨反应产生的

反应热,将硫铵溶液浓缩成硫铵晶液,硫铵晶液经稠厚、离心分离、热风干燥和包装

制得成品硫铵。硫酸铵回收装置生产过程由中和结晶、滗析、稠厚及离心、干燥、包

装工序组成。

硫酸铵回收工艺化学反应方程式如下:

H2SO4+2NH4OH →( NH4)2SO4+H2O

1、中和工序

重排反应液的中和反应是在结晶反应器中进行。界区外送来的气氨与工艺水经静

态混合器充分混合后,与从己内酰胺装置来的重排反应液分别通过结晶器内环状分布

器上的 4 个喷嘴进入导流筒。在导流筒内,氨与重排反应液中的硫酸发生中和反应,

生成硫铵并产生晶核。经安装在结晶器底部的搅拌器的搅拌作用下,硫铵溶液被快速“提升”至升液管上部,当上升的溶液到达液体自由表面时,水份开始蒸发。由于结

晶器为真空操作,整个系统的温度保持在 65℃。

由于结晶器底部的搅拌器的抽吸作用,过饱和的硫铵溶液在导流筒外部向下流动。在此区域,晶体得到良好的增长。

在导流筒外侧较低的区域,由于结晶器形状的变化,流动速率降低,一部分悬浮

液通过搅拌器作用返回升液管,另一部分向上流动至折流区,在此硫铵从母液中分离

出来,漂浮在母液上部成为有机层,这部分有机层与一定量的母液一起抽出,送至滗

析器作进一步处理。

包含细小晶体的母液由结晶器底部侧面的结晶器循环泵抽出,在循环泵的入口管

线上,循环浆液与一部分工艺冷凝水混合,这部分工艺冷凝水的加入,可以溶解细晶

并平衡反应热对水份蒸发的影响。

2、滗析工序

从结晶器抽出的有机相中夹带一部分硫铵母液,这部分溶液在滗析器中实行物理

分离。

分离后的己内酰胺有机相通过泵送回己内酰胺装置精制,而硫铵母液自流入硫铵

母液循环罐,然后由泵送入稠厚器。

3、稠厚及离心工序

含20~25%硫铵晶体的母液夹带有少量有机物,在结晶器底部由泵抽出送至稠厚

器。在稠厚器的上部,母液与所夹带的有机物发生分层,上层有机相自流至滗析器进

一步分离,下层的母液和硫铵晶体进入稠厚器的“淘洗筒”中。在此,通过母液的逆

流冲洗,细小的晶体和洗涤液一起循环返回硫铵母液罐,大颗粒的晶体沉降在设备底

部,其固体的含量可增至 45~50%。

在“淘洗筒”底部产生的不含有机杂质的 - 浓缩悬浮液,自流入离心机,经过离心机

的高速离心分离,分离后的固体颗粒含水率在 2%以下,通过螺旋给料机送至干燥工序

以除去残余水份,滤液部分 ( 硫铵溶液 ) 自流至母液循环罐,然后由泵送至结晶器重新结晶。

4、干燥工序

离心后的硫铵晶体含有2%水份,为避免硫铵结块,产品储存前必须经过干燥。干燥是在流化床空气干燥器中进行。通过流化床加热区域的换热器的加热,晶体中的水

份降至% (wt) ;在干燥器的冷却区域,晶体被冷却至60℃,冷却后的成品硫铵,通过

皮带输送机送至包装工序的料仓;流化床干燥器产生的废气(G3)进入旋风分离器进行除尘,收集下来的硫酸铵粉尘送入成品包装车间;旋风除尘后的废气进入水洗塔二

次处理,洗气产生的洗液回用到离心分离工序;经二次处理后干燥尾气(G3)经 25m 高的排气筒排入大气。

5、包装工序

自干燥单元送来的干燥硫铵经称重计量后由装袋机包装成50kg/ 袋的成品硫铵外售。

双氧水制备装置

拟建项目己内酰胺生产装置原料之一双氧水,由配套建设的辅助装置-双氧水制备装置供给,装置规模为13 万 t/a(%H2O2)。

(1)工艺流程简述

双氧水制备工艺反应方程式如下:

采用固定床钯触媒蒽醌法双氧水生产工艺。该工艺是以2-乙基蒽醌为反应载体,首先将一定比例的蒽醌、芳烃、磷酸三辛酯和脱盐水配置成一定浓度的工作液,在固

定床加氢反应器中,在温度40~70℃、压力下,加入氢气进行氢化反应,蒽醌还原成

氢蒽醌;氢化液在氧化塔中与空气进行氧化反应,氢蒽醌被氧化成蒽醌和过氧化氢(即双氧水),经过萃取得到的双氧水和工作液,工作液经干燥后返回氢化工序,双氧水经

净化后配制成浓度为 %的产品送氨肟化。

1、氢化单元

将外购的精制溶剂重芳烃、蒽醌、三辛酯、脱盐水经计量后,送入工作液配制釜在

加热条件下混合形成工作液,经脱盐水、 10%双氧水、脱盐水依次洗涤后送入氢化塔;

再生废水送入污水( W5 )处理站。

来自循环工作液泵的工作液,经工作液过滤器过滤掉可能夹带的氧化铝粉尘后,

经液-液换热器与氢化液换热后,送至工作液预热器,预热到一定温度后,与氢化液

循环泵送来的循环氢化液混合,再与界区外送来的经过氢气过滤器净化后的定量氢气

一起,送入氢化塔。

气、液混合物经氢化塔气、液分布器均匀分布后向下流过氢化塔,氢化塔由三节固

定床组成,两开一备,反应初期用中上节,反应中期切换用中下节,上节再生,反应后

期切换用上下节,中节再生。下部出料或通过固定床外连接管再进入第二段或第三段固

定床顶部,每段固定床顶部同样装有气、液分布器,以便使流经固定床的气、

液混合物均匀分布,控制氢化塔顶压力在~( G),温度在 40℃~ 70℃的条件下进行氢化反应。温度和压力的控制要根据触媒活性和氢化程度的要求由低到高逐渐提高。

三段固定床的使用,是根据氢化效率的要求和触媒的活性来确定。一般是先在固

定床的第一、二段装填触媒,使用第一、二段固定床。在正常条件下,钯触媒经再生

后仍不能达到要求时,封闭第一段,启用第二、三段固定床,同理当第二段固定床在

正常条件下钯触媒经再生后仍不能达到要求时,封闭第二段,启用第一段与第三段串

联使用,最后当钯触媒再生后已不能满足生产时,就要更换钯触媒。

从固定床下部出来的氢化液一部分去氢化白土床,以吸附部分降解物,为防止触媒

粉尘、氧化铝粉尘带到氧化工序引起双氧水的分解,由氢化白土床顶部出来的氢化液与

另一部分氢化液合并后,一同进入氢化液过滤器过滤,以除去可能夹带的触媒粉

尘、氧化铝粉尘及其它杂质。氢化液经液-液换热器与工作液换热,再经氢化液冷却器

冷却至 50℃左右后进入氢化液受槽,部分氢化液经氢化液循环泵送回至氢化塔入口与

工作液混合后重新进入氢化塔。另一部分氢化液由氢化液泵送入氧化塔。

氢化塔釜出来的富余氢气经再生蒸汽冷凝器冷凝、冷凝液计量槽分离后,视氢化

效率和杂质含量情况排放或由循环风机送回固定床。

2、氧化单元

氢化液的氧化是在温度 50~55℃和压力 (G)的条件下,在氧化塔中进行。氧化在两节反应塔中进行,氢化液贮槽中的氢化液,经氢化液泵与来自磷酸计量泵的磷酸溶液

在静态混合器中混合后进入氧化塔上塔的底部,压缩空气被过滤后进入下节塔的底部。

在一定温度和压力下,在氧化塔上塔中氢化液与来自氧化塔下塔已参与过反应的被分

散成细小气泡的空气并流反应,使乙基氢蒽醌和四氢乙基氢蒽醌与空气中的氧反应成

为相应的乙基蒽醌和四氢乙基蒽醌,并生成双氧水。在氧化塔上塔顶部氧化工作液同

空气分离后溢流入氧化液冷却器后再流入下塔,氧化工作液与来自下塔底部的被分散

成细小气泡的新鲜空气在氧化下塔进一步氧化,直至氢蒽醌完全变为相应的蒽醌。在

氧化塔下塔顶部工作液经空气气液分离冷却后进入氧化液贮槽,由氧化液泵送至萃取

塔;经空气气液分离后的氧化尾气( G3)进入氧化尾气冷凝器。

来自氧化塔的氧化尾气进入氧化尾气冷凝器,在氧化尾气冷凝器中被循环水冷却,进入氧化尾气气液分离器 A ,分离出被冷凝下来的芳烃后,进入氧化尾气换热器,在此与较低温度的氧化尾气换热后,得到进一步冷却的氧化尾气进入氧化尾气气液分离

器B,分离冷凝的芳烃后,由顶部排出进入膨胀制冷机组,经节流膨胀温度降至较低的

氧化尾气在氧化尾气气液分离器 C 中进一步分离冷凝的芳烃。氧化尾气气液分离器

C 顶部排出的低温尾气进入氧化尾气换热器,用于冷却来自氧化尾气气液分离器 A 的较高温度的氧化尾气。

经冷量转移后由氧化尾气换热器排出的氧化尾气进入碳纤维吸附装置,进一步吸

附氧化尾气中夹带的少量芳烃,经过吸附处理的氧化尾气再次进入膨胀机组的升压平

衡段,吸收余压后氧化尾气(G3)达标排空。

在氧化尾气气液分离器ABC 分离回收的芳烃排至氧化液贮槽。

吸附浓缩在活性碳纤维上的芳烃利用水蒸汽解吸。两个吸附箱自动切换。实现吸

附和解吸的连续操作。解吸后的混合气体经冷凝器冷凝后进入分层槽,分层后得到芳

烃液体回收利用,而分层后的废水(W6)则排至污水处理系统。

氧化塔底部排放的残液定期排入洗涤接受系统,回收工作液,残液双氧水可作为

等外品外卖或排至污水处理系统处理装置废水。

3、萃取工序

氧化液中双氧水的萃取是在萃取塔中进行的。萃取塔为筛板塔,塔内装有含少量

磷酸的去离子水,氧化液经氧化液泵送入萃取塔底部,计量后的去离子水由软水泵送

入萃取塔上部。萃取塔塔头界面控制通过进入塔头的去离子水量来调节。

氧化液通过萃取塔时被筛板分散成细小液滴,穿过连续水相逐渐升至塔顶,利用

双氧水在水和氧化液中溶解度的不同进行萃取。塔顶流出的氧化液(一般含双氧水≤l)称为萃余液,经萃余液分离器分离后进入后处理工序。去离子水与氧化液逆流接触,

氧化液中的双氧水被水萃取,浓度逐渐升高,称其为萃取液。萃取液由上向下流动,

当浓度达到要求时,萃取液由塔底流出进入净化塔。

水与氧化液流量之比称为萃取比,根据成品浓度的要求,一般生产35%双氧水时控制在1∶65±3。去离子水进入配制槽后,加入磷酸作为稳定剂,其酸度控制在-l(以磷酸计),最终控制萃取液的酸度- l(以磷酸计)。

4、净化工序

净化塔也为筛板塔,芳烃溶剂由芳烃高位槽进入净化塔下部并充满全塔。萃取液

进入净化塔的上部,在塔内经分散向下流动,利用其密度差通过溶剂柱,除去双氧水

中的有机杂质,净化后的双氧水自净化塔底部流出,由双氧水出料泵送至双氧水贮罐。

净化塔上部流出的芳烃去工作液配制槽或去氧化液受槽回收使用。

由于己内酰胺生产的要求,双氧水在进入己内酰胺装置前需要进一步纯化处理,

来自双氧水贮罐的双氧水经纯化系统进一步脱除杂质达到己内酰胺生产要求后,送至

氨肟化装置使用。

5、工作液的后处理

自萃取塔塔顶流出的萃余液进入萃余液分离器,除去夹带的大部分水和双氧水后,进入干燥塔,进一步除去微量双氧水和水。干燥塔为筛板塔,其内装有密度为—cm3 的碳酸钾溶液,碳酸钾溶液来自碳酸钾泵,从塔中部进入塔内。萃余液从干燥塔下部

进入塔内,被筛板分散后向塔顶漂浮,以除去萃余液中水份、中和酸及分解双氧水。

除去水、双氧水后的工作液进入碳酸钾分离器除去部分夹带的碳酸钾溶液后,进入装

有三氧化二铝的后处理白土床底部,进一步吸附工作液中的碳酸钾和再生蒽醌降解物,工作液自后处理白土床上部流出进入工作液受槽,由工作液泵经工作液过滤器送至氢

化单元循环使用。

3

从干燥塔底部排出的密度≥cm的碳酸钾溶液,经碳酸钾预热器预热后进入碳酸钾

蒸发器进行蒸发,使其浓缩到密度为—cm3,从底部流出进入碳酸钾冷却器冷却后进入碳酸钾受槽,再用泵送回干燥塔继续使用,此过程连续进行。从碳酸钾蒸发器出来的

水蒸汽与从干燥塔排出的碳酸钾溶液换热后,形成的冷凝废水( W7 )排入废水处理系统。

废液焚烧装置

本项目建设一套3t/h 的己内酰胺及硫胺废液焚烧装置,用于焚烧反应过程产生的浓缩残液,工艺流程及产污点见下图:

18%氨水脱盐水蒸汽

生产装置

废液一二G4

废液活

5%氨水废急

除硫酸铵工段级

排污 W 级性图9

废液回收装置工艺流程及产污环节

空气焚烧热冷雾废液焚烧装置除余热锅炉排污水(属于清净下水)外,不产生其它废水。余热锅

脱脱炭

炉排污( W8)水量为 m3/h ,该部分水进入清净下水排水系统最后排放。

硫酸铵溶液

以上介绍不包括环己酮的生产,环己酮工艺介绍如下:

一、基本原理

1、苯加氢

C 6H6+3H2在 Ni 3Al 2O3, 130~180℃条件下C6H12

同时伴有副反应:

C6H6+3H2C5H9-CH3(甲基环戊烷)

2、环己烷氧化

液态环己烷与空气在一定条件下发生氧化反应,该反应的主要产物为环己基过氧化氢

( CHHP)。

总反应方程式为:C6H12+O2C6H11OOH

3、环己基过氧化氢的分解

氧化液与含有少量钴盐的碱性水溶液充分混合接触,使环己基过氧化氢被碱水相萃取,

在碱性条件下,由钴催化剂催化 , 定向分解生成环己酮和环己醇,在碱水相的环己酮环己醇在

第二步的反萃中又被氧化液中的环己烷萃取到油相中,反应方程式为:

1)C6H11OOH C6H10O+H2O

2)C6H11OOH C6H11OH+1/2O

4、二次皂化

环己烷氧化除产生环己醇和环己酮外,还产生许多其它的副产物,如酯,醛和其它酮

类(除环己酮外)。在二次皂化系统中,粗氧化产品用强碱性水溶液进行处理。酯分

解成构成它们的醇和酸,其它醛类和酮类副产物要经过缩合反应,产生二聚物和三聚物。

这个操作是必要的,因为酯对环己醇脱氢催化剂(CuZnO)有副作用,醛类和酮类副产物

又难以用精馏的方法从环己酮中分离出来。经化学反应后形成的醛酮低聚物可用精馏分离

出来,而酯已经发生了皂化反应。主要反应方程式:

1)酯类皂化

己二酸环己醇酯 +2NaOH己二酸钠+2环己醇

2)醛,酮缩合

C5H11CHO+C6H10O C 5H10CH=C6H9O三聚物

5、精馏

各种不同的液体物质具有不同的物理性质,在一定的温度和压力下,有着不同的饱和

蒸汽压,从而表现出沸点不同和挥发度不同。饱和蒸汽压大的液体,沸点低易挥发;饱和

蒸汽压小的液体,沸点高难挥发。精馏的过程,就是利用物质的这一特性,在特定

的设备 --- 精馏塔中加热液体物质的混合物 , 使上升蒸汽和回流液逆流接触,经多次反复部分

汽化,部分冷凝,使混合物中的各轻、重组份最终分离。本工艺中精馏需分离的组

份有环己烷、轻质油、环己酮、环己醇、 X 油等,共有 7 个导向浮阀塔, 3 个填料塔, 1 个导向浮阀与填料组合塔,依次把上述组份分离。

6、环己醇脱氢

环己醇在铜—锌催化剂作用下,低压下发生脱氢反应,放出氢气。反应方程式:C6H11OH C6H10O+H2同时伴有副反应发生

C6H11OH C6H10+H2O

C6H11OH C6H6OH+3H2

环己酮污染物汇总:

废水:来源 02C0235塔底,数量 8000kg/h ,组成: h,H2O平衡。。污染物:苯、环

己酮、环己醇、皂化液等。

初期污染雨水

1.己内酰胺简介

1.己内酰胺简介 1.1己内酰胺理化性质及主要用途 己内酰胺(简称CPL) 分子式:C6H11NO 分子量:133.16 己内酰胺是ε-氨基己酸H2N(CH2)5COOH分子内缩水而成的内酰胺,又称ε-己内酰胺,它一种重要的有机化工原料,是生产尼龙—6纤维(即锦纶)和尼龙—6工程塑料的单体,可生产尼龙塑料、纤维、及L-赖氨酸等下游产品。它常温下为白色晶体或结晶性粉末。熔点(CH2)5CONH69~71℃,沸点139℃(12毫米汞柱)、122~124℃(665Pa)、130℃(1599Pa)、165~167℃(2247Pa)。比重:1.05(70%水溶液),熔化热:121.8J/g,蒸发热:487.2J/g。纯己内酰胺的凝固点为69.2℃,在760mmHg时沸点为268.5℃,85℃下密度1010kg/m3。在20℃水中溶解度为100g水溶解82g己内酰胺。受热时起聚合反应,遇火能燃烧。 常温下容易吸湿,有微弱的胺类刺激气味,手触有润滑感,易溶于水、甲醇、乙醇、乙醚、石油烃、环己烯、氯仿和苯等溶剂。受热时易发生聚合反应。 己内酰胺(CPL)是重要的有机化工原料之一,主要用途是通过聚合生成聚酰胺切片(通常叫尼龙-6切片,或锦纶-6切片),可进一步加工成锦纶纤维、工程塑料、塑料薄膜。还主要用于生产聚己内酰胺纤维树脂,广泛应用在纺织、汽车、电子、机械等领域。尼龙-6切片随着质量和指标的不同,有不同的侧重应用领域。 己内酰胺(CPL)是制造聚酰胺纤维和树脂的主要原料。聚酰胺广泛应用于纺织、电子和汽车及食品包装薄膜等行业。世界上己内酰胺98%用于聚合、生产。 1。2己内酰胺的岗位任务 1.2。1,萃取岗位 将硫胺装置来的粗己内酰胺用苯进行萃取,所得的苯己液,再用工艺水进行反萃取,以分别除去粗己内酰胺中的有机和无机杂质,然后将所得的己-水溶液送去汽体塔,除去其中所夹带的少量苯后供给离子交换岗位。 苯蒸馏塔将杂苯全蒸馏,得到的精苯供己萃塔使用,苯溶性杂质在苯蒸馏釜积累,定期送苯残液蒸馏塔处理,回收苯后残液送废液浓缩。 1.2.2,离交加氢岗位 1.离子交换工序 将萃取来的30%的己水溶液经阴、阳离子交换树脂,除去水溶液中残留的硫

己内酰胺生产工艺

己内酰胺生产工艺 ε-己内酰胺(简称己内酰胺,CPL)是一种重要的有机化工原料,主要用作生产聚酰胺6工程塑料和聚酰胺6纤维的原料。聚酰胺6工程塑料主要用作汽车、船舶、电子电器、工业机械和日用消费晶的构件和组件等,聚酰胺6纤维可制成纺织品、工业丝和地毯用丝等,此外,己内酰胺还可用于生产抗血小板药物6-氨基己酸,生产月桂氮卓酮等,用途十分广泛。 1 己内酰胺的生产工艺现状 经过多年的发展,己内酰胺的生产有多种技术和原料路线,按技术方法分主要有环己酮-羟胺法、甲苯法、环己烷光亚硝化法等,按原料路线方法分主要有苯法和甲苯法两种。 1.1 HSO工艺(苯法) 1943年,德国I.C.Fanben公司(BASF公司的前身)最早实现了以苯酚为原料的己内酰胺工业化生产,该工艺称为拉西法(Raschig),又名环己酮-羟胺(HSO)工艺。生产工艺流程为:苯酚加氢制得环己醇,环己醇脱氢制得环己酮。由于石油化工工业的发展,提供了大量价廉的苯,采用苯为原料成为占主导地位的生产工艺,苯加氢制得环己烷,环己烷氧化制得环己酮。氨与空气催化氧化制NO,用(NH)PN 吸收NO得24342NHNO,用NHNO吸收NH及SO生产羟胺二磺酸盐,水解得硫酸羟胺。环己酮和硫酸羟胺反应生成424232 环己酮肟,环己酮肟在发烟HSO催化作用下经贝克曼Beckmann重排得己内酰胺,再用NH?HO中和2432多余的发烟HSO而生成(NH)SO。 24424 -1 日本宇部兴产公司是采用HSO工艺技术的最大己内酰胺生产商,现生产能力为365kt?a,占世界己内酰胺总生产能力的6.84%,生产装置分布在日本、西班

牙和泰国。该工艺技术成熟,投资小,操作简单,催化剂价廉易得,安全性好。但主要缺点是:(1)原料液NH?HO和HSO消耗量大,在羟胺制备、环己3224 酮肟化反应和贝克曼重排反应过程中均副产大量经济价值较低的(NH)SO,每生产1t己内酰胺大约会副产4.5t(NH)SO,副产(NH)SO最多;(2)能耗(水、电、蒸汽)高,环境污染大,设备腐蚀严重,三废排放量大。特别是(NH)SO副产高限制了HSO 工艺的发展。 1.2 SNIA工艺(甲苯法) 意大利SNIA公司开发的SNIA工艺是唯一以甲苯为主要原料的己内酰胺生产工艺。该工艺又称为甲苯法,是将甲苯氧化制得苯甲酸,加氢制得苯甲酸,接着与亚硝酰硫酸反应生成己内酰胺硫酸盐,己内酰胺硫酸盐再经水解得到己内酰胺。工艺路线见图1。图(略) 在SNIA工艺制备己内酰胺中,含己内酰胺60%左右的酰胺油先经NH?HO苛化,然后经甲苯萃取、水萃取制成30%的己内酰胺水溶液。己内酰胺水溶液经KMnO氧化和过滤、三效蒸发、脱水浓缩、预蒸馏、NaOH处理和蒸馏、轻副产物蒸馏和精馏、重副产物蒸馏和精馏等精制过程,才能得到符合标准的纤维级己内酰胺成品。 1999年,中国石化石家庄化纤责任有限公司采用意大利SNIA公司甲苯法生产技术,耗资35亿元,建成1套生产能力为50kt?a的己内酰胺生产装置,2002年与中国石化科学研究院合作开发并应用非晶态镍催化剂引入苯甲酸加氢反应系统部分取代Pd/C催化剂以及己内酰胺水溶液加氢取代KMnO工艺技术,将生产能力扩建到70kt?a。 尽管SNIA工艺为己内酰胺生产提供了新的原料路线,采用甲苯为原料,不经过环己酮肟直接生产己内酰胺,但酰胺化反应过程条件苛刻,收率较低,生成的副产物成分复杂,每生产1t己内酰胺副产3.8t(NH)SO。而且工艺精制过程存在流程长、工艺控制复杂、能耗大、产品质量不稳定、优级品率低的问题,投资大,生产

己内酰胺的生产工艺与技术路线的选择

己内酰胺的生产工艺与技术路线的选择 随着合成纤维工业的发展,己内酰胺合成工艺先后出现了肟法、甲苯法(ANIA 法),光亚硝化法(PNC法),己内酯法(UCC法)、环己烷硝化法和环己酮硝化法。新近正在开发的环己酮氨化氧化法,由于生产过程中不需采用羟胺进行环己酮肟化,且流程简单,已引起人们的关注。 图2.1 己内酰胺的主要生产工艺路线图 经过多年的发展,己内酰胺的生产有多种技术和原料路线,按技术方法分主要有环己酮-羟胺法、甲苯法、环己烷光亚硝化法等,按原料路线方法分主要有苯法和甲苯法两种。根据是否用环己酮作为中间产物,其可粗分为环己酮法和非环己酮法。

2.1 环己酮法 己内酰胺生产从环己酮合成开始,原料为苯酚或环己烷。环己烷是优选原料,可生产KA油。氧化过程通常采用硼酸或钴催化剂。…… 2.1.1 环己酮的生产工艺 2.1.1.1 苯酚法 苯酚法(属苯法)是苯酚在镍催化剂作用下加氢生成环己醇,环己醇再进行提纯脱氢反应生成粗环己酮。…… 2.1.1.2 环己烷法 环己烷法(属苯法)首先是苯加氢制环己烷,加氢过程分以Ni为催化剂的常压加氢和以Pt为催化剂的加压加氢,然后环己烷氧化制环己醇、……. 2.1.1.3 环己烯法 环己烯法(属苯法)第一步是苯部分加氢生成环己烯,然后环己烯水合得环己醇,环己醇再进行脱氢反应生成环己酮。…… 2.1.2 环己酮肟的生产工艺 环己酮肟是生产己内酰胺的重要中间产物,其可以由羟胺与环己酮反应制得,也可以由其它方法制得。 1943年,德国法本公司通过环己酮-羟胺合成(现在简称为肟法),…… 2.1.2.1 拉西法 1887年拉西(Raschig)用亚硝酸盐和亚硫酸盐反应经水解制取羟胺获得成功,……

己内酰胺项目概述

50kt/a己内酰胺项目简介 一、己内酰胺的理化性质及主要用途 己内酰胺caprolactam (简称CPL) 分子式:C6H11NO 分子量:133.16 结构式: 己内酰胺是ε-氨基己酸H2N(CH2)5COOH分子内缩水而成的内酰胺,又称ε-己内酰胺,它一种重要的有机化工原料,是生产尼龙—6纤维(即锦纶)和尼龙—6工程塑料的单体,可生产尼龙塑料、纤维、及L-赖氨酸等下游产品。它常温下为白色晶体或结晶性粉末。熔点(CH2)5CONH69~71℃,沸点139℃(12毫米汞柱)、122~124℃(665Pa)、130℃(1599Pa)、165~167℃(2247Pa)。比重:1.05(70%水溶液),熔化热:121.8J/g,蒸发热:487.2J/g。纯己内酰胺的凝固点为69.2℃,在760mmHg时沸点为268.5℃,85℃下密度1010kg/m3。在20℃水中溶解度为100g水溶解82g己内酰胺。受热时起聚合反应,遇火能燃烧。 常温下容易吸湿,有微弱的胺类刺激气味,手触有润滑感,易溶于水、甲醇、乙醇、乙醚、石油烃、环己烯、氯仿和苯等溶剂。受热时易发生聚合反应。 己内酰胺(CPL)主要用于生产聚己内酰胺纤维树脂,广泛应用在纺织、汽车、电子、机械等领域。

二、市场分析 己内酰胺是重要的有机化工原料之一,主要用途是通过聚合生成聚酰胺切片(通常叫尼龙-6切片,或锦纶-6切片),可进一步加工成锦纶纤维、工程塑料、塑料薄膜。尼龙-6切片随着质量和指标的不同,有不同的侧重应用领域。世界己内酰胺的消费结构为:工程塑料和食品包装膜占总消费量的25%,尼龙6纤维占总消费量的75%。在尼龙6纤维的消费量中,民用丝(包括运动服、休闲衣、袜子等)的消费量占47%,地毯的消费量占30%,工业丝(包括帘子布、渔网丝等)占23%。在我国,尼龙6纤维己内酰胺总消费量的86.2%以上,尼龙6工程塑料占12.2%以上,其它方面的消费量不大,约占1.6%。 近年来,世界己内酰胺的生产能力稳步增长。根据统计,截止到2009年底,全世界己内酰胺的总生产能力达到487.2万吨,巴斯夫、帝斯曼和霍尼韦尔是目前世界上的三大己内酰胺生产厂家,生产能力分别占全球总能力的15.1%、12.6%和7.7%。 我国己内酰胺的工业生产始于20世纪50年代末期,但直到1994年我国引进的两套大型己内酰胺装置建成投产,才使国内己内酰胺的生产得到较快的发展。目前我国有中石化巴陵分公司、南京帝斯曼(DSM)东方化工有限公司、石家庄化纤责任有限公司以及浙江巨化集团公司4家企业生产己内酰胺,总生产能力为48.7万吨/年。除了中石化石家庄化纤有限责任公司的装置采用甲苯法外,其余装置均采用苯法生产工艺。

己内酰胺的用途及合成方法

本文摘自再生资源回收-变宝网(https://www.360docs.net/doc/6e6498546.html,) 己内酰胺的用途及合成方法 生产聚酰胺纤维和树脂己内酰胺是生产聚酰胺纤维和树脂的主要原料,聚酰胺纤维在美国称尼龙,在中国叫锦纶,因为最早由锦州石化实现商品化,故称锦纶。锦纶66 是己二酸与己二胺的缩聚产物。锦纶6是己内酰胺开环聚合而成的。 目前国内的掌握己内酰胺生产工艺技术主要是中石化巴陵石化设计院和岳阳石化 设计院。 一、环已酮和苯酚是生产己内酰胺的主要原料: 1、苯酚又叫石炭酸,是一种最简单的酚类有机物,具有弱酸性,纯净的苯酚是无色晶体,在空气里会因小部分被氧化而呈粉红色。有毒,有腐蚀性,常温下微溶于水,易溶于酒精等有机溶液;当温度高于65℃时,能跟水以任意比例互溶,浓溶液对皮肤有强腐蚀性,不慎沾到皮肤应用酒精洗涤。苯酚溶液里滴加溴水,立即有白色沉淀(三溴苯酚);能与卤素,硝酸,硫酸等在本环上发生取代;能与氯化铁反应,使溶液成紫色,溶液里滴加溴水,立即有白色沉淀(三溴苯酚)。主要用于制造酚醛树脂,双酚A及己内酰胺。其中生产酚醛树脂是其最大用途,占苯酚产量一半以上。 2、环已酮是一种应用领域十分广泛的重要化工原料,具有薄荷及丙酮气味的无色无味透明液体,微溶于水,能溶于乙醚、酒精等多种有机溶剂,主要用作己内酰胺与己二酸及其盐的中间体。由于其具有溶解能力强、低毒及相对较低的价格等特点,被广泛用作各种涂料、油漆、油墨及树脂的溶剂和稀释剂,皮革加工的抛光剂和稀释剂,感光和磁性记录材料涂布用溶剂等。同时还可制备一些下游衍生物,如环己酮-甲醛树脂、过氧环己酮、邻甲基苯酚、防老剂4010等。 二、生产方法:

1943年,德国法本公司通过环己酮-羟胺合成(现在简称为肟法),首先实现了己内酰胺工业生产。随着合成纤维工业的发展,先后出现了甲苯法(ANIA法),光亚硝化法(PNC 法),己内酯法(UCC法)、环己烷硝化法和环己酮硝化法。新近正在开发的环己酮氨化氧化法,由于生产过程中不需采用羟胺进行环己酮肟化,且流程简单,已引起人们的关注。 1、光亚硝化法 环己烷在汞蒸气灯照射下与氯亚硝酰发生光化学反应,直接转化成环己酮肟盐酸盐,环己酮肟盐酸盐在发烟硫酸存在下,通过贝克曼重排转化为己内酰胺。 2、苯酚法 苯酚在镍催化剂存在下加氢,制得环己醇,提纯后脱氢得粗环己酮。环己酮提纯后与羟胺反应得到环己酮肟,再经贝克曼移位生成己内酰胺、反应产物中的硫酸用氨中和得副产物硫胺。粗己内酰胺经一系列化学与物理处理得到纯己内酰胺。 3、肟法 首先将高纯度的环己酮与硫酸羟胺在80-110℃下进行缩合反应生成环己酮肟。分离出来的环己酮肟以发烟硫酸为催化剂,在80-110℃经贝克曼重排转位为粗己内酰胺,粗己内酰胺通过萃取、蒸馏、结晶等工序,制得高纯度己内酰胺。肟法的原料环己酮可由苯酚加氢得环己醇,再脱氢而得;或由环己烷空气氧化生成环己醇与环己酮,分离后的 环己醇催化脱氢也生成环己酮。 4、甲苯法 甲苯在钴盐催化剂作用下氧化生成苯甲酸,苯甲酸用活性炭载体上的钯催化剂进行液相加氢生成六氢苯甲酸,在发烟硫酸中,六氢苯甲酸与亚硝酰硫酸反应生成己内酰胺。甲苯法由于甲苯资源丰富,生成成本低,具有一定的发展前途。

己内酰胺生产工艺

己内酰胺生产工艺 己内酰胺生产工艺比较 1 己内酰胺发展历程 , 1899年,德国学者S.Gabriel和T.A.Mass首次加热ε-氨基己酸获得了己内酰胺。未工业应用。 , 1900年,O.Wallach利用贝克曼(Beckmann)重排转位反应,在硫酸中加热环己酮肟获得己内酰胺。 , 1937年,德国I.G.Farben公司P.Schlack开创了己内酰胺生产和应用的新纪元,以氨基己酸盐为催化剂,使己内酰胺开环聚合,聚合体纺得纤维的商品名为Perlon. , 二次大战期间,德国建设了一些工业装置,生产聚酰胺6纤维,主要用在军事工业上。(采用苯酚为原料加氢制的环己醇,再脱氢 得环己酮,再和羟胺硫酸盐反应生成环己酮肟,转位生成己内酰胺) , 二次大战后,I.G.Farben公司公开技术,各国的公司纷纷建设己内酰胺装置,到1960年,世界己内酰胺产量达到180kt。 , 50年代后期,陆续开发了多种己内酰胺生产工艺。随着石油苯的快速发展以苯为原料,加氢制得环己烷,氧化得环己醇、环己酮 的工艺成为生产己内酰胺的主要方法。 2 己内酰胺生产工艺 己内酰胺生产方法可以归纳为以下4类: (1) 苯加氢制环己烷,环己烷氧化制环己酮,再与羟胺肟化生成环己酮肟,经Beckmann重排得己内酰胺。 (2) 苯酚加氢制环己酮,经肟化、重排得己内酰胺。 (3) 甲苯氧化制苯甲酸,加氢的环己烷羧酸,与亚硝酰硫酸反应生成己内酰胺。

(4) 环己烷与亚硝酰氯发生光亚硝化反应生成环己酮肟,经Beckmann重排得 己内酰胺。 其具体生产工艺如下表所示: 己内酰胺生产工艺 生产工艺生产原理厂家优势劣势苯酚法(传统法) 苯酚加氢制得环己醇, 环己醇脱氢成环德国I.G.Farben公司在副产经济价值较低的硫铵,大约己酮每生产1t己内酰胺副产4.4t硫铵。 硫酸羟胺法氨氧化制氧化氮,氨水依次吸收二氧化美国霍尼韦尔技术成熟、 运转稳定,易操氨消耗大,副产硫铵多,1t己内酰环己酮羟(HSO) 氮、氧化氮得 到羟胺二磺酸盐,经加热日本宇部兴产公司作;不需要贵重金属催化剂胺同时副 产4.4t硫铵; 胺法(根水解即得硫酸羟胺。衢州巨化环境污染大,设备腐蚀严重,三废据羟胺生排放量大产工艺可磷酸羟胺法氨氧化制得NO和NO2,被磷酸、 硫荷兰DSM 输出技术荷兰DSM公司开发的工艺(1)工艺路线长,设备投资大; 分为 三(HPO) 铵及硝酸铵的混合液吸收,生产硝酸,占88.6%。技术经济性较佳。 (2) 羟胺制备、环己酮肟化反应中种) 在催化剂作用下加氢制的磷酸羟胺。南京东方 和巴陵石化不副产硫酸铵,仅在贝克曼重排过 程中1 t己内酰胺副产1.8t硫酸铵 一氧化氮还用贵金属进行氨氧化反应,生成NO;西德BASF 氨、氢的总耗量比 较低使用贵金属生产成本高; 原法(NO) NO在贵金属催化剂Pt作用下,在稀硫输出技术占27% 副产硫铵 2.32吨/吨 酸中用H2还原制取硫酸羟胺,再结合 苯加氢制取环己烷、环己烷氧化、环己 酮肟化和贝克曼重排等配套技术。

己内酰胺的生产工艺

己内酰胺的生产工艺 己内酰胺的三种工业化技术: 液相Beckmann重排法4 苯 ® 环己烷 ® 环己酮 ® 环己酮肟 ® 粗己内酰胺® 产品 羧酸酰胺化法4 甲苯® 苯甲酸® 环己烷羧酸 ® 粗己内酰胺®产品 光亚硝化法4 苯 ® 环己烷 ® 粗己内酰胺 ® 产品 甲苯氧化: 苯甲酸加氢 制备亚硝基硫酸 己内酰胺caprolactam (简称CPL) 分子式:C6H11NO 分子量:133.16 结构式: 己内酰胺是ε-氨基己酸H2N(CH2)5COOH分子内缩水而成的内酰胺,又称ε-己内酰胺,它一种重要的有机化工原料,是生产尼龙—6纤维(即锦纶)和尼龙—6工程塑料的单体,可生产尼龙塑料、纤维、及L-赖氨酸等下游产品。它常温下为白色晶体或结晶性粉末。熔点

(CH2)5CONH69~71℃,沸点139℃(12毫米汞柱)、122~124℃(665Pa)、130℃(1599Pa)、165~167℃(2247Pa)。比重:1.05(70%水溶液),熔化热:121.8J/g,蒸发热:487.2J/g。纯己内酰胺的凝固点为69.2℃,在760mmHg时沸点为268.5℃,85℃下密度1010kg/m3。在20℃水中溶解度为100g水溶解82g己内酰胺。受热时起聚合反应,遇火能燃烧。常温下容易吸湿,有微弱的胺类刺激气味,手触有润滑感,易溶于水、甲醇、乙醇、乙醚、石油烃、环己烯、氯仿和苯等溶剂。受热时易发生聚合反应。 己内酰胺的制法主要有:①以苯酚为原料,经环己醇、环己酮、环己酮肟而制得;②以环己烷为原料,用空气氧化法或光亚硝化法转化成环己酮肟,经重排而制得;③以甲苯为原料,用斯尼亚法合成。此外,也可以糠醛或乙炔为原料合成。在制造过程中,环己酮(cyclohexanone)是主要的关键性中间原料,此关键性原料可藉由环己烷氢化或苯酚氢化得到,这两种制程相当类似,不同点仅在于触媒的使用和操作条件的不同而已。 不同制程方法比较 1.传统制程: 本制程是由环己酮与(NH2OH)2-H2SO4和氨水反应得环己酮圬(cyclohexanone oxime)后,再经贝克曼重排反应(Beckmann rearrangement)而制成CPL。传统法的理论产率约70%(以环己烷为基准),即每消耗1公斤的环己烷可生成0.94公斤的CPL;若以苯酚为基准,理论产率达92%,即每消耗1公斤苯酚可至得1.11公斤CPL。

己内酰胺工艺简述

本项目是以苯为原料的10万吨/年己内酰胺大型化工生产装置,包含的主要装置有环己酮、环己酮肟化、己内酰胺精制、硫铵装置、双氧水制备装置等,与10万吨/年己内酰胺工程相匹配的各装置生产能力及规模如表2-1所示。 表2-1 主要生产装置生产能力及规模表 环己酮肟化装置 (1)生产装置说明 根据业主提供相关资料,本项目己内酰胺装置采取氨肟化工艺,氨肟化工艺是近几年开发出来的一种环己酮肟生产的新工艺,它采用双氧水、液氨、环己酮为原料,一步反应直接生成环己酮肟,在发烟硫酸的作用下生产己内酰胺。因此生产流程短,控制简便,设备、管线材质要求一般,三废排放量少,目前国内已有10万吨/年装置在生产。 拟建项目采用意大利安尼公司开发的氨肟化工艺技术。环己酮、双氧水、气氨、叔丁醇加入到釜式反应器中(1开1备),在温度85℃,压力,在催化剂(主要成分为Ti)作用下,同时进行双氧水与氨反应合成羟胺和羟胺与环己酮的肟化反应,生成环己酮肟,经分离催化剂、溶剂萃取和环己酮肟的蒸馏得到产品环己酮肟。其工艺过程包括肟化反应、溶剂回收、双级萃取、洗涤、萃取剂回收净化、肟/酮蒸馏、尾气处理、

污水预处理等工序。氨肟化装置生产出的符合质量标准的环己酮肟全部用于生产己内酰胺。 (2) 工艺流程简述 1、反应工段 精环己酮、双氧水及液氨等物料自装置外送到氨肟化反应器。环己酮过滤后,通过一个环形分布器切线送入反应器。过氧化氢溶液(双氧水)从存储区出来后,首先经过过滤,然后通过一个在合适紊流的环形(喇叭口形的)分布器输送到反应器。液氨经过过滤,送入反应器底部的内盘管,并在此蒸发,除去部分反应热,然后通过一个分布器送入反应器底部。非连续的新鲜(补充)溶剂(叔丁醇),与溶剂蒸馏塔顶出来的循环回流溶剂,一并送入反应器。 在氨肟化反应器中,经钛催化剂的作用,各物料发生肟化反应,环己酮的转化率大于%。其反应原理如下: 主反应式: 副反应式: 在氨肟化反应器顶部充入氮气稀释,避免形成爆炸气体混合物。反应器产生气相含有NH 3、叔丁醇、水、N 2O 、O 2及N 2等组分,经过循环水冷凝器冷凝和脱盐水吸收塔吸收,全部回收其中的NH 3和叔丁醇。脱盐水吸收塔顶部排出的尾气(G1)含有水、N 2O 、O 2及N 2等组分,进入尾气反应器进行催化处理。尾气反应器装有催化剂(该催化剂是一种铑(%)∕Al 2O 3球形催化剂,可稳定使用8000小时以上)的绝热固定床反应器,N 2O 分解率至少达到%,处理后的尾气在用尾气吸收塔处理(采用活性炭吸附处理),处理后尾气(G1)排空。 2、反应溶剂蒸馏工段 含肟反应液送到溶剂(叔丁醇)回收塔,回收的叔丁醇从该塔顶抽出,然后送回肟化反应器。塔底肟和水则送到一个两级萃取系统,用适当萃取溶剂进行萃取。 3、双级萃取系统 4H 2O 2 + 2NH 3 N 2O + 7H 2O 3H 2O 2 + 2NH 3 N 2 + 6H 2O 2H 2O 2 O 2 + 2H 2O

己内酰胺生产技术的比较及发展趋势

己内酰胺生产技术的比较及发展趋势 发表时间:2018-05-18T10:39:52.757Z 来源:《防护工程》2018年第1期作者:宁春花 [导读] 应加快实现采用新技术改造现有装置、扩大生产能力的步伐,以满足市场需求,并实现技术成果的产业化推广。 浙江巴陵恒逸己内酰胺有限责任公司浙江杭州 311225 摘要:己内酰胺是一种重要的化工原料和中间体,其下游产品广泛应用于纺织、工业塑料、军事等各方面,且其下游产品发展趋势更是倾向于高端科技产品。目前,己内酰胺生产企业中大多建设有配套的硫酸、双氧水等原料生产装置,其主要的生产工序为环己酮肟化工序和环己酮肟重排及己内酰胺精制工序,现根据作者多年的行业从事经验,简要的分析了双氧水、环己酮肟化、环己酮肟重排及己内酰胺精制工序的生产稳定及产品质量影响因素。 关键词:己内酰胺;生产技术;比较;发展趋势 作为工程塑料、化学纤维行业以及塑料制品行业不可缺少的原材料之一,己内酸胺在国内的需求正在迅速增加,特别是在“十二五”期间,我国确立了生态文明建设及经济可持续发展战略,已内酸胺作为一种高效的有机化工原料,预计在几年后将会迎来新一轮的暴发增长,面对这种情况,提高生产工艺、降低生产成本才能促进我国己内酸胺的可持续发展二就目前来说,世界范围内的已内酸胺工业生产方法中主要包括环己酮一经胺法、光化学亚硝化技术、氨肪化技术等,而受到技术、设备等落后原因,甲苯法等技术逐渐被淘汰。 1双氧水生产工序影响因素 本装置主要的控制点为氢化工序和萃取工序,氢化工序的效果好坏直接影响产品的产量和生产稳定情况,其中在操作控制指标稳定的情况下主要的工序影响因素为钯触媒催化剂的活性。影响钯触媒催化剂活性的主要因素有:氢气纯度:氢气中杂质的存在会优先占据催化剂活性中心,致使催化剂起不到催化剂氢化反应的作用;工作液中溶剂:工作液中不可避免含有硫元素,硫在一定条件下会与钯反应生成硫化钯,进而导致催化剂的活性降低,因此在购买原料芳烃和磷酸三辛酯时要严格控制其中硫含量;工作液碱度:碱度主要会破坏催化剂载体Al2O3的结构,进而影响催化剂的活性;工作液清洁度:主要是其中杂质含量较高时会造成催化剂活性中心的堵塞,使催化剂失活;氢效:氢效较高会使氢蒽醌快速析出,包裹催化剂,造成催化剂的失活。另外,操作方面温度、压力、物料的流量、工作液的含水量等也都能影响反应效果,因此在操作过程中一定要保证操作条件的控制和加强中间物料的分析,根据分析结果及时调整工况,保证生产的安全稳定长期运行。 2环己酮肟生产工序影响因素 本装置中肟化反应为核心工序,肟化反应直接影响生产的稳定性和生产负荷的大小,影响肟化反应的主要因素有:原料的质量、物料的配比、反应温度、反应压力、催化剂活性和浓度、停留时间等。其中原料一定要严把质量关,因为环己酮中轻组分在氨肟化装置循环叔丁醇中的积累会造成反应系统的污染,环己酮中的酸度、己醛和[2]庚酮含量会影响到成品CPL挥发性碱指标,必须严格限制;双氧水中的总碳指标是指双氧水中有机杂质含量,是在生产过程中由于少量工作液带入到双氧水中而产生的,一般均是高沸点类的重芳香烃化合物,这些物质因为沸点高,水溶性差,进入CPL生产工艺后会增加CPL精制难度,影响成品质量,需严格控制;氨中的杂质限制主要是针对油含量和铁含量,油含量会导致钛硅催化剂的堵孔失活,同时也会影响最终CPL产品质量,铁含量会导致双氧水的分解和在催化剂上沉积,影响催化剂活性和再生性能。甲苯肟精制工序要严格控制系统真空度及第二精馏塔温度,真空度下降或第二精馏塔釜温度下降会造成成品肟的纯度下降和色度上升,进而影响己内酰胺成品的消光值和碱度;废水汽提塔釜温度低则造成甲苯的流失。 3当前己内酸胺主要生产技术的对比 3.1氨肪化技术 氨肪化法是目前世界范围内主流生产方式,也是国内相对来说较为先进的工艺技术。此种生产技术是一种较现代的生产技术,出现干上世纪七十年代,由日本和意大利两家化学公司联合推出的一种生产技术,其以环己烷为原料,采用钦硅酸盐催化剂、与氨和过氧化氢反应、直接得到环己酮肪,从而在甲醇的催化作用下得到己内酸胺。此种生产技术的特点是由于使用原材料很少,所以使得投资成本大大降低,而且副产品的数量几乎可以忽略不计,从而可以大大延长器械的使用寿命,但是另一方面这种生产技术因为氧化氢费用昂贵,所以价格优势并不明显。 3.2环己酮一经胺法 相对而言,环己酮一经胺法是比较传统的生产技术,此种生产技术要先分别得到经胺和环己酮,然后由两者合成之后得到环己酮肪,这是关键的一步,此后便根据贝克曼重排法制得己内酸胺。此种方法其中存在两个变量,即环己酮和经胺,环己酮作为原料可以从苯加氢制得环己烷之后再氧化得到,虽然步骤较为复杂,但是质量效率却比较高,而另一种原料经胺,因为其制备过程的多样性大致可以分为拉西法、硝酸根离子还原法和一氧化氮还原法。 3.3光化学亚硝化技术 相比较于前两种生产技术,光化学亚硝化技术的化学反应过程最短,而且副产品较少。它是直接以环己烷为原料,这就使得化学反应的过程极为快速,同时也避免了其余杂质的多重干扰。因此,该生产技术不仅降低了生产费用,而且节省了更多的化学原材料。然而,此种生产技术却也存在着耗电大、发热量高等缺点,最为严重的是,试验过后的残渣存留较多,严重影响生产器材的使用寿命,因此这种生产技术受到了一定的限制。 3.4其他技术 己内酸胺的生产技术已经愈发成熟,但是仍然面临着很多问题,其中最严重的一个工艺缺点就是采用有毒的经胺及腐蚀性强的浓硫酸而引起的严重的环境保护问题,而且在生产过程当中,仍有严重的硫酸按副产品产出。因此,己内酸胺的技术人员已经把技术改进的重点放在了减少副产品同时有效处理催化剂的方向上。针对这一难点的技术攻关,目前已经有以下新工艺: 第一,DSM公司和壳牌化学公司联合开发了基于C4的Altam工艺。这种工艺与常规技术相比,通过丁二烯与水或醇反应的方式,不仅减少了副产品的产出,更提高了效率,节约了成本。第二,罗地亚公司开发己二睛工艺,即丁二烯氢氰化制己内酸胺工艺。这种工艺由丁二烯和HCN合成己二睛,并采用催化剂二氧化钦,从而生产出高品质的己内酸胺,并且转化率高达93%,极大提高了生产效率,减少了环境污染的问题。第三,基于专有的N一经基酞酸亚胺氧化催化剂的合成新路线。在此种新工艺当中,环己酮和环乙醇在醋酸乙醋溶液当中氧化,从而与氨反应转化成CPL。因为这种工艺对技术水平要求较高,所以目前处于技术试验阶段,但是因为其高效污染小的特点,未来将

国内己内酰胺尼龙6生产现状

己内酰胺生产现状及尼龙6产能、投资、市场情况调查 一、国内己内酰胺生产现状 1、目前国内现有产能 从2008年开始,国内各地陆续规划建设己内酰胺装置,到目前为止已有山东海力、山东东巨、浙江恒逸等多家企业的己内酰胺装置投产,到2012年底国内己内酰胺产能达到111万吨/年。 2、正在建设项目厂家 目前在建或已经开始基础设计的己内酰胺项目,将在2013-2015年陆续投产,规划产能达到190万吨。

3、规划拟建厂家 目前规划建设或有投资意向的己内酰胺项目总产能达到460万吨。规划建设的己内酰胺项目见下表: 4、己内酰胺市场情况调查 世界范围内的己内酰胺产能缓步提升,2012年世界的己内酰胺产能在550万吨左右,新增产能主要集中在亚洲,尤其中国大陆和中国台湾是世界最大的己内酰胺进口国和地区,供应缺口较大,近年新建或拟建项目较多。其他地区则呈现缓慢增长甚至负增长。 世界整体己内酰胺产销平衡,但地区产销分布却不平衡。占世界产量3/4的欧美以及日本地区,需求不足,产量盈余;约1/4的产量出口至需求量占近半数的包括中国在内的世界其他地区。 中国己内酰胺产量不断提升,2011年产量53.5万吨,比2001年增长252%,进口依存度逐步下降。与此同时,中国的己内酰胺需求量保持较快速度增长,2011年净进口量仍然高达62.4万吨,比2001年增长111%。2011年中国己内酰胺表观消费量为115.9万吨,比2001年增长159%。

己内酰胺98%以上都用于生产聚酰胺6(尼龙6),只有极少量用于热熔胶、精细化学品和制药。尼龙6是重要的有机化工原料之一,主要用途是己内酰胺通过聚合生成聚酰胺切片(通常叫尼龙-6切片,或锦纶-6切片),可进一步加工成锦纶纤维、工程塑料、塑料薄膜。尼龙-6切片随着质量和指标的不同,有不同的侧重应用领域。 中国聚酰胺6(尼龙6)产能近年来增长迅速,从2008年的123万吨,至2011年底已达到192万吨/年左右,增长近70万吨。 国内己内酰胺生产企业产品主要为中低端市场,生产技术及产品的市场竞争力不强。西欧品牌产品多立足于高端市场。产品的价格差较大。因此己内酰胺的产品定位应用于高端市场是非常必要的。二、尼龙6生产现状 截止2011年我国聚酰胺装置总产能为192万吨,预计至2015年新增产能30万吨。 尼龙6生产厂家及生产能力:

己内酰胺生产工艺比较

己内酰胺生产工艺比较 1 己内酰胺发展历程 1899年,德国学者S.Gabriel和T.A.Mass首次加热ε-氨基己酸获得了己内酰胺。未工业应用。 1900年,O.Wallach利用贝克曼(Beckmann)重排转位反应,在硫酸中加热环己酮肟获得己内酰胺。 1937年,德国I.G.Farben公司P.Schlack开创了己内酰胺生产和应用的新纪元,以氨基己酸盐为催化剂,使己内酰胺开环聚合,聚合体纺得纤维的商品名为Perlon. 二次大战期间,德国建设了一些工业装置,生产聚酰胺6纤维,主要用在军事工业上。(采用苯酚为原料加氢制的环己醇,再脱氢得环己酮,再和羟胺硫酸盐反应生成环己酮肟,转位生成己内酰胺) 二次大战后,I.G.Farben公司公开技术,各国的公司纷纷建设己内酰胺装置,到1960年,世界己内酰胺产量达到180kt。 50年代后期,陆续开发了多种己内酰胺生产工艺。随着石油苯的快速发展以苯为原料,加氢制得环己烷,氧化得环己醇、环己酮的工艺成为生产己内酰胺的主要方法。 2 己内酰胺生产工艺 己内酰胺生产方法可以归纳为以下4类: (1)苯加氢制环己烷,环己烷氧化制环己酮,再与羟胺肟化生成环己酮肟,经Beckmann重排得己内酰胺。 (2)苯酚加氢制环己酮,经肟化、重排得己内酰胺。 (3)甲苯氧化制苯甲酸,加氢的环己烷羧酸,与亚硝酰硫酸反应生成己内酰胺。

(4)环己烷与亚硝酰氯发生光亚硝化反应生成环己酮肟,经Beckmann重排得己内酰胺。其具体生产工艺如下表所示:

以上一系列工艺以降低原料消耗和能量消耗,降低或免除副产硫铵为目的。环己酮羟胺法是目前主要的生产工艺,占总生产规模的90%以上。其中,NO还原工艺、HPO法工艺是目前世界上己内酰胺成熟生产技术的代表,HPO法输出技术比重较大(约为88.6%),在全世界建有18套装置。 新兴的生产工艺有环己酮氨肟化法、丁二烯工艺、己二腈工艺等,其中丁二烯工艺、己二腈工艺等技术不成熟,仅建有一些实验装置,未工业化应用。而环己酮氨肟化法是新工艺中比较先进的成熟的生产技术代表,在日本住友和巴陵建有装置。

己内酰胺生产技术

己内酰胺概况

己内酰胺简介 一、性质及用途 己内酰胺(CPL),分子量113.16,分子式C6H11ON。分子式CH2(CH2)4CONH。 己内酰胺(CPL)在液态下为无色,在固态下为白色(片状),手触有吸湿性,易溶于水和苯等,受热起聚合反应,与火能燃烧。熔点68℃~69℃,0.1MPa 下沸点为270℃,85℃下密度为1010kg/m3。 己内酰胺是重要的有机化工原料之一,主要用途是通过聚合生成聚酰胺切片,通常叫尼龙-6切片,或锦纶纤维、工程塑料、塑料薄膜。尼龙-6切片随着质量和指标的不同,有不同的侧重应用领域: ①高质量、粘度在2.4-2.45消光切片,主要用于民用高速纺行业、短纤纺丝,由于锦纶-6具优良的染色性能和耐磨性能,一直用在织高品质布和羊毛纺织上,这是尼龙-6切片最初的用途,也是目前-6切片的一个主要用途。 ②粘度在3.2以上的切片,主要用于帘子布纺丝,随着我国汽车工业的发展,对帘子线的需求量日益增加,是目前尼龙-6切片的另一个重要用途。 ③粘度在2.4-2.6的切片,主要应用于常规纺丝及部分质量要求不高的短纤纺丝,在这方面的使用,因纺丝工艺落后,替代品增加,需求量逐渐萎缩。 ④粘度在2.7-3.0的切片,主要用于地毯骨架丝、渔网丝,在这方面因下游产品质量参差不齐,对尼龙-6切片的质量要求也有很大差别。 ⑤工程塑料和塑料薄膜用切片,是目前尼龙-6发展的一个重要发展方向。 二、国内外己内酰胺生产状况 1、国外己内酰胺生产状况 近年来,全球己内酰胺的生产稳步发展,2006年总生产能达到493.7万吨/年,比2005年增加了16万吨/年,同比增长了3.58%。

己内酰胺工艺简述

己内酰胺工艺简述 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

本项目是以苯为原料的10万吨/年己内酰胺大型化工生产装置,包含的主要装置有环己酮、环己酮肟化、己内酰胺精制、硫铵装置、双氧水制备装置等,与10万吨/年己内酰胺工程相匹配的各装置生产能力及规模如表2-1所示。 表2-1 主要生产装置生产能力及规模表 环己酮肟化装置 (1)生产装置说明 根据业主提供相关资料,本项目己内酰胺装置采取氨肟化工艺,氨肟化工艺是近几年开发出来的一种环己酮肟生产的新工艺,它采用双氧水、液氨、环己酮为原料,一步反应直接生成环己酮肟,在发烟硫酸的作用下生产己内酰胺。因此生产流程短,控制简便,设备、管线材质要求一般,三废排放量少,目前国内已有10万吨/年装置在生产。 拟建项目采用意大利安尼公司开发的氨肟化工艺技术。环己酮、双氧水、气氨、叔丁醇加入到釜式反应器中(1开1备),在温度85℃,压力,在催化剂(主要成分为Ti)作用下,同时进行双氧水与氨反应合成羟胺和羟胺与环己酮的肟化反应,生成环己酮肟,经分离催化剂、溶剂萃取和环己酮肟的蒸馏得到产品环己酮肟。其工艺过程包括肟化反应、溶剂回收、双级萃取、洗涤、萃取剂回收净化、肟/酮蒸馏、尾气处理、污水预处理等工序。氨肟化装置生产出的符合质量标准的环己酮肟全部用于生产己内酰胺。

(2) 工艺流程简述 1、反应工段 精环己酮、双氧水及液氨等物料自装置外送到氨肟化反应器。环己酮过滤后,通过一个环形分布器切线送入反应器。过氧化氢溶液(双氧水)从存储区出来后,首先经过过滤,然后通过一个在合适紊流的环形(喇叭口形的)分布器输送到反应器。液氨经过过滤,送入反应器底部的内盘管,并在此蒸发,除去部分反应热,然后通过一个分布器送入反应器底部。非连续的新鲜(补充)溶剂(叔丁醇),与溶剂蒸馏塔顶出来的循环回流溶剂,一并送入反应器。 在氨肟化反应器中,经钛催化剂的作用,各物料发生肟化反应,环己酮的转化率大于%。其反应原理如下: 主反应式: 副反应式: 在氨肟化反应器顶部充入氮气稀释,避免形成爆炸气体混合物。反应器产生气相含有NH 3、叔丁醇、水、N 2O 、O 2及N 2等组分,经过循环水冷凝器冷凝和脱盐水吸收塔吸收,全部回收其中的NH 3和叔丁醇。脱盐水吸收塔顶部排出的尾气(G1)含有水、N 2O 、O 2及N 2等组分,进入尾气反应器进行催化处理。尾气反应器装有催化剂(该催化剂是一种铑(%)∕Al 2O 3球形催化剂,可稳定使用8000小时以上)的绝热固定床反应器,N 2O 分解率至少达到%,处理后的尾气在用尾气吸收塔处理(采用活性炭吸附处理),处理后尾气(G1)排空。 2、反应溶剂蒸馏工段 含肟反应液送到溶剂(叔丁醇)回收塔,回收的叔丁醇从该塔顶抽出,然后送回肟化反应器。塔底肟和水则送到一个两级萃取系统,用适当萃取溶剂进行萃取。 3、双级萃取系统 用适量甲苯作萃取剂,通过一个双级系统萃取肟。通过第一级萃取(萃取4H 2O 2 + 2NH 3 N 2O + 7H 2O 3H 2O 2 + 2NH 3 N 2 + 6H 2O 2H 2O 2 O 2 + 2H 2O

己内酰胺工艺简述.doc

本项目是以苯为原料的10 万吨 / 年己内酰胺大型化工生产装置,包含的主要装置 有环己酮、环己酮肟化、己内酰胺精制、硫铵装置、双氧水制备装置等,与10 万吨 / 年己内酰胺工程相匹配的各装置生产能力及规模如表2-1 所示。 表 2-1 主要生产装置生产能力及规模表 产品名称 序号装置名称产品名称装置总能 单线能力 力 1 双氧水装置%双氧水130000 130000 2 环己酮肟化装置环己酮肟102200 102200 3 己内酰胺装置液态己内酰胺100000 100000 4 己内酰胺罐区及装卸 液态己内酰胺44000 44000 站 5 己内酰胺造粒装置固态己内酰胺28000 56000 6 废液浓缩装置废水60000 60000 7 硫铵装置硫铵160000 160000 环己酮肟化装置 (1)生产装置说明 根据业主提供相关资料,本项目己内酰胺装置采取氨肟化工艺,氨肟化工艺是近 几年开发出来的一种环己酮肟生产的新工艺,它采用双氧水、液氨、环己酮为原料, 一步反应直接生成环己酮肟,在发烟硫酸的作用下生产己内酰胺。因此生产流程短, 控制简便,设备、管线材质要求一般,三废排放量少,目前国内已有10 万吨 /年装置在生产。 拟建项目采用意大利安尼公司开发的氨肟化工艺技术。环己酮、双氧水、气氨、 叔丁醇加入到釜式反应器中( 1 开 1 备),在温度 85℃,压力,在催化剂(主要成分为 Ti )作用下,同时进行双氧水与氨反应合成羟胺和羟胺与环己酮的肟化反应,生成环 己酮肟,经分离催化剂、溶剂萃取和环己酮肟的蒸馏得到产品环己酮肟。其工艺过程 包括肟化反应、溶剂回收、双级萃取、洗涤、萃取剂回收净化、肟/酮蒸馏、尾气处理、

己内酰胺生产工艺技术分析

己内酰胺生产工艺技术分析 发表时间:2016-12-02T14:36:09.550Z 来源:《基层建设》2016年19期作者:张海岗 [导读] 摘要:己内酰胺属于一类化工原料,用于生产化工产品。己内酰胺生产工艺技术比较重要,能够确保己内酰胺生产的效益。 沧州旭阳化工有限公司 061100 摘要:己内酰胺属于一类化工原料,用于生产化工产品。己内酰胺生产工艺技术比较重要,能够确保己内酰胺生产的效益。我国己内酰胺的生产量非常大,增加了工艺技术的压力,把控好己内酰胺的生产过程,落实工艺技术的应用,以此来满足化工生产的基本需求。本文主要探讨己内酰胺生产工艺技术的相关内容。 关键词:己内酰胺;生产工艺;技术 己内酰胺常用于电子电器、工业机械等构件或组件内,还可以运用到医学方面,表现出很大的利用效率。己内酰胺的生产工艺技术,具备很强的实践性,要规范好生产的过程,才能优化工艺技术的运用,保障己内酰胺的生产质量,避免己内酰胺生产过程出现问题。 一、己内酰胺生产工艺现状 1、环已酮-羟胺法 环已酮-羟胺法在己内酰胺生产工艺内,主要分为拉西法、一氧化氮还原法和硝酸根离子还原法三种,结合具体的应用,分析生产工艺技术。 拉西法属于比较早的己内酰胺生产工艺技术,也可称为苯法,氨水在常温环境下,吸收二氧化硫,在转入低温环境内,吸收氧化氮、二氧化氮,经过化学反应得出羟胺二磺酸盐,在加热水解的条件下,获取硫酸氢铵。硫酸氢铵和环已酮反应,生成了环已酮肟[1]。环已酮肟放置在发烟硫酸的条件内,制成己内酰胺粗品,借助萃取、蒸馏等精制方法,得到精品己内酰胺。拉西法生产工艺技术比较成熟,操作上不会出现很大的难度,生产期间要控制好硫酸铵成分,避免对环境造成污染。 一氧化氮还原法,氧气与氮在蒸汽稀释的条件内,转化成一氧化氮,混入氢气直接通入到含有活性炭的硫酸溶液中,此时一氧化氮经过还原后,生成NH2OH,其与硫酸直接接触,形成硫酸氢铵,在环己酮肟化的条件下,得到粗制的己内酰胺,利用上述拉西法中的精制方法,处理粗品。一氧化氮还原法中,氢、氨元素的消耗量相对较小,不会产生过多的副产物,提高了己内酰胺的生产效率。一氧化氮还原法内,设备的投资很高,属于一项典型的缺陷。 硝酸根离子还原法中,通过氨氧化获取一氧化碳、二氧化氮,此类原料会吸收到由硫酸铵、硝酸铵和磷酸构成的混合液内,混合液在催化的条件下,与氢气反应,进而与羟胺反应,在磷酸的作用下生成磷酸羟胺。磷酸羟胺和环己酮反应,转化成环已酮肟,甲苯萃取并蒸发,利用烟硫酸实现分子重排,获取粗品己内酰胺。精制己内酰胺得到成品[2]。硝酸根离子还原法内,生产工艺技术的时间较长,增加了反应操作的复杂性,需明确规划好操作方式,避免影响硝酸根离子还原法生产己内酰胺的效益。 2、甲苯法 甲苯法经过氧化处理后,获取苯甲酸,在加氢条件下,转换成六氢苯甲酸。六氢苯甲酸+亚硝酰硫酸→ε-己内酰胺硫酸盐,经过水解后,获取己内酰胺。甲苯法中的代表工艺是SNIA,利用硝化级甲苯,促使甲苯和空气均送入到反应器装置内,提供1MPa压强和160℃高温,氧化生产苯甲酸,获取的产品是30%的苯甲酸溶液。苯甲酸在反应器内,选择金属钯为催化剂,利用氢、1.6MPa和170℃高温,实行一次转化。六氢苯甲酸与烟硫酸经过混合后,放入到多段反应器内,在亚硝酸酰硫酸的作用下,获取己内酰胺。甲苯法的工艺周期短,涉及到诸多精制步骤,容易产生副产物硫酸铵。 3、光化学亚硝化法 光化学亚硝化法的核心原料是环己烷,提供亚硝酰氯与氯化氢的条件,生产环己酮肟,在重排的作用下,获取已内酰胺。光化学亚硝化法的生产方式简单,而且投资较多,工程内光化学反应的装置有一定难度,增加了电量使用的压力,同时存在物料腐蚀的问题。二、己内酰胺生产的新技术 为了提高己内酰胺生产工艺技术的水平,同时降低己内酰胺的污染水平,在原有生产工艺的基础上,提出以下3点新技术。 1、Altam工艺 Altam工艺,利用丁二烯与一氧化碳原料,期间不设计硫酸铵材料,降低原材料的使用量,解决了环境污染的问题[3]。Altam工艺内,己内酰胺选择性高达98%,为了提高己内酰胺的转化率,要合理的选择目的产物,筛选可用的催化剂,控制好反应条件,由此才能保障己内酰胺的生产效率,体现Altam工艺技术的优势。 2、己二腈工艺 己二腈工艺内,经过丁二烯和氢氰酸反应,合成己二腈原料,加氢处理后,生成6-氨基己腈、己二胺。在80℃的条件下,己二腈工艺的转化率是98%,有1%的材料是六亚甲基亚胺,最终己内酰胺的收率是93%。己二氢工艺的关键是加氢操作,需采用高性能的催化剂,加快转化的效率,进而提高己内酰胺的生产效率。 3、低温法合成 低温法合成,是一类新开发的工艺,其反应条件是50℃的环境,不会产生硫酸铵,也不涉及有机溶剂。低温法合成工艺,目前正处于不断的研究状态,开发高反应性能的离子液体催化剂,保障设备之间的优化性,最终确保低温法合成的总体经济效益。 三、己内酰胺生产工艺技术发展 己内酰胺生产工艺技术的发展,得到了很大的支持,己内酰胺生产的过程中,未来规模会不断的扩大,辅助降低生产的成本。研究人员根据现行己内酰胺的生产现状,深入研究生产工艺技术,采用先进的工艺方法,保障己内酰胺的生产效率[4]。己内酰胺生产的发展,推动了己内酰胺行业的发展,刺激了市场消费,同时产生了良性的循环,带动己内酰胺生产工艺技术的进步。我国应该提高己内酰胺生产工艺技术发展的能力,逐步引进先进的工艺技术,满足基本生产的同时,做好未来发展的规划与研究工作,不能影响到己内酰胺的生产过程,体现高效性、低污染的技术特点。 结束语: 己内酰胺生产工艺技术处于不断的发展过程中,积极引进新技术,改善己内酰胺生产工艺的现状,以此来提高己内酰胺的能耗利用

相关文档
最新文档