药物设计学医学知识

合集下载

药物设计学完整版

药物设计学完整版

药物设计学完整版药物设计学是一门研究如何设计出具有特定生物活性的化合物的学科,它结合了化学、生物学、计算机科学等多个领域的知识。

药物设计的目标是通过理解疾病发生发展的分子机制,找到能够干扰或调节这些过程的化合物,从而开发出新的治疗方法。

药物设计学的主要内容包括:1. 目标选择:选择合适的药物靶点,即与疾病相关的生物分子,如蛋白质、核酸等。

2. 先导化合物的发现:通过高通量筛选、计算机辅助设计等方法,寻找具有潜在生物活性的化合物。

3. 优化和改造:对先导化合物进行结构改造,以提高其生物活性、选择性和药代动力学性质。

4. 体外和体内活性测试:评估化合物的生物活性、毒性和药代动力学性质。

5. 临床前研究:对候选药物进行安全性、有效性和药代动力学研究。

6. 临床试验:在人体中评估候选药物的安全性和有效性。

7. 上市后监测:对上市药物进行长期的安全性、有效性和经济性监测。

药物设计学的发展历程可以追溯到20世纪初,当时人们开始尝试通过化学方法合成具有生物活性的化合物。

随着生物学、计算机科学等领域的不断发展,药物设计学逐渐形成了一门独立的学科。

近年来,随着高通量筛选、计算机辅助设计等技术的进步,药物设计学的发展速度大大加快,越来越多的新药被成功开发出来。

药物设计学的研究成果对于新药研发具有重要意义。

通过药物设计学的研究,我们可以更加深入地理解疾病发生发展的分子机制,找到更加有效的治疗方法。

同时,药物设计学的研究还可以推动化学、生物学、计算机科学等领域的交叉融合,促进这些领域的发展。

药物设计学完整版药物设计学是一门研究如何设计出具有特定生物活性的化合物的学科,它结合了化学、生物学、计算机科学等多个领域的知识。

药物设计的目标是通过理解疾病发生发展的分子机制,找到能够干扰或调节这些过程的化合物,从而开发出新的治疗方法。

药物设计学的主要内容包括:1. 目标选择:选择合适的药物靶点,即与疾病相关的生物分子,如蛋白质、核酸等。

药物设计学考试题库及答案

药物设计学考试题库及答案

药物设计学考试题库及答案一选择题1.以下哪个不是生物信息的特征 DA级联反应B网络结构C多样性D不可逆性2.体内信号转导的主体是 AA 蛋白质B 小分子物质C 多糖D 脂质3.凡是由细胞分泌的,能够调节特定靶细胞生理活动的化学物质都称为细胞间物质,称为第一信使,它属于 DA 物理信号B机械力C生物体外信号D化学信号3.下列哪个不是细胞间化学信号分子的特点 BA特异性B持续性C时间效应各异 D 复杂性4.第三信使是下列哪种物质 CA 花生四烯酸B 二十碳酸类C DNA结合蛋白D磷脂酰肌醇5.基于调节第二信使的药物设计不是 AA 维生素D受体配体的药物设计B 调节cAMP和cGMP信号通路的药物设计C 调节激酶系统的药物设计D调节钙的药物设计6.下列哪个是基于调节第三信使的药物设计 AA 过氧化物酶体增殖因子活化受体配体的药物设计B 磷酸二酯酶抑制剂活化受体配体的药物设计C 磷酸二酯酶V的抑制剂活化受体配体的药物设计D 糖原合成激酶-3抑制剂活化受体配体的药物设计7.不是对信号转导系统的药物干预的选项是A 影响信号分子的药物B 影响信号接受系统的药物C 影响信号传输系统的药物D 影响细胞内信号转导系统的药物1.生物体内嘌呤核苷酸的合成除了补救合成外,还有()A.从头合成B.中间合成C.最后合成D.中间体合成2.()是嘧啶生物合成的重要中间体A.天冬氨酸B.氨甲酰磷酸C.乳清苷酸D.谷氨酰胺3.既是核酸生物合成的代谢产物,也是红细胞发育生长的重要因子的是()A.核苷B.磷酸C.戊糖D叶酸4.氨基嘌呤和甲氨嘌呤是最早用于肿瘤临床治疗的()还原酶抑制剂A.血清铁蛋白B.黏蛋白C.二氢叶酸D.甲胎蛋白5.()可以影响IMP、AMP或GMP的形成,从而抑制DNA和RNA 的合成A.次黄嘌呤B.鸟嘌呤C.腺甘酸D.巯嘌呤核苷酸6.下列哪个不是反义药物与传统药物的区别()A.特异性较强B.信息量较大C.反义药物以核酸为靶点D副作用可能较多1 在目前已知的500多种药物作用靶标中,酶是最重要的一类,约占()A.25%B.40%C.45%D.50%2. 酶的激活作用不包括以下()A.酶原的激活B.酶的变构激活C.酶的共价修饰激活D.酶的活性位点激活3. ()定量的描述了稳态条件下酶催化反应的动力学参数。

药物设计学知识点总结

药物设计学知识点总结

药物设计学知识点总结在药物设计学中,有许多重要的知识点需要掌握和理解。

以下是对药物设计学的一些关键概念和技术的总结。

1. 药物设计的基本原则:药物设计的目标是发现和开发出具有理想的治疗效果和副作用低的药物。

基本原则包括药物与靶点的相互作用、药物代谢和药物分子的物理化学性质。

2. 靶点的选择:药物设计的第一步是选择适当的靶点。

靶点通常是与疾病发生相关的蛋白质,如受体、酶和离子通道。

了解靶点的结构和功能对于药物设计至关重要。

3. 药物发现策略:药物发现过程中常用的策略包括高通量筛选、计算机辅助药物设计和仿生药物设计。

高通量筛选一般通过自动化方法对大量化合物进行测试,以筛选出对靶点特异性较高的化合物。

计算机辅助药物设计则利用计算机模拟方法预测药物与靶点之间的相互作用。

仿生药物设计则是参考生物体内已存在的天然产物,设计具有类似结构和功能的化合物。

4. 药效学参数:药效学参数用于评估药物对生物体产生的效应,包括EC50、IC50、Kd等。

EC50指的是药物在半最大效应产生的浓度,IC50指的是药物的抑制浓度,Kd指的是药物与靶点结合的亲和力。

5. 药物代谢:药物代谢是指药物在体内发生的一系列化学反应,包括氧化、还原、水解、酯化等。

了解药物代谢途径可以预测药物的代谢物产生情况和药物的药物代谢动力学。

6. 亲水性和脂溶性:药物分子的亲水性和脂溶性对于药物的吸收、分布和排泄等过程至关重要。

亲水性较高的药物更容易溶解在水中,而脂溶性较高的药物则更容易穿过生物膜。

7. 三维定量构效关系:三维定量构效关系是一种将药物分子结构与其生物活性之间的关系进行数学建模的方法。

通过建立定量的数学模型,可以预测新化合物的生物活性。

8. 随机共振原理:随机共振原理是一种基于熵增的药物设计方法。

通过引入药物分子中的随机振动和环境中的热涨落,可以提高药物与靶点之间的结合强度和选择性。

总之,药物设计学涉及到许多重要的知识点,包括药物与靶点的相互作用、药物发现策略、药物代谢和药效学参数等。

药物设计学

药物设计学

药物设计学药物设计学是一门涉及化学、生物学、医学等学科知识的学科,其核心是通过理性设计化合物的结构,来达到治疗疾病的目的。

药物设计学包括从已知活性分子出发,结合分子的构效关系和药物代谢动力学、毒理学等方面的知识,设计具有更佳活性,更佳生物利用度和更佳安全性的新化合物,以满足临床治疗的需要。

一、药物研发的阶段药物设计学贯穿于一系列关键的药物研发阶段,如药物发现、药物优化、药物制备、药物评价等阶段。

其中,药物发现阶段可以进一步划分为高通量筛选、药物分子设计和计算机辅助药物设计等子阶段。

药物优化阶段,则是通过对药物分子进行结构优化、化学修饰等方式,以优化药物的活性、药代动力学和毒理学性质,并选择最适宜的给药途径,提高药物的疗效和安全性。

药物制备阶段,目的是制造有效、可重复生产的药物成品,并保证其品质符合药理学、毒理学和药代动力学特性的要求。

药物评价阶段,则涉及各类体外和体内试验、临床实验等,以验证药物的有效性、安全性、药代动力学等药物特性。

二、药物分子设计方法药物分子设计方法是药物设计学的核心之一。

主要分为定量构效关系(QSAR)、配体基本位点亲和力模型和分子基本位点亲和力模型等方法。

定量构效关系(QSAR)的方法是在一定的条件下,通过计算一系列分子性质的参数,构建参数与活性(或毒性)之间的定量关系模型,并进行预测。

配体基本位点模型则是从药物分子中提取出与生物靶分子相互作用的关键位点信息,以提高理性设计药物分子的精准性。

分子基本位点模型则是基于药物分子与生物靶分子之间的相互作用信息,进行基于分子力学理论及量子化学计算的药物分子设计。

三、配体基本位点亲和力模型配体基本位点亲和力模型分为静态法和动态法,静态法是通过理论计算、实验分子相互作用等方法,得到配体基本位点和生物靶分子基本位点之间的亲和力信息。

而动态法则是结合分子动力学模拟,以分子间的相互作用和运动过程,揭示配体基本位点和生物靶分子基本位点的亲和力情况。

《药物设计学》深刻复知识题

《药物设计学》深刻复知识题

滨州医学院继续教育学院课程考试《药物设计学》复习题一、名词解释1. ADMET2. 受体3. 酶4. Mee-too Drug5. 生物电子等排体6. 过渡态类似物抑制剂7. QSAR8. 高内涵筛选技术9. 多底物类似物10. 占领学说11. 第三信使12. 诱导契合学说13. 组合化学14. 同源蛋白15. 模板定位法16. 表观分布容积二、简答题1. 简述活性片段的检测技术中,磁共振技术的检测原理和分类。

2. 简述酶的激活方式。

3. 简述以核酸为靶点的药物设计类别。

4. 简述反向化学基因组学的定义及其研究方法。

5. 根据化合物库的来源不同,发现先导化合物的方法有哪些?6. 简述前药设计的目的。

7. 基于片段的药物设计中,片段库的建立需要注意哪些问题?8. 简述药物研发失败率较高的原因。

9. 可以从哪些方面考虑进行专利边缘的创新药物设计?10. 引起药物毒性的因素有哪些?11. 试述蛋白质在信号转导功能中的变化。

12. 在前药设计时一般应考虑哪些因素?13. 试述钙离子成为胞内信使的基础。

14. 试述基于类药性的药物设计策略。

三、论述题1、有的知识,论述先导化合物发现的预测方法。

2、论述下列化合物的设计原理和特点(1)OHOCOCH2CH2COONa (2)N NH 2NNHNN H3、根据已有的知识,论述从片段到先导化合物的设计方法并解释各类方法的原理。

滨州医学院继续教育学院课程考试《药物设计学》复习题答案一、名词解释1. ADMET药物的吸收、分布、代谢、排谢、毒性2. 受体是细胞在进化过程中形成的生物大分子成分,能识别周围环境中极微量的某些化学物质,并与之结合,引发生理反应或药理效应。

3. 酶是由活体细胞分泌,对其特异底物具有高效催化作用的蛋白质。

4. Mee-too Drug将已知药物的化学结构作局部改变,具有相似的药理作用,药物结构不受专利的保护,使该类模仿药快速投放市场。

5. 生物电子等排体指具有相同价电子数,并且具有相近理化性质,能产生相似或相反生物活性的分子或基团。

《药物设计学》复习题

《药物设计学》复习题

滨州医学院继续教育学院课程考试《药物设计学》复习题一、名词解释1、ADMET2、受体3、酶4、Mee-too Drug5、生物电子等排体6、过渡态类似物抑制剂7、QSAR8、高内涵筛选技术9、多底物类似物10、占领学说11、第三信使12、诱导契合学说13、组合化学14、同源蛋白15、模板定位法16、表观分布容积二、简答题1、简述活性片段的检测技术中,磁共振技术的检测原理与分类。

2、简述酶的激活方式。

3、简述以核酸为靶点的药物设计类别。

4、简述反向化学基因组学的定义及其研究方法。

5、根据化合物库的来源不同,发现先导化合物的方法有哪些?6、简述前药设计的目的。

7、基于片段的药物设计中,片段库的建立需要注意哪些问题?8、简述药物研发失败率较高的原因。

9、可以从哪些方面考虑进行专利边缘的创新药物设计?10、引起药物毒性的因素有哪些?11、试述蛋白质在信号转导功能中的变化。

12、在前药设计时一般应考虑哪些因素?13、试述钙离子成为胞内信使的基础。

14、试述基于类药性的药物设计策略。

三、论述题1、有的知识,论述先导化合物发现的预测方法。

2、论述下列化合物的设计原理与特点(1)OHOCOCH2CH2COONa(2)NNH2NNHNNH3、根据已有的知识,论述从片段到先导化合物的设计方法并解释各类方法的原理。

滨州医学院继续教育学院课程考试《药物设计学》复习题答案一、名词解释1、ADMET药物的吸收、分布、代谢、排谢、毒性2、受体就是细胞在进化过程中形成的生物大分子成分,能识别周围环境中极微量的某些化学物质,并与之结合,引发生理反应或药理效应。

3、酶就是由活体细胞分泌,对其特异底物具有高效催化作用的蛋白质。

4、Mee-too Drug将已知药物的化学结构作局部改变,具有相似的药理作用,药物结构不受专利的保护,使该类模仿药快速投放市场。

5、生物电子等排体指具有相同价电子数,并且具有相近理化性质,能产生相似或相反生物活性的分子或基团。

药物设计学知识点

药物设计学知识点

药物设计学知识点药物设计学是研究与开发药物的过程,旨在发现和设计出具有治疗作用的化合物。

通过合理的药物设计,可以提高药物的效果,并减少副作用。

在这篇文章中,我们将介绍一些与药物设计学相关的重要知识点。

一、药物目标药物设计的首要任务是确定药物的目标。

药物目标可以是具体的蛋白质、激酶或其他生物分子,这些目标与疾病相关。

了解疾病的发病机制以及相关的生物途径,能够帮助研究人员选择适当的药物目标。

二、药物筛选药物筛选是药物设计的重要环节,它的目的是从大量的化合物中筛选出具有潜力的药物候选物。

通常,药物筛选会分为两个阶段:高通量筛选和结构优化。

高通量筛选主要通过自动化系统,对候选物进行大规模的、高通量的筛选。

筛选方法可以包括酶活性检测、细胞毒性实验等。

通过高通量筛选,可以快速地筛选出具有一定生物活性的化合物。

结构优化阶段是指对高通量筛选得到的化合物进行结构修饰,以增强其药物效果。

结构优化可以通过结构活性关系(SAR)的研究、荧光标记技术以及计算机辅助设计等方法来实现。

三、药物靶向药物靶向是指通过与药物目标相互作用,达到特定的治疗效果。

在药物设计中,药物靶向是至关重要的一环。

常用的药物靶向方法包括配体结合实验、蛋白质晶体学和分子对接等。

配体结合实验可以通过测定药物与靶标蛋白质之间的相互作用来评估药物的结合力。

蛋白质晶体学是研究蛋白质在原子水平上的结构的方法,可以提供有关药物与蛋白质结合模式的信息。

分子对接是通过计算机模拟和预测药物与靶标蛋白质之间相互作用的方法。

四、药物代谢药物设计中需要考虑药物在体内的代谢。

药物代谢可以影响药物的活性、毒性和药代动力学特性。

了解药物的代谢途径有助于优化药物的结构,改善药物的代谢稳定性和生物利用度。

药物代谢通常包括两个主要过程:药物的转化和药物的排泄。

药物的转化主要是指药物经过化学反应在体内转变为代谢产物。

药物的排泄则是指药物通过肝脏、肾脏等器官从体内排出。

五、药物动力学药物动力学是指药物在体内的吸收、分布、代谢和排泄的过程。

药物设计学肽拟似物医学

药物设计学肽拟似物医学
2020/6/13
类型及特点 1. α-甲基化 氨基酸的C上的氢被甲基取代后,
对决定与C有关的肽链骨架构象的二面角 的变化区域,有较大的影响。被引入许多 生物活性肽中。 2. α,α-二烷基甘氨酸及α氨基环烷羧酸 3. N-甲基化 4. 其它
2020/6/13
⑴、 氨基酸的α-烷基化
氨基酸的C上的H被甲基取代后,将影响其构象角, 限制C-N,C-C键的旋转
子结构,具有多种受体分子识别的不同构象,使其选 择性降低,临床上产生一些副作用
2020/6/13
三、肽拟似物(类肽)
1、定义; 肽拟似物是一类能够模拟台分子与受体或酶的相
互作用,可以激活或阻止某种生物活性的非肽、 类肽或拟肽化合物。作为药物,肽类似物不仅要 对受体有亲和力,而且要有选择性活性,有效能 和底物功能,以产生特异的药理效应。 一个设计成功的类肽,应该具有代谢稳定性, 口服优良的生物利用度,高度的受体亲和性和选 择性,尽可能少的副作用.
局部构象限制:对某一氨基酸加以改换,或对侧 链加以限制,或对肽骨架进行变换,利用电子等 排体(甲氨基,酮甲基)反转酰胺基等取代酰胺部分; 引入氨基酸残基类似物等
整体构象限制:环化的二硫桥键;未参与受体识别, 相互作用的侧链环化;骨架与骨架的成环等
2020/6/13
1. 应从可以产生具有特异性活性的尽可能简单的 结构(产生活性的药效基团结构)开始设计肽 拟似物。一般,疏水性氨基酸残基有利于与受 体的结合,而极性残基很可能是产生内在活性 所必须的。
α-乙基丙氨酸(isolaline,Ive)、 α-甲基苯丙 氨酸( α-Me-phe)、 α-Me-Val、 α-Me-Leu等,
含这些氨基酸的三肽或多肽,多以β-转角和310 螺旋的优势构象存在,很少有完全伸展结构。 将它们引入活性肽作为修饰物。

药物设计需要的知识点

药物设计需要的知识点

药物设计需要的知识点药物设计是一门复杂而且关键的学科,涉及到多个学科的知识和技术。

为了成功地设计和开发新的药物,研究人员需要掌握一系列的知识点。

本文将介绍药物设计需要的几个重要的知识点。

1. 药理学药理学是药物设计的基础。

药理学研究药物与生物体相互作用的过程,以及药物在体内的作用机制。

了解药理学可以帮助研究人员理解药物与生物体之间的相互作用,从而更好地设计出有效的药物。

2. 生物化学生物化学是研究生物分子及其相互作用的科学。

药物设计需要研究人员了解生物化学的基本原理,包括蛋白质结构、酶催化机制、代谢途径等。

掌握生物化学的知识可以帮助研究人员分析目标分子与药物的相互作用,为药物设计提供理论基础。

3. 药代动力学药代动力学是研究药物在体内吸收、分布、代谢和排泄过程的学科。

研究人员需要了解药代动力学的知识,确定药物在体内的命运和代谢途径。

药代动力学的研究可以帮助研究人员确定药物的用量和给药方案,以及预测药物的药效和安全性。

4. 结构生物学结构生物学是研究生物大分子结构的学科,包括蛋白质、核酸等的三维结构解析。

药物设计需要研究人员通过结构生物学技术了解目标蛋白质的结构,以及药物与靶标蛋白之间的相互作用。

结构生物学的应用可以帮助研究人员进行靶标鉴定、分析药物与蛋白质的结合位点等工作。

5. 计算化学计算化学是利用计算机模拟和计算方法研究化学问题的学科。

在药物设计中,研究人员可以利用计算化学方法进行分子建模、虚拟筛选等工作。

计算化学技术可以加速药物设计的过程,降低实验成本和风险,对提高药物研发效率具有重要意义。

6. 药物合成化学药物合成化学是研究药物合成方法和反应机制的学科。

药物设计需要研究人员了解药物合成的基本原理和方法,为药物合成提供技术支持。

药物合成化学的研究可以帮助研究人员设计合成路线,优化反应条件,提高合成效率和产率。

7. 药物评价与安全性药物评价与安全性是药物设计过程中不可忽视的重要环节。

研究人员需要进行药物的生物活性评价、毒理学评价、临床试验等工作,评估药物的疗效和安全性。

药物设计学完整版

药物设计学完整版

药物设计学完整版一、药物设计学概述药物设计学是一门集生物学、化学、计算机科学等多学科于一体的交叉学科,旨在通过科学的方法和技术,设计出高效、低毒、具有特定生物活性的药物分子。

药物设计学的发展,为我国新药研发提供了强有力的理论支持和实践指导。

1. 药物设计学的起源与发展药物设计学起源于20世纪50年代,随着分子生物学、计算机科学等相关学科的发展,药物设计学逐渐形成了自己的理论体系和技术方法。

经过几十年的发展,药物设计学在新药研发领域取得了举世瞩目的成果。

2. 药物设计学的主要任务药物设计学的主要任务包括:发现和验证药物作用靶点、设计具有生物活性的药物分子、优化药物分子的药效学和药代动力学性质、评估药物分子的安全性和有效性等。

3. 药物设计学的方法与技术药物设计学的方法与技术主要包括:基于结构的药物设计、基于配体的药物设计、计算机辅助药物设计、高通量筛选等。

这些方法与技术相互补充,共同推动药物设计学的发展。

二、药物设计学的核心要素1. 靶点识别与验证药物设计的起点在于找到合适的药物作用靶点。

靶点可以是蛋白质、核酸、酶或其他生物大分子。

靶点的识别与验证是药物设计的关键步骤,它直接关系到药物设计的成功与否。

研究人员需通过生物信息学、基因敲除、基因编辑等技术手段,确保靶点与疾病的相关性。

2. 药物作用机制研究了解药物的作用机制对于药物设计至关重要。

研究人员需要探究药物分子如何与靶点相互作用,如何调控信号通路,以及如何影响疾病进程。

这有助于优化药物结构,提高药物的治疗效果。

3. 药物分子的优化三、药物设计学的应用实例1. 小分子药物设计小分子药物因其易于合成、口服给药等优点,在药物设计中占据重要地位。

例如,针对某些癌症的酪氨酸激酶抑制剂(如伊马替尼)的设计,就是基于对激酶结构的深入理解,成功开发出的靶向治疗药物。

2. 生物大分子药物设计随着生物技术的进步,生物大分子药物(如抗体、蛋白质类药物)的设计也取得了显著成果。

药物设计学绪论ppt课件

药物设计学绪论ppt课件

random screening through classical pharmacology
For a new drug
10-12 years
lead compound
15000-20000 compounds 300,000,000-500,000,000 dollars
optimization
化学合成药物
中草药 生化药 抗生素
无机药物
有机药物
合成 半合成
• 药物基本属性:安全性、有效性、质量可控 性
药学在经济生活中的地位
• 人类对新的、高质量药品的需求不断增 长,使医药产业一直以较高的速度发展。 医药产业被称为“永远的朝阳产业”。
世界药品销售总额年均增长10%
4000 3500 3000 2500 2000 1500 1000
~100 Discovery Approaches
Millions of Compounds Screened
High Risk Process: 10-15 Years, $800MM+
Preclinical Pharmacology
Drug Discovery and Development
Preclinical Safety
• (三)药物设计阶段(1960-): • 生命基础过程研究与内源性活性调节物
质的发现——合理药物设计。 • SAR——QSAR——3D-QSAR(计算机辅助
药物设计) • 1、ACE抑制剂类药物:卡托普利、依纳普利 • 2、HMG-CoA还原酶抑制剂:罗伐他汀、辛伐 • 他汀、普伐他汀。 • 3、质子抑制剂:奥美拉唑、兰索拉唑 。
内源性活性物质的确定,酶抑制剂的应用(黄金时期)。 • 1932白浪多息—磺胺—抗代谢原理—长效磺胺—(磺胺甲氧

药物设计学

药物设计学

药物设计学药物设计学是一门综合性学科,旨在通过合理设计和优化药物分子,实现对疾病的治疗和预防。

该学科融合了许多不同领域的知识,包括有机化学、药理学、生物学和计算机科学等,从而实现药物的研发和创新。

药物研发的挑战药物研发是一项繁复而具有挑战性的任务。

在药物设计过程中,研究人员需要考虑多种因素,如药物分子与靶蛋白的相互作用、药物代谢途径、药物的药代动力学等。

此外,药物研发过程中还存在着许多潜在的问题,比如副作用、毒性和药物耐受性等,这些问题需要通过科学的方法来解决。

药物设计的基本原理药物设计的核心在于找到药物与疾病靶点之间的相互作用。

通常,药物可以通过与特定的蛋白或其他生物分子结合来实现治疗效果。

在药物设计过程中,研究人员通常会利用计算机辅助设计工具来进行药物分子的挑选和优化,从而提高药物的选择性和活性。

分子对接分子对接是药物设计中常用的一种方法。

该方法通过预测药物分子与靶蛋白之间的结合模式,来评估药物的亲和力和选择性。

在分子对接过程中,研究人员需要首先获取药物和蛋白的结构信息,然后利用计算机算法来模拟药物与蛋白的结合过程。

三维药物构建三维药物构建是药物设计的关键步骤之一。

在这个过程中,研究人员需要利用有机合成方法合成具有特定结构和活性的药物分子。

通过合理设计分子结构和化学反应路径,可以合成出具有潜在药物活性的分子。

药物代谢预测药物代谢是指药物在体内被生物体代谢的过程。

药物代谢可以影响药物的药效、毒性和持续时间。

在药物设计过程中,研究人员需要预测药物的代谢途径和代谢产物,以便评估药物的稳定性和安全性。

新技术在药物设计中的应用随着科学技术的不断进步,新的技术方法也被应用于药物设计中,以提高药物研发的效率和成功率。

高通量筛选技术高通量筛选技术是一种可以快速筛选大量化合物的方法。

该技术结合了自动化和机器学习等技术,可以同时测试成千上万种化合物对靶蛋白的亲和性和选择性。

这种方法可以大大加快药物研发过程,减少实验成本和时间。

药物设计学(第一章先导化合物)

药物设计学(第一章先导化合物)
跨学科合作与创新
加强化学、生物学、医学、物理学 等多学科的交叉合作,推动药物设 计领域的创新发展。
THANK YOU
详细描述
实验筛选是先导化合物发现的重要手段之一。通过实验手段 ,研究人员可以对实际存在的化合物进行活性筛选,以发现 具有药物活性的先导化合物。实验筛选通常包括高通量筛选 和组合库筛选等方法。
合理药物设计
总结词
基于已知的药物作用机制和结构信息,设计具有特定活性的先导化合物。
详细描述
合理药物设计是一种基于已知药物作用机制和结构信息的设计方法。通过分析已知药物的结构和作用机制,研究 人员可以设计出具有特定活性的先导化合物。这种方法需要深入了解药物的作用机制和靶点结构,能够提高先导 化合物发现的成功率。
精准医疗与个性化药物
根据患者的基因组、表型等特征,设计针对特定患者的个性化药物,提高治疗效果并降低 副作用。
技术挑战与展望
克服耐药性问题
随着疾病的发展,许多靶点可能 发生突变导致耐药性产生,需要 设计新型先导化合物以克服这一
问题。
提高药物选择性
降低先导化合物对非靶组织的毒性 作用,提高治疗指数,是药物设计 中需要解决的关键问题。
基于配体的优化
总结词
详细描述
基于配体的优化策略主要依赖于先导化合物 本身的性质,通过改变先导化合物的取代基、 官能团或连接基等,以提高其与靶点蛋白的 亲和力。
基于配体的优化通常从先导化合物的药效团 出发,通过分析已知活性化合物的药效团特 征,设计出具有相似特征的新化合物。这一 过程涉及到的技术包括药效团模型构建、药 效团筛选和构效关系分析ቤተ መጻሕፍቲ ባይዱ。
毒理学评价
要点一
总结词
毒理学评价是评估先导化合物对生物体的潜在危害和安全 性的过程。

药物设计学-中考

药物设计学-中考

1.药物作用的靶点可以是( A )A.酶、受体、核酸和离子通道B.细胞膜和线粒体C.溶酶体和核酸D.染色体和染色质2.生物大分子的结构特征之一是( A )A.多种单体的共聚物B.分子间的共价键结合C.分子间的离子键结合D.多种单体的离子键结合3.药物与受体相互作用的主要化学本质是( A )A.分子间的共价键结合B.分子间的非共价键结合C.分子间的离子键结合D.分子间的静电引力4.下列属于肽键(酰胺键)的电子等排体的是( B )A.硫代丙烷B.氟代乙烯C.卤代苯D.乙内酰脲5.维系肽的二级结构稳定的主要键合方式是( B )A.离子键B.氢键C.酰胺键D.二硫键6.当多肽的一个或几个酰胺键被电子等排体取代得到的肽类似物又被称为(D)A.类肽B.拟肽C.肽模拟物D.假肽7. 胞内信使cAMP和cGMP是由哪种酶分解灭活的?( D )A. 蛋白酶B.胆碱酯酶C.单胺氧化酶D.磷酸二酯酶8.抗肿瘤药物喷司他丁(pentostain)的作用靶点是( B )A. 芳香酶B.黄嘌呤氧化酶C.单胺氧化酶D.腺苷脱氧基酶9.亲和标记抑制剂通常也是底物或产物类似物,具有两个结构特征,一是识别基团,二是( C )A.亲和基团B.亲电基团C.活性基团D.结合基团10..快速可逆抑制剂中既与酶结合,又与酶-底物复合物结合的抑制剂被称为( C )A.反竞争性抑制剂B.竞争性抑制剂C.非竞争性抑制剂D.多靶点抑制剂11.为了增加药物与酶之间的疏水结合,可引入的基团是( D )A.甲氧基B.羟基12.在酶与抑制剂之间形成共价键的反应不包括( D )A.烷基化B.形成希夫碱C.金属络合D.氢键缔合13.塞莱昔布(celecoxib)等昔布类药物胃肠道不良反应低的原因在于( D )A.选择性的抑制COX-2B.治疗骨关节炎和类风湿性关节炎C.选择性的抑制COX-1D.有效的抗炎镇痛14.下列物质中,哪种物质直接参与了核酸从头合成中嘧啶碱基的形成( C )A.二氧化氮B.谷氨酸C.天冬氨酸D.甘氨酸三.填空题1.理想的酶抑制剂类药物,应该对靶酶有亲和力和特异性。

药物设计学(酶抑制剂含实例)

药物设计学(酶抑制剂含实例)

活性筛选
通过高通量筛选等方法, 找出能够与靶点结合并发 挥预期功能的候选药物。
药物设计学的研究方法
1 2
计算机辅助药物设计
利用计算机模拟技术,预测候选药物与靶点的相 互作用,从而优化药物的结构和性质。
高通量筛选
通过大规模实验筛选出具有潜在活性的候选药物, 再通过进一步验证和优化确定其药效和安全性。
物在临床上广泛应用于治疗高血压和冠心病等疾病。
05
酶抑制剂的未来发展与挑战
新药研发的挑战与机遇
挑战
新药研发过程中面临着诸多挑战,如药物靶点的确定、药物的细胞膜通透性、药 物的代谢稳定性等。同时,新药研发还需要面对临床试验的高风险和长周期。
机遇
随着科技的不断进步,新药研发的机遇也在不断增加。例如,基因组学、蛋白质 组学和结构生物学等领域的发展为药物设计提供了更多的靶点和思路。此外,计 算机辅助药物设计和高通量筛选等技术也为新药研发提供了有力支持。
酶抑制剂的作用机制
竞争性抑制剂
与酶的底物在活性位点上竞争,通过占据底物的位置来抑制酶 的活性。抑制剂与底物结构相似,抑制作用大小取决于抑制剂
与底物的亲和力。
非竞争性抑制剂
与酶的底物结合,但并不占据底物的位置,而是通过改变酶的 构象来抑制酶的活性。抑制剂与底物无竞争关系,抑制作用大
小取决于抑制剂与酶的亲和力。
实例
在抗艾滋病药物设计中,虚拟筛选技术被用于从大量小分子中筛选出针对逆转录酶的抑 制剂。
计算机辅助药物设计
总结词
计算机辅助药物设计是一种综合运用计算机技术和药学知识来设计新药物的方法。
详细描述
计算机辅助药物设计通过计算机模拟和预测药物的性质和行为,为药物设计和优化提供指 导。这种方法可以大大加速药物设计和开发的进程。

药物设计基础的主要内容

药物设计基础的主要内容

药物设计基础的主要内容《药物设计基础》主要内容导论主要内容“药物发现”的定义、基本阶段,药物设计的主要内容,药物作用的体内过程,先导物发现的阶段和途径,筛选途径,合理药物设计。

第一节药物发现一、药物发现的定义①定义:按广义的定义,包括内容一起 P1-2狭义定义②阶段:研究过程4个阶段:基础研究,可行性分析、项目研究、非临床开发开发过程:临床研究,还包括注册申请和上市销售基础研究的目标:发现多种靶点,确定靶点成药性,新化学实体可行性分析:先导物项目研究:发现可进行临床研究的研究中新药,包括药学、药理学、毒理学等方面;生物利用度在3个参数:达峰时间、达峰浓度、药时曲线下面积三性试验:急性、亚急性或慢性毒理试验三致实验:致突、致畸、致癌非临床开发:尽早淘汰不适合的候选药物核心:安全性评估问题临床研究:确证研究中新药的应用价值需4期试验,进行新药申请和注册上市后,还需进行后期验证Ⅰ期试验:人体对IND的有效性、耐受程度和安全性;Ⅱ期试验:确证临床应用的实际价值,对何疾病有效,有效剂量范围和最适给药方案Ⅲ期试验:IND试产后的安全考察期Ⅳ期试验:新药申请后的跟踪考察验证药效(PD)、药动(PK)和毒性(T)研究是交叉贯穿于新药R &D的各个阶段第二节药物设计一、药物设计的概念P9狭义的药物发现过程药物发现的中心环节――先导物的发现途径(衍生和优化)以及所涉及的理论、技术和方法靶点与配基的概念药物与受体结合引发内在活性,据产生的生物效应不同可分为激动剂和拮抗剂药物在体内作用过程可分为三个相:药剂相、药代相和药效相ADME/T是药物设计自始至终要改善的问题 P11二、先导物如何发现先导物是寻找新药的主要途径,也是新药R&D的关键,是药物发现的第一步发现先导化合物的途径:筛选和合理药物设计现代筛选途径涉及组合化学、组合库、高通量高内涵筛选P12合理药物设计的概念P12基于靶点的药物设计合理药物设计分类基于性质的药物设计基于结构的药物设计在已知作用靶点的三维结构可采用基于靶点的直接药物设计,有配体对接和从头设计等策略P16在未知大部分靶点的结构,宜用基于配体的间接药物设计CADD既可用于先导物衍生,也可用于先导物优化,是实现基于结构和基于性质的药物设计的技术手段三、筛选途径分类筛选模型P17发现从传统的整体动物器官和组织水平发展到细胞和分子水平有效的筛选模型和方法:光学试验、荧光筛选、基于细胞的筛选、小动物试验系列、影像学组合化学的定义:P18外消族转换:P21药物设计的目标P22重点以及发展方向第一章基于筛选途径的药物发现主要内容组合化学技术的特点与分类;固相组合合成的优缺点,混分法、光控法的过程,固相载体和连接基团的基本要求;液相组合合成的优缺点,索引组合合成的基本过程;药物靶点的选择和确证;筛选模型和方法学;高通量筛选的概念和组成部分;高内涵筛选的概念与应用范围。

《药物设计学》PPT课件

《药物设计学》PPT课件
原子的引进位置对于活性的影响很大。
医学PPT
36
氟原子电负性最大,体积却与 氢原子大小相近,和碳原子形 成的C-F键很稳定,因此在药 物的结构改造中经常被使用。
5-氟尿嘧啶
医学PPT
37
药物与受体的互补性
分子识别是由两个分子的多个相应的原 子或基团在空间和性质上的高度特异性的契 合和适配,这种特异性的本质就是双方的互 补性。药物与受体的分子识别和相互作用是 物理化学过程,主要是由非键作用引起的。 用以识别的药物和受体之间的非键作用与维 持生物大分子空间构型的键合力在本质上是 相同的。
的不同所形成的异构现象称为构象异构。
医学PPT
43
O R
NH
NH R
O
(E)-型桂皮酰胺类化合物 (Z)-型桂皮酰胺类化合物
具有抗惊活性
具有中枢兴奋活性
医学PPT
44
Cl CH3
H3C OH
a
Cl
Cl CH3
某些化学物质(药物、 毒等)可以与生物大分子 (受体蛋白或酸)不可逆地 构成共价键,对酶来讲是不 可逆抑制作用。 如:有机磷 杀虫剂、胆碱酯酶抑制剂和 烷化剂等都属于此类。具有 高张力的三元环或四元环内 酯或内酰胺类也具有类似作 用。这种作用常常形成长期 的药理作用剂毒理效应,如 抗癌药、抗寄生虫药、化疗 药、抗生素、杀虫剂等。
药物设计学
第二节 分子药 理学基础
医学PPT
1
知识要点
❖ 掌握药物结构的分类,取代基变化与生物活 性的关系。
❖ 掌握药物与受体之间的互补性与药物设计的 关系
❖ 熟悉信号转导过程及相关内容
医学PPT
2
摘要
❖ 信号转导与疾病机理研究
❖ 药物与受体作用的化学本质

药物设计学

药物设计学

在早期研究中同时评价药效和药 代性质,可降低后期开发的风险
对所设计的化合物进行搜集和制备,然后通过活性筛选,对达到所设定 的活性指标的化合物,定为入选的苗头化合物(Hit),再经不同模型的 评价和提高活性强度的标准,以及化合物的结构类型和知识产权等多种 因素考虑,在苗头化合物中确定先导化合物。
新药设计 与研究
二、生物电子等排取代
利用生物电子等排体进行似物的设计,既可产生相
似的生物效应,也可产生相反的生物效应。
例:哌替啶衍生物的镇痛活性
O O
NR
R H -O-Ph -CH2-Ph -NH-Ph -S-Ph
相对镇痛作用 1 12 20 80 1.5
三、环类似物 合环与开环 合成环状物,或环状物开环后,分子的形状、构象 和表面积发生变化。 ①影响分子与受体的识别和结合; ②影响药代动力学性质。
结构复杂 合成困难 资源有限 疗效欠佳
揭示作 提高优 用机理 化效率
例如:吗啡和局 麻药可卡因的结 构修饰和改造。
侯选药物
修饰/改 造碎片 类似物
结构简化 便于合成 毒副作用更小/少 利于工业化 药效提高、新的药效
一、概述
第一节 类似物
先导化合物
具有相同/相似 的药效基团和/ 或结构骨架
结构改造 相似性原理
药物设计 的经典原 理和方法
相似性原理 拼合原理 物电子等排原理 前药原理 软药原理
此外,还有导向原理、基于受体结构的设计、 基于配体分子的设计等。
一、概述

第一节 类似物
先导化合物
具有相同/相似 的药效基团和/ 或结构骨架
结构改造 相似性原理
类似物
评价活性,建立结构 与活性关系(SAR)

《药物设计学》课件

《药物设计学》课件

01
生物利用度是指药物被吸收进入血液循环的程度和速率。
02
提高药物的生物利用度可以提高药物的疗效,减少用药剂量和
副作用。
常用的方法包括改善药物的溶解度和渗透性、优化给药途径和
03
剂型等。
降低药物的副作用
1
副作用是指药物在治疗过程中产生的与治疗目的 无关的不适反应。
2
降低药物的副作用可以提高患者的用药依从性和 生活质量。
抑制或杀灭病原体
详细描述
抗生素是用于治疗由细菌或真菌引起的感染 的药物。在药物设计案例中,通过研究病原 体的生长、繁殖和代谢机制,开发出能够抑 制或杀灭病原体的抗生素。这些药物的作用 机制包括干扰病原体的细胞壁合成、破坏其
细胞膜或抑制其核酸合成等。
案例四:抗病毒的药物设计
总结词
抑制病毒复制
详细描述
它涉及到化学、生物学、药理学等多 个学科的知识,是现代药物研究与开 发的重要基础。
药物设计学的研究内容
基于已知的生物活性物质的结构和性质,进行药 物设计和优化。
研究药物与靶点之间的相互作用机制,以及药物 在体内的吸收、分布、代谢和排泄等过程。
探索药物设计的新理论、新方法和新技术,提高 药物设计的效率和成功率。
与开发提供了新的思路和方法。
02
药物设计的理论基础
药物与机体的相互作用
药物进入机体后的吸收、分布、代谢和排泄过程
药物通过各种方式进入机体后,会经过一系列的生理过程,如吸收进入血液循环系统,分布到各个组织器官,代 谢和排泄出体外。
药物与靶点的相互作用
药物在体内的作用主要通过与靶点(如受体、酶、离子通道等)的相互作用实现,这种相互作用决定了药物的疗 效和安全性。

药物设计学复习资料

药物设计学复习资料

名词解释1、其源性配体或者天然药物的化学构造特征,根据配体理化性质寻觅和设计合理的药物分子,以便有效发现、到达和选择性作用与靶点的又具有药理活性的先导物;或者根据靶点 3D 构造直接设计活性配体。

2、HTS,以份子水平和细胞水平的实验方法为根抵,以微板形式作为实验工具载体,以自动化操作系统执行实验过程,以灵敏快速的检验仪器采集实验数据,以计算机分析处理实验数据,在同一时间检测数以万计的样品并以得到的相应数据库支持运转的技术体系。

3、吸收:药物从用药部位进入体循环的过程。

分布:药物在血液、组织及器官间的可逆转运过程。

代:药物在吸收过程或者进入体循环后,在体酶系统、体液的PH 或者肠道菌从的作用下,发生构造转变的过程,此过程也称为生物转化。

排泄:药物或者其代物排除体外的过程。

4、TBBD,以生命科学为根抵,根据疾病特异的功能、病症和机制,发现和研究药物作用靶点以及与预防相关的调控过程。

5、PBBD,运用计算机辅助设计软件,根据配体的理化性质对设计的先导物构造预测它们的吸收、分布、代、排泄和毒性〔ADME/T〕,估计药物在体的释放度和生物利用度,判断类药性6、SBDD,以计算机辅助药物设计为手段,其方法分为基于靶点的直接药物设计和基于配体的简介药物设计两类,运用受体学说和份子识别原理,设计对受体发展调控的先导物,或者根据已有药物作用力大小和构效关系判断来猜测新化合物的药效,到达发现活性份子的目地。

7、研究的是一组化合物的生物与其构造特征之间的相互关系,构造特征以理化参数、份子拓扑参数、量子化学指数和构造碎片指数表示,用数理统计的方法发展数据回归分析,并以数学模型表达和概括量变规律。

8、3D-QSAR,以配体和靶点的三维构造特征为根抵,根据份子的能变化和份子间相互作用的能量变化,将一系列药物的理化参数和三维构造参数与药效拟合出定量关系,再以此化合物预测新化合物的活性,发展构造的优化和改造。

定义活性位点→产生配体份子→ 配体份子打分→合成及活性测定→先导物①先导物不一样,前药是以原药为先导物的,软药的先导物既可以是原药也可以是原药的代物;②作用方式不一样,前药在体外无活性,惟独到达靶点释放出原药才有活性,而软药在体外是有活性的,它们到达靶点发挥治疗作用后一步代失活。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

资料仅供参考,不当之处,请联系改正。
2.命中率高 片段分子具有体积小和复杂程度低的特征,理论上更
加容易与药靶结合,加上片段筛选技术的灵敏度高,因此 具有比较高的筛选命中率。
资料仅供参考,不当之处,请联系改正。
基于片段筛选的命中率是高通量筛选的10-1000倍。 从筛选的质量上看,高通量筛选所得到的活性化合物虽然 可能和药靶具有比较高的亲和力,但是当具体到分子中各 个子结构,他们很难与对应的药靶活性位点区域有最佳的 结合。
资料仅供参考,不当之处,请联系改正。
基于片断分子设计的研究方法
一般来说,基于片段分子的设计研究可以分为三个 阶段:片段筛选、片段与药靶复合物的结构确证和基于片 段构建新分子。
资料仅供参考,不当之处,请联系改正。
1.片段库的建立: 需要考虑三个因素:库容量、化学结构多样性和类药
性,类药性符合三规则。
资料仅供参考,不当之处,请联系改正。
对靶标认识水平不同的药物分子设计
对 靶 标 有蛋白质晶体结构 的 认 识 只有药效团特征 程 度
只有相关蛋白质组
基于结构的设计 基于药效团的设计 有目标的化合物库
什么都不知道
化合物的多样性
多样性化合物库
From Leach AR, Hann MM, Burrows JN et al. Fragment screening: an introduction. Mol. BioSyst., 2006, 2: 429-446
资料仅供参考,不当之处,请联系改正。
苗头和先导物的发现途径
天然活性物质 基于结构的分子设计 随机筛选 虚拟筛选
问题的出现
资料仅供参考,不当之处,请联系改正。
以靶标为核心的新药研发,切入点是用体外方法评价 活性。
苗头化合物(hit)多以活性强度为衡量标准。 hit-tolead和先导物优化,大都加入或变换基团,以增加与靶标 结合的机会和强度。
资料仅供参考,不当之处,请联系改正。
一般“不敢”去除基团或片断,以免丢失参与结合的 原子或基团(即药效团)。
高通量筛选的化合物过于“成熟”,留给后续的结构 变换的余地小,导致投入-产出比低。
资料仅供参考,不当之处,请联系改正。
基于片段分子设计的优点(高通量筛选的不足)
1.可以探索更为广阔的空间
发现苗头的概率很低。理论计算,含有30个C、N、 O、S原子的化合物有1060种,而高通量筛选的化合物数即 使以百万计(106),筛选也只占很少部分。
高通量筛选(High throughput screening,HTS)技术 是指以分子水平和细胞水平的实验方法为基础,以微板形 式作为实验工具载体,以自动化操作系统执行试验过程, 以灵敏快速的检测仪器采集实验结果数据,以计算机分析 处理实验数据,在同一时间检测数以千万的样品,并以得 到的相应数据库支持运转的技术体系;
资料仅供参考,不当之处,请联系改正。
高通量筛选所得化合物的分子量范围一般在250-600 之间,高通量筛选活性一般在微摩尔级,而药物分子的分 子量范围一般在300-500之间,活性一般为一至数十个钠 摩尔。如果将高通量筛选所得活性化合物优化为候选新药, 既要在活性方面有较大幅度的提高,而分子量又不能有过 大的跳跃,难度显然比较大。
资料仅供参考,不当之处,请联系改正。
Fragment Rule of 3 MW < 300 # H-Bond Donor <= 3 # H-Bond Acceptors <= 3 cLogP <= 3(# Rotatable bonds <= 3)
资料仅供参考,不当之处,请联系改正。
资料仅供参考,不当之处,请联系改正。
HTS具有微量、快速、灵敏和准确等特点。简言之就 是可以通过一次实验获得大量的信息,并从中找到有价值 的信息。
资料仅供参考,不当之处,请联系改正。
片断及其特征
片断是比类药分子小的化合物,分子量或非氢原子数 低于类药性化合物。
化学结构比类药分子简单。 片断应易溶于水,因需要高浓度试液方呈现与靶标的 结合信号。 结构上有可以延伸的位置、原子或基团。
化合物分子量比较大,亲脂性强,优化成药的难度大。 组合化学库尤甚。
资料仅供参考,不当之处,请联系改正。
片段分子,符合三规则的片段数目的分子量<160的含 上述原子化合物数为107,筛选的分子(片段库)为 103~104 个。发现苗头的几率高。
公司之间的化合物的结构类型相似,筛选靶标相同, 易有知识产权之纠葛。
➢上市的口服药物平均分子量为340。
➢ 处于 I 期临床试验的候选药物,分子 量小于400的成功率为50%,分子量加 大,成功率降低。
Fragment Rule of 3 MW < 300 # H-Bond Donor <= 3 # H-Bond Acceptors <= 3 cLogP = 3 # Rotatable bonds <= 3
分子量比较低的片段分子相对比较容易能和药靶局部 区域形成较好的匹配。
资料仅供参考,不当之处,请联系改正。
3.发现新药的可行性高
700 相 对 600 分 子 质 量 500
400
HTS苗头物
药物候选物 药物
300
片断化合物 200
100 0
1 mM
100 μM
1μM
10 nM
1 nM
药效强度
Rees et al., Nature Rev. Drug Disc. 2004
资料仅供参考,不当之处,请联系改正。
而片段的分子量范围在120-250,活性一般在钠摩尔 至微摩尔级,在片段优化至候选药物的优化过程中,分子 量和生物活性呈线性增长关系,更加符合新药发现的一般 规律,可行性也强。
资料仅供参考,不当之处,请联系改正。
高通量筛选
资料仅供参考,不当之处,请联系改正。
资料掌握:基于片段药物设计的基本思路;基于片段药物设计的优
点;片段筛选的主要检测技术;片段优化的常用方法。 熟悉:磁共振检测技术的分类和原理;SAR-by-NMR的原理
和应用;Tether和二次Tether技术的原理;结晶筛选 的研究流程。 了解:基于片段药物设计的发展历史;基于片段药物设计与高 通量筛选的比较;基于片段药物设计的成功实例。
相关文档
最新文档