Monodisperse MFe2O4 (M ) Fe, Co, Mn) Nanoparticles

合集下载

组装法制备巯基改性磁性SBA-15

组装法制备巯基改性磁性SBA-15

2018年第37卷第4期 CHEMICAL INDUSTRY AND ENGINEERING PROGRESS·1501·化 工 进展组装法制备巯基改性磁性SBA-15张亚平1,3,甄彬2,3,黎汉生3,冯亚青1(1天津大学化工学院,天津 300072;2天津理工大学化学化工学院,天津 300384;3北京理工大学化工与环境学院,北京 100083)摘要:采用热分解法制备了单分散、平均粒径约15nm 的锰铁氧体磁性纳米粒子。

通过正硅酸乙酯与磁性纳米粒子表面油酸盐的配体交换将磁性纳米粒子锚定在SBA-15表面。

并且将负载过程与巯基改性过程耦合制备了巯基改性的磁性SBA-15。

考察了合成SBA-15过程中干燥方式对其结构和性质的影响,研究了负载磁性纳米粒子和巯基改性顺序对巯基改性磁性SBA-15的结构和性能的影响。

结果表明,喷雾干燥法合成的SBA-15介孔孔壁较薄,但具有更大的比表面积、孔体积和平均孔径。

以其为载体时磁性纳米粒子负载量更大,所得磁性SBA-15的饱和磁强度更高。

当将巯基改性和负载磁性纳米粒子分为前后两步时,巯基改性SBA-15的表面疏水环境有利于吸附疏水磁性纳米粒子,所得磁性SBA-15负载磁性纳米粒子量更大,饱和磁强度更高。

磁性纳米粒子粒径大于SBA-15孔径,其主要负载于SBA-15外表面,有利于得到介孔孔道通畅的磁性SBA-15。

巯基改性的磁性SBA-15的孔体积介于0.56~0.6cm 3/g ,比表面积介于353~432m 2/g ,饱和磁强度最高达到0.91emu/g ,可作为一种大容量的吸附材料用于吸附分离、药物缓释等领域。

关键词:分子筛;二氧化硅;复合材料;磁性能;表面改性中图分类号:TB332 文献标志码:A 文章编号:1000–6613(2018)04–1501–08 DOI :10.16085/j.issn.1000-6613.2017-1294Preparation of sulfydryl functionalized magnetic SBA-15 by anassembling processZHANG Yaping 1,3,ZHEN Bin 2,3,LI Hansheng 3,FENG Yaqing 1(1School of Chemical Engineering and Technology ,Tianjin University ,Tianjin 300072,China; 2College of Chemistryand Chemical Engineering ,Tianjin University of Technology ,Tianjin 300384,China ;3School of Chemical Engineeringand the Environment ,Beijing Institute of Technology ,Beijing 100083,China )Abstract: Monodisperse and magnetic manganese ferrite nanoparticles with average diameter of 15nm were synthesized by a thermal decomposition method. The obtained magnetic nanoparticles were anchored onto the surface of SBA-15 through ligand exchange reaction of oleic acid and tetraethylorthosilicate. Meanwhile ,sulfydryl functionalized magnetic SBA-15 was prepared by combining the anchoring process and surface modification of SBA-15. The influence of drying methods used during the synthesis of SBA-15 on its structure and properties was investigated. Effect of execution sequence of the anchoring and modification process on the structure and properties of sulfydryl functionalized magnetic SBA-15 was discussed. The result showed that SBA-15 prepared byspray drying showed thinner pore wall ,higher specific surface area ,pore volume and larger pore diameter ,and could support more magnetic nanoparticles and thus exhibited stronger saturation讲师,研究方向为催化剂与催化反应工程研究。

一种茉莉炭疽病病原菌的鉴定、生物学特性及药剂筛选

一种茉莉炭疽病病原菌的鉴定、生物学特性及药剂筛选

2024年3月 热带农业科学第44卷第3期Mar. 2024 CHINESE JOURNAL OF TROPICAL AGRICULTURE Vol.44, No.3收稿日期 2023-03-14;修回日期 2023-05-15基金项目 广西农业科学院科技发展基金(No.桂农科2021JM112,No.桂农科2022JM80);科技先锋队“强农富民”“六个一”专项行动(No.桂农科盟202412)。

第一作者 孙明艳(1992—),女,硕士,助理研究员,主要研究方向为花卉真菌病害及防治技术,E-mail :****************。

通讯作者 卜朝阳(1966—),女,硕士,研究员,主要研究方向为主要从事花卉栽培及育种,E-mail :**************。

一种茉莉炭疽病病原菌的鉴定、生物学特性及药剂筛选孙明艳 刘可丹 李春牛 李先民 喇燕菲 卜朝阳(广西壮族自治区农业科学院花卉研究所 广西南宁 530007)摘 要 在广西横州市发现一种茉莉叶部炭疽病病害,明确其病原菌种类,并对其开展生物学特性和有效杀菌剂筛选研究。

通过病原菌分离纯化、致病性鉴定与形态学观察,运用MEGA v.10.1.5软件对代表菌株HL6-1构建基于ITS 、ACT 、CHS-1、TUB2、GAPDH 和ApMat 多基因测序结果的系统发育树,明确该菌株为暹罗炭疽菌Colletotrichum Siamense ,菌株气生菌丝绒毛状,菌落初为白色,后变为深灰色,有橘色孢子团的产生;分生孢子无色,整体长椭圆形,单胞,平均大小为14.58 μm×5.97 μm ;生物学特性研究结果表明,该菌株最适培养温度为28℃,最适pH 为7,最适碳源为葡萄糖,最适氮源为硝酸钠。

采用菌丝生长速率法进行室内毒力测定,筛选有效杀菌剂,结果表明,吡唑醚菌酯、苯醚甲环唑、咪鲜胺的抑菌效果较好,EC 50值均小于1 mg/L 。

纳米铁酸锌的共沉淀法制备及其光催化性能

纳米铁酸锌的共沉淀法制备及其光催化性能

纳米铁酸锌的共沉淀法制备及其光催化性能张启伟【摘要】采用简便易行的共沉淀法制备了铁酸锌纳米颗粒,考察了其对亚甲基蓝溶液的光催化降解性能.SEM和XRD分析结果表明,所制备的产品纯度较高,微观形貌为直径约100~200 nm的尖晶石型铁酸锌纳米颗粒;样品的FTIR谱图中有明显的金属-氧键的特征峰.所制备的纳米铁酸锌颗粒对亚甲基蓝溶液的光催化降解能力较强,弱酸性体系有助于染料溶液的降解.100 mL 10 mg/L的亚甲基蓝溶液在pH值为5,纳米铁酸锌催化剂加入量为30 mg,可见光光催化降解3h后的降解率达到92.1%.%Zinc ferrite nanoparticles were prepared by a facile coprecipitation method,and their photocatalytic performance on degradation of methylene blue solution was studied.SEM and XRD analyses show that the pre-pared products are spinel zinc ferrite with high purity and nanoparticles with about 100 to 200 nm in diame-ters.Moreover, FTIR spectrum has obvious characteristic peaks attributed to the metal-oxygen bonds.The prepared nanoparticles have strong ability to photocatalytic degradation of methylene blue solution, and the weak acid system was helpful to the degradation of dye solution.Under visible light irradiation for 3 hours,the photocatalytic degradation rate of methylene bluesolution(100 mL 10 mg/L, pH =5)reachs 92.1%after adding 30 mg of nano zinc ferrite.【期刊名称】《大连交通大学学报》【年(卷),期】2018(039)002【总页数】4页(P99-102)【关键词】铁酸锌;纳米颗粒;共沉淀;可见光催化;亚甲基蓝【作者】张启伟【作者单位】中国铁路济南局集团有限公司青岛机务段,山东青岛266021【正文语种】中文0 引言作为一种新型窄带隙半导体材料,纳米铁酸锌在磁性、光催化、储能等领域已得到广泛研究与应用. Deng等利用简便一步溶剂热法调控制备出单分散铁酸盐微球MFe2O4(M= Fe, Mn, Co, Zn),这些亲水性和生物相容性微纳米材料在高级磁性材料、铁磁流体技术以及生物医学等领域将有广泛的应用[1]. Valenzuela等制备、表征了铁酸锌纳米材料,并研究了其对苯酚的光催化降解性能[2]. Sharma等和NuLi等分别制备并研究了铁酸锌作为Li离子电池电极材料的电化学性能[3- 4]. 铁酸盐纳米材料的制备方法有机械球磨法[5]、溶胶-凝胶法[6-7]、溶剂热法[8]、化学气相沉积法[9]和微波辅助燃烧法[10]等等,每种方法都有其优势与不足,如有的方法所制备的产品杂质较多,有的方法手续繁琐、操作费时,有的方法需要高温高压的苛刻反应条件等等.本文采用简便易行的共沉淀方法,制备出了纯净的尖晶石型颗粒状纳米铁酸锌,并研究了其对染料亚甲基蓝溶液的可见光光催化性能.1 实验部分1.1 药品及仪器Zn(NO3)2·6H2O,Fe(NO3)3·9H2O,NaAc,乙二醇,无水乙醇(均为分析纯),X射线衍射仪(Shimadzu LabX-6000日本),扫描电镜(Quanta 200 FEG美国),傅里叶变换红外光谱仪(BRUKER VERTEX 70德国),电子天平(梅特勒-托利多仪器有限公司),台式离心机(TG16-WS长沙湘仪离心机有限公司),2000型分光光度计(尤尼柯(上海)仪器有限公司).1.2 铁酸锌纳米材料的制备方法称取4.04 g Fe(NO3)3·9H2O和1.48 g Zn(NO3)2·6H2O溶解在200 mL蒸馏水中,用氢氧化钠调节溶液pH值至9,磁力搅拌12 h并静置至出现明显分层. 使用台式高速离心机离心分离,去离子水洗涤4~5次.将所得到的沉淀80℃干燥12 h,取出沉淀置于坩埚中,650℃煅烧6 h.所得产物用玛瑙研钵充分研磨成细小粉末状.1.3 铁酸锌纳米材料的表征方法通过SEM对制备出的纳米铁酸锌样品进行微观形貌和尺寸的观察和分析. 利用XRD对样品的纯度和晶体结构进行测试分析. 采用FTIR对样品中的化学键进行扫描分析.1.4 纳米铁酸锌的光催化性能测试以亚甲基蓝染料溶液作为目标污染物,首先利用分光光度计测定溶液的吸收光谱曲线,确定测定波长. 然后在室温条件下,一定量的催化剂铁酸锌颗粒加入亚甲基蓝染料溶液中(10 mg/L),进行可见光光催化性能研究. 首先将反应溶液于暗室中搅拌40 min后到达吸附平衡,接着打开模拟太阳光源(氙灯)进行照射. 在3 h的光催化降解过程中,每间隔30 min 取3 mL反应液,以高速离心机(转速9 000 转/min,时间5 min)分离出催化剂得到澄清溶液. 测定反应液在亚甲基蓝溶液最大吸收波长处的吸光度值,通过计算公式R = (A0-At)/A0×100% 考察纳米铁酸锌颗粒对亚甲基蓝溶液的光催化性能. 其中:R为亚甲基蓝溶液的降解率,A0为溶液的起始吸光度,At为溶液在t时刻的吸光度.2 结果与讨论部分2.1 铁酸锌纳米颗粒的表征2.1.1 SEM表征(a)未研磨(b)研磨后图1 共沉淀法制备铁酸锌纳米材料的SEM图利用扫描电子显微镜对制备出的纳米材料进行了微观形貌表征. 从图1(a)中可以发现,产品的微观形貌是颗粒状,部分团聚成大块颗粒,经充分研磨后催化剂颗粒尺寸均为100~200 nm,且整体分散性较好(如图1(b)). 说明利用共沉淀法可以制备出颗粒尺寸均一、分散性较好的纳米铁酸锌光催化剂.2.1.2 XRD谱图通过特征衍射峰的位置和强度可以了解样品的晶型和纯度. 如图2所示,样品的各个衍射峰与尖晶石型铁酸锌样品的JCPSD标准卡片(22-1012)一一对应. 其中衍射角2θ角在29.78°、35.22°、36.78°、42.81°、53.19°、56.61°和62.18°处分别与铁酸锌的(220)、(311)、(222)、(400)、(422)、(511)和(440)晶面相对应. 谱图中未见杂质峰,说明所制备的纳米材料比较纯净.图2 共沉淀法制备铁酸锌纳米材料的XRD图2.1.3 FTIR分析纳米铁酸锌在4 000~450 cm-1范围内的红外光谱如图3所示. 在569 cm-1和465 cm-1两处的特征峰归属于铁酸锌晶体中Fe-O键和Zn-O键,说明尖晶石型铁酸锌被成功制备出来. 3405和1 447cm-1是吸附的水分子和表面羟基的特征峰,2 364 cm-1是空气中或催化剂表面吸附的痕量CO2的特征峰[11]. 此外2973和1 048 cm-1两处强度不高的杂质峰说明所制备的纳米铁酸锌催化剂纯度还是比较高的.图3 共沉淀法制备铁酸锌纳米材料的FTIR图2.2 纳米铁酸锌光催化性能考察2.2.1 亚甲基蓝溶液的吸收光谱曲线亚甲基蓝溶液的吸收光谱曲线如图4所示,在400~800 nm的可见光谱区有两个特征峰,668nm是其最大吸收波长,以此作为测定波长灵敏度比较高,误差较小. 因此,在668 nm处测定亚甲基蓝溶液的吸光度,在朗伯-比尔定律A=εbc中,当摩尔吸光系数ε和比色皿的厚度b为定值时,吸光度A与浓度c具有正比关系,所以通过吸光度A的变化可以计算亚甲基蓝溶液的光催化降解率.图4 亚甲基蓝溶液的吸收光谱曲线2.2.2 不同用量纳米铁酸锌对亚甲基蓝溶液的催化性能考察如图5所示,在没有催化剂只有氙灯照射的条件下,亚甲基蓝溶液的光降解率只有53.6%,在加入铁酸锌催化剂(加入量分别为10、30、50mg)的条件下亚甲基蓝溶液的光催化降解率迅速提高,在前半个小时降解速度最快,经过3 h的光催化降解后,30 mg的催化体系溶液的降解率最高,达到90.2%. 10 mg的催化剂用量不够,而50 mg的催化剂用量又过多,多余的催化剂影响了光的照射及染料的吸附和降解,使得光催化效率降低,所以纳米铁酸锌的最佳用量是30 mg.图5 不同催化剂用量对亚甲基蓝溶液降解率的影响2.2.3 溶液pH值对亚甲基蓝溶液降解率的影响亚甲基蓝溶液浓度为10 mg/L,催化剂的加入量为30 mg, 调节溶液的pH值,溶液的降解率如图6所示.溶液酸度在中性到酸性条件下,亚甲基蓝的降解率较高,而碱性条件不利于染料溶液的降解.在溶液pH值为5时,亚甲基蓝溶液的降解率最高达到92.1%. 亚甲基蓝水溶液的pH大约为7,在弱酸到中等酸度的条件下,过量的H+与结合生成进一步转化成OH·,而和这三种自由基均可氧化亚甲基蓝,提高了降解体系的光催化氧化能力,故pH值为5时溶液的降解率最高. 但是当体系的酸度进一步增加,pH下降到3时,溶液中H+的量增大,OH-的浓度显著降低,致使铁酸锌催化剂表面的活性基团OH·的数量减少,所以亚甲基蓝溶液被氧化的程度有所减弱. 而碱性条件不利于的生成,使得具有氧化性的自由基数量减少,亚甲基蓝溶液的降解率降低.图6 溶液pH对亚甲基蓝溶液降解率的影响3 结论(1)利用简便易行的共沉淀方法制备出了尖晶石型铁酸锌纳米颗粒,直径约为100~200 nm,产品纯度较高;(2)所制备的纳米铁酸锌颗粒对亚甲基蓝溶液的光催化降解能力较强,弱酸性体系有助于染料溶液的降解;(3)100 mL 10 mg/L的亚甲基蓝溶液在pH值为5,纳米铁酸锌催化剂加入量为30 mg, 可见光光催化降解3 h后的降解率达到92.1%.参考文献:[1]DENG H, LI X L , PENG Q, et al. Monodisperse magnetic single-crystal ferrite microspheres [J]. Angew.Chem. Int. Ed., 2005, 44: 2782-2785.[2]VALENZUELA M A, BOSCH P, JIMENEZ-BECERRILL J, et al. Preparation, characterization and photocatalytic activity of ZnO, Fe2O3 and ZnFe2O4 [J]. J. Photochem. Photobiol A., 2002, 148: 177-182.[3]SHARMA Y, SHARMA N, SUBBA RAO G V, et al. Li-storage and cyclability of urea combustion derived ZnFe2O4 as anode for Li-ion batteries [J]. Electrochim. Acta ,2008, 53: 2380-2385.[4]NULI Y N, CHU Y Q, QIN Q Z. Nanocrystalline ZnFe2O4 and Ag-Doped ZnFe2O4 films used as new anode materials for Li-ion batteries [J]. J. Electrochem. Soc., 2004, 151(7): A1077-A1083.[5]YANG H M , ZHANG X C, HUNG C H. Synthesis of ZnFe2O4nanocrystallites by mechanochemical reaction [J]. J. Phys. Chem. Solids, 2004, 65: 1329-1332.[6]VEITH M, HAAS M, HUCH V. Single source precursor approach for the sol-gel synthesis of nanocrystalline ZnFe2O4 and zinc-iron oxide composites [J]. Chem. Mater., 2005, 17: 95-101.[7]HERNANDEZ A, MAYA L, SANCHEZ-MORA E, et al. Sol-gel synthesis, characterization and photocatalytic activity of mixed oxide ZnO-Fe2O3 [J]. J. Sol-Gel Sci. Techn., 2007, 42: 71-78.[8]HU X L, YU J C, GONG J M, et al. α-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties [J]. Adv. Mater., 2007, 19: 2324-2329.[9]TAHIR A A, WIJAYANTHA K G U, MAZHAR M, et al. ZnFe2O4 thin films from a single source precursor by aerosol assisted chemical vapour deposition [J]. Thin Solid Films, 2010, 518: 3664-3668.[10]SERTKOL M, KOSEOGLU Y, BAYKAL A, et al. Synthesis and magnetic characterization of Zn0.7Ni0.3Fe2O4 nanoparticles via microwave-assisted combustion route [J]. J. Magn. Magn. Mater., 2010, 322: 866-871.[11]PRADEEP A, PRIYADHARSINI P, CHANDRASEKARAN G. Sol-gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study [J]. J. Magn. Magn. Mater., 2008, 320: 2774-2779.。

尾静脉注射方法考察Stearic_省略_因转染性能及磁共振可视化效果研究_谢丽斯

尾静脉注射方法考察Stearic_省略_因转染性能及磁共振可视化效果研究_谢丽斯

第 2 卷 第5期2013年9月集 成 技 术基金项目:国家重点基础研究发展计划(973)项目(2010CB732604),广东省低成本健康创新技术项目。

作者简介:谢丽斯,研究助理,研究方向为分子影像学;高琳,硕士,研究助理,研究方向为分子影像学;隆晓菁,博士,助理研究员,研究方向为磁共振图像处理。

*通讯作者:王志勇,助理研究员,研究方向为分子影像学,E-mail:zy.wang@;郑海荣,博士,研究员,研究方向为生物医学超声和医学成像,E-mail:hr.zheng@。

尾静脉注射方法考察Stearic-PEI/SPIO 纳米基因载体的基因转染性能及磁共振可视化效果研究谢丽斯 高 琳 王志勇* 隆晓菁 郑海荣*(中国科学院深圳先进技术研究院 深圳 518055)摘 要 实验应用硬脂酸-聚乙烯亚胺包裹超顺磁氧化铁(Superparamagnetic Iron Oxide,SPIO)装载目的基因构建可视化纳米复合物,进行 BABL/c 雌性小鼠体内磁共振成像实验、组织学检测,探讨其是否能够有效地介导体内基因表达以及产生磁共振成像(Magnetic Resonance Imaging,MRI)效果。

MRI 实验结果显示,对小鼠尾静脉注射复合物 0.5 小时后进行磁共振扫描,与注射生理盐水的对照组相比实验组 T2 加权信号明显降低,信号强度仅为对照组的 35%;48 小时后,实验组 T2 加权信号强度略有回升,但与对照组信号强度相比仍存在显著差异。

组织学结果显示可视化基因纳米复合物能够穿过血管内皮细胞进入肝脏组织,并释放 DNA 在细胞内成功表达,但基因表达效果较差。

综合 MRI 成像及组织检查实验结果可知,该纳米颗粒具有优良的 MRI 成像性能,但通过尾静脉注射方法基因转染效率较低。

关键词 聚乙烯亚胺;超顺磁氧化铁;磁共振成像;基因治疗The Effects of Tail Vein Injection on Gene Delivery and MR Imaging ofStearic-PEI/SPIO NanovectorsXIE Li-si GAO Lin WANG Zhi-yong * LONG Xiao-jing ZHENG Hai-rong *( Shenzhen Institutes of Advanced Technology , Chinese Academy of Sciences , Shenzhen 518055, China )Abstract A visible nanoparticle was constructed via recombination of stearic acid modi fi ed polyethyleneimine (stearic-PEI) and superparamagnetic iron oxide (SPIO) to combine with DNA. Then through tail vein injection, the stearic-PEI/SPIO/DNA nanoparticles were ef fi ciently delivered to BABL/c female mice that were visualized by MRI (Magnetic Resonance Imaging) and con fi rmed by histology. The MRI results showed that the experimental group’s T2 signal intensities signi fi cantly decrease at 0.5 h after injection, just 35% of that in the control group. Although the experimental group’s T2 signal intensities slightly recovered at 48 h after injection, there were still obvious differences between the control group and experimental group. The histological staining showed that the visible gene deliver nanocomplexes could pass through vascular endothelial cell into liver tissues and release DNA into cells, but with low gene expression effect. From the foregoing results, the nanoparticles have excellent magnetic resonance imaging performance, but low gene transfection ef fi ciency via tail vein injection.Keywords polyethylenimine; superparamagnetic iron oxide; magnetic resonance imaging; gene therapy5期谢丽斯,等:尾静脉注射方法考察Stearic-PEI/SPIO纳米基因载体的基因转染性能及磁共振可视化效果研究611引 言安全高效的基因转染体系以及对基因载体的无创性示踪评估方法是目前基因治疗研究中的两个重要课题。

高温磁性材料

高温磁性材料
At lower temperatures this "solution" phase will decompose into 2:17 and 1:5.
1150 oC
_______ * S. Derkaoui, N. Valignat and C.H. Allibert, J. Alloys and Compounds 232 (1996) 296.
Parallel cut C
Perpendicular cut
C
C
All three phases are almost perfectly
coherent.
_______
According to the latest findings, the
lamellar phase is Zr(Co,Fe)3*.
|| c-axis
Cell size: 72 nm, Lamella: 0.033/nm
Incomplete cells Cell size: 25 nm
No lamella
T 1150 oC

Few lamella
830 °C
Cell size: 80 nm, Lamella: 0.054/nm 0.7°C/min
DDisistatannccee ffrroomm cCeennteterroof fceClel blloBuonudnardyary(n(mn)m )
Aging
Cooling
Coercivity of the 2:17 magnets increases as Cu concentrates at the cell boundaries
PAS-5 Satelite,1997

四氧化三铁纳米粒子的制备和表征

四氧化三铁纳米粒子的制备和表征

太原理工大学现代科技学院毕业设计(论文)任务书Fe3O4纳米粒子的水热合成及结构表征摘要以二茂铁(0.20g)和过氧化氢为原料,以乙醇,丙酮为混合溶剂(共30mL),采用水热合成方法在200℃反应条件下于聚四氟乙烯衬底反应釜中合成Fe3O4纳米粒子。

实验过程中,研究了溶剂极性,加热时间,氧化剂的用量等实验条件对形成纳米粒子的影响。

关键词:磁性,纳米材料,水热合成Hydrothermal Synthesis and Characterization of Fe3O4NanoparticlesAbstractMagnetite nanoparticles have been prepared via hydrothermal synthesis process at200°C in the stainless autoclave using ferrocene and hydrogen peroxide as reactantand ethanol, acetone, distilled water as solvent. In the experiment, we study theinfluence of solvent polarity ,heating time, the amount of hydrogen peroxide on theformation of nanoparticles.Key words: magnetic, nanomaterials, hydrothermal synthesis目录摘要 (6)Abstract (6)第一章. 绪论 (9)1.1磁性纳米材料概述 (9)1.2磁性纳米材料磁性质及应用 (10)1.2.1磁性纳米材料磁性质 (10)1.2.2磁性纳米材料应用 (11)1.3四氧化三铁纳米粒子的制备方法 (14)1.3.1水热法 (15)1.3.2沉淀法 (16)1.3.3微乳液法 (17)1.3.4溶胶-凝胶法 (17)1.3.5热分解法 (18)参考文献 (18)第二章. 水热法制备四氧化三铁纳米粒子及结构表征 (21)2.1引言 (21)2.2实验部分 (21)2.2.1实验试剂 (22)2.2.2氧化铁纳米粒子的合成 (22)2.2.3表征仪器 (22)2.3结果与讨论 (23)2.3.1样品的结构表征和成分分析 (23)2.3.2样品的形貌表征 (24)2.3.3实验条件对纳米粒子的影响 (25)2.3.4纳米粒子的形成机理 (27)2.4小结 (28)总结与展望 (29)致谢 (30)附录 (31)第一章绪论近十几年来,纳米科技得到了迅猛发展,并且广泛渗透于各个学科领域,形成了一系列既相对独立又互相联系的分支学科。

氯化铁与醋酸钠水热反应生成四氧化三铁纳米颗粒的原理

氯化铁与醋酸钠水热反应生成四氧化三铁纳米颗粒的原理

氯化铁与醋酸钠水热反应生成四氧化三铁纳米颗粒的原理【原理与应用:氯化铁与醋酸钠水热反应生成四氧化三铁纳米颗粒的原理】引言纳米科学及纳米技术是当今科学领域的热点,其在材料科学、医学、电子学等众多领域都有广泛的应用。

四氧化三铁(Fe3O4)纳米颗粒作为一种重要的磁性材料,具有许多优异的物理、化学特性,因此吸引了广泛的研究兴趣。

本文将重点介绍氯化铁与醋酸钠水热反应生成四氧化三铁纳米颗粒的原理和应用。

一、介绍1.1 氯化铁和醋酸钠的基本性质氯化铁(FeCl3)是一种常见的无机化合物,其化学式为FeCl3。

它是一种具有黄色固体的高度电离能力的盐类,可溶于水。

醋酸钠(NaOAc)是一种无机化合物,其化学式为CH3COONa。

它是一种具有无味的无色晶体,可作为缓冲液和试剂用于化学实验中。

1.2 四氧化三铁纳米颗粒的特性与应用四氧化三铁(Fe3O4)纳米颗粒是由具有磁性的铁离子组成的纳米颗粒。

由于其良好的磁性、光学性能和生物相容性,Fe3O4纳米颗粒在医学成像、药物传递、环境污染治理等方面具有广泛的应用。

二、水热法合成四氧化三铁纳米颗粒的原理2.1 水热法的基本原理水热法是一种常见的合成纳米颗粒的方法,其基本原理是通过在高温高压的反应条件下,利用水分子的媒介作用将溶液中的化学物质反应生成纳米颗粒。

2.2 氯化铁与醋酸钠的水热反应机制在水热反应中,氯化铁和醋酸钠溶液以一定的摩尔比混合,并加热到一定温度。

在加热过程中,水分子的媒介作用发挥了重要作用,帮助氯化铁离子和醋酸钠离子进行溶解、扩散和反应。

具体反应机制如下:1) 氯化铁(FeCl3)在水热条件下发生水解反应,生成Fe3+离子和Cl-离子。

2) 醋酸钠(NaOAc)在水热条件下发生水解反应,生成Na+离子和OAc-离子。

3) Fe3+离子和OAc-离子发生配位反应,形成配合物,并进一步发生配位交换反应。

4) 在高温高压的反应条件下,配合物发生分解和重排,形成Fe3O4纳米颗粒。

制备四氧化三铁纳米颗粒的新方法

制备四氧化三铁纳米颗粒的新方法

制备四氧化三铁纳米颗粒的新方法傅小明;孙虎【摘要】以草酸亚铁(FeC2O4·2H2O)在高纯氩气(氩气含量≥99.999%)中的热重-差热(TG-DTA)分析为理论依据,利用X射线衍射仪(XRD)、热场发射扫描电子显微镜(SEM)和高分辨透射电子显微镜(TEM),分别对FeC2O4·2H2O在氩气中热分解最终产物进行物相和形貌表征.研究结果表明:FeC2O4·2H2O在高纯氩气中热分解过程分为两个阶段:第一个阶段是在室温到255℃之间,FeC2O4·2H2O失去结晶水变为FeC2O4;第二阶段是255℃到520℃之间,FeC2O4受热分解为Fe3O4.在高纯氩气中,以6℃/min升温速率从室温升520℃并在520℃,保温20 min,热分解草酸亚铁时,获得了粒径为约40~60 nm的球形Fe3O4颗粒.【期刊名称】《科学技术与工程》【年(卷),期】2016(016)006【总页数】4页(P191-194)【关键词】草酸亚铁;热分解;氩气;Fe3O4纳米颗粒【作者】傅小明;孙虎【作者单位】宿迁学院材料工程系,宿迁223800;宿迁学院材料工程系,宿迁223800【正文语种】中文【中图分类】TQ138.1化学工业2015年10月19日收到江苏省“六大人才高峰”高层次人才培养资助项目(2015-XCL-064)、江苏省第四期“333高层次人才工程”培养对象资助项目、江苏省高校自然科学研究基金项目(14KJB450001)、宿迁市科技计划项目(Z201421)和宿迁学院科研项目(2014KY06)资助四氧化三铁(又称磁铁矿,分子式为Fe3O4)是由O2-、Fe2+和Fe3+通过离子键组成的复杂离子晶体,它是一种典型的正铁酸盐化合物和重要的尖晶石型铁氧体,其晶体结构为立方反尖晶石结构[1—3]。

Fe3O4不仅具有优异的磁性能(比如,常用于信息存储、磁流体、微波吸收、磁共振成像和药物传递材料等),还具有良好的催化性能(例如,用于水煤气变换反应、F-T合成、合成氨、丁烯和乙苯脱氢及氧化脱氢等方面的催化)[4—6]。

四氧化三铁

四氧化三铁

共沉淀法制备四氧化三铁纳米磁性材料引言:磁性是物质的基本属性,磁性材料是古老而用途十分广泛的功能材料。

磁挂材料与信息化、自动化、机电一体化、国防、国民经济的方方面面紧密相关.纳米磁性材料是20世纪70年代后逐步产生、发展,壮大而成为最富有竞争力与宽广应用前景的新型磁性材料。

纳米磁性材料的特性不同于常规的磁性材料,其原因是与磁相关联的特征物理长度恰好处于纳米量级,倒如:磁单畴临界尺寸,超顺磁性临界尺寸,交换作用长度以及电子平均自由路程等大致上处于l~1OOnm量级,当磁性体的尺寸与这些特征物理长度相当时就会呈现反常的磁学性质[1]。

磁性纳米材料除具有纳米材料的一般特性外还具有顺磁效应,其中Fe3O4纳米晶由于其超顺磁性、高表面活性等特性,已在磁流体、微波吸收、水处理、光催化、生物医药、生物分离等方面得到了广泛的应用,正在成为磁性纳米材料的研究热点。

目前制备磁性Fe3O4纳米晶的主要方法有沉淀法、溶剂热法、溶胶-凝胶法、微乳液法、微波超声法等[2-8],这几种方法制得的磁性Fe3O4纳米晶在结构和性能方面都有一定的差异,因此在不同领域的应用往往要采用不同的制备方法。

其中共沉淀法即在含有两种或两种以上阳离子的可溶性溶液中加入适当的沉淀剂,使金属离子均匀沉淀或结晶出来,再将沉淀物脱水或热分解而制得纳米微粉。

共沉淀法有两种: 一种是Massart 水解法[9], 即将一定摩尔比的三价铁盐与二价铁盐混合液直接加入到强碱性水溶液中, 铁盐在强碱性水溶液中瞬间水解结晶形成磁性铁氧体纳米粒子。

另一种为滴定水解法[10], 是将稀碱溶液滴加到一定摩尔比的三价铁盐与二价铁盐混合溶液中, 使混合液的pH 值逐渐升高, 当达到6~7 时水解生成磁性Fe3O4纳米粒子共沉淀方法的最大优点是设备要求低、成本低、操作简单和反应时间短,便于在实验室内操作。

本文主要介绍共沉淀法合成纳米Fe3O4及浓度、熟化时间、pH、超声波对纳米Fe3O4粒径等性质的影响。

四氧化三铁——精选推荐

四氧化三铁——精选推荐

四氧化三铁共沉淀法制备四氧化三铁纳⽶磁性材料引⾔:磁性是物质的基本属性,磁性材料是古⽼⽽⽤途⼗分⼴泛的功能材料。

磁挂材料与信息化、⾃动化、机电⼀体化、国防、国民经济的⽅⽅⾯⾯紧密相关.纳⽶磁性材料是20世纪70年代后逐步产⽣、发展,壮⼤⽽成为最富有竞争⼒与宽⼴应⽤前景的新型磁性材料。

纳⽶磁性材料的特性不同于常规的磁性材料,其原因是与磁相关联的特征物理长度恰好处于纳⽶量级,倒如:磁单畴临界尺⼨,超顺磁性临界尺⼨,交换作⽤长度以及电⼦平均⾃由路程等⼤致上处于l~1OOnm量级,当磁性体的尺⼨与这些特征物理长度相当时就会呈现反常的磁学性质[1]。

磁性纳⽶材料除具有纳⽶材料的⼀般特性外还具有顺磁效应,其中Fe3O4纳⽶晶由于其超顺磁性、⾼表⾯活性等特性,已在磁流体、微波吸收、⽔处理、光催化、⽣物医药、⽣物分离等⽅⾯得到了⼴泛的应⽤,正在成为磁性纳⽶材料的研究热点。

⽬前制备磁性Fe3O4纳⽶晶的主要⽅法有沉淀法、溶剂热法、溶胶-凝胶法、微乳液法、微波超声法等[2-8],这⼏种⽅法制得的磁性Fe3O4纳⽶晶在结构和性能⽅⾯都有⼀定的差异,因此在不同领域的应⽤往往要采⽤不同的制备⽅法。

其中共沉淀法即在含有两种或两种以上阳离⼦的可溶性溶液中加⼊适当的沉淀剂,使⾦属离⼦均匀沉淀或结晶出来,再将沉淀物脱⽔或热分解⽽制得纳⽶微粉。

共沉淀法有两种: ⼀种是Massart ⽔解法[9],即将⼀定摩尔⽐的三价铁盐与⼆价铁盐混合液直接加⼊到强碱性⽔溶液中, 铁盐在强碱性⽔溶液中瞬间⽔解结晶形成磁性铁氧体纳⽶粒⼦。

另⼀种为滴定⽔解法[10], 是将稀碱溶液滴加到⼀定摩尔⽐的三价铁盐与⼆价铁盐混合溶液中, 使混合液的pH 值逐渐升⾼, 当达到6~7 时⽔解⽣成磁性Fe3O4纳⽶粒⼦共沉淀⽅法的最⼤优点是设备要求低、成本低、操作简单和反应时间短,便于在实验室内操作。

本⽂主要介绍共沉淀法合成纳⽶Fe3O4及浓度、熟化时间、pH、超声波对纳⽶Fe3O4粒径等性质的影响。

超顺磁氧化铁纳米粒子特性研究

超顺磁氧化铁纳米粒子特性研究

超顺磁氧化铁纳米粒子特性研究赵戎蓉;鲁芳【期刊名称】《中国医药生物技术》【年(卷),期】2012(007)003【总页数】3页(P221-223)【作者】赵戎蓉;鲁芳【作者单位】400038,重庆,第三军医大学护理学院;400038,重庆,第三军医大学护理学院【正文语种】中文基于特殊的物理和化学性质,纳米材料目前已成为表面工程学研究的理想材料。

纳米粒子作为肿瘤治疗中的靶向给药载体可以提高药物的靶向作用。

因此,对纳米粒子的修饰,将促进其在生物医学中的应用。

以超顺磁性粒子(superparamagnetic iron oxide nanoparticles,SPION)为载体的微粒靶向递送系统已成为比较热门的研究方向[1]。

SPION 由于其磁性核心的特性,可以通过外部磁铁有针对性地到达特定位置。

20 世纪 70 年代末期,外部磁场控制磁性载体的观点被认同,随后以各种磁性纳米和磁性微粒子作为载体,用于药物在体内的靶向投递的研究相继见诸报道[2]。

SPION 由两部分组成:磁性核心(通常是 Fe3O4、Fe2O3 和γ-Fe2O3)和具有生物相容性的聚合物或多孔生物相容聚合物涂层。

该涂层可以被功能化羧基、生物素、抗生物素蛋白、碳二亚胺和其他分子修饰[3],从而起到抗原-抗体偶联以及靶向作用。

此外,聚合物涂层还可以通过共价结合,吸附或包埋药物实现药物的投递[4]。

到目前为止,载体优化的目标是:①减少药物的细胞毒性,从而降低药物副作用;②减少用量,达到靶向给药目的。

1 SPION 的稳定性及表面修饰由于诊断和治疗的需要,SPION 已在生物学和医学领域被广泛应用。

SPION 具有胶体特性,稳定性取决于粒子的大小及粒子与界面的空间位阻和库仑排斥作用。

SPION颗粒足够小能够抵消引力造成的沉降,在中性 pH 环境和生理盐水中也很稳定。

另一方面,在制备和合成后期进行生物相容性聚合物涂层,既能避免生物降解,也起到防止粒子聚集,提高其稳定性的目的。

Fe3O4@SiO2@ZnOZnS纳米复合材料的制备及性能研究

Fe3O4@SiO2@ZnOZnS纳米复合材料的制备及性能研究

第42卷第1期吉林师范大学学报(自然科学版)Vol.42ꎬNo.1㊀2021年2月JournalofJilinNormalUniversity(NaturalScienceEdition)Feb.ꎬ2021收稿日期:2020 ̄11 ̄27基金项目:国家自然科学基金项目(61705079)ꎻ吉林省教育厅 十三五 科学技术研究项目(JJKH20191019KJ)ꎻ吉林师范大学博士启动项目(吉师博2016007)第一作者简介:刘晓艳(1983 )ꎬ女ꎬ吉林省长岭县人ꎬ高级实验师ꎬ博士.研究方向:半导体纳米功能复合材料.∗通讯作者:魏茂彬(1976 )ꎬ男ꎬ吉林省磐石市人ꎬ高级实验师ꎬ博士ꎬ硕士生导师.研究方向:材料化学与环境化学.doi:10.16862/j.cnki.issn1674 ̄3873.2021.01.004Fe3O4@SiO2@ZnO/ZnS纳米复合材料的制备及性能研究刘晓艳1ꎬ2ꎬ徐㊀婷1ꎬ王鹏飞1ꎬ魏茂彬1ꎬ2∗(1.吉林师范大学功能材料物理与化学教育部重点实验室ꎬ吉林长春130103ꎻ2.吉林师范大学物理国家级实验教学示范中心ꎬ吉林四平136000)摘㊀要:选用Fe3O4@SiO2@ZnO作为基体材料ꎬ采用一步硫化法成功制备出Fe3O4@SiO2@ZnO/ZnS纳米复合材料.通过XRD㊁SEM㊁TEM和XPS测试表征手段证实了ZnO的表面已转化成ZnSꎬ构建出ZnO/ZnS核壳结构.VSM测试结果表明ꎬ制得的Fe3O4@SiO2@ZnO/ZnS纳米复合材料具有明显的超顺磁性ꎬ利于材料的回收再利用.在Fe3O4@SiO2@ZnO/ZnS纳米复合材料的紫外 ̄可见吸收光谱中ꎬ不仅观测到了ZnO和ZnS的特征吸收边ꎬ而且在可见光区域出现了明显增强的吸收边.通过对四环素的可见光催化降解实验ꎬ证实了Fe3O4@SiO2@ZnO/ZnS纳米复合材料具有优异的可见光催化活性.关键词:Fe3O4@SiO2@ZnO/ZnSꎻ磁性纳米复合材料ꎻ可见光催化性能ꎻ四环素中图分类号:O643.3㊀㊀文献标志码:A㊀㊀文章编号:1674 ̄3873 ̄(2021)01 ̄0017 ̄050㊀引言抗生素是水环境中的新型污染物ꎬ由于难以自我降解对生态环境甚至人类健康产生了一定的危害.与目前传统的去除抗生素方法相比ꎬ光催化技术不仅涉及高级氧化过程ꎬ而且是一种仅利用光能促进反应的绿色㊁低能耗㊁可持续发展的技术[1].为了获得高效㊁耐用的光催化剂ꎬ大量的半导体ꎬ如金属氧化物㊁氮化物和硫化物已经被开发[2].研究发现ꎬ单一材料的单一性质不可避免地会限制其实际应用范围ꎬ无法应对更为复杂的应用需求.合成复合材料能够在很大程度上改善和扩展单体材料的物化性质ꎬ进而提高材料的应用性能.高效㊁稳定复合光催化剂的构建还需考虑一些影响其性能的必要因素ꎬ如载流子分离与输运㊁能带结构㊁稳定性等ꎬ以便更有效地提高其光催化效率以及对太阳光的利用率.ZnO是典型的半导体光催化剂ꎬ只能吸收仅占太阳光谱3%~5%的紫外光ꎬ对清洁而经济的太阳光利用率非常低ꎬ这极大地限制了其工业化应用范围.ZnS具有较高的电子迁移率和适当的带隙ꎬZnO/ZnS异质结中形成的典型Type ̄Ⅱ型能带结构利于载流子分离转移ꎬ进而有效地提高材料的可见光催化性能[3].本文将采用简单的一步硫化法合成 磁载 Fe3O4@SiO2@ZnO/ZnS纳米复合材料ꎬ对其可见光吸收能力和光催化性能进行研究.结果表明ꎬFe3O4@SiO2@ZnO/ZnS纳米复合材料具有优异的可见光催化活性.吉林师范大学学报(自然科学版)第42卷1㊀实验1.1㊀样品制备依据之前的实验ꎬ首先分别采用水热法[4]㊁Stöber法[5]㊁两步化学法[6]制得Fe3O4㊁Fe3O4@SiO2和Fe3O4@SiO2@ZnO纳米球.然后ꎬ将Fe3O4@SiO2@ZnO纳米球加入到硫代乙酰胺溶液中进行硫化处理[3]ꎬ制得Fe3O4@SiO2@ZnO/ZnS纳米复合材料.1.2㊀样品表征通过X射线衍射仪(XRDꎬD/max2500PCꎬRigaku)㊁扫描电子显微镜(SEMꎬJSM ̄7800FꎬJEOL)㊁透射电子显微镜(TEMꎬFEITecnaiF20)㊁X射线光电子能谱仪(XPSꎬESCALAB250XiA1440ꎬThermoScientific)㊁振动探针式磁强计(VSMꎬLakeShore7407)㊁紫外 ̄可见分光光度计(UV ̄3101PCꎬShimadzu)等对样品的化学成分㊁结构㊁形貌和性能进行测试表征.1.3㊀光催化实验通过对四环素的光催化降解来评价样品的可见光催化活性.首先ꎬ将25mg样品分散到50mL四环素溶液中ꎬ黑暗条件下搅拌30minꎬ使体系达到吸附 ̄解吸平衡.然后ꎬ开启光源(卤钨灯ꎬ300Wꎬλ>420nm)进行光照处理.每间隔30min取出一定量的反应溶液ꎬ利用紫外 ̄可见分光光度计(UV ̄5800PCꎬShanghaiMetashInstrumentsCo.ꎬLtd)对其光吸收值进行测试.最后ꎬ依据以下公式计算得出光降解效率:光降解效率(%)=(C0-C)/C0ˑ100%ꎬ其中ꎬC0和C分别是灯照射前后四环素溶液在最大吸收波长处的吸光度.2㊀结果与讨论采用XRD对样品的结构进行了表征测试.如图1所示ꎬ在Fe3O4@SiO2@ZnO纳米复合材料的XRD谱图中观测到了Fe3O4(JCPDSNo.85 ̄1436)和ZnO(JCPDSNo.89 ̄0511)的相关衍射峰.经过硫化处理后ꎬZnO的相关衍射峰强度变弱.除了ZnO和Fe3O4的衍射峰外ꎬ在谱图中还观测到了与ZnS(JCPDSNo.79 ̄0043)相关的衍射峰ꎬ说明部分ZnO成功转换为ZnSꎬ形成了Fe3O4@SiO2@ZnO/ZnS纳米复合材料.图1㊀Fe3O4@SiO2@ZnO和Fe3O4@SiO2@ZnO/ZnS的XRD谱图Fig.1㊀XRDpatternsofFe3O4@SiO2@ZnOandFe3O4@SiO2@ZnO/ZnS图2(A)和(B)分别为样品Fe3O4@SiO2@ZnO和Fe3O4@SiO2@ZnO/ZnS的SEM图.从图2(A)可以清晰地看出ꎬ样品呈三维纳米球状ꎬ具有很好的分散性ꎬ并且ZnO纳米棒表面光滑.经过硫化处理后ꎬ样品保留了完整的纳米球状结构ꎬZnO纳米棒明显变短ꎬ并且表面形成小颗粒变得粗糙.图3(A)和(B)为对应样品的TEM图ꎬ由图的明暗程度可以明显地看出样品为分层核壳结构.在Fe3O4@SiO2@ZnO/ZnS样品中ꎬZnO纳米棒表面部分被硫化成ZnS纳米颗粒ꎬ与SEM结果相对应.81第1期刘晓艳ꎬ等:Fe3O4@SiO2@ZnO/ZnS纳米复合材料的制备及性能研究图2㊀Fe3O4@SiO2@ZnO(A)和Fe3O4@SiO2@ZnO/ZnS(B)的SEM图Fig.2㊀SEMimagesofFe3O4@SiO2@ZnO(A)andFe3O4@SiO2@ZnO/ZnS(B)图3㊀Fe3O4@SiO2@ZnO(A)和Fe3O4@SiO2@ZnO/ZnS(B)的TEM图Fig.3㊀TEMimagesofFe3O4@SiO2@ZnO(A)andFe3O4@SiO2@ZnO/ZnS(B)图4为Fe3O4@SiO2@ZnO和Fe3O4@SiO2@ZnO/ZnS纳米复合材料的XPS全谱图.在Fe3O4@SiO2@ZnO的谱图中ꎬ观测到了Zn㊁O㊁C元素的相关光电子峰ꎬ位于约1044.6eV和1021.5eV的两个光电子峰分别对应于Zn2p1/2和Zn2p3/2ꎬ23.1eV的自旋轨道分离表明Zn元素以Zn2+形式存在于被测样品中ꎬ证明已成功外延生长ZnO纳米棒.众所周知ꎬXPS测试手段只能侦测到样品表面的一些元素ꎬ所以在谱图中没有观察到与内层Fe3O4和SiO2相关的Fe和Si的光电子峰.经过硫化处理后ꎬZn2p1/2和Zn2p3/2的峰分别偏移到约1045.2eV和1022.1eV的位置ꎬ与ZnS中Zn2+的Zn2p1/2和Zn2p3/2相吻合[7].另外ꎬ谱图中观察到了S2s和S2p的相关光电子峰ꎬ这进一步证明了Fe3O4@SiO2@ZnO/ZnS纳米复合材料的成功合成.室温下ꎬ利用VSM分析对复合材料的磁性进行了研究.图5显示了Fe3O4@SiO2@ZnO/ZnS的M ̄H回线.从图中可以看出ꎬ饱和磁化强度Ms=15.76A m2/kgꎬ剩余磁化强度Mr=0A m2/kgꎬ矫顽力Hc=0Oe.由此可见ꎬ此复合材料具有典型的超顺磁性ꎬ无矫顽力和剩磁.足够高的饱和磁化强度ꎬ可以进行有效的分离ꎬ有利于光催化材料的回收再利用[8 ̄10].另外ꎬ对复合材料的光学特性也进行了测试表征ꎬ图6为Fe3O4@SiO2@ZnO和Fe3O4@SiO2@ZnO/ZnS的紫外 ̄可见吸收光谱图.在Fe3O4@SiO2@ZnO纳米复合材料的谱图中ꎬ只观测到了位于紫外区域约384nm处的吸收边ꎬ为纤锌矿ZnO的特征吸收边[11].经过硫化处理后ꎬ在谱图的紫外区域ꎬ不仅观测到了ZnO的特征吸收边ꎬ还观测到了位于约332nm处的吸收边ꎬ对应于ZnS的特征吸收边[12]ꎬ进一步证明了Fe3O4@SiO2@ZnO/ZnS纳米复合材料的成功合成.此外ꎬ经过对比发现ꎬ硫化处理后ꎬ在可见区域400~600nm出现了明显的吸收边ꎬ这可能是由于在ZnO和ZnS的界面处形成了Type ̄Ⅱ型电荷跃迁(如图6的插图所示)ꎬ涉及ZnS的价带和ZnO的导带形成的混合结构[6].由此可见ꎬZnS的复合成功地将材料的光吸收范围拓宽至可见区域ꎬ且提高了材料的可见光吸收能力ꎬ预示着Fe3O4@SiO2@ZnO/ZnS纳米复合材料将具有更加优异的可见光催化性能.91吉林师范大学学报(自然科学版)第42卷㊀㊀图4㊀Fe3O4@SiO2@ZnO和Fe3O4@SiO2@ZnO/ZnS㊀㊀的XPS全谱图Fig.4㊀XPSfullyscannedspectraofFe3O4@SiO2@ZnO㊀㊀㊀andFe3O4@SiO2@ZnO/ZnS㊀㊀图5㊀Fe3O4@SiO2@ZnO/ZnS的室温磁滞回线Fig.5㊀Room ̄temperaturemagnetichysteresisloops㊀㊀㊀ofFe3O4@SiO2@ZnO/ZnS为了考察纳米复合材料的可见光催化性能ꎬ在可见光照下进行了水溶液中四环素的光催化降解实验ꎬ测试结果如图7所示.在光催化测量之前ꎬ需要将Fe3O4@SiO2@ZnO和Fe3O4@SiO2@ZnO/ZnS纳米复合材料在黑暗中处理30minꎬ达到吸附平衡ꎬ避免在光学检测中出现 明显 的快速去除现象[13].当光照时间为180min时ꎬFe3O4@SiO2@ZnO和Fe3O4@SiO2@ZnO/ZnS的降解效率分别达到59.92%和80 71%.显著增强的Fe3O4@SiO2@ZnO/ZnS可见光催化降解效率可归因于:(Ⅰ)增强的可见光吸收能力ꎻ(Ⅱ)界面处形成的特殊异质结构.有效地抑制了电子 ̄空穴对的复合ꎬ使更多的电荷参与到光催化反应过程中去ꎬ从而提高了材料的光催化性能.图6㊀Fe3O4@SiO2@ZnO和Fe3O4@SiO2@ZnO/ZnS的㊀㊀紫外 ̄可见吸收光谱图Fig.6㊀UV ̄visabsorptionspectraofFe3O4@SiO2@ZnO㊀㊀㊀andFe3O4@SiO2@ZnO/ZnS㊀图7㊀可见光下四环素降解曲线随反应时间的变化Fig.7㊀Photodegradationcurvesoftetracycline(TC)versus㊀㊀㊀reactiontimeundervisiblelightirradiation3㊀结论采用一步硫化法成功制备出Fe3O4@SiO2@ZnO/ZnS纳米复合材料ꎬ构建出ZnO/ZnS核壳结构.制得的Fe3O4@SiO2@ZnO/ZnS纳米复合材料具有明显的超顺磁性和优异的可见光吸收能力.可见光下ꎬFe3O4@SiO2@ZnO/ZnS纳米复合材料对四环素的光催化降解效率可达80.71%.参㊀考㊀文㊀献[1]ZOUZMꎬYANGXYꎬZHANGPꎬetal.Tracecarbon ̄hybridizedZnS/ZnOhollownanosphereswithmulti ̄enhancedvisible ̄lightphotocatalyticperformance[J].JAlloyCompꎬ2019ꎬ775:481 ̄489.0212第1期刘晓艳ꎬ等:Fe3O4@SiO2@ZnO/ZnS纳米复合材料的制备及性能研究[2]MADDꎬSHIJWꎬSUNDKꎬetal.AudecoratedhollowZnO@ZnSheterostructureforenhancedphotocatalytichydrogenevolution:TheinsightintotherolesofhollowchannelandAunanoparticles[J].ApplCatalBEnvironꎬ2019ꎬ244:748 ̄757.[3]RANJITHKSꎬCASTILLORBꎬSILLANPAAMꎬetal.EffectiveshellwallthicknessofverticallyalignedZnO ̄ZnScore ̄shellnanorodarraysonvisiblephotocatalyticandphotosensingproperties[J].ApplCatalBEnvironꎬ2018ꎬ237:128 ̄139.[4]DENGHꎬLIXLꎬPENGQꎬetal.Monodispersemagneticsingle ̄crystalferritemicrospheres[J].AngewChemIntEditꎬ2005ꎬ44:2782 ̄2785. [5]GUOXYꎬMAOFFꎬWANGWJꎬetal.Sulfhydryl ̄modifiedFe3O4@SiO2core/shellnanocomposite:synthesisandtoxicityassessmentinvitro[J].ACSApplMaterInterꎬ2015ꎬ7:14983 ̄14991.[6]WANGDDꎬHANDLꎬSHIZꎬetal.Optimizeddesignofthree ̄dimensionalmulti ̄shellFe3O4/SiO2/ZnO/ZnSemicrosphereswithtypeⅡheterostructureforphotocatalyticapplications[J].ApplCatalBEnvironꎬ2018ꎬ227:61 ̄69.[7]YANGJLꎬZHAOSXꎬLUYMꎬetal.ZnSsphereswrappedbyanultrathinwrinkledcarbonfilmasamultifunctionalinterlayerforlonglifeLi ̄Sbatteries[J].JMaterChemAꎬ2020ꎬ8:231 ̄241.[8]WANGJꎬYANGJꎬLIXꎬetal.PreparationandphotocatalyticpropertiesofmagneticallyreusableFe3O4@ZnOcore/shellnanoparticles[J].PhysicaEꎬ2016ꎬ75:66 ̄71.[9]韩东来ꎬ李博珣ꎬ杨硕ꎬ等.Fe3O4@Au核 ̄壳纳米复合材料的制备及对农药福美双的SERS检测研究[J].高等学校化学学报ꎬ2019ꎬ40(10):2067 ̄2074.[10]刘晓艳ꎬ赵珂ꎬ刘惠莲ꎬ等.包覆及填充式Fe3O4/CNTs纳米复合材料的制备及性能研究[J].吉林师范大学学报(自然科学版)ꎬ2019ꎬ40(4):18 ̄23.[11]YANGJHꎬWANGJꎬLIXYꎬetal.Synthesisofurchin ̄likeFe3O4@SiO2@ZnO/CdScore ̄shellmicrospheresfortherepeatedphotocatalyticdegradationofrhodamineBundervisiblelight[J].CatalSciTechnolꎬ2016ꎬ6:4525 ̄4534.[12]LIUQYꎬCAOJꎬJIYꎬetal.ConstructionofadirectZ ̄schemeZnSquantumdot(QD) ̄Fe2O3QDheterojunction/reducedgrapheneoxidenanocompositewithenhancedphotocatalyticactivity[J].ApplSurfSciꎬ2020ꎬ506:1449221 ̄1 ̄1449221 ̄12.[13]DEOMꎬSHINDEDꎬYENGANTIWARAꎬetal.Cu2O/ZnOhetero ̄nanobrush:Hierarchicalassemblyꎬfieldemissionandphotocatalyticproperties[J].JMateChemꎬ2012ꎬ22(33):17055 ̄17062.PreparationandpropertiesofFe3O4@SiO2@ZnO/ZnSnanocompositesLIUXiao ̄yan1ꎬ2ꎬXUTing1ꎬWANGPeng ̄fei1ꎬWEIMao ̄bin1ꎬ2(1.KeyLaboratoryofFunctionalMaterialsPhysicsandChemistryoftheMinistryofEducationꎬJilinNormalUniversityꎬChangchun130103ꎬChinaꎻ2.NationalDemonstrationCenterforExperimentalPhysicsEducationꎬJilinNormalUniversityꎬSiping136000ꎬChina)Abstract:HereinꎬFe3O4@SiO2@ZnOnanocompositeshadbeenchosenasthebasismaterialstosuccessfullysynthesizeFe3O4@SiO2@ZnO/ZnSnanocompositesviatheone ̄stepsulfidationmethod.TheXRD㊁SEM㊁TEMandXPSexperimentalresultsshowedthatthesurfaceoftheZnOhadbeenconvertedtoZnSꎬformingZnO/ZnScore/shellheterostructures.VSMtestresultsshowedthattheFe3O4@SiO2@ZnO/ZnSnanocompositeshadsuperiorsuperparamagnetismꎬwhichwouldbebeneficialfortherecyclingandreuseofthematerials.IntheUV ̄visabsorptionspectrumofFe3O4@SiO2@ZnO/ZnSꎬnotonlythecharacteristicabsorptionedgesofZnOandZnSwereobservedꎬbutalsothesignificantlyenhancedabsorptionedgesappearedinthevisibleregion.TheFe3O4@SiO2@ZnO/ZnSnanocompositesdisplayedexcellentvisiblephotocatalyticactivityinthecatalyticdegradationexperimentoftetracycline.Keywords:Fe3O4@SiO2@ZnO/ZnSꎻmagneticnanocompositesꎻvisiblephotocatalyticactivityꎻtetracycline(责任编辑:郎集会)。

基于氧化石墨烯复合材料的实验设计

基于氧化石墨烯复合材料的实验设计

基于氧化石墨烯复合材料的实验设计赖婷;朱明芳;林碧敏;陈敏【摘要】通过超声处理将Fe3O4微球颗粒负载在具有大比表面积的氧化石墨烯(Graphene Oxide,GO)表面,成功合成了Fe3O4微球/氧化石墨烯复合物(Fe3O4-GO),并将该复合物应用于有机酚类化合物的测定分析.首先根据Hummers法制备了GO;然后使用溶剂热法制备了粒径200 nm左右的Fe3O4微球;最后用扫描电子显微镜对材料的形貌结构进行探索.结果表明,该合成方法简单有效,制备的复合物能够有效地应用于电化学传感器的构建,并对有机酚类化合物进行检测分析.【期刊名称】《实验室研究与探索》【年(卷),期】2016(035)012【总页数】4页(P26-28,43)【关键词】Fe3O4微球;氧化石墨烯;复合物的合成设计实验【作者】赖婷;朱明芳;林碧敏;陈敏【作者单位】华南农业大学公共基础课实验教学中心,广东广州510642;广东药学院药科学院,广东广州510006;华南农业大学公共基础课实验教学中心,广东广州510642;华南农业大学公共基础课实验教学中心,广东广州510642【正文语种】中文【中图分类】O614.81+1实验教学是培养创新人才的重要环节,大部分高校对本科生开设的实验主要是基础实验,是为了验证课本上已有的理论知识,只能起到巩固理解书本知识的作用,限制了学生的创新能力的发展[1]。

因此,国内部分高校的实验教学经过逐步改革已在基础实验课程以外,另开设了一些大学生创新性实验项目。

以“教学研究型大学”为定位目标的华南农业大学一直注重本科生科研素质和创新实践能力,近年来在全校多个院系里开展了“大学生创新性实验计划项目”。

这些创新性实验项目既可以有效地弥补基础实验教学的不足,也进一步提高了我校学生综合素质,培养学生实践能力、创新意识和团队精神[2-4]。

近几十年,无机纳米材料在光学、电化学和能源等领域都有着广泛地应用,但是这些材料在实际应用中常遇到难分离、易团聚等难题,限制了其应用。

石墨烯在锂离子电池电极材料中的应用

石墨烯在锂离子电池电极材料中的应用

石墨烯在锂离子电池电极材料中的应用沈文卓;郭守武【摘要】随着电子产品的普及,对锂离子电池的可逆容量、倍率充放电能力和循环稳定性提出了更高的要求.石墨烯由于其独特的电子共轭态和单一的原子层结构,具有优越的电子迁移性、大的表面积和良好的热和化学稳定性.因此,众多研究者致力于借助石墨烯的独有特性来改善锂离子电池正极和负极材料的综合电化学性能.本文对石墨烯在锂离子电池正负极材料中的应用情况以及面临的主要问题做了简要综述.%It is challenging to develop lithium ion batteries (LIBs) possessing simultaneously large reversible capacity,high rate capability,and good cycling stability.Graphene sheets,owing to the unique electronic conjugate state within the basal plane and also the single atomic layered morphology,have superior electronic mobility,large surface area,and decent thermal and chemical stability.Hence,many works have been devoted to the improvements of the cathode and anode materials with graphene.In the work,the achievements and the main problem in the area are overviewed.【期刊名称】《电子元件与材料》【年(卷),期】2017(036)009【总页数】4页(P79-82)【关键词】石墨烯;正极材料;综述;负极材料;电化学性能;锂离子电池【作者】沈文卓;郭守武【作者单位】上海交通大学电子信息与电气工程学院,上海200240;上海交通大学电子信息与电气工程学院,上海200240【正文语种】中文【中图分类】O613.71与其他种类的二次电池相比,锂离子电池具有高能量密度、高电压、无记忆效应、低自放电率等优点[1-2],在日用电子产品(如手机、手提电脑、摄像机、电玩)、电动汽车(EV/PHEV/HEV)以及储能电站等领域得到普遍应用。

椰油酰胺磺基琥珀酸单酯二钠、乙氧基化棉籽油烷酰胺磺基琥珀酸单酯二钠盐

椰油酰胺磺基琥珀酸单酯二钠、乙氧基化棉籽油烷酰胺磺基琥珀酸单酯二钠盐

椰油酰胺磺基琥珀酸单酯二钠、乙氧基化棉籽油烷酰胺磺基琥珀酸单酯二钠盐1.椰油酰胺磺基琥珀酸单酯二钠【英文名】 disodium cocoamidesnlfocuccinic acid monoester 【结构式】见反应式【物化性质】淡黄色半透亮黏液。

温柔阴离子型表面活性剂,具有优良的乳化性、簇拥性、润湿性。

泡沫细腻丰盛,无滑腻感,十分简单冲洗,能与其他表面活性剂配伍。

对皮肤、眼睛刺激作用极微,平安性高。

【质量标准】QB/T 4085-2010 【用途】在纺织印染加工中作匀染剂、洗涤剂,洗毛、洗呢。

包装规格:塑料桶包装,净重50kg, 180kg。

【制法】(1)椰油酰胺琥珀酸单酯的制备与以摩尔比1:1.05投料,加让入催化剂,在65~75℃,氮气庇护下反应,测定体系酸价推断反应尽头,反应结束得到椰油酰胺琥珀酸单酯。

(2)椰油酰胺琥珀酸单酯二钠盐的制备将溶于水中制成浓度为20%~40%的水溶液,加入单酯中(单酯与摩尔比1:1.05),强烈搅拌,反应温度70~80℃,测定体系碘值推断反应尽头,普通需要4~6h完成反应,制得产品椰油酰胺琥珀酸单酯二钠盐。

反应式如下:【产品平安性】刺激眼睛、呼吸系统和皮肤。

穿戴适当的防护服。

不慎与眼睛接触后,立刻用大量清水冲洗并征求医生看法。

存放在阴凉、干燥的库房内,储存期6个月。

2.乙氧基化棉籽油烷酰胺磺基琥珀酸单酯二钠盐【别号】SMCE-4 【英文名】sulfosuccinate mono (ethoxylate dcottonsee doilaly lamide) ester- disodium salt 【结构式】RCONH(C2H40)4COCH2CH(SO3Na)COONa 【物化性质】属于磺基类表面活性剂,具有极低的刺激性和很好的环境适宜性。

【质量标准】OB/T 4085-2010 【用途】可用作印染工业清洗剂。

包装规格:塑料桶包装,净重50kg /桶、l00kg/桶、250kg/桶。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Monodisperse MFe2O4(M)Fe,Co,Mn)Nanoparticles Shouheng Sun,*,†Hao Zeng,†David B.Robinson,†Simone Raoux,‡Philip M.Rice,‡Shan X.Wang,§and Guanxiong Li§Contribution from the IBM T.J.Watson Research Center,Yorktown Heights,New York10598,IBM Almaden Research Center,650Harry Road,San Jose,California95120,and Department of Materials Science and Engineering,Stanford Uni V ersity,Stanford,California94305Received August22,2003;E-mail:ssun@Abstract:High-temperature solution phase reaction of iron(III)acetylacetonate,Fe(acac)3,with1,2-hexadecanediol in the presence of oleic acid and oleylamine leads to monodisperse magnetite(Fe3O4) nanoparticles.Similarly,reaction of Fe(acac)3and Co(acac)2or Mn(acac)2with the same diol results in monodisperse CoFe2O4or MnFe2O4nanoparticles.Particle diameter can be tuned from3to20nm by varying reaction conditions or by seed-mediated growth.The as-synthesized iron oxide nanoparticles have a cubic spinel structure as characterized by HRTEM,SAED,and XRD.Further,Fe3O4can be oxidized to Fe2O3,as evidenced by XRD,NEXAFS spectroscopy,and SQUID magnetometry.The hydrophobic nanoparticles can be transformed into hydrophilic ones by adding bipolar surfactants,and aqueous nanoparticle dispersion is readily made.These iron oxide nanoparticles and their dispersions in various media have great potential in magnetic nanodevice and biomagnetic applications.IntroductionMagnetic iron oxide nanoparticles and their dispersions in various media have long been of scientific and technological interest.The cubic spinel structured MFe2O4,or MO‚Fe2O3, represents a well-known and important class of iron oxide materials where oxygen forms an fcc close packing,and M2+ and Fe3+occupy either tetrahedral or octahedral interstitial sites.1 By adjusting the chemical identity of M2+,the magnetic configurations of MFe2O4can be molecularly engineered to provide a wide range of magnetic properties.Due in part to this versatility,nanometer-scale MFe2O4materials have been among the most frequently chosen systems for studies of nanomagnetism and have shown great potential for many important technological applications,ranging from information storage and electronic devices to medical diagnostics and drug delivery.Dispersions of magnetic MFe2O4nanoparticles,es-pecially magnetite(Fe3O4)nanoparticles,have been used widely not only as ferrofluids in sealing,oscillation damping,and position sensing2but also as promising candidates for biomol-ecule tagging,imaging,sensing,and separation.3Depending on the chemical identity of M2+,the densely packed solid state form of nanocrystalline MFe2O4-based materials,on the other hand,can have either high magnetic permeability and electrical resistivity(for M representing one or the mixed components from Co,Li,Ni,Zn,etc.)or half-metallicity(for M)Fe),and may be a potential candidate for future high-performance electromagnetic4and spintronic devices.5To use MFe2O4nanoparticles for future highly sensitive magnetic nanodevice and biomedical applications,a practical route to monodisperse MFe2O4nanoparticles with diameters smaller than20nm and a tight size distribution(less than10% standard deviation)is needed.A commonly used solution phase procedure for making such particles has been the coprecipitation of M2+and Fe3+ions by a base,usually NaOH or NH3‚H2O in an aqueous solution6or in a reverse micelle template.7Although this precipitation method is suitable for mass production of†IBM T.J.Watson Research Center.‡IBM Almaden Research Center.§Stanford University.(1)(a)West,A.R.Basic Solid State Chemistry;John Wiley&Sons:NewYork,1988;pp356-359.(b)O’Handley,R. C.Modern Magnetic (3)(a)Ha¨feli,U.;Schu¨tt,W.;Teller,J.;Zborowski,M.Scientific and ClinicalApplications of Magnetic Carriers;Plenum Press:New York,1997.(b) Oswald,P.;Clement,O.;Chambon,C.;Schouman-Claeys,E.;Frija,G.Magn.Reson.Imaging1997,15,1025.(c)Hergt,R.;Andra,W.;d’Ambly,C.G.;Hilger,I.;Kaiser,W.A.;Richter,U.;Schmidt,H.-G.IEEE Trans.Mag.1998,34,3745.(d)Jordan,A.;Scholz,R.;Wust,P.;Fa¨hling,H.;Felix,R.J.Magn.Magn.Mater.1999,201,413.(e)Kim,D.K.;Zhang, Y.;Kehr,J.;Klason,T.;Bjelke,B.;Muhammed.M.J.Magn.Magn.Mater.2001,225,256.(f)Pankhurst,Q.A.;Connolly,J.;Dobson,J.J.Phys.D: Appl.Phys.2003,36,R167.(g)Tartaj,P.;Morales,M.P.;Veintemillas-Verdaguer,S.;Gonza´lez-Carren˜o,T.;Serna,C.J.J.Phys.D:Appl.Phys.2003,36,R182.(h)Berry,C.C.;Curtis,A.S.G.J.Phys.D:Appl.Phys.2003,36,R198.(4)(a)Fannin,P.C.;Charles,S.W.;Vincent,D.;Giannitsis,A.T.J.Magn.Magn.Mater.2002,252,80.(b)Matsushita,N.;Nakamura,T.;Abe,M.IEEE Trans.Magn.2002,38,3111.(c)Matsuchita,Chong,C.P.;Mizutani, T.;Abe,M.J.Appl.Phys.2002,91,7376.(d)Nakamura,T.;Miyamoto, T.;Yamada,Y.J.Magn.Magn.Mater.2003,256,340.(5)(a)Verwey,E.J.W.Nature1939,144,327.(b)Zhang,Z.;Satpathy,S.Phys.Re V.B1991,44,13319.(c)Anisimov,V.I.;Elfimov,I.S.;Hamada, N.;Terakura,K.Phys.Re V.B1996,54,4387.(d)Gong,G.Q.;Gupta,A.;Xiao,G.;Qian,W.;Dravid,D.P.Phys.Re V.B1997,56,5096.(e)Coey, J.M.D.;Berkowitz,A.E.;Balcells,L.I.;Putris,F.F.;Parker,F.T.Appl.Phys.Lett.1998,72,734.(f)Li,X.W.;Gupta,A.;Xiao,G.;Gong,G.Q.J.Appl.Phys.1998,83,7049.(g)Kiyomura,T.;Maruo,Y.;Gomi M.J.Appl.Phys.2000,88,4768.(h)Moore,R.G.C.;Evans,S.D.;Shen,T.;Hodson,C.E.C.Physica E2001,9,253.(i)Versluijs,J.J.;Bari,M.A.;Coey,J.M.D.Phys.Re V.Lett.2001,87,26601.(j)Soeya,S.;Hayakawa,Published on Web12/10/2003magnetic MFe2O4ferrofluids,it does require careful adjustment of the pH value of the solution for particle formation and stabilization,and it is difficult to control sizes and size distributions,particularly for particles smaller than20nm.An alternative approach to monodisperse iron oxide nanoparticles is via high-temperature organic phase decomposition of an iron precursor,for example,decomposition of FeCup3(Cup:N-nitrosophenylhydroxylamine,C6H5N(NO)O-)8or decomposition of Fe(CO)5followed by oxidation to Fe2O3.9The latter process has recently been extended to the synthesis of monodisperse cobalt ferrite(CoFe2O4)nanoparticles.10Although significant progress in making monodisperse Fe2O3and CoFe2O4nano-particles has been made in organic phase reactions,there is still no general process for producing MFe2O4,especially Fe3O4 nanoparticles with the desired size and acceptable size distribu-tion.Recently,we reported a convenient organic phase process for making monodisperse Fe3O4nanoparticles through the reaction of Fe(acac)3and a long-chain alcohol.11Our further experiments indicated that this reaction could be readily extended to the synthesis of MFe2O4nanoparticles(with M) Co,Ni,Mn,Mg,etc.)by simply adding a different metal acetylacetonate precursor to the mixture of Fe(acac)3and1,2-hexadecanediol.Here we present detailed syntheses and char-acterization of Fe3O4and related MFe2O4nanoparticles(with M)Co and Mn as two examples)with sizes tunable from3to 20nm in diameter.The process involves high-temperature(up to305°C)reaction of metal acetylacetonate with1,2-hexade-canediol,oleic acid,and oleylamine.The size of the oxide nanoparticles can be controlled by varying the reaction tem-perature or changing metal precursors.Alternatively,with the smaller nanoparticles as seeds,larger monodisperse nanopar-ticles up to20nm in diameter can be synthesized by seed-mediated growth.The process does not require a low-yield fractionation procedure to achieve the desired size distribution and is readily scaled up for mass production.The nanoparticles can be dispersed into nonpolar or weakly polar hydrocarbon solvent,such as hexane or toluene.The hydrophobic nanopar-ticles can be transformed into hydrophilic ones by mixing with a bipolar surfactant,tetramethylammonium11-aminounde-canoate,allowing preparation of aqueous nanoparticle disper-sions.These iron oxide nanoparticles and their dispersions in various media have great potential in magnetic nanodevice and biomagnetic applications.Experimental SectionThe synthesis was carried out using standard airless procedures and commercially available reagents.Absolute ethanol,hexane,and dichlo-romethane(99%)were used as received.Phenyl ether(99%),benzyl ether(99%),1,2-hexadecanediol(97%),oleic acid(90%),oleylamine (>70%),cobalt(II)acetylacetonate,Mn(II)acetylacetonate,and poly-ethylenimine(water-free,average M w ca.25000)were purchased from Aldrich Chemical Co.Iron(III)acetylacetonate was from Strem Chemicals,Inc.Tetramethylammonium11-aminoundecanoate was prepared by titrating a methanolic suspension of11-aminoundecanoic acid with methanolic tetramethylammonium hydroxide(both from Aldrich),evaporating the solvent under reduced pressure,and recrystal-lizing in tetrahydrofuran.Synthesis of4nm Fe3O4Nanoparticle Seeds.Fe(acac)3(2mmol), 1,2-hexadecanediol(10mmol),oleic acid(6mmol),oleylamine(6 mmol),and phenyl ether(20mL)were mixed and magnetically stirred under a flow of nitrogen.The mixture was heated to200°C for30 min and then,under a blanket of nitrogen,heated to reflux(265°C) for another30min.The black-brown mixture was cooled to room temperature by removing the heat source.Under ambient conditions, ethanol(40mL)was added to the mixture,and a black material was precipitated and separated via centrifugation.The black product was dissolved in hexane in the presence of oleic acid(∼0.05mL)and oleylamine(∼0.05mL).Centrifugation(6000rpm,10min)was applied to remove any undispersed residue.The product,4nm Fe3O4nano-particles,was then precipitated with ethanol,centrifuged(6000rpm, 10min)to remove the solvent,and redispersed into hexane.Under identical conditions,reaction of Co(acac)2(1mmol)with Fe-(acac)3led to3nm CoFe2O4nanoparticles that could be readily dispersed into hexane,giving a dark red-brown hexane dispersion.Synthesis of6nm Fe3O4Nanoparticle Seeds.Fe(acac)3(2mmol), 1,2-hexadecanediol(10mmol),oleic acid(6mmol),oleylamine(6 mmol),and benzyl ether(20mL)were mixed and magnetically stirred under a flow of nitrogen.The mixture was heated to200°C for2h and then,under a blanket of nitrogen,heated to reflux(∼300°C)for 1h.The black-colored mixture was cooled to room temperature by removing the heat source.Following the workup procedures described in the synthesis of4nm particles,a black-brown hexane dispersion of 6nm Fe3O4nanoparticles was produced.Similarly,by adding Co(acac)2or Mn(acac)2,10nm CoFe2O4or7 nm MnFe2O4nanoparticle seeds can be made.Synthesis of8nm Fe3O4Nanoparticles via6nm Fe3O4Seeds. Fe(acac)3(2mmol),1,2-hexadecanediol(10mmol),benzyl ether(20 mL),oleic acid(2mmol),and oleylamine(2mmol)were mixed and magnetically stirred under a flow of N2.A84mg sample of6nm Fe3O4nanoparticles dispersed in hexane(4mL)was added.The mixture was first heated to100°C for30min to remove hexane,then to200°C for1h.Under a blanket of nitrogen,the mixture was further heated to reflux(∼300°C)for30min.The black-colored mixture was cooled to room temperature by removing the heat source.Following the workup procedures described in the synthesis of4nm particles,a black-brown hexane dispersion of8nm Fe3O4nanoparticles was produced.Similarly,80mg of8nm Fe3O4seeds reacted with Fe(acac)3(2 mmol)and the diol(10mmol)led to10nm ing this seed-mediated growth,bigger nanoparticles of Fe3O4up to20nm, CoFe2O4up to20nm,or MnFe2O4up to18nm have been made.Synthesis of Hydrophilic Fe3O4Nanoparticles.Under ambient conditions,a hexane dispersion of hydrophobic Fe3O4nanoparticles (about20mg in0.2mL)was added to a suspension of tetramethy-lammonium11-aminoundecanoate(about20mg in2mL)in dichlo-romethane.The mixture was shaken for about20min,during which time the particles precipitated and separated using a magnet.The solvent(6)See for example:(a)Kang,Y.S.;Risbud,S.;Rabolt,J.F.;Stroeve,P.Chem.Mater.1996,8,2209.(b)Hong,C.-Y.;Jang,I.J.;Horng,H.E.;Hsu,C.J.;Yao,Y.D.;Yang,H.C.J.Appl.Phys.1997,81,4275.(c)Fried,T.;Shemer,G.;Markovich,G.Ad V.Mater.2001,13,1158.(d)Tang,Z.X.;Sorensen,C.M.;Klabunde,K.J.;Hadjipanayis,G.C.J.ColloidInterface Sci.1991,146,38.(e)Zhang,Z.J.;Wang,Z.L.;Chakoumakos,B.C.;Yin,J.S.J.Am.Chem.Soc.1998,120,1800.(f)Neveu,S.;Bec,A.;Robineau,M.;Talbol,D.J.Colloid Interface Sci.2002,255,293.(7)See for example:(a)Pileni,M.P.;Moumen,N.J.Phys.Chem.B1996,100,1867.(b)Liu,C.;Zou,B.;Rondinone,A.J.;Zhang,Z.J.J.Phys.Chem.B2000,104,1141.(8)Rockenberger,J.;Scher,E.C.;Alivisatos,P.A.J.Am.Chem.Soc.1999,121,11595.(9)(a)Bentzon,M.D.;van Wonterghem,J.;Mørup,S.;Tho¨le´n,A.;Koch,C.J.Philos.Mag.B1989,60,169.(b)Hyeon,T.;Lee,S.S.;Park,J.;Chung,Y.;Na,H.B.J.Am.Chem.Soc.2001,123,12798.(c)Guo,Q.;Teng,X.;Rahman,S.;Yang,H.J.Am.Chem.Soc.2003,125,630.(d)Redl,F.X.;Cho,K.-S.;Murray,C.B.;O’Brien,S.Nature2003,423,968.A R T I C L E S Sun et al.to remove excess surfactants before drying under N 2.The product was then dispersed in deionized water (18M Ω)or 1mM phosphate buffer at neutral pH.Nanoparticle Characterization.Fe,Co,Mn,and S elemental analyses of the as-synthesized nanoparticle powders were performed on inductively coupled plasma -optic emission spectrometry (ICP-OES)at Galbraith Laboratories (Knoxville,TN).To prepare samples for elemental analysis,the particles were precipitated from their hexane dispersion by ethanol,centrifuged,washed with ethanol,and dried.Samples for transmission electron microscopy (TEM)analysis were prepared by drying a dispersion of the particles on amorphous carbon-coated copper grids.Particles were imaged using a Philips CM 12TEM (120kV).The structure of the particles was characterized using HRTEM and selected area electron diffraction (SAED)on a JEOL TEM (400kV).X-ray powder diffraction patterns of the particle assemblies were collected on a Siemens D-500diffractometer under Co K R radiation (λ)1.788965Å).Near-edge X-ray absorption fine structure (NEXAFS)spectroscopy was performed at the Advanced Light Source at beamline 7.3.1.1,which was equipped with a spherical grating monochromator and had an energy resolution of E /∆E )1800.Magnetic studies were carried out using a MPMS2Quantum Design SQUID magnetometer with fields up to 7T and temperatures from 5to 350K.Infrared spectra of dried particles pressed into KBr pellets were obtained on a Nicolet Nexus 670FTIR spectrometer.A homemade spin valve sensor 12was used to detect a single layer of 16nm Fe 3O 4nanoparticles.Results and DiscussionFe 3O 4Synthesis.As illustrated in Scheme 1,reaction of Fe-(acac)3with surfactants at high temperature leads to monodis-perse Fe 3O 4nanoparticles,which can be easily isolated from reaction byproducts and the high boiling point ether solvent.If phenyl ether was used as solvent,4nm Fe 3O 4nanoparticles were separated,while the use of benzyl ether led to 6nm Fe 3O 4.As the boiling point of benzyl ether (298°C)is higher than that of phenyl ether (259°C),the larger sized Fe 3O 4particle obtained from benzyl ether solution seems to indicate that high reaction temperature will yield larger particles.However,regardless of the size of the particles,the key to the success of making monodisperse nanoparticles is to heat the mixture to 200°C first and remain at that temperature for some time before it is heated to reflux at 265°C in phenyl ether or at ∼300°C in benzyl ether.Directly heating the mixture to reflux from room temperature would result in Fe 3O 4nanoparticles with wide size distribution from 4to 15nm,indicating that the nucleation of Fe 3O 4and the growth of the nuclei under these reaction conditions is not a fast process.The low cost of Fe(acac)3and the high yields it produces makes it an ideal precursor for Fe 3O 4nanoparticle synthesis.The more expensive Fe(acac)2or Fe(II)acetate can also be used but yields no better result than Fe(acac)3.Fe(II)(D -gluconate)is another good precursor for Fe 3O 4synthesis.In benzyl ether,the reaction of Fe(II)(D -gluconate)with a 3-fold excess of each of oleic acid and oleylamine and a 5-fold excess of 1,2-hexadecanediol led to nearly monodisperse 8nm Fe 3O 4nano-particles.Several different alcohols and polyalcohols have been tested for their reactions with Fe(acac)3.It was found that 1,2-hydrocarbon diols,including 1,2-hexadecanediol and 1,2-dodecanediol,react well with Fe(acac)3to yield Fe 3O 4nano-particles.Long-chain monoalcohols,such as stearyl alcohol and oleyl alcohol,can also be used,but particle quality is worse and product yield is poorer than those with diols in the synthesis of Fe 3O 4nanoparticle seeds.However,in the seed-mediated growth process,these monoalcohols can be used to form larger Fe 3O 4nanoparticles.11Oleic acid and oleylamine are necessary for the formation of particles.Sole use of oleic acid during the reaction resulted in a viscous red-brown product that was difficult to purify and characterize.On the other hand,the use of oleylamine alone produced iron oxide nanoparticles in a much lower yield than the reaction in the presence of both oleic acid and oleylamine.When the 4nm particles were oxidized by bubbling oxygen through the dispersion at room temperature,they precipitated from hexane as a red-brown powder (the characterization of a similar product is discussed below).Adding more oleic acid did not cause re-dispersion of this powder into hexane.However,adding oleylamine did,leading to an orange-brown hexane dispersion.This is consistent with the previous observation that γ-Fe 2O 3nanoparticles can be stabilized by alkylamine surfac-tants,13suggesting that -NH 2coordinates with Fe(III)on the surface of the particles.The larger Fe 3O 4nanoparticles can also be made by seed-mediated growth.This method has been recently applied to larger metallic nanoparticle and nanocomposite synthesis 14and is believed to be an alternative way of making monodisperse nanoparticles along with LaMer’s method through fast super-saturated-burst nucleation 15and Finke’s method via slow,continuous nucleation and fast,autocatalytic surface growth.16In our synthesis,the small Fe 3O 4nanoparticles,the seeds,are mixed with more materials as shown in Scheme 1and heated,and particle diameters can be increased by ∼2nm or more in each seed-mediated reaction,allowing diameter to be tuned up to about 20nm.TEM analysis shows that Fe 3O 4nanoparticles prepared according to Scheme 1or the seed-mediated growth method are monodisperse.Figure 1shows typical TEM images from representative 6,10,and 12nm Fe 3O 4nanoparticles deposited from their hexane (or octane)dispersions and dried under ambient conditions.It can be seen that the particles have a(13)(a)Rajamathi,M.;Ghosh,M.;Seshadri,m .2002,1152.(b)Boal,A.K.;Das,K.;Gray,M.;Rotello,V.M.Chem.Mater .2002,14,2628.(14)(a)Brown,K.R.;Natan,ngmuir 1998,14,726.(b)Jana,N.R.;Gearheart,L.;Murphy,C.J.Chem.Mater .2001,13,2313.(c)Yu,H.;Gibbons,P.C.;Kelton,K.F.;Buhro,W.E.J.Am.Chem.Soc .2001,123,Scheme1MFe 2O 4(M )Fe,Co,Mn)NanoparticlesA R T I C L E Snarrow size distribution and can form a self-ordered Fe3O4 superlattice(Figure1C)if solvent is made to evaporate slowly. Fe3O4Structural Characterization.Structural information from a single Fe3O4nanoparticle was obtained using high-resolution TEM(HRTEM).Figure2A is the HRTEM image of an isolated6nm Fe3O4nanoparticle.The lattice fringes in the image correspond to a group of atomic planes within the particle,indicating that the particle is a single crystal.The distance between two adjacent planes is measured to be2.98Å,corresponding to(220)planes in the spinel-structured Fe3O4.17Structural information from an assembly of Fe3O4nanopar-ticles was obtained from both electron and X-ray diffraction. Figure2B is a selected area electron diffraction(SAED)pattern acquired from a6nm nanoparticle assembly.Table1displays the measured lattice spacing based on the rings in the diffraction pattern and compares them to the known lattice spacing for bulk Fe3O4along with their respective hkl indexes from the PDFdatabase.Figure3is a group of representative size-dependent XRD patterns of Fe3O4nanoparticles.The position and relative intensity of all diffraction rings/peaks match well with standard Fe3O4powder diffraction data.17The average particle diameter estimated from Scherrer’s formula18is consistent with that determined by statistical analysis of the TEM images,indicating that each individual particle is a single crystal.Figure1.TEM bright field images of(A)6nm and(B)12nm Fe3O4 nanoparticles deposited from their hexane dispersion on an amorphous carbon-coated copper grid and dried at room temperature,and(C)a3D superlattice of10nm Fe3O4nanoparticles deposited from their octane dispersion on an amorphous carbon surface and dried at roomtemperature.Figure2.Structural characterization of Fe3O4nanoparticles:(A)High-Resolution TEM image of a single6nm Fe3O4nanoparticle;and(B)selected area electron diffraction(SAED)pattern acquired from a6nm Fe3O4 nanoparticleassembly.Figure3.X-ray diffraction patterns of(A)4nm,(B)8nm,(C)12nm, and(D)16nm Fe3O4nanoparticle assemblies.All samples were deposited on glass substrates from their hexane dispersions.Diffraction patterns were collected on a Siemens D-500diffractometer under Co K R radiation(λ) 1.788965Å).Table1.Measured Lattice Spacing,d(Å),Based on the Rings in Figure2B and Standard Atomic Spacing for Fe3O4along with Their Respective hkl Indexes from the PDF Databasering12345678910 d 4.86 2.98 2.54 2.12 1.73 1.63 1.5 1.34 1.29 1.22 Fe3O4 4.86 2.97 2.53 2.1 1.71 1.62 1.48 1.33 1.28 1.21 hkl111220311400422511440620533444A R T I C L E S Sun et al.Oxidation Fe 3O 4to Fe 2O 3.It is well known that Fe 3O 4can be oxidized to γ-Fe 2O 3,which can be further transformed into R -Fe 2O 3at higher temperature.19Observation of these trans-formations can further help to confirm the formation of Fe 3O 4nanoparticles from the synthesis based on Scheme 1.Figure 4A is the XRD pattern from the as-synthesized,black 16nm Fe 3O 4nanoparticle assembly.After oxidation under O 2at 250°C for 6h,the black assembly is transformed to a red-brown one.Figure 4B shows that all XRD peak positions and relative intensities of this red-brown material match well with those of commercial γ-Fe 2O 3powder materials (Aldrich catalog No.48,-066-5),indicating that the oxidation of Fe 3O 4under O 2leads to γ-Fe 2O pared to Figure 4A,the large-angle peaks in Figure 4B shift slightly to higher angles,whereas at lower angles there exist additional weak diffraction peaks of (110),(113),(210),and (213)that are characteristic of γ-Fe 2O 3.17Figure 4C shows the XRD of the dark red-brown materials obtained after 500°C annealing of γ-Fe 2O 3in Figure 4B under Ar for 1h.The diffraction pattern matches with that from known R -Fe 2O 3materials,17indicating the transformation of γ-Fe 2O 3to R -Fe 2O 3at high temperature.However the as-synthesized Fe 3O 4nano-particles do not go through such a change if annealed under inert atmosphere.Even at 650°C,the Fe 3O 4structure is still retained,as evidenced by both XRD and HRTEM.This confirms the valence state of the iron cations in the as-synthesized sample closely matches that of Fe 3O 4rather than similarly structured γ-Fe 2O 3.20The transformations of Fe 3O 4to Fe 2O 3can be further characterized by near-edge X-ray absorption fine structure (NEXAFS)spectroscopy in total electron yield mode.Figure 5shows the NEXAFS spectra at the Fe L absorption edges of the as-synthesized 8nm Fe 3O 4nanoparticles and γ-Fe 2O 3and R -Fe 2O 3nanoparticles derived from the oxidation of the Fe 3O 4particles.For comparison,reference spectra of Fe 3O 4,γ-Fe 2O 3,and R -Fe 2O 3films grown on MgO (001)21are also inserted into the figure as dotted lines.The increased splitting of the L 3peak in the region of 705-710eV and the varying ratio of the two peaks at the L 2edge (719-725eV)are indicative of the transformation of the as-synthesized Fe 3O 4nanoparticles into γ-Fe 2O 3and to R -Fe 2O 3under different annealing conditions.Magnetic Properties of the Fe 3O 4Nanoparticle Assem-blies.Magnetic measurements on all Fe 3O 4nanoparticles indicate that the particles are superparamagnetic at room temperature,meaning that the thermal energy can overcome the anisotropy energy barrier of a single particle,and the net magnetization of the particle assemblies in the absence of an external field is zero.Figure 6shows the hysteresis loops of 16nm Fe 3O 4nanoparticles measured at both 10K and room temperature.It can be seen that the particles are ferromagnetic at 10K with a coercivity of 450Oe (Figure 6A).At room temperature there is no hysteresis (Figure 6B).Under a large external field,the magnetization of the particles aligns with the field direction and reaches its saturation value (saturation magnetization,σs ).For Fe 3O 4nanoparticles,we noticed that the(19)Bate,G.In Magnetic Oxides Part 2;Craik,D.J.,Ed.;John Wiley &Sons:New York,1975;pp 705-707.(20)Although the evidence presented so far suggests that Fe 3O 4is obtainedFigure 4.X-ray diffraction patterns of (A)a 16nm Fe 3O 4nanoparticle assembly,(B)a γ-Fe 2O 3nanoparticle assembly obtained from the oxidation of (A)under oxygen at 250°C for 6h,(C)an R -Fe 2O 3nanoparticle assembly obtained from the further annealing of (B)under Ar at 500°C for 1h.Figure 5.NEXAFS spectra at the Fe L edge of Fe 3O 4,γ-Fe 2O 3,and R -Fe 2O 3nanoparticle assemblies,with the dotted lines representing reference spectra of thin film oxide samples of Fe 3O 4,γ-Fe 2O 3,and R -Fe 2O 3.Figure 6.Hysteresis loops of the 16nm Fe 3O 4nanoparticle assembly measured at (A)10K and (B)300K.MFe 2O 4(M )Fe,Co,Mn)Nanoparticles A R T I C L E Sσs was dependent on the size of the particles.For example,σs for16nm Fe3O4nanoparticles is83emu/g,close to the value of84.5emu/g measured from the commercial magnetite fine powder.For particles smaller than10nm,however,σs is smaller, most likely due to the surface spin canting of the small magnetic nanoparticles.22However,if annealed under Ar at high tem-perature(600°C),even4nm Fe3O4nanoparticles show aσs close to82emu/g due to the average size increase caused by particle aggregation.After the16nm Fe3O4nanoparticles were oxidized under oxygen at250°C for6h,theirσs is reduced to 70emu/g,close to74emu/g from commercialγ-Fe2O3powder, suggesting the transformation of Fe3O4to Fe2O3.Possible Mechanism for the Formation of Fe3O4.The mechanism leading to Fe3O4in the reactions presented is not yet clear.However,evidence suggests that reduction of the Fe(III)salt to an Fe(II)intermediate occurs,followed by the decomposition of the intermediate at high temperature.The formation of an Fe(II)intermediate was indicated by the fact that product separated after a short refluxing time(5min)instead of30min showed no magnetic response and contained FeO,as evidenced by XRD.Furthermore,in the presence of a slight excess of1-hexadecanethiol,a black powder corresponding to FeS(as characterized by ICP-OES analysis and XRD)could be separated.If Fe(II)(D-gluconate)or Fe(II)acetyl-acetonate was used,the same product was obtained.No metallic Fe was detected in the final product.MFe2O4(M)Co,Mn)Nanoparticles.The process described in Scheme1can be readily extended to the synthesis of other types of MFe2O4nanoparticles.For example,when Co-(acac)2was partially substituted for Fe(acac)3in a1:2ratio in the same reaction conditions as in the synthesis of Fe3O4, CoFe2O4nanoparticles were formed.When Mn(acac)2was used, MnFe2O4nanoparticles were made.ICP-OES elemental analysis indicated that the ratio of Co/Fe and Mn/Fe in both cobalt ferrite and manganese ferrite was retained from the ratio of initial metal precursors,and the final Co/Fe and Mn/Fe compositions could be readily controlled.Figure7shows the TEM images of14 nm CoFe2O4nanoparticles and14nm MnFe2O4nanoparticles made from seed-mediated growth.XRD for both samples are very similar to that of Fe3O4,indicating the cubic spinel structure of the particles.At temperatures up to300K,16nm CoFe2O4 nanoparticles are ferromagnetic.Figure8shows the hysteresis loops of16nm CoFe2O4nanoparticles measured at both10and 300K.The coercivity of the assembly is about400Oe at300 K,but reaches20kOe at10K,much larger than that of the16 nm Fe3O4nanoparticles(450Oe at10K),indicating that the incorporation of the Co cation in the Fe-O matrix greatly increases the magnetic anisotropy of the materials.Suchanisotropy enhancement of CoFe2O4vs Fe3O4has also been observed in films deposited from aqueous solution.23To the contrary,the incorporation of Mn cation in the Fe-O matrix reduces the magnetic anisotropy of the materials,1a as the14 nm MnFe2O4nanoparticles shows a coercivity of only140Oe at10K.Possible Applications of MFe2O4Nanoparticles.The MFe2O4nanoparticles presented above may have numerous applications in magnetic nanodevices and biomedicine,but additional requirements may arise from particular applications. For example,in biomagnetic applications,the superparamagnetic nanoparticles often need to be water-soluble.3,24Here we demonstrate briefly that superparamagnetic Fe3O4nanoparticles can be made water-soluble and yield a good magnetic signal that is suitable for spin valve sensor detection.To make water-soluble iron oxide nanoparticles,we mix hydrophobic nanoparticles with a bipolar molecule,tetramethyl-ammonium11-aminoundecanoate.Shaking the hexane disper-(22)Morales,M.P.;Veintemillas-Verdaguer,S.;Montero,M.I.;Serna,C.J.;Roig,A.;Casas,L.;Martinez,B.;Sandiumenge,F.Chem.Mater.1999,Figure7.TEM bright field images of(A)14nm CoFe2O4nanoparticles and(B)14nm MnFe2O4nanoparticles made from seed-mediated growth and deposited from their hexane dispersion on amorphous carbon-coated copper grid at roomtemperature.Figure8.Hysteresis loops of the16nm CoFe2O4nanoparticle assembly measured at(A)10K and(B)300K.A R T I C L E S Sun et al.。

相关文档
最新文档