2018年天津市高考数学试卷(理科)(解析版)

合集下载

2018天津高考理科数学真题答案解析(可编辑)

2018天津高考理科数学真题答案解析(可编辑)

在 ABC中,内角A,B,C所对的边分别为a,b,c. 已知b sin A a cos B , 6
(Ⅰ) 求角B的大小; (Ⅱ) 设a=2,c=3,求b和sin 2 A B 的值. (Ⅰ)解: 在 ABC中,由正弦定理
a b , 可得b sin A=a sin B,又由 sin A sin B
l ( )2 d 2 r 2 2 l 1 ( )2 1 2 2 l 2 2 2 l 2 2 1 S d 2 2 2 2
1 0 2 11

2 2
(13) 已知 a, b R ,且 a 3b 6 0 ,则 2a 答案:
1 4
1 的最小值为_________. 8b
x 2 2ax a, x 0 (14) 已知 a 0 ,函数 f x 2 若关于 x 的方程 f x ax x 2ax 2a, y 0
恰有 2 个互异的实数解,则 a 的取值范围是_________. 答案: (4, 8) 解析:当 x 0时
第二部分:试卷题目解析
一、 选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设全集为 R,集合 A x 0 x 2 , B x x 1 ,则 A CR B (A) x 0 x 1 答案:B 解析: Q B = {x | x 砛 1} CR B = {x | x < 1} (B) x 0 x 1 (C) x 1 x 2 (D) x 0 x 2
(4) 设 x R ,则“ x
1 1 ”是“ x3 1 ”的 2 2
(A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件 (D)既不充分也不必要条件 答案:A 解析: Q x 1 1 < 2 2

2018年高考天津卷数学试题答案解析(文理)

2018年高考天津卷数学试题答案解析(文理)

2018年高考天津卷数学试题详解1. 设集合,,,则A. B.C. D.【答案】C【详解】分析:由题意首先进行并集运算,然后进行交集运算即可求得最终结果. 详解:由并集的定义可得:,结合交集的定义可知:.本题选择C选项.2. 设变量满足约束条件则目标函数的最大值为A. 6B. 19C. 21D. 45【答案】C【详解】分析:由题意首先画出可行域,然后结合目标函数的详解式整理计算即可求得最终结果.详解:绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程:,可得点A的坐标为:,据此可知目标函数的最大值为:.本题选择C选项.3. 设,则“”是“” 的A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【详解】分析:求解三次不等式和绝对值不等式,据此即可确定两条件的充分性和必要性是否成立即可.详解:求解不等式可得,求解绝对值不等式可得或,据此可知:“”是“” 的充分而不必要条件.本题选择A选项.4. 阅读如图所示的程序框图,运行相应的程序,若输入的值为20,则输出的值为A. 1B. 2C. 3D. 4【答案】B【详解】分析:由题意结合流程图运行程序即可求得输出的数值.详解:结合流程图运行程序如下:首先初始化数据:,,结果为整数,执行,,此时不满足;,结果不为整数,执行,此时不满足;,结果为整数,执行,,此时满足;跳出循环,输出.本题选择B选项.拓展:识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.5. 已知,则的大小关系为A. B. C. D.【答案】D【详解】分析:由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a,b,c的大小关系.详解:由题意可知:,即,,即,,即,综上可得:.本题选择D选项.拓展:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.6. 将函数的图象向右平移个单位长度,所得图象对应的函数A. 在区间上单调递增B. 在区间上单调递减C. 在区间上单调递增D. 在区间上单调递减【答案】A【详解】分析:首先确定平移之后的对应函数的详解式,然后逐一考查所给的选项是否符合题意即可.详解:由函数图象平移变换的性质可知:将的图象向右平移个单位长度之后的详解式为:.则函数的单调递增区间满足:,即,令可得函数的一个单调递增区间为,选项A正确,B错误;函数的单调递减区间满足:,即,令可得函数的一个单调递减区间为,选项C,D错误;本题选择A选项.拓展:本题主要考查三角函数的平移变换,三角函数的单调区间等知识,意在考查学生的转化能力和计算求解能力.7. 已知双曲线的离心率为2,过右焦点且垂直于轴的直线与双曲线交于两点.设到双曲线的同一条渐近线的距离分别为和,且则双曲线的方程为A. B.C. D.【答案】A【详解】分析:由题意首先求得A,B的坐标,然后利用点到直线距离公式求得b的值,之后求解a的值即可确定双曲线方程.详解:设双曲线的右焦点坐标为(c>0),则,由可得:,不妨设:,双曲线的一条渐近线方程为,据此可得:,,则,则,双曲线的离心率:,据此可得:,则双曲线的方程为.本题选择A选项.拓展:求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a,b,c,e及渐近线之间的关系,求出a,b的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为,再由条件求出λ的值即可.8. 在如图的平面图形中,已知,则的值为A. B.C. D. 0【答案】C【详解】分析:连结MN,结合几何性质和平面向量的运算法则整理计算即可求得最终结果. 详解:如图所示,连结MN,由可知点分别为线段上靠近点的三等分点,则,由题意可知:,,结合数量积的运算法则可得:.本题选择C选项.拓展:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.9. i是虚数单位,复数___________.【答案】4–i【详解】分析:由题意结合复数的运算法则整理计算即可求得最终结果.详解:由复数的运算法则得:.拓展:本题主要考查复数的运算法则及其应用,意在考查学生的转化能力和计算求解能力.10. 已知函数f(x)=e x ln x,为f(x)的导函数,则的值为__________.【答案】e【详解】分析:首先求导函数,然后结合导函数的运算法则整理计算即可求得最终结果. 详解:由函数的详解式可得:,则:.即的值为e.拓展:本题主要考查导数的运算法则,基本初等函数的导数公式等知识,意在考查学生的转化能力和计算求解能力.11. 如图,已知正方体ABCD–A1B1C1D1的棱长为1,则四棱柱A1–BB1D1D的体积为__________.【答案】【详解】分析:由题意分别求得底面积和高,然后求解其体积即可.详解:如图所示,连结,交于点,很明显平面,则是四棱锥的高,且,,结合四棱锥体积公式可得其体积为:.拓展:本题主要考查棱锥体积的计算,空间想象能力等知识,意在考查学生的转化能力和计算求解能力.12. 在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________.【答案】【详解】分析:由题意利用待定系数法求解圆的方程即可.详解:设圆的方程为,圆经过三点(0,0),(1,1),(2,0),则:,解得:,则圆的方程为.拓展:求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线.(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.13. 已知a,b∈R,且a–3b+6=0,则2a+的最小值为__________.【答案】【详解】分析:由题意首先求得a-3b的值,然后结合均值不等式的结论整理计算即可求得最终结果,注意等号成立的条件.详解:由可知,且:,因为对于任意x,恒成立,结合均值不等式的结论可得:.当且仅当,即时等号成立.综上可得的最小值为.拓展:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.14. 已知a∈R,函数若对任意x∈[–3,+),f(x)≤恒成立,则a的取值范围是__________.【答案】[,2]【详解】分析:由题意分类讨论和两种情况,结合恒成立的条件整理计算即可求得最终结果.详解:分类讨论:①当时,即:,整理可得:,由恒成立的条件可知:,结合二次函数的性质可知:当时,,则;②当时,即:,整理可得:,由恒成立的条件可知:,结合二次函数的性质可知:当或时,,则;综合①②可得的取值范围是.拓展:对于恒成立问题,常用到以下两个结论:(1)a≥f(x)恒成立⇔a≥f(x)max;(2)a≤f(x)恒成立⇔a≤f(x)min.有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.15. 已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.【答案】(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人;(Ⅱ)(i)答案见详解;(ii).【详解】分析:(Ⅰ)结合人数的比值可知应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(Ⅱ)(i)由题意列出所有可能的结果即可,共有21种.(ii)由题意结合(i)中的结果和古典概型计算公式可得事件M发生的概率为P(M)=.详解:(Ⅰ)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(Ⅱ)(i)从抽出的7名同学中随机抽取2名同学的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21种.(ii)由(Ⅰ),不妨设抽出的7名同学中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A,B},{A,C},{B,C},{D,E},{F,G},共5种.所以,事件M发生的概率为P(M)=.拓展:本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识.考查运用概率知识解决简单实际问题的能力.16. 在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b sin A=a cos(B–).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A–B)的值.【答案】(Ⅰ)B=;(Ⅱ)b=,【详解】分析:(Ⅰ)由正弦定理有,结合,可得.则B=.(Ⅱ)在△ABC中,由余弦定理可得b=.则..结合两角差的正弦公式可得详解:(Ⅰ)在△ABC中,由正弦定理,可得,又由,得,即,可得.又因为,可得B=.(Ⅱ)在△ABC中,由余弦定理及a=2,c=3,B=,有,故b=.由,可得.因为a<c,故.因此,所以,拓展:在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.17. 如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB 的中点,AB=2,AD=,∠BAD=90°.(Ⅰ)求证:AD⊥BC;(Ⅱ)求异面直线BC与MD所成角的余弦值;(Ⅲ)求直线CD与平面ABD所成角的正弦值.【答案】(Ⅰ)证明见详解;(Ⅱ);(Ⅲ).【详解】分析:(Ⅰ)由面面垂直的性质定理可得AD⊥平面ABC,则AD⊥BC.(Ⅱ)取棱AC的中点N,连接MN,ND.由几何关系可知∠DMN(或其补角)为异面直线BC与MD所成的角.计算可得.则异面直线BC与MD所成角的余弦值为.(Ⅲ)连接CM.由题意可知CM⊥平面ABD.则∠CDM为直线CD与平面ABD所成的角.计算可得.即直线CD与平面ABD所成角的正弦值为.详解:(Ⅰ)由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,可得AD⊥平面ABC,故AD⊥BC.(Ⅱ)取棱AC的中点N,连接MN,ND.又因为M为棱AB的中点,故MN∥BC.所以∠DMN (或其补角)为异面直线BC与MD所成的角.在Rt△DAM中,AM=1,故DM=.因为AD⊥平面ABC,故AD⊥AC.在Rt△DAN中,AN=1,故DN=.在等腰三角形DMN中,MN=1,可得.所以,异面直线BC与MD所成角的余弦值为.(Ⅲ)连接CM.因为△ABC为等边三角形,M为边AB的中点,故CM⊥AB,CM=.又因为平面ABC⊥平面ABD,而CM平面ABC,故CM⊥平面ABD.所以,∠CDM为直线CD与平面ABD所成的角.在Rt△CAD中,CD==4.在Rt△CMD中,.所以,直线CD与平面ABD所成角的正弦值为.拓展:本小题主要考查异面直线所成的角、直线与平面所成的角、平面与平面垂直等基础知识.考查空间想象能力、运算求解能力和推理论证能力.18. 设{a n}是等差数列,其前n项和为S n(n∈N*);{b n}是等比数列,公比大于0,其前n 项和为T n(n∈N*).已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6.(Ⅰ)求S n和T n;(Ⅱ)若S n+(T1+T2+…+T n)=a n+4b n,求正整数n的值.【答案】(Ⅰ),;(Ⅱ)4.【详解】分析:(I)由题意得到关于q的方程,解方程可得,则.结合题意可得等差数列的首项和公差为,则其前n项和.(II)由(I),知据此可得解得(舍),或.则n的值为4.详解:(I)设等比数列的公比为q,由b1=1,b3=b2+2,可得.因为,可得,故.所以,.设等差数列的公差为.由,可得.由,可得从而,故,所以,.(II)由(I),有由可得,整理得解得(舍),或.所以n的值为4.拓展:本小题主要考查等差数列、等比数列的通项公式及前n项和公式等基础知识.考查数列求和的基本方法和运算求解能力.19. 设椭圆的右顶点为A,上顶点为B.已知椭圆的离心率为,.(I)求椭圆的方程;(II)设直线与椭圆交于两点,与直线交于点M,且点P,M均在第四象限.若的面积是面积的2倍,求k的值.【答案】(Ⅰ);(Ⅱ).【详解】分析:(I)由题意结合几何关系可求得.则椭圆的方程为. (II)设点P的坐标为,点M的坐标为,由题意可得.易知直线的方程为,由方程组可得.由方程组可得.结合,可得,或.经检验的值为.详解:(I)设椭圆的焦距为2c,由已知得,又由,可得.由,从而.所以,椭圆的方程为.(II)设点P的坐标为,点M的坐标为,由题意,,点的坐标为.由的面积是面积的2倍,可得,从而,即.当时,,不合题意,舍去;当时,,,符合题意.所以,的值为.拓展:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.20. 设函数,其中,且是公差为的等差数列.(I)若求曲线在点处的切线方程;(II)若,求的极值;(III)若曲线与直线有三个互异的公共点,求d的取值范围. 【答案】(Ⅰ)x+y=0;(Ⅱ)极大值为6;极小值为−6;(Ⅲ)【详解】分析:(Ⅰ)由题意可得f(x)=x3−x,=3x2−1,结合f(0)=0,=−1,可得切线方程为x+y=0.(Ⅱ)由已知可得:f(x)=x3−3t2x2+(3t22−9)x− t23+9t2.则= 3x2−6t2x+3t22−9.令=0,解得x=t2−,或x= t2+.据此可得函数f(x)的极大值为f(t2−)=6;函数极小值为f(t2+)=−6. (III)原问题等价于关于x的方程(x−t2+d) (x−t2) (x−t2−d)+ (x−t2)+ 6=0有三个互异的实数解,令u= x−t2,可得u3+(1−d2)u+6=0.设函数g(x)= x3+(1−d2)x+6,则y=g(x)有三个零点.利用导函数研究g(x)的性质可得的取值范围是详解:(Ⅰ)由已知,可得f(x)=x(x−1)(x+1)=x3−x,故=3x2−1,因此f(0)=0,=−1,又因为曲线y=f(x)在点(0,f(0))处的切线方程为y−f(0)=(x−0),故所求切线方程为x+y=0.(Ⅱ)由已知可得f(x)=(x−t2+3)(x−t2)(x−t2−3)=(x−t2)3−9(x−t2)=x3−3t2x2+(3t22−9)x−t23+9t2.故=3x2−6t2x+3t22−9.令=0,解得x=t2−,或x=t2+.当x变化时,,f(x)的变化如下表:+所以函数f(x)的极大值为f(t2−)=(−)3−9×(−)=6;函数f(x)的极小值为f(t2+)=()3−9×()=−6.(Ⅲ)曲线y=f(x)与直线y=−(x−t2)−6有三个互异的公共点等价于关于x的方程(x−t2+d)(x−t2)(x−t2−d)+(x−t2)+ 6=0有三个互异的实数解,令u=x−t2,可得u3+(1−d2)u+6=0.设函数g(x)=x3+(1−d2)x+6,则曲线y=f(x)与直线y=−(x−t2)−6有三个互异的公共点等价于函数y=g(x)有三个零点.=3x3+(1−d2).当d2≤1时,≥0,这时在R上单调递增,不合题意.当d2>1时,=0,解得x1=,x2=.易得,g(x)在(−∞,x1)上单调递增,在[x1,x2]上单调递减,在(x2,+∞)上单调递增.g(x)的极大值g(x1)=g()=>0.g(x)的极小值g(x2)=g()=−.若g(x2)≥0,由g(x)的单调性可知函数y=g(x)至多有两个零点,不合题意.若即,也就是,此时,且,从而由的单调性,可知函数在区间内各有一个零点,符合题意.所以,的取值范围是.1. 设全集为R,集合,,则A. B. C. D.【答案】B【详解】分析:由题意首先求得,然后进行交集运算即可求得最终结果.详解:由题意可得:,结合交集的定义可得:.本题选择B选项.拓展:本题主要考查交集的运算法则,补集的运算法则等知识,意在考查学生的转化能力和计算求解能力.2. 设变量x,y满足约束条件则目标函数的最大值为A. 6B. 19C. 21D. 45【答案】C【详解】分析:首先画出可行域,然后结合目标目标函数的几何意义确定函数取得最大值的点,最后求解最大值即可.详解:绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程:,可得点A的坐标为:,据此可知目标函数的最大值为:.本题选择C选项.拓展:求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.3. 阅读右边的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为A. 1B. 2C. 3D. 4【答案】B【详解】分析:由题意结合流程图运行程序即可求得输出的数值.详解:结合流程图运行程序如下:首先初始化数据:,,结果为整数,执行,,此时不满足;,结果不为整数,执行,此时不满足;,结果为整数,执行,,此时满足;跳出循环,输出.本题选择B选项.拓展:识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.4. 设,则“”是“”的A. 充分而不必要条件B. 必要而不重复条件C. 充要条件D. 既不充分也不必要条件【答案】A【详解】分析:首先求解绝对值不等式,然后求解三次不等式即可确定两者之间的关系.详解:绝对值不等式,由.据此可知是的充分而不必要条件.本题选择A选项.拓展:本题主要考查绝对值不等式的解法,充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.5. 已知,,,则a,b,c的大小关系为A. B. C. D.【答案】D【详解】分析:由题意结合对数函数的性质整理计算即可求得最终结果.详解:由题意结合对数函数的性质可知:,,,据此可得:.本题选择D选项.拓展:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.6. 将函数的图象向右平移个单位长度,所得图象对应的函数 A. 在区间上单调递增 B. 在区间上单调递减 C. 在区间上单调递增 D. 在区间上单调递减【答案】A【详解】分析:由题意首先求得平移之后的函数详解式,然后确定函数的单调区间即可. 详解:由函数图象平移变换的性质可知: 将的图象向右平移个单位长度之后的详解式为:.则函数的单调递增区间满足:,即,令可得一个单调递增区间为:.函数的单调递减区间满足:, 即,令可得一个单调递减区间为:.本题选择A 选项.拓展:本题主要考查三角函数的平移变换,三角函数的单调区间的判断等知识,意在考查学生的转化能力和计算求解能力. 7. 已知双曲线的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线同一条渐近线的距离分别为和,且,则双曲线的方程为A. B.C.D.【答案】C【详解】分析:由题意首先求得A ,B 的坐标,然后利用点到直线距离公式求得b 的值,之后求解a 的值即可确定双曲线方程.详解:设双曲线的右焦点坐标为(c>0),则,由可得:,不妨设:,双曲线的一条渐近线方程为:,据此可得:,,则,则,双曲线的离心率:,据此可得:,则双曲线的方程为.本题选择C选项.拓展:求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a,b,c,e及渐近线之间的关系,求出a,b的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为,再由条件求出λ的值即可.8. 如图,在平面四边形ABCD中,,,,. 若点E为边CD上的动点,则的最小值为A. B. C. D.【答案】A【详解】分析:由题意建立平面直角坐标系,然后结合点的坐标得到数量积的坐标表示,最后结合二次函数的性质整理计算即可求得最终结果.详解:建立如图所示的平面直角坐标系,则,,,,点在上,则,设,则:,即,据此可得:,且:,,由数量积的坐标运算法则可得:,整理可得:,结合二次函数的性质可知,当时,取得最小值.本题选择A选项.拓展:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.9. i是虚数单位,复数___________.【答案】4–i【详解】分析:由题意结合复数的运算法则整理计算即可求得最终结果.详解:由复数的运算法则得:.拓展:本题主要考查复数的运算法则及其应用,意在考查学生的转化能力和计算求解能力.10. 在的展开式中,的系数为____________.【答案】【详解】分析由题意结合二项式定理展开式的通项公式得到r的值,然后求解的系数即可. 详解:结合二项式定理的通项公式有:,令可得:,则的系数为:.拓展:(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.11. 已知正方体的棱长为1,除面外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥的体积为__________.【答案】【详解】分析:由题意首先求解底面积,然后结合四棱锥的高即可求得四棱锥的体积.详解:由题意可得,底面四边形为边长为的正方形,其面积,顶点到底面四边形的距离为,由四棱锥的体积公式可得:.拓展:本题主要考查四棱锥的体积计算,空间想象能力等知识,意在考查学生的转化能力和计算求解能力.12. 已知圆的圆心为C,直线(为参数)与该圆相交于A,B两点,则的面积为___________.【答案】【详解】分析:由题意首先求得圆心到直线的距离,然后结合弦长公式求得弦长,最后求解三角形的面积即可.详解:由题意可得圆的标准方程为:,直线的直角坐标方程为:,即,则圆心到直线的距离:,由弦长公式可得:,则.拓展:处理直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.13. 已知,且,则的最小值为_____________.【答案】【详解】分析:由题意首先求得a-3b的值,然后结合均值不等式的结论整理计算即可求得最终结果,注意等号成立的条件.详解:由可知,且:,因为对于任意x,恒成立,结合均值不等式的结论可得:.当且仅当,即时等号成立.综上可得的最小值为.拓展:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.14. 已知,函数若关于的方程恰有2个互异的实数解,则的取值范围是______________.【答案】【详解】分析:由题意分类讨论和两种情况,然后绘制函数图像,数形结合即可求得最终结果.详解:分类讨论:当时,方程即,整理可得:,很明显不是方程的实数解,则,当时,方程即,整理可得:,很明显不是方程的实数解,则,令,其中,原问题等价于函数与函数有两个不同的交点,求的取值范围.结合对勾函数和函数图象平移的规律绘制函数的图象,同时绘制函数的图象如图所示,考查临界条件,结合观察可得,实数的取值范围是.拓展:本题的核心在考查函数的零点问题,函数零点的求解与判断方法包括:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.。

2018年普通高等学校招生全国统一考试数学理试题(天津卷,含答案)

2018年普通高等学校招生全国统一考试数学理试题(天津卷,含答案)

2018年普通高等学校招生全国统一考试(天津卷)理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分, 共150分. 考试用时120分钟. 第Ⅰ卷1至2页, 第Ⅱ卷3至5页.答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上, 并在规定位置粘贴考试用条形码. 答卷时, 考生务必将答案凃写在答题卡上, 答在试卷上的无效. 考试结束后, 将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后, 用铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦干净后, 再选凃其他答案标号.2. 本卷共8小题, 每小题5分, 共40分.参考公式:·如果事件A , B 互斥, 那么)()()(B P A P A P B ⋃=+·棱柱的体积公式V =Sh ,其中S 表示棱柱的底面面积, h 表示棱柱的高.·如果事件A , B 相互独立, 那么)()(()B P A A P P B =·球的体积公式34.3V R π= 其中R 表示球的半径.一.选择题: 在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂=(A) (,2]-∞ (B) [1,2] (C) [-2,2] (D) [-2,1](2) 设变量x , y 满足约束条件360,20,30,x y y x y ≥--≤+-⎧-≤⎪⎨⎪⎩则目标函数z = y-2x 的最小值为(A) -7(B) -4 (C) 1 (D) 2(3) 阅读右边的程序框图, 运行相应的程序, 若输入x 的值为1, 则输出S 的值为(A) 64 (B) 73(C) 512 (D) 585(4) 已知下列三个命题: ①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等;③直线x + y + 1 = 0与圆2212x y +=相切. 其中真命题的序号是:(A) ①②③(B) ①② (C) ②③ (D) ②③(5) 已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB则p =(A) 1 (B) 32 (C) 2 (D) 3(6) 在△ABC 中, ,3,4AB BC ABC π∠==则sin BAC ∠ =(A)(B)(C)(D) (7) 函数0.5()2|log |1x f x x =-的零点个数为(A) 1 (B) 2 (C) 3 (D) 4(8) 已知函数()(1||)f x x a x =+. 设关于x 的不等式()()f x a f x +< 的解集为A , 若11,22A ⎡⎤-⊆⎢⎥⎣⎦, 则实数a 的取值范围是(A) ⎫⎪⎪⎝⎭(B) ⎫⎪⎪⎝⎭(C) ⎛⋃ ⎝⎫⎪⎝⎭⎪⎭(D) ⎛- ⎝⎭∞ 2018年普通高等学校招生全国统一考试(天津卷)理 科 数 学第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上.2. 本卷共12小题, 共110分.二.填空题: 本大题共6小题, 每小题5分, 共30分.(9) 已知a , b ∈R , i 是虚数单位. 若(a + i )(1 + i ) = bi , 则a + bi = .(10) 6x ⎛ ⎝的二项展开式中的常数项为 . (11) 已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫ ⎪⎝⎭, 则|CP | = . (12) 在平行四边形ABCD 中, AD = 1, 60BAD ︒∠=, E 为CD 的中点. 若·1AD BE =, 则AB 的长为 .(13) 如图, △ABC 为圆的内接三角形, BD 为圆的弦, 且BD //AC . 过点A 做圆的切线与DB 的延长线交于点E , AD 与BC 交于点F . 若AB = AC ,AE = 6, BD = 5, 则线段CF 的长为 .(14) 设a + b = 2, b >0, 则当a = 时, 1||2||a a b+取得最小值.三.解答题: 本大题共6小题, 共70分. 解答应写出文字说明, 证明过程或演算步骤.(15) (本小题满分13分)已知函数2()26sin cos 2cos 41,f x x x x x x π⎛⎫=++- ⎪+⎝⎭∈R . (Ⅰ) 求f (x )的最小正周期;(Ⅱ) 求f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.(16) (本小题满分13分)一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4; 白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片 (假设取到任何一张卡片的可能性相同).(Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 再取出的4张卡片中, 红色卡片编号的最大值设为X , 求随机变量X 的分布列和数学期望.(17) (本小题满分13分)如图, 四棱柱ABCD -A 1B 1C 1D 1中, 侧棱A 1A ⊥底面ABCD , AB //DC , AB ⊥AD , AD = CD = 1, AA 1 = AB = 2, E 为棱AA 1的中点.(Ⅰ) 证明B 1C 1⊥CE ;(Ⅱ) 求二面角B 1-CE -C 1的正弦值.(Ⅲ) 设点M 在线段C 1E 上, 且直线AM 与平面ADD 1A 1, 求线段AM 的长.(18) (本小题满分13分)设椭圆22221(0)x y a b a b+=>>的左焦点为F , , 过点F 且与x 轴垂直的直线被椭圆截. (Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若··8AC DB AD CB +=, 求k 的值.(19) (本小题满分14分) 已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列.(Ⅰ) 求数列{}n a 的通项公式;(Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值.(20) (本小题满分14分)已知函数2l ()n f x x x =.(Ⅰ) 求函数f (x )的单调区间;(Ⅱ) 证明: 对任意的t >0, 存在唯一的s , 使()t f s =.(Ⅲ) 设(Ⅱ)中所确定的s 关于t 的函数为()s g t =, 证明: 当2>e t 时, 有2ln ()15ln 2g t t <<.。

(word完整版)2018年高考天津卷理科数学真题及答案,推荐文档

(word完整版)2018年高考天津卷理科数学真题及答案,推荐文档

2018年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第I 卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:如果事件A ,B 互斥,那么()()()P A B P A P B =+U . 如果事件A ,B 相互独立,那么()()()P AB P A P B = .棱柱的体积公式V Sh =,其中S 表示棱柱的底面面积,h 表示棱柱的高.棱锥的体积公式13V Sh =,其中S 表示棱锥的底面面积,h 表示棱锥的高.一. 选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则()=R I A B ð (A) {01}x x <≤ (B) {01}x x << (C) {12}x x ≤< (D) {02}x x <<(2)设变量x ,y 满足约束条件5,24,1,0,x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩ 则目标函数35z x y =+的最大值为(A) 6 (B) 19 (C) 21 (D) 45(3)阅读如图的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为(A) 1 (B) 2 (C) 3 (D) 4(4)设x ∈R ,则“11||22x -<”是“31x <”的 (A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件(D)既不充分也不必要条件(5)已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为(A) a b c >> (B) b a c >> (C) c b a >> (D) c a b >>(6)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数(A)在区间35[,]44ππ上单调递增 (B)在区间3[,]4ππ上单调递减 (C)在区间53[,]42ππ上单调递增 (D)在区间3[,2]2ππ上单调递减(7)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为(A) 221412x y -=(B) 221124x y -=(C) 22139x y -=(D) 22193x y -=(8)如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==. 若点E 为边CD 上的动点,则⋅uu u r uurAE BE 的最小值为(A)2116(B) 32 (C)2516(D) 3第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上。

2018年高考天津卷理数真题(含答案)

2018年高考天津卷理数真题(含答案)

绝密★启用前2018年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第I 卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:如果事件A ,B 互斥,那么()()()P AB P A P B =+ .如果事件A ,B 相互独立,那么()()()P AB P A P B = .棱柱的体积公式V Sh =,其中S 表示棱柱的底面面积,h 表示棱柱的高. 棱锥的体积公式13V Sh =,其中S 表示棱锥的底面面积,h 表示棱锥的高. 一. 选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则()=R I A B ð(A) {01}x x <≤(B) {01}x x << (C) {12}x x ≤<(D) {02}x x <<(2)设变量x ,y 满足约束条件5,24,1,0,x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩ 则目标函数35z x y =+的最大值为(A) 6 (B) 19 (C) 21 (D) 45(3)阅读如图的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为 (A) 1(B) 2(C) 3(D) 4(4)设x ∈R ,则“11||22x -<”是“31x <”的 (A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件(D)既不充分也不必要条件(5)已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 (A) a b c >> (B) b a c >>(C) c b a >>(D) c a b >>(6)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数 (A)在区间35[,]44ππ上单调递增(B)在区间3[,]4ππ上单调递减 (C)在区间53[,]42ππ上单调递增 (D)在区间3[,2]2ππ上单调递减 (7)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为(A)221412x y -=(B)221124x y -= (C)22139x y -=(D) 22193x y -= (8)如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==.若点E 为边CD 上的动点,则⋅uu u r uurAE BE 的最小值为(A)2116(B)32(C)2516(D) 3第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上。

2018年天津高考数学试卷(理科)

2018年天津高考数学试卷(理科)

2018年普通高等学校招生全国统一考试(天津卷)数 学(理工类)一. 选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1. (2018年天津理)设全集为R ,集合{}20<<=x x A ,{}1≥=x x B ,则=⋂)(B C A RA .{}10≤<x x B .{}10<<x xC .{}21<≤x xD .{}20<<x x【答案】B【解析】由题意可得:{}1<=x x B C R ,结合交集的定义可得:.{}10)(<<=⋂x x B C A R 【考点】交集的运算法则+补集的运算法则 【难度】★★★2.(2018年天津理)设变量,x y 满足约束条件52410x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩,,,,则目标函数35z x y =+的最大值为( )A .6B .19C .21D .45【答案】C【解析】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A 处取得最大值,联立直线方程:51x y x y +=⎧⎨-+=⎩,可得点(2,3)A ,所以max 35325321z x y =+=⨯+⨯=. 本题选择C 选项.【考点】求线性目标函数()0z ax by ab =+≠的最值, 【难度】★★★3.(2018年天津理)阅读如图所示的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为( )A .1B .2C .3D .4【答案】B【解析】结合流程图运行程序如下: 首先初始化数据:20,2,0N i T ===,10Ni=,结果为整数, 执行11,13T T i i =+==+=,此时不满足5i ≥;203N i =,结果不为整数,执行14i i =+=,此时不满足5i ≥; 2054N i ==,结果为整数,执行12,15T T i i =+==+=,此时满足5i ≥; 跳出循环,输出2T =.故选择B 选项. 【考点】程序框图 【难度】★★★4. (2018年天津理)设R x ∈,则“2121<-x ”是“13<x ”的( ) A. 充分而不必要条件 B. 必要而不重复条件 C. 充要条件 D. 既不充分也不必要条件【答案】A【解析】绝对值不等式 102121212121<<⇔<-<-⇔<-x x x ,由113<⇔<x x .据此可知2121<-x 是13<x 的充分而不必要条件.本题选择A 选项.【考点】绝对值不等式的解法+充分不必要条件 【难度】★★★5.(2018年天津理)已知e a 2log =,2ln =b ,31log 21=c ,则a ,b ,c 的大小关系为( )A .a b c >>B .b a c >>C .c b a >>D .c a b >>【答案】D【解析】由题意结合对数函数的性质可知:1log 2>=e a ,)1,0(log 12ln 2∈==eb ,ec 2221log 3log 31log >==,据此可得:c a b >>.本题选择D 选项. 【考点】对于指数幂的大小的比较. 【难度】★★★6.(2018年天津理)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数( )A .在区间]45,43[ππ上单调递增 B .在区间],43[ππ上单调递减 C .在区间]2,4[ππ上单调递增D .在区间],2[ππ上单调递减【答案】A【解析】由函数sin(2)5y x π=+的图象平移变换的性质可知: 将sin(2)5y x π=+的图象向右平移10π个单位长度之后的解析式为:sin[2())]sin 2105y x x ππ=-+=则函数的单调递增区间满足:222()22k x k k z ππππ-≤≤+∈,即()44k x k k z ππππ-≤≤+∈,令1=k 可得函数的一个单调递增区间为]45,43[ππ,选项A 正确. 函数的单调递减区间满足:3222()22k x k k z ππππ+≤≤+∈, 即3()44k x k k z ππππ+≤≤+∈, 令1=k 可得函数的一个单调递减区间为]47,45[ππ,选项C ,D 错误;故选择A 选项. 【考点】本题主要考查三角函数的平移变换,三角函数的单调性 【难度】★★★7.(2018年天津理)已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d +=则双曲线的方程为( )A .221412x y -= B .221124x y -= C .22139x y -= D .22193x y -= 【答案】C【解析】设双曲线的右焦点坐标为(,0)(0)F c c >,则A B x x c ==,由22221c y a b -=可得:2b y a=±,不妨设: 22(,),(,)b b A c B c a a-,双曲线的一条渐近线方程为0bx ay -=,据此可得:221bc b d c -==,222bc b d c +==, 则12226,bcd d b c+===则23,9b b ==,双曲线的离心率:2c e a ====, 据此可得:23a =,则双曲线的方程为22139x y -=,故选择C 选项.【考点】待定系数法求双曲线的标准方程;渐近线方程 【难度】★★★★8.(2018年天津理)如图,在平面四边形ABCD 中,BC AB ⊥,CD AD ⊥,︒=∠120BAD ,1==AD AB . 若点E 为边CD 上的动点,则⋅的最小值为( )A .1621 B .23 C..1625D . 3【答案】A【解析】建立如图所示的平面直角坐标系,则)210(,A ,)023(,B ,)230(,C ,)023(,-D ,点E 在CD 上,则)10(≤≤=λλ,设),(y x E ,则:)23,23(),23(λ=+y x ,即⎪⎪⎩⎪⎪⎨⎧==+λλ232323y x , 据此可得:)23,23,23(λλ-E ,且:31)22AE λ=+u u u r,3)2BE λ=-u u u r ,由数量积的坐标运算法则可得:331()(()222222AB BE λλλλ⋅=-+⨯+u u u r u u u r ,整理可得:23(422)(01)4AB BE λλλ⋅=-+≤≤u u u r u u u r ,结合二次函数的性质可知,当41=λ时,BE AB ⋅取得最小值1621. 本题选择A 选项.【考点】向量的数量积+向量的坐标运算+数量积的几何意义 【难度】★★★★第Ⅱ卷二、填空题:本大题共6小题,每小题5分,共30分. 9.(2018年天津理)i 是虚数单位,复数67i___________12i+=+. 【答案】4i -【解析】由复数的运算法则得:67i (67i)(12i)205412i (12i)(12i)5ii ++--==-++-. 【考点】复数的运算法则及其应用,意在考查学生的转化能力和计算求解能力. 【难度】★★★10.(2018年天津理)在5)21(xx -的展开式中,2x 的系数为____________.【答案】25【解析】结合二项式定理的通项公式有:r r r rrr r x C xx C T 2355551)21()21(--+-=-=,令2235=-r 可得:2=r ,则2x 的系数为:251041)21(252=⨯=-C . 【考点】二项式定理 【难度】★★★11.(2018年天津理)已知正方体1111ABCD A B C D -的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥EFGH M -的体积为__________.【答案】121 【解析】分析:由题意首先求解底面积,然后结合四棱锥的高即可求得四棱锥的体积. 详解:由题意可得,底面四边形EFGH 为边长为22的正方形,其面积21222=⎪⎪⎭⎫ ⎝⎛=EFGH S , 顶点M 到底面四边形EFGH 的距离为21=d , 由四棱锥的体积公式可得:.121212131=⨯⨯=-EFGH M V 【考点】四棱锥的体积 【难度】★★★12.(2018年天津理)已知圆0222=-+x y x 的圆心为C ,直线⎪⎪⎩⎪⎪⎨⎧-=+-=t y t x 223221(为参数)与该圆相交于A ,B 两点,则ABC ∆的面积为___________. 【答案】21【解析】分析:由题意首先求得圆心到直线的距离,然后结合弦长公式求得弦长,最后求解三角形的面积即可.详解:由题意可得圆的标准方程为:1)1(22=+-y x , 直线的直角坐标方程为:)1(3+-=-x y ,即02=-+y x , 则圆心到直线的距离:222201=-+=d , 由弦长公式可得:2)22(122=-⨯=AB , 则2122221=⨯⨯=∆ABC S . 【考点】直线与圆的位置关系+点到直线的距离.【难度】★★★13.(2018年天津理)已知,a b R ∈,且360a b -+=,则128ab+的最小值为__________. 【答案】14【解析】由360a b -+=可知36a b -=-,且:312228aa b b -+=+, 因为对于任意x , 20x >恒成立,结合均值不等式的结论可得:31122284aa b b-+=+≥==. 当且仅当32236a b a b -⎧=⎨-=-⎩,即31a b =-⎧⎨=⎩时等号成立.综上可得128ab +的最小值为14. 【考点】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误. 【难度】★★★★14.(2018年天津理)已知0>a ,函数⎪⎩⎪⎨⎧>-+-≤++=0,220,2)(22x a ax x x a ax x x f ,若关于x 的方程ax x f =)(恰有2个互异的实数解,则a 的取值范围是______________. 【答案】)8,4( 【解析】:分类讨论:当0≤x 时,方程ax x f =)(即ax a ax x =++22,整理可得:)1(2+-=x a x ,很明显1-=x 不是方程的实数解,则12+-=x x a ,当0>x 时,方程ax x f =)(即ax a ax x =-+-222, 整理可得:)2(2-=x a x ,很明显2=x 不是方程的实数解,则22-=x x a ,令⎪⎪⎩⎪⎪⎨⎧>-≤+-=0,20,1)(22x x x x x x x g ,其中)2-111(12+++-=+-x x x x ,424222+-+-=-x x x x原问题等价于函数)(x g 与函数a y =有两个不同的交点,求a 的取值范围.结合对勾函数和函数图象平移的规律绘制函数)(x g 的图象, 同时绘制函数a y =的图象如图所示,考查临界条件, 结合0>a 观察可得,实数a 的取值范围是)8,4(.【考点】函数零点的求解与判断 【难度】★★★★15.(2018年天津理)在ABC ∆中,内角,,A B C 所对的边分别为,,a b c .已知sin cos()6b A a B π=-.(Ⅰ)求角B 的大小;(Ⅱ)设2a =,3c =,求b 和sin(2)A B -的值.【答案】(Ⅰ)3B π=;(Ⅱ)b =;sin(2)A B -=【解析】(Ⅰ)在ABC ∆中,由正弦定理sin sin a bA B=,可得sin sin b A a B =,又由πsin cos()6b A a B =-,得πsin cos()6a B a B =-,即πsin cos()6B B =-,可得tan B =.又因为(0,π)B ∈,可得3B π=.(Ⅱ)在ABC ∆中,由余弦定理及2,3,3a c B π===,有2222cos 7b a c ac B =+-=,故b =.由πsin cos()6b A a B =-,可得sin A =.因为a c <,故cos A =.因此sin 22sin cos A A A ==21cos22cos 17A A =-=. 所以,sin(2)sin 2cos cos2sin AB A B A B -=-=1127-= 【考点】1.同角三角函数的基本关系;2.两角差的正弦与余弦公式;3.二倍角的正弦与余弦公式;4.正弦定理、余弦定理 【难度】★★★16.(2018年天津理)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查. (I )应从甲、乙、丙三个部门的员工中分别抽取多少人?(II )若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i )用X 表示抽取的3人中睡眠不足的员工人数,求随机变量X 的分布列与数学期望; (ii )设A 为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A 发生的概率. 【答案】(Ⅰ)从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.(Ⅱ)(i )答案见解析;(ii )76. 【解析】(Ⅰ)由已知,甲、乙、丙三个部门的员工人数之比为2:2:3, 由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人. (Ⅱ)(i )随机变量X 的所有可能取值为0,1,2,3.)3,2,1,0()(37334=⋅==-k C C C k x P kk 所以,随机变量X 的分布列为随机变量X 的数学期望712354335182351213510)(=⨯+⨯+⨯+⨯=X E . (ii )设事件B 为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”; 事件C 为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”, 则C B A ⋃=,且B 与C 互斥,由(i )知,)2()(==X P B P ,)1()(==X P C P ,故76)1()2()()(==+==⋃=X P X P C B P A P .所以,事件A 发生的概率为76.【考点】超几何分布+分层抽样. 【难度】★★★ 17.(2018年天津理)如图,//AB BC 且BC AD 2=,CD AD ⊥,//EG AD 且AD EG =,//CD FG 且FG CD 2=, DG ⊥平面ABCD ,2===DG DC DA . (I )若M 为CF 的中点,N 为EG 的中点,求证:MN//平面CDE ; (II )求二面角F BC E --的正弦值;(III )若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为︒60,求线段DP 的长.【答案】(Ⅰ)证明见解析;(Ⅱ)1010;(Ⅲ)33. 【解析】依题意,可以建立以D 为原点,分别以,DC ,DG 的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图), 可得)0,0,0(D ,)0,0,2(A ,)0,2,1(B ,)0,2,0(C ,)2,0,2(E ,)2,1,0(F ,)2,0,0(G ,)1,23,0(M ,)2,0,1(N .(Ⅰ)依题意)0,2,0(=,)2,0,2(=. 设),,(0z y x n =为平面CDE 的法向量,则 0000n DC n DE ⎧⋅=⎪⎨⋅=⎪⎩u u r u u u r u u r u u u r 即 ⎩⎨⎧=+=02202z x y 不妨令1-=z ,可得)1,0,1(0-=n .又3(1,,1)2MN =-u u u u r ,可得00=⋅n ,又因为直线MN ⊄平面CDE ,所以MN//平面CDE .(Ⅱ)依题意,可得(1,0,0)BC =-u u u r ,(1,2,2)BE =-u u u r ,(0,1,2)CF =-u u u r.设),,(z y x n =为平面BCE 的法向量,则 0n BC n BE ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u u r 即 ⎩⎨⎧=+-=-0220z y x x 不妨令1=z ,可得)1,1,0(=n . 设),,(z y x m =为平面BCF 的法向量,则0m BC m CF ⎧⋅=⎪⎨⋅=⎪⎩u r u u u rur u u u r 即 ⎩⎨⎧=+-=-020z y x 不妨令1=z ,可得)1,2,0(=m .因此有10103,cos =<,于是sin ,10m n <>=u r r . 所以,二面角F BC E --的正弦值为1010.(Ⅲ)设线段DP 的长为])2,0[(∈h h ,则点P 的坐标为),0,0(h , 可得),2,1(h BP --=.易知,)0,2,0(=为平面ADGE 的一个法向量,故cos ,BP DC BP DC BP DC ⋅<==u u u r u u u r u u u r u u u r u u u r u u u r ,由题意,可得2360sin 522==+︒h ,解得]2,0[33∈=h . 所以线段DP 的长为33. 【考点】空间向量的应用+线面平行的证明+二面角 【难度】★★★★18.(2018年天津理)设{}n a 是等比数列,公比大于0,其前n 项和为)(*N n S n ∈,{}n b 是等差数列,已知11=a ,223+=a a ,534b b a +=,6452b b a +=. (I )求{}n a 和{}n b 的通项公式;(II )设数列{}n S 的前n 项和为)(*N n T n ∈,(i )求n T ;(ii )证明)(222)2)(1()(*212N n n k k b b T n nk k k k ∈-+=++++=+∑ 【答案】(Ⅰ)12-=n n a ,n b n =;(Ⅱ)(i )221--=+n T n n .(ii )证明见解析.【解析】(I )设等比数列{}n a 的公比为q .由11=a ,223+=a a可得022=--q q .因为0>q ,可得2=q ,故12-=n n a .设等差数列{}n b 的公差为d ,由534b b a +=,可得431=+d b 由6452b b a +=,可得 161331=+d b 从而 1,11==d b 故n b n = 所以数列{}n a 的通项公式为12-=n n a ,数列{}n b 的通项公式为n b n =(II )(i )由(I ),有122121-=--=n nn S ,故.2221)21(2)2()12(111--=--⨯=-=-=+==∑∑n n T n nk nk n kkn (ii )因为1222)2)(1(2)2)(1()222()2)(1()12112+-+=++⋅=++++--=++++++++k k k k k k k k k k k k b b T k k k k k k k (,所以222)1222()3242()2232()2)(1()(212342312-+=+-+++-+-=++++++=+∑n n n k k b b T n n n nk k k k Λ 【考点】数列通项公式+数列求和【难度】★★★★19.(2018年天津理)设椭圆)0(12222>>=+b a by a x 的左焦点为F ,上顶点为B . 已知椭圆的离心率为35,点A 的坐标为)0,(b ,且26=⋅AB FB . (I )求椭圆的方程;(II )设直线)0(:>=k kx y l 与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q . 若AOQ PQAQ ∠=sin 425(O 为原点) ,求k 的值. 【答案】(Ⅰ)14922=+y x ;(Ⅱ)21或2811 【解析】(Ⅰ)设椭圆的焦距为2c ,由已知有9522=a c ,又由222c b a +=,可得b a 32=.由已知可得,a FB =,b AB 2=, 由26=⋅AB FB ,可得6=ab ,从而3=a ,2=b .所以,椭圆的方程为14922=+y x .(Ⅱ)设点P 的坐标为),(11y x ,点Q 的坐标为),(22y x . 由已知有021>>y y ,故21sin y y AOQ PQ -=∠. 又因为OAB y AQ ∠=sin 2,而4π=∠OAB ,故22y AQ =.由AOQ PQAQ ∠=sin 425,可得2195y y =. 由方程组⎪⎩⎪⎨⎧=+=14922y x kxy 消去x ,可得49621+=k k y . 易知直线AB 的方程为02=-+y x ,由方程组⎩⎨⎧=-+=02y x kx y 消去x ,可得122+=k ky .由2195y y =,可得493)1(52+=+k k , 两边平方,整理得01150562=+-k k ,解得21=k ,或2811=k . 所以,k 的值为21或2811【考点】直线与椭圆的综合问题 【难度】★★★★20.(2018年天津理)已知函数xa x f =)(,x x g a log )(=,其中1>a .(I )求函数a x x f x h ln )()(-=的单调区间;(II )若曲线)(x f y =在点))(,(11x f x 处的切线与曲线)(x g y =在点))(,(22x g x 处的切线平行,证明aax g x ln ln ln 2)(21-=+; (III )证明当e e a 1≥时,存在直线l ,使l 是曲线)(x f y =的切线,也是曲线)(x g y =的切线.【答案】(Ⅰ)单调递减区间)0,(-∞,单调递增区间为)0(∞+,;(Ⅱ)证明见解析;(Ⅲ)证明见解析.【解析】(I )由已知,a x a x h xln )(-=,有a a a x h xln ln )(-='. 令0)(='x h ,解得0=x由,可知当x 变化时,)(x h ',)(x h 的变化情况如下表:所以函数)(x h 的单调递减区间为)0,(-∞,单调递增区间为)0(∞+,. (II )由a a x f xln )(=',可得曲线)(x f y =在点))(,(11x f x 处的切线斜率为a a x ln 1.由a x x g ln 1)(=',可得曲线)(x g y =在点))(,(22x g x 处的切线斜率为a x ln 12. 因为这两条切线平行,故有ax a a x ln 1ln 21=,即1)(ln 222=a a x x .两边取以a 为底的对数,得0ln log 2log 212=++a x x a ,所以aax g x ln ln ln 2)(21-=+. (III )曲线)(x f y =在点),(11x a x 处的切线.)(ln :1111x x a a a y l xx -⋅=-曲线)(x g y =在点)log ,(22x x a 处的切线)(ln 1log :2222x x ax x y l a -⋅=- 要证明当e e a 1≥时,存在直线l ,使l 是曲线)(x f y =的切线,也是曲线)(x g y =的切线, 只需证明当e e a 1≥时,存在),(1+∞-∞∈x ,),0(2+∞∈x ,使得1l 和2l 重合.即只需证明当e e a 1≥时,方程组1112121ln ln 1ln log ln x x x a a a x a a x a a x a ⎧=⎪⎪⎨⎪-=-⎪⎩有解,由①得22)(ln 11a a x x =,代入②,得.0ln ln ln 2ln 1ln 1111=+++-aa a x a a x a x x ③ 因此,只需证明当e e a 1≥时,关于1x 的方程③存在实数解. 设函数aaa x a xa a x u xx ln ln ln 2ln 1ln )(+++-=, 即要证明当e e a 1≥时,函数)(x u y =存在零点.x xa a x u 2)(ln 1)(-=',可知)0,(-∞∈x 时,0)(>'x u ; ),0(+∞∈x 时,)(x u '单调递减,又01)0(>='u ,01])(ln 1[2)(ln 12<-='a a a u ,故存在唯一的0x ,且00>x ,使得0)(0='x u ,即0)(ln 1002=-x a x a .由此可得)(x u 在),(0x -∞上单调递增,在)(0∞+,x 上单调递减.)(x u 在0x x =处取得极大值)(0x u .因为e e a 1≥,故1)ln(ln -≥a , 所以.0ln ln ln 22ln ln ln 2)(ln 1ln ln ln 2ln 1ln )(02000000≥+≥++=+++-=aa a a x a x a a a x a a x a x u x x 下面证明存在实数t ,使得0)(<t u .由(I )可得a x a x ln 1+≥, 当ax ln 1>时, 有aaa x a x a x x u ln ln ln 2ln 1)ln 1)(ln 1()(+++-+≤ aaa x x a ln ln ln 2ln 11)(ln 22++++-=,所以存在实数t ,使得0)(<t u因此,当e e a 1≥时,存在),(1+∞-∞∈x ,使得0)(1=x u .所以,当e e a 1≥时,存在直线l ,使l 是曲线)(x f y =的切线,也是曲线)(x g y =的切线. 【考点】用导数求函数的单调性、极值(最值) 【难度】★★★★★。

(精校版)2018年天津理数高考试题文档版(含答案)

(精校版)2018年天津理数高考试题文档版(含答案)

绝密★启用前2018年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第I 卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:如果事件A ,B 互斥,那么()()()P A B P A P B =+ . 如果事件A ,B 相互独立,那么()()()P AB P A P B = .棱柱的体积公式V Sh =,其中S 表示棱柱的底面面积,h 表示棱柱的高. 棱锥的体积公式13V Sh =,其中S 表示棱锥的底面面积,h 表示棱锥的高. 一. 选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则()=R I A B ð (A) {01}x x <≤(B) {01}x x << (C) {12}x x ≤<(D) {02}x x <<(2)设变量x ,y 满足约束条件5,24,1,0,x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩ 则目标函数35z x y =+的最大值为(A) 6 (B) 19 (C) 21 (D) 45(3)阅读如图的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为 (A) 1(B) 2(C) 3(D) 4(4)设x ∈R ,则“11||22x -<”是“31x <”的 (A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件(D)既不充分也不必要条件(5)已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 (A) a b c >> (B) b a c >>(C) c b a >>(D) c a b >>(6)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数 (A)在区间35[,]44ππ上单调递增(B)在区间3[,]4ππ上单调递减(C)在区间53[,]42ππ上单调递增(D)在区间3[,2]2ππ上单调递减 (7)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B两点. 设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为(A)221412x y -=(B)221124x y -= (C)22139x y -=(D) 22193x y -= (8)如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==. 若点E 为边CD 上的动点,则⋅uu u r uurAE BE 的最小值为(A)2116(B)32(C)2516(D) 3第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上。

2018年高考理科数学天津卷及答案解析

2018年高考理科数学天津卷及答案解析

数学试卷 第1页(共16页) 数学试卷 第2页(共16页)绝密★启用前2018年普通高等学校招生全国统一考试(天津卷)数学(理)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷参考公式:● 如果事件A ,B 互斥,那么()()()P A B P A P B ⋃=+. ● 如果事件A ,B 相互独立,那么()()()P AB P A P B =.● 棱柱的体积公式V Sh =,其中S 表示棱柱的底面面积,h 表示棱柱的高. ● 棱锥的体积公式13V Sh =,其中S 表示棱锥的底面面积,h 表示棱锥的高. 一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集为R ,集合{}|02A x x =<<,{}|1B x x =≥,则()R A C B ⋂= ( )A .{}|01x x <≤B .{}|01x x <<C .{}|12x x ≤<D .{}|02x x <<2.设变量x ,y 满足约束条件5,24,1,0,x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩则目标函数35z x y =+的最大值为 ( )A .6B .19C .21D .453.阅读如图所示的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为( )A .1B .2C .3D .4 4.设x R ∈,则“1122x -<”是“31x <”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件5.已知2log a e =,ln2b =,121log 3c =,则a ,b ,c 的大小关系为( )A .a b c >>B .b a c >>C .c b a >>D .c a b >>6.将函数sin 25y x π⎛⎫=+ ⎪⎝⎭的图象向右平移10π个单位长度,所得图象对应的函数( )A .在区间35,44ππ⎡⎤⎢⎥⎣⎦上单调递增B .在区间3,4ππ⎡⎤⎢⎥⎣⎦上单调递减C .在区间53,42ππ⎡⎤⎢⎥⎣⎦上单调递增D .在区间3,22ππ⎡⎤⎢⎥⎣⎦上单调递减7.已知双曲线()222210,0x ya b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为( ) A .221412x y -=B .221124x y -= C .22139x y -=D . 22193x y -=8.如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==.若点E 为边CD 上的动点,则AE BE ⋅的最小值为()毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共16页) 数学试卷 第4页(共16页)A .2116B .32C .2516D .3第Ⅱ卷二、填空题(本大题共6小题,每小题5分,共30分.请把答案填写在题中横线上) 9.i 是虚数单位,复数6+712ii=+ . 10.在5x ⎛ ⎝的展开式中,2x 的系数为 .11.已知正方形1111ABCD A B C D -的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M EFGH -的体积为 .12.已知圆2220x y x +-=的圆心为C,直线1,3x y ⎧=-+⎪⎪⎨⎪=-⎪⎩(t 为参数)与该圆相交于A ,B 两点,则ABC △的面积为 .13.已知,a b R ∈,且360a b -+=,则128a b +的最小值为 .14.已知0a >,函数()222,0,22,0.x ax a x f x x ax a x ⎧++≤⎪=⎨-+->⎪⎩若关于x 的方程()f x ax =恰有2个互异的实数解,则a 的取值范围是 .三、解答题:共80分。

【数学】2018年高考真题——天津卷(理)(word附答案解析版)

【数学】2018年高考真题——天津卷(理)(word附答案解析版)

2018年普通高等学校招生全国统一考试(天津卷)理科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第I 卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:如果事件A ,B 互斥,那么()()()P AB P A P B =+ .如果事件A ,B 相互独立,那么()()()P AB P A P B = .棱柱的体积公式V Sh =,其中S 表示棱柱的底面面积,h 表示棱柱的高. 棱锥的体积公式13V Sh =,其中S 表示棱锥的底面面积,h 表示棱锥的高. 一. 选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则()=R I A B ð( ) (A) {01}x x <≤ (B) {01}x x << (C) {12}x x ≤<(D) {02}x x <<(2)设变量x ,y 满足约束条件5,24,1,0,x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩ 则目标函数35z x y =+的最大值为( )(A) 6 (B) 19 (C) 21 (D) 45(3)阅读下边的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为( )(A) 1(B) 2(C) 3(D) 4(4)设R x ∈,则“11||22x -<”是“31x <”的( ) (A)充分而不必要条件 (B)必要而不重复条件 (C)充要条件(D)既不充分也不必要条件(5)已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为( ) (A) a b c >> (B) b a c >>(C) c b a >>(D) c a b >>(6)将函数πsin(2)5y x =+的图象向右平移π10个单位长度,所得图象对应的函数( ) (A)在区间3π5π[,]44上单调递增(B)在区间3π[,π]4上单调递减 (C)在区间5π3π[,]42上单调递增(D)在区间3π[,2π]2上单调递减 (7)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为( )(A)221412x y -= (B) 221124x y -= (C) 22139x y -= (D) 22193x y -= (8)如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==.若点E 为边CD 上的动点,则⋅uu u r uurAE BE 的最小值为( )(A)2116(B)32(C)2516(D) 3第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上。

2018年天津高考理科数学答案解析

2018年天津高考理科数学答案解析

2018年高考天津卷理科数学试题详解1.设全集为R,集合,,则A. B. C. D.【答案】B【详解】分析:由题意首先求得,然后进行交集运算即可求得最终结果.详解:由题意可得:,结合交集的定义可得:.本题选择B选项.拓展:本题主要考查交集的运算法则,补集的运算法则等知识,意在考查学生的转化能力和计算求解能力.2.设变量x,y满足约束条件则目标函数的最大值为A.6B.19C.21D.45【答案】C【详解】分析:首先画出可行域,然后结合目标目标函数的几何意义确定函数取得最大值的点,最后求解最大值即可.详解:绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程:,可得点A的坐标为:,据此可知目标函数的最大值为:.本题选择C选项.拓展:求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.3.阅读右边的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为A.1B.2C.3D.4【答案】B【详解】分析:由题意结合流程图运行程序即可求得输出的数值.详解:结合流程图运行程序如下:首先初始化数据:,,结果为整数,执行,,此时不满足;,结果不为整数,执行,此时不满足;,结果为整数,执行,,此时满足;跳出循环,输出.本题选择B选项.拓展:识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年天津市高考数学试卷(理科)一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5.00分)设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=()A.{x|0<x≤1}B.{x|0<x<1}C.{x|1≤x<2}D.{x|0<x<2}2.(5.00分)设变量x,y满足约束条件,则目标函数z=3x+5y的最大值为()A.6 B.19 C.21 D.453.(5.00分)阅读如图的程序框图,运行相应的程序,若输入N的值为20,则输出T 的值为()A.1 B.2 C.3 D.44.(5.00分)设x∈R,则“|x﹣|<”是“x3<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.(5.00分)已知a=log 2e,b=ln2,c=log,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.c>a>b6.(5.00分)将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递增B.在区间[,π]上单调递减C.在区间[,]上单调递增D.在区间[,2π]上单调递减7.(5.00分)已知双曲线=1(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=18.(5.00分)如图,在平面四边形ABCD中,AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1.若点E为边CD上的动点,则的最小值为()A.B.C.D.3二.填空题:本大题共6小题,每小题5分,共30分.9.(5.00分)i是虚数单位,复数=.10.(5.00分)在(x﹣)5的展开式中,x2的系数为.11.(5.00分)已知正方体ABCD﹣A1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M﹣EFGH的体积为.12.(5.00分)已知圆x2+y2﹣2x=0的圆心为C,直线,(t为参数)与该圆相交于A,B两点,则△ABC的面积为.13.(5.00分)已知a,b∈R,且a﹣3b+6=0,则2a+的最小值为.14.(5.00分)已知a>0,函数f(x)=.若关于x的方程f(x)=ax 恰有2个互异的实数解,则a的取值范围是.三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(13.00分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos (B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.16.(13.00分)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(Ⅰ)应从甲、乙、丙三个部门的员工中分别抽取多少人?(Ⅱ)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.17.(13.00分)如图,AD∥BC且AD=2BC,AD⊥CD,EG∥AD且EG=AD,CD∥FG且CD=2FG,DG⊥平面ABCD,DA=DC=DG=2.(Ⅰ)若M为CF的中点,N为EG的中点,求证:MN∥平面CDE;(Ⅱ)求二面角E﹣BC﹣F的正弦值;(Ⅲ)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长.18.(13.00分)设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设数列{S n}的前n项和为T n(n∈N*),(i)求T n;(ii)证明=﹣2(n∈N*).19.(14.00分)设椭圆+=1(a>b>0)的左焦点为F,上顶点为B.已知椭圆的离心率为,点A的坐标为(b,0),且|FB|•|AB|=6.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l:y=kx(k>0)与椭圆在第一象限的交点为P,且l与直线AB交于点Q.若=sin∠AOQ(O为原点),求k的值.20.(14.00分)已知函数f(x)=a x,g(x)=log a x,其中a>1.(Ⅰ)求函数h(x)=f(x)﹣xlna的单调区间;(Ⅱ)若曲线y=f(x)在点(x1,f(x1))处的切线与曲线y=g(x)在点(x2,g(x2))处的切线平行,证明x1+g(x2)=﹣;(Ⅲ)证明当a≥e时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.2018年天津市高考数学试卷(理科)参考答案与试题解析一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5.00分)设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=()A.{x|0<x≤1}B.{x|0<x<1}C.{x|1≤x<2}D.{x|0<x<2}【分析】根据补集、交集的定义即可求出.【解答】解:∵A={x|0<x<2},B={x|x≥1},∴∁R B={x|x<1},∴A∩(∁R B)={x|0<x<1}.故选:B.【点评】本题考查了集合的化简与运算问题,是基础题目.2.(5.00分)设变量x,y满足约束条件,则目标函数z=3x+5y的最大值为()A.6 B.19 C.21 D.45【分析】先画出约束条件的可行域,利用目标函数的几何意义,分析后易得目标函数z=3x+5y的最大值.【解答】解:由变量x,y满足约束条件,得如图所示的可行域,由解得A(2,3).当目标函数z=3x+5y经过A时,直线的截距最大,z取得最大值.将其代入得z的值为21,故选:C.【点评】在解决线性规划的小题时,常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.也可以利用目标函数的几何意义求解最优解,求解最值.3.(5.00分)阅读如图的程序框图,运行相应的程序,若输入N的值为20,则输出T 的值为()A.1 B.2 C.3 D.4【分析】根据程序框图进行模拟计算即可.【解答】解:若输入N=20,则i=2,T=0,==10是整数,满足条件.T=0+1=1,i=2+1=3,i≥5不成立,循环,=不是整数,不满足条件.,i=3+1=4,i≥5不成立,循环,==5是整数,满足条件,T=1+1=2,i=4+1=5,i≥5成立,输出T=2,故选:B.【点评】本题主要考查程序框图的识别和判断,根据条件进行模拟计算是解决本题的关键.4.(5.00分)设x∈R,则“|x﹣|<”是“x3<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】先解不等式,再根据充分条件和必要条件的定义即可求出.【解答】解:由|x﹣|<可得﹣<x﹣<,解得0<x<1,由x3<1,解得x<1,故“|x﹣|<”是“x3<1”的充分不必要条件,故选:A.【点评】本题考查了不等式的解法和充分必要条件,属于基础题.5.(5.00分)已知a=log 2e,b=ln2,c=log,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.c>a>b【分析】根据对数函数的单调性即可比较.【解答】解:a=log2e>1,0<b=ln2<1,c=log=log23>log2e=a,则a,b,c的大小关系c>a>b,故选:D.【点评】本题考查了对数函数的图象和性质,属于基础题,6.(5.00分)将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数()A.在区间[,]上单调递增B.在区间[,π]上单调递减C.在区间[,]上单调递增D.在区间[,2π]上单调递减【分析】将函数y=sin(2x+)的图象向右平移个单位长度,得到的函数为:y=sin2x,增区间为[﹣+kπ,+kπ],k∈Z,减区间为[+kπ,+kπ],k∈Z,由此能求出结果.【解答】解:将函数y=sin(2x+)的图象向右平移个单位长度,得到的函数为:y=sin2x,增区间满足:﹣+2kπ≤2x≤,k∈Z,减区间满足:≤2x≤,k∈Z,∴增区间为[﹣+kπ,+kπ],k∈Z,减区间为[+kπ,+kπ],k∈Z,∴将函数y=sin(2x+)的图象向右平移个单位长度,所得图象对应的函数在区间[,]上单调递增.故选:A.【点评】本题考查三角函数的单调区间的确定,考查三角函数的图象与性质、平移等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.7.(5.00分)已知双曲线=1(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【分析】画出图形,利用已知条件,列出方程组转化求解即可.【解答】解:由题意可得图象如图,CD是双曲线的一条渐近线y=,即bx﹣ay=0,F(c,0),AC⊥CD,BD⊥CD,FE⊥CD,ACDB是梯形,F是AB的中点,EF==3,EF==b,所以b=3,双曲线=1(a>0,b>0)的离心率为2,可得,可得:,解得a=.则双曲线的方程为:﹣=1.故选:C.【点评】本题考查双曲线的简单性质的应用,双曲线方程的求法,考查计算能力.8.(5.00分)如图,在平面四边形ABCD中,AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1.若点E为边CD上的动点,则的最小值为()A.B.C.D.3【分析】如图所示,以D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,求出A,B,C的坐标,根据向量的数量积和二次函数的性质即可求出.【解答】解:如图所示,以D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,过点B做BN⊥x轴,过点B做BM⊥y轴,∵AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1,∴AN=ABcos60°=,BN=ABsin60°=,∴DN=1+=,∴BM=,∴CM=MBtan30°=,∴DC=DM+MC=,∴A(1,0),B(,),C(0,),设E(0,m),∴=(﹣1,m),=(﹣,m﹣),0≤m≤,∴=+m2﹣m=(m﹣)2+﹣=(m﹣)2+,当m=时,取得最小值为.故选:A.【点评】本题考查了向量在几何中的应用,考查了运算能力和数形结合的能力,属于中档题.二.填空题:本大题共6小题,每小题5分,共30分.9.(5.00分)i是虚数单位,复数=4﹣i.【分析】根据复数的运算法则计算即可.【解答】解:====4﹣i,故答案为:4﹣i【点评】本题考查了复数的运算法则,属于基础题.10.(5.00分)在(x﹣)5的展开式中,x2的系数为.【分析】写出二项展开式的通项,由x的指数为2求得r值,则答案可求.【解答】解:(x﹣)5的二项展开式的通项为=.由,得r=2.∴x2的系数为.故答案为:.【点评】本题考查二项式定理的应用,考查二项式系数的性质,关键是熟记二项展开式的通项,是基础题.11.(5.00分)已知正方体ABCD﹣A1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M﹣EFGH的体积为.【分析】求出四棱锥中的底面的面积,求出棱锥的高,然后利用体积公式求解即可.【解答】解:正方体的棱长为1,M﹣EFGH的底面是正方形的边长为:,四棱锥是正四棱锥,棱锥的高为,四棱锥M﹣EFGH的体积:=.故答案为:.【点评】本题考查几何体的体积的求法,考查空间想象能力以及计算能力.12.(5.00分)已知圆x2+y2﹣2x=0的圆心为C,直线,(t为参数)与该圆相交于A,B两点,则△ABC的面积为.【分析】把圆的方程化为标准方程,写出圆心与半径;直线的参数方程化为普通方程,求出圆心到直线的距离,计算弦长|AB|,利用三角形面积公式求出△ABC的面积.【解答】解:圆x2+y2﹣2x=0化为标准方程是(x﹣1)2+y2=1,圆心为C(1,0),半径r=1;直线化为普通方程是x+y﹣2=0,则圆心C到该直线的距离为d==,弦长|AB|=2=2=2×=,∴△ABC的面积为S=•|AB|•d=××=.故答案为:.【点评】本题考查了直线与圆的位置关系应用问题,也考查了参数方程应用问题,是基础题.13.(5.00分)已知a,b∈R,且a﹣3b+6=0,则2a+的最小值为.【分析】化简所求表达式,利用基本不等式转化求解即可.【解答】解:a,b∈R,且a﹣3b+6=0,可得:3b=a+6,则2a+==≥2=,当且仅当2a=.即a=﹣3时取等号.函数的最小值为:.故答案为:.【点评】本题考查函数的最值的求法,基本不等式的应用,也可以利用换元法,求解函数的最值.考查计算能力.14.(5.00分)已知a>0,函数f(x)=.若关于x的方程f(x)=ax恰有2个互异的实数解,则a的取值范围是(4,8).【分析】分别讨论当x≤0和x>0时,利用参数分离法进行求解即可.【解答】解:当x≤0时,由f(x)=ax得x2+2ax+a=ax,得x2+ax+a=0,得a(x+1)=﹣x2,得a=﹣,设g(x)=﹣,则g′(x)=﹣=﹣,由g′(x)>0得﹣2<x<﹣1或﹣1<x<0,此时递增,由g′(x)<0得x<﹣2,此时递减,即当x=﹣2时,g(x)取得极小值为g(﹣2)=4,当x>0时,由f(x)=ax得﹣x2+2ax﹣2a=ax,得x2﹣ax+2a=0,得a(x﹣2)=x2,当x=2时,方程不成立,当x≠2时,a=设h(x)=,则h′(x)==,由h′(x)>0得x>4,此时递增,由h′(x)<0得0<x<2或2<x<4,此时递减,即当x=4时,h(x)取得极小值为h (4)=8,要使f(x)=ax恰有2个互异的实数解,则由图象知4<a<8,故答案为:(4,8)【点评】本题主要考查函数与方程的应用,利用参数分离法结合函数的极值和导数之间的关系以及数形结合是解决本题的关键.三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(13.00分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos (B﹣).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A﹣B)的值.【分析】(Ⅰ)由正弦定理得bsinA=asinB,与bsinA=acos(B﹣).由此能求出B.(Ⅱ)由余弦定理得b=,由bsinA=acos(B﹣),得sinA=,cosA=,由此能求出sin(2A﹣B).【解答】解:(Ⅰ)在△ABC中,由正弦定理得,得bsinA=asinB,又bsinA=acos(B﹣).∴asinB=acos(B﹣),即sinB=cos(B﹣)=cosBcos+sinBsin=cosB+,∴tanB=,又B∈(0,π),∴B=.(Ⅱ)在△ABC中,a=2,c=3,B=,由余弦定理得b==,由bsinA=acos(B﹣),得sinA=,∵a<c,∴cosA=,∴sin2A=2sinAcosA=,cos2A=2cos2A﹣1=,∴sin(2A﹣B)=sin2AcosB﹣cos2AsinB==.【点评】本题考查角的求法,考查两角差的余弦值的求法,考查运算求解能力,考查函数与方程思想,是中档题.16.(13.00分)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(Ⅰ)应从甲、乙、丙三个部门的员工中分别抽取多少人?(Ⅱ)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.【分析】(Ⅰ)利用分层抽样,通过抽样比求解应从甲、乙、丙三个部门的员工中分别抽取人数;(Ⅱ)若(i)用X表示抽取的3人中睡眠不足的员工人数,的可能值,求出概率,得到随机变量X的分布列,然后求解数学期望;(ii)利用互斥事件的概率求解即可.【解答】解:(Ⅰ)单位甲、乙、丙三个部门的员工人数分别为24,16,16.人数比为:3:2:2,从中抽取7人现,应从甲、乙、丙三个部门的员工中分别抽取3,2,2人.(Ⅱ)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i)用X表示抽取的3人中睡眠不足的员工人数,随机变量X的取值为:0,1,2,3,,k=0,1,2,3.所以随机变量的分布列为:X0123P随机变量X的数学期望E(X)==;(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,设事件B为:抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人,事件C 为抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人,则:A=B∪C,且P(B)=P(X=2),P(C)=P(X=1),故P(A)=P(B∪C)=P(X=2)+P(X=1)=.所以事件A发生的概率:.【点评】本题考查分层抽样,考查对立事件的概率,考查离散型随机变量的分布列与期望,确定X的可能取值,求出相应的概率是关键.17.(13.00分)如图,AD∥BC且AD=2BC,AD⊥CD,EG∥AD且EG=AD,CD∥FG且CD=2FG,DG⊥平面ABCD,DA=DC=DG=2.(Ⅰ)若M为CF的中点,N为EG的中点,求证:MN∥平面CDE;(Ⅱ)求二面角E﹣BC﹣F的正弦值;(Ⅲ)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长.【分析】(Ⅰ)依题意,以D为坐标原点,分别以、、的方向为x轴,y轴,z 轴的正方向建立空间直角坐标系.求出对应点的坐标,求出平面CDE的法向量及,由,结合直线MN⊄平面CDE,可得MN∥平面CDE;(Ⅱ)分别求出平面BCE与平面平面BCF的一个法向量,由两法向量所成角的余弦值可得二面角E﹣BC﹣F的正弦值;(h∈[0,2]),则点P的坐标为(0,0,h),求出,(Ⅲ)设线段DP的长为h,而为平面ADGE的一个法向量,由直线BP与平面ADGE所成的角为60°,可得线段DP的长.【解答】(Ⅰ)证明:依题意,以D为坐标原点,分别以、、的方向为x轴,y轴,z轴的正方向建立空间直角坐标系.可得D(0,0,0),A(2,0,0),B(1,2,0),C(0,2,0),E(2,0,2),F(0,1,2),G(0,0,2),M(0,,1),N(1,0,2).设为平面CDE的法向量,则,不妨令z=﹣1,可得;又,可得.又∵直线MN⊄平面CDE,∴MN∥平面CDE;(Ⅱ)解:依题意,可得,,.设为平面BCE的法向量,则,不妨令z=1,可得.设为平面BCF的法向量,则,不妨令z=1,可得.因此有cos<>=,于是sin<>=.∴二面角E﹣BC﹣F的正弦值为;(Ⅲ)解:设线段DP的长为h,(h∈[0,2]),则点P的坐标为(0,0,h),可得,而为平面ADGE的一个法向量,故|cos<>|=.由题意,可得,解得h=∈[0,2].∴线段DP的长为.【点评】本题考查直线与平面平行的判定,考查空间角的求法,训练了利用空间向量求解空间角,是中档题.18.(13.00分)设{a n}是等比数列,公比大于0,其前n项和为S n(n∈N*),{b n}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5=b4+2b6.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)设数列{S n}的前n项和为T n(n∈N*),(i)求T n;(ii)证明=﹣2(n∈N*).【分析】(Ⅰ)设等比数列{a n}的公比为q,由已知列式求得q,则数列{a n}的通项公式可求;等差数列{b n}的公差为d,再由已知列关于首项与公差的方程组,求得首项与公差,可得等差数列的通项公式;(Ⅱ)(i)由等比数列的前n项和公式求得S n,再由分组求和及等比数列的前n项和求得数列{S n}的前n项和为T n;(ii)化简整理,再由裂项相消法证明结论.【解答】(Ⅰ)解:设等比数列{a n}的公比为q,由a1=1,a3=a2+2,可得q2﹣q﹣2=0.∵q>0,可得q=2.故.设等差数列{b n}的公差为d,由a4=b3+b5,得b1+3d=4,由a5=b4+2b6,得3b1+13d=16,∴b1=d=1.故b n=n;(Ⅱ)(i)解:由(Ⅰ),可得,故=;(ii)证明:∵==.∴==﹣2.【点评】本题主要考查等差数列、等比数列的通项公式及前n项和等基础知识,考查数列求和的基本方法及运算能力,是中档题.19.(14.00分)设椭圆+=1(a>b>0)的左焦点为F,上顶点为B.已知椭圆的离心率为,点A的坐标为(b,0),且|FB|•|AB|=6.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l:y=kx(k>0)与椭圆在第一象限的交点为P,且l与直线AB交于点Q.若=sin∠AOQ(O为原点),求k的值.【分析】(Ⅰ)设椭圆的焦距为2c,根据椭圆的几何性质与已知条件,求出a、b的值,再写出椭圆的方程;(Ⅱ)设出点P、Q的坐标,由题意利用方程思想,求得直线AB的方程以及k的值.【解答】解:(Ⅰ)设椭圆+=1(a>b>0)的焦距为2c,由椭圆的离心率为e=,∴=;又a2=b2+c2,∴2a=3b,由|FB|=a,|AB|=b,且|FB|•|AB|=6;可得ab=6,从而解得a=3,b=2,∴椭圆的方程为+=1;(Ⅱ)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2),由已知y1>y2>0;∴|PQ|sin∠AOQ=y1﹣y2;又|AQ|=,且∠OAB=,∴|AQ|=y2,由=sin∠AOQ,可得5y1=9y2;由方程组,消去x,可得y1=,∴直线AB的方程为x+y﹣2=0;由方程组,消去x,可得y2=;由5y1=9y2,可得5(k+1)=3,两边平方,整理得56k2﹣50k+11=0,解得k=或k=;∴k的值为或.【点评】本题主要考查了椭圆的标准方程与几何性质、直线方程等知识的应用问题,也考查了利用代数方法求研究圆锥曲线的性质应用问题,考查了运算求解能力与运用方程思想解决问题的能力.20.(14.00分)已知函数f(x)=a x,g(x)=log a x,其中a>1.(Ⅰ)求函数h(x)=f(x)﹣xlna的单调区间;(Ⅱ)若曲线y=f(x)在点(x1,f(x1))处的切线与曲线y=g(x)在点(x2,g(x2))处的切线平行,证明x1+g(x2)=﹣;(Ⅲ)证明当a≥e时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.【分析】(Ⅰ)把f(x)的解析式代入函数h(x)=f(x)﹣xlna,求其导函数,由导函数的零点对定义域分段,由导函数在各区间段内的符号可得原函数的单调区间;(Ⅱ)分别求出函数y=f(x)在点(x1,f(x1))处与y=g(x)在点(x2,g(x2))处的切线的斜率,由斜率相等,两边取对数可得结论;(Ⅲ)分别求出曲线y=f(x)在点()处的切线与曲线y=g(x)在点(x2,log a x2)处的切线方程,把问题转化为证明当a≥时,存在x1∈(﹣∞,+∞),x2∈(0,+∞)使得l1与l2重合,进一步转化为证明当a≥时,方程存在实数解.然后利用导数证明即可.【解答】(Ⅰ)解:由已知,h(x)=a x﹣xlna,有h′(x)=a x lna﹣lna,令h′(x)=0,解得x=0.由a>1,可知当x变化时,h′(x),h(x)的变化情况如下表:x(﹣∞,0)0(0,+∞)h′(x)﹣0+h(x)↓极小值↑∴函数h(x)的单调减区间为(﹣∞,0),单调递增区间为(0,+∞);(Ⅱ)证明:由f′(x)=a x lna,可得曲线y=f(x)在点(x1,f(x1))处的切线的斜率为lna.由g′(x)=,可得曲线y=g(x)在点(x2,g(x2))处的切线的斜率为.∵这两条切线平行,故有,即,两边取以a为底数的对数,得log a x2+x1+2log a lna=0,∴x1+g(x2)=﹣;(Ⅲ)证明:曲线y=f(x)在点()处的切线l1:,曲线y=g(x)在点(x2,log a x2)处的切线l2:.要证明当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线,只需证明当a≥时,存在x1∈(﹣∞,+∞),x2∈(0,+∞)使得l1与l2重合,即只需证明当a≥时,方程组由①得,代入②得:,③因此,只需证明当a≥时,关于x1的方程③存在实数解.设函数u(x)=,既要证明当a≥时,函数y=u(x)存在零点.u′(x)=1﹣(lna)2xa x,可知x∈(﹣∞,0)时,u′(x)>0;x∈(0,+∞)时,u′(x)单调递减,又u′(0)=1>0,u′=<0,故存在唯一的x0,且x0>0,使得u′(x0)=0,即.由此可得,u(x)在(﹣∞,x0)上单调递增,在(x0,+∞)上单调递减,u(x)在x=x0处取得极大值u(x0).∵,故lnlna≥﹣1.∴=.下面证明存在实数t,使得u(t)<0,由(Ⅰ)可得a x≥1+xlna,当时,有u(x)≤=.∴存在实数t,使得u(t)<0.因此,当a≥时,存在x1∈(﹣∞,+∞),使得u(x1)=0.∴当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.【点评】本题考查导数的运算,导数的几何意义,运用导数研究指数函数与对数公式的性质等基础知识和方法,考查函数与方程思想,化归思想,考查抽象概括能力,综合分析问题和解决问题的能力,是难题.。

相关文档
最新文档