热处理
四种常见热处理方法
四种常见热处理方法
热处理是一种通过控制材料的加热和冷却过程来改变其物理和
机械性能的方法。
常见的热处理方法包括退火、正火、淬火和回火。
首先是退火,这是最常见的热处理方法之一。
退火是将材料加
热到一定温度,然后在适当速度下冷却。
这有助于减轻材料内部的
应力和提高塑性,同时改善材料的韧性和韧性。
其次是正火,也称为时效处理。
正火是将材料加热到一个高温,然后在一定时间内保持在该温度下,最后进行适当的冷却。
这种方
法常用于合金钢和铝合金,可以提高材料的硬度和强度。
第三种方法是淬火,这是一种通过迅速冷却来使材料迅速固化
的方法。
通常是将材料加热到临界温度,然后迅速冷却,以产生高
硬度和高强度的组织结构。
淬火常用于制备工具钢和轴承钢等材料。
最后是回火,这是一种在淬火后将材料重新加热到较低的温度,然后保温一段时间后再冷却的方法。
回火有助于减轻淬火过程中产
生的内部应力,同时可以调节材料的硬度和韧性,使其达到最佳的
性能状态。
以上所述的四种常见热处理方法,分别适用于不同类型的材料和工件,能够有效地改善材料的性能和延长其使用寿命。
通过合理选择和控制热处理方法,可以使材料达到最佳的力学性能和组织结构,从而满足不同工程应用的要求。
热处理方法有哪些
热处理方法有哪些热处理方法有哪些?(上)热处理是指通过加热、保温、冷却等一系列工艺措施,改变材料或零件的组织结构、性能和形状的工艺过程。
热处理方法多种多样,下面将介绍一些常见的热处理方法。
1. 火焰淬火火焰淬火是利用火焰或火腿加热工件到淬火温度,然后通过气流或喷水等介质冷却,使工件表面形成一层淬火组织,具有较高的硬度和强度。
2. 淬火回火淬火回火是指在淬火后,对工件进行回火处理,改变其组织和性能以达到所需的力学性能。
该方法常用用于工具钢、弹簧钢等材料的热处理。
3. 渗碳渗碳是指将具有一定碳含量的低碳钢或铁件,置于含有碳、氧、氮等元素的介质中进行加热,使其表层渗入碳元素,从而提高其表面硬度和耐磨性能。
4. 固溶处理固溶处理是指将有机物质或合金材料加热,使其中的固溶体发生不完全固态反应,使其达到特定的化学成分和组织状态,从而达到提高材料性能的目的。
常用于不锈钢、合金钢等材料的热处理。
5. 淬火调质淬火调质是指先将工件快速加热到淬火温度,然后进行气体或水冷却,使其达到莫氏硬度要求,然后回火,调整其硬度、强度和韧度等性能。
该方法常用于合金钢、冷拔钢丝等材料的热处理。
6. 磷化磷化是利用化学反应原理,将所需的基体材料表面,通过化学作用,在表面一层上生成有机物磷化层,以提高其表面硬度、耐蚀性能。
以上就是一些常见的热处理方法,它们可以提高工件的硬度、强度、耐磨性、耐腐蚀能力等物理和化学性能。
同时,热处理也是材料加工中不可缺少的一种重要工艺。
热处理方法有哪些?(下)热处理是冶金学的重要分支,在现代工业生产中起着举足轻重的作用。
相信大家对热处理方法有一定了解了,接下来将进一步介绍其他热处理方法。
7. 焊后热处理焊后热处理是指在焊接过程完成后,通过加热、保温和冷却等工艺措施,使其焊接部位的材料复原其原有的组织和性能,同时消除焊接时产生的焊接应力问题。
8. 焙烧焙烧是指通过加热材料,使其表面或内部氧化或还原,从而改变其化学性质和物理性能的过程。
热处理的方法
热处理的方法热处理是一种通过加热和冷却金属材料来改变其物理和机械性能的方法。
在工业生产中,热处理被广泛应用于各种金属制品的生产加工过程中,以提高其硬度、强度、耐磨性和耐腐蚀性能。
下面将介绍几种常见的热处理方法。
1. 淬火。
淬火是指将金属材料加热至临界温度以上,然后迅速冷却至室温以下的一种热处理方法。
通过淬火处理,可以使金属材料获得高硬度和强度。
淬火的方法包括水淬、油淬和盐水淬等,不同的淬火介质会对材料的性能产生不同的影响。
2. 回火。
回火是指在淬火后,将金属材料重新加热至较低的温度,然后保温一段时间后再冷却的一种热处理方法。
回火可以消除淬火过程中产生的内部应力,提高材料的韧性和塑性,同时降低其硬度和脆性。
3. 淬火回火。
淬火回火是将淬火和回火两种热处理方法结合起来进行的一种复合热处理工艺。
通过淬火回火处理,可以在保证金属材料硬度和强度的同时,提高其韧性和塑性,以满足不同工件的使用要求。
4. 固溶处理。
固溶处理是将合金加热至固溶温度以上,然后在一定温度下保温一段时间,最后迅速冷却的一种热处理方法。
固溶处理可以溶解合金中的固溶体,改善合金的塑性和加工性能,同时提高其耐腐蚀性能。
5. 淬火回火处理。
淬火回火处理是将淬火和回火两种热处理方法结合起来进行的一种复合热处理工艺。
通过淬火回火处理,可以在保证金属材料硬度和强度的同时,提高其韧性和塑性,以满足不同工件的使用要求。
总结。
热处理是一种重要的金属材料加工工艺,通过改变金属的组织结构和性能,可以使材料达到理想的使用要求。
不同的热处理方法可以使金属材料获得不同的性能,因此在实际生产中,需要根据具体工件的要求选择合适的热处理工艺,以确保产品质量和性能。
通过本文的介绍,相信大家对热处理的方法有了更深入的了解,希望能够在实际生产中加以应用,为提高产品质量和性能提供有力支持。
热处理的方法
热处理的方法热处理是一种通过加热和冷却金属材料来改变其物理和机械性能的工艺。
它在工程领域中被广泛应用,可以使材料获得所需的硬度、韧性、强度和耐磨性。
热处理方法有很多种,下面将介绍几种常见的热处理方法。
首先,淬火是一种常见的热处理方法。
在淬火过程中,将金属材料加热至临界温度以上,然后迅速冷却至室温。
这样可以使材料获得高硬度和强度,但韧性会降低。
淬火可分为油淬、水淬和气淬等不同方式,具体选择取决于材料的种类和要求。
其次,回火是一种常用的热处理方法。
在淬火后,金属材料的硬度往往过高,韧性不足,这时需要进行回火处理。
回火是将材料加热至较低的温度,然后保温一段时间,最后冷却至室温。
这样可以降低材料的硬度,提高韧性,使其达到理想的性能指标。
另外,正火也是一种常见的热处理方法。
正火是将金属材料加热至临界温度以上,然后在空气中冷却。
这种方法可以使材料获得一定的硬度和强度,同时保持一定的韧性。
正火适用于一些对材料性能要求较为平衡的情况。
除了上述几种方法,还有很多其他的热处理方法,如退火、时效处理、表面强化等。
每种方法都有其特定的应用领域和优势,需要根据具体情况进行选择。
总的来说,热处理是一种非常重要的金属材料加工工艺,可以显著改善材料的性能,提高其使用价值。
在实际应用中,需要根据材料的种类、要求和工艺条件选择合适的热处理方法,以确保材料达到最佳的性能表现。
通过以上介绍,相信大家对热处理的方法有了更深入的了解。
在实际工程中,热处理是一个非常重要的环节,需要我们认真对待,以确保材料的性能达到设计要求。
希望本文能够对大家有所帮助,谢谢阅读!。
四种常见热处理方法
四种常见热处理方法热处理是一种通过加热和冷却金属材料来改变其物理和机械性能的方法。
在工程领域中,热处理被广泛应用于提高材料的硬度、强度、耐磨性和耐腐蚀性。
在本文中,我们将介绍四种常见的热处理方法,它们分别是退火、正火、淬火和回火。
首先,我们来介绍退火。
退火是通过加热金属至一定温度,然后缓慢冷却以减少内部应力和提高材料的韧性和可加工性。
退火分为全退火和局部退火两种类型,全退火是将整个工件均匀加热至临界温度,然后通过控制冷却速度来实现所需的组织和性能。
而局部退火则是只对工件的局部区域进行加热和冷却,以达到局部性能调整的目的。
其次,正火是一种加热工件至临界温度后,保温一定时间再进行适当速度冷却的热处理方法。
正火主要用于提高材料的硬度和强度,通常适用于低碳钢和合金钢等材料。
正火的目的是通过控制工件的显微组织来改善其性能,使其达到设计要求。
接下来是淬火,淬火是一种将加热至临界温度的金属工件迅速冷却至室温的热处理方法。
淬火可以使金属材料的表面产生高硬度和耐磨性,但内部会产生较大的残余应力,因此需要进行回火处理来提高其韧性和稳定性。
淬火是一种常用的金属热处理方法,适用于许多不锈钢、合金钢和工具钢等材料。
最后,回火是一种通过加热淬火后的工件至较低温度,保温一定时间后再进行适当速度冷却的热处理方法。
回火可以降低淬火后材料的脆性,提高其韧性和韧韧性,同时还可以调整材料的硬度和强度。
回火是淬火后的重要补充,能够使材料达到更好的综合性能。
总的来说,热处理是一种重要的金属材料加工工艺,能够显著改善材料的性能和使用寿命。
四种常见的热处理方法,即退火、正火、淬火和回火,各自具有不同的特点和适用范围,工程师和技术人员在实际应用中应根据材料的特性和要求选择合适的热处理方法,以实现最佳的性能和效果。
热处理的基本知识
过烧与欠烧的预防与控制
总结词
过烧和欠烧是热处理中常见的问题,它们会 影响材料的性能和热处理的可靠性。
详细描述
过烧是指加热温度过高或保温时间过长,导 致材料内部晶粒长大、氧化或融化。欠烧则 是加热温度或保温时间不足,导致材料未完 全奥氏体化或淬火不完全。为了预防和控制 过烧和欠烧,需要精确控制加热温度和时间 ,以及选择适当的加热和冷却速度。
气氛
热处理过程中所选择的气氛(如空 气、保护气体等)会影响金属的氧 化、脱碳等化学变化。
03
CATALOGUE
热处理工艺分类
退火
退火是将金属加热到适当温度,保持一定时 间,然后缓慢冷却的过程。其目的是消除内 应力、降低硬度、提高塑性和韧性。
退火工艺可分为完全退火、等温退火和球化 退火等。完全退火是将金属加热到临界点以 上,使组织完全奥氏体化,然后随炉缓慢冷 却;等温退火是将金属加热到临界点以上某 一温度,保持一定时间后快速冷却至室温; 球化退火则是将金属加热到略低于临界点温
05
CATALOGUE
热处理中的问题与解决方案
裂纹的产生与预防
总结词
裂纹是热处理中常见的问题,其产生与 多种因素有关,如冷却速度、加热温度 等。
VS
详细描述
裂纹的产生通常是由于热处理过程中材料 内部应力的集中和超过材料的断裂强度所 引起的。为了预防裂纹的产生,需要控制 加热和冷却速度,选择适当的加热温度和 时间,以及采用适当的热处理工艺。
THANKS
感谢观看
04
CATALOGUE
热处理的应用
钢铁工业
01
钢铁是热处理应用最广泛的材料 之一,通过不同的热处理工艺, 可以改变钢铁的内部结构和性能 ,以满足各种不同的需求。
热处理的定义及目的
热处理的定义及目的热处理呀,这可是个挺有意思的事儿呢!你想想看,就好像我们人要经历各种锻炼和磨练才能变得更强壮、更有本事一样,金属材料啥的也要经过热处理来提升它们的性能呢!那热处理到底是啥呢?简单来说,就是对材料进行加热、保温和冷却的操作啦。
这可不是瞎折腾哦,这可是有大目的的呢!通过这样的过程,可以改变材料的组织结构,从而让它具备我们想要的各种优良特性。
比如说吧,有的材料经过热处理后会变得更硬,就像一个人经过艰苦训练后肌肉变得更结实一样。
这样它就能更好地承受压力和磨损啦。
有的呢,则会变得更有韧性,不容易折断,就像我们的筋骨变得更灵活一样。
你说热处理重不重要?那当然重要得很呐!要是没有热处理,很多东西可就没法达到我们需要的标准啦。
好比一辆汽车,如果它的零件没有经过合适的热处理,那开起来还不得嘎吱嘎吱响,说不定哪天就散架了呢!再想想我们生活中的各种工具,像锤子、扳手啥的,要是不经过热处理,能那么耐用吗?肯定不能呀!热处理就像是给这些材料施了魔法一样,让它们摇身一变,变得超级厉害。
而且哦,热处理的方法也是多种多样的呢!有退火,这就像是让材料好好地休息一下,放松放松,让它的内部结构变得更均匀;还有淬火,这可刺激啦,就像把材料丢到火里去锻炼,让它一下子变得坚硬无比;还有回火呢,这就像是给刚经过淬火的材料来个安抚,让它的性能更稳定。
你说热处理神奇不神奇?就这么几个简单的步骤,就能让材料发生这么大的变化。
这可不是随随便便就能做到的哦,得掌握好火候、时间啥的,就跟我们做菜一样,调料放多了放少了,火候大了小了,做出来的菜味道可就不一样啦。
所以啊,那些搞热处理的师傅们可都是很厉害的呢!他们就像是魔法师一样,能让普通的材料变得了不起。
他们得有丰富的经验和精湛的技术,才能把热处理这件事做好。
你看看我们身边的那些高质量的产品,哪一个不是经过了精心的热处理呢?从小小的螺丝钉到大大的机器设备,都离不开热处理呀。
它就像是幕后的英雄,虽然我们可能不太注意到它,但它却默默地为我们的生活和工作提供着保障。
热处理的标准
热处理的标准热处理是一种通过加热和冷却控制金属或合金的微观组织和性能的工艺。
热处理可以改变材料的硬度、强度、韧性和耐蚀性等性能,从而满足不同工程要求。
在进行热处理时,需要严格按照一定的标准进行操作,以确保产品质量和性能稳定。
本文将介绍热处理的标准,包括热处理工艺、热处理设备和热处理质量控制等方面的内容。
首先,热处理的标准应包括热处理工艺的要求。
热处理工艺包括加热、保温和冷却三个阶段,每个阶段都有严格的要求。
在加热阶段,需要控制加热速度和温度均匀性,以避免产生过热或过冷区域,影响产品性能。
在保温阶段,需要保持一定的时间和温度,以确保组织的均匀性和稳定性。
在冷却阶段,需要选择合适的冷却介质和速度,以获得所需的组织和性能。
这些工艺参数都应在标准中明确规定,以便操作人员按照标准进行操作。
其次,热处理的标准还应包括热处理设备的要求。
热处理设备包括加热炉、保温炉、冷却装置等,这些设备的性能直接影响热处理的质量。
在标准中,应规定设备的型号、规格、性能指标和操作要求,以确保设备能够满足热处理工艺的要求。
同时,还应规定设备的维护和保养要求,以延长设备的使用寿命和保证操作安全。
最后,热处理的标准还应包括热处理质量控制的要求。
热处理质量控制包括工艺参数的监控、产品性能的检测和质量记录的保存等内容。
在标准中,应规定工艺参数的监控方法和频率,以及产品性能检测的项目和标准。
同时,还应规定质量记录的保存期限和方式,以便对热处理质量进行追溯和评定。
总之,热处理的标准对于产品的质量和性能至关重要。
只有严格按照标准进行操作,才能保证热处理的质量稳定和可控。
因此,热处理的标准应该是企业进行热处理生产和管理的重要依据,对于制定和执行热处理标准应该予以重视。
热处理技术措施
热处理技术措施热处理是一种通过加热和冷却金属材料来改变其物理和化学性质的方法。
它可以改善金属的硬度、强度、韧性等性能,从而满足特定的工程需求。
热处理技术不仅在金属加工和制造业中广泛应用,在航空航天、汽车、电子、能源等领域也发挥着重要作用。
本文将介绍一些常见的热处理技术措施。
1. 固溶处理固溶处理是一种将合金加热至固溶温度后快速冷却的热处理方法。
固溶处理常用于合金的强化和精细化处理,以提高材料的硬度和强度。
这种技术特别适合铝合金、镁合金等材料的处理。
固溶处理的目标是在固溶温度下溶解和均匀分布合金中的固溶体,从而增加合金的韧性和强度。
2. 淬火淬火是一种将金属材料加热至高温后迅速冷却的热处理过程。
淬火可以改善材料的硬度和强度,增加其抗磨损和耐磨性能。
淬火通常用于碳钢、合金钢等材料的处理。
在淬火过程中,材料的组织结构会发生变化,由粗大的晶粒变为细小且均匀的晶粒,从而提高材料的强度和韧性。
3. 回火回火是一种将淬火后的材料重新加热至一定温度后冷却的热处理过程。
回火可以消除淬火过程中产生的内应力,并使材料的硬度和韧性达到平衡。
回火的温度和时间可以根据具体的材料和要求进行调整,以实现所需的性能。
回火常用于淬硬钢、工具钢等材料的处理,以提高其韧性和可加工性。
4. 预应力处理预应力处理是一种将材料加热至一定温度并施加压力的热处理方法。
预应力处理可以通过控制压力和温度的组合来改变材料的结构和性能。
这种技术常用于钢筋混凝土梁、桥梁、建筑物等结构的加固和修复,以提高其承载能力和耐久性。
5. 热处理过程控制热处理过程控制是确保热处理达到所需效果的关键因素。
在热处理过程中,需要掌握合适的加热温度和时间,保证材料的均匀加热。
同时,冷却速率也需要控制,以避免产生不均匀的组织和内应力。
在现代制造中,热处理过程常借助计算机控制系统进行精确控制,以确保热处理的一致性和可靠性。
总结:热处理技术措施是一种通过加热和冷却金属材料来改变其性质和性能的方法。
热处理知识介绍
球化退火应用
球化退火主要适用于共析钢和过共析钢,如碳 素工具钢、合金工具钢、轴承钢等。这些钢经 轧制、锻造后空冷,所得组织是片层状珠光体 与网状渗碳体,这种组织硬而脆,不仅难以切 削加工,且在以后淬火过程中也容易变形和开 裂。
球化退火应用
而经球化退火得到的是球状珠光体组织,其中 的渗碳体呈球状颗粒,弥散分布在铁素体基体 上,和片状珠光体相比,不但硬度低,便于切 削加工,而且在淬火加热时,奥氏体晶粒不易 长大,冷却时工件变形和开裂倾向小。另外对 于一些需要改善冷塑性变形(如冲压、冷镦等) 的亚共析钢有时也可采用球化退火。
热处理分类——回火
钢的回火是将淬火钢加热至A1以下的某一温 度,保温一段时间,然后冷却到室温的一种热 处理工艺。
消除钢淬火时产生的亚稳定组织。
二、退火热处理
退火热处理是将金属或合金加热到适当的温度, 保持一定的时间,然后缓慢冷却的热处理工艺。
退火后组织亚共析钢是铁素体加片状珠光体; 共析钢或过共析钢则是粒状珠光体。总之退火 组织是接近平衡状态的组织。
Fe+H2O→FeO+H2 FeC+CO2→Fe+2CO 还原: FeO+H2→Fe+H2O
FeO+CO→Fe+CO2
对策
所以我们必须做到: 1.减少盘圆料自身带的FeO(盘圆料的酸洗可 以减少FeO); 2.降低炉内的CO、H2在适当的比值和线材来 减少O2、H2O脱碳性气体(加氮气降低炉内 CO、H2的体积百分比),加瓦斯,丙烯可以分 解成甲烷与炉内的H2O、O2反应成CO作为保 护气氛。
CH3OH
CO+2H2
中性气体
氮气在高温加热时和钢铁不发生任何作用,即 不氧化。不脱碳、也无还原和增碳作用,故为 中性气体。
氧化案例
热处理原理及工艺
热处理原理及工艺热处理是一种用于改善材料性能的重要工艺。
通过控制材料的加热和冷却过程,可以改变材料的晶体结构、力学性能和化学性能,从而提高材料的强度、硬度、耐腐蚀性等。
热处理的原理是基于固体材料的晶体结构与物理性能之间的关系。
晶体结构是由原子或分子的周期性排列所组成,不同的结构会导致不同的物理性能。
在加热过程中,材料中的原子或分子会随着温度的升高而具有更高的热运动能力,从而使晶体结构发生变化。
通过控制加热温度和时间,可以实现晶体结构的改变。
常见的热处理工艺包括退火、淬火、回火、表面处理等。
退火是将材料加热到特定温度,然后缓慢冷却至室温,目的是消除内部应力和改善材料的韧性。
淬火是在材料加热到高温后,迅速冷却至室温,通过快速冷却可以使材料形成硬脆结构,提高材料的硬度和强度,但也会导致内部应力增大,需要进行回火处理来消除应力。
回火是将淬火后的材料加热到适当温度,然后保温一段时间,最后缓慢冷却,目的是降低材料的硬度,提高韧性。
表面处理是在材料表面形成一层特定的化合物或合金层,用于改善材料的耐磨性、耐腐蚀性等。
热处理工艺的选择要根据材料的组成和应用要求进行。
不同材料具有不同的热处理敏感性和适用温度范围。
合理选择热处理工艺可以使材料在满足力学性能和物理性能要求的同时,减少成本和能源消耗。
总之,热处理是一种通过控制材料的加热和冷却过程,改善材料性能的重要工艺。
通过热处理可以改变材料的晶体结构和物理性能,提高材料的强度、硬度、韧性和耐腐蚀性等。
选择合适的热处理工艺对于提高材料的性能和使用寿命至关重要。
热处理是一种将金属或合金材料通过加热和冷却处理来改变其物理和机械性能的工艺。
它是材料加工中非常重要的一部分,因为可以通过控制热处理工艺,使材料的硬度、强度、韧性、耐腐蚀性等性能得到改善。
热处理的核心原理是通过控制材料的加热温度和冷却速度,使材料的晶体结构发生变化。
材料的晶体结构决定了其宏观性能。
例如,在晶体结构较均匀的钢中,碳原子分布均匀,这样就有利于提高钢材的硬度和强度。
热处理定义及目的
热处理定义及目的
热处理是一种通过加热和冷却来改变材料的物理和化学性质的工艺方法。
热处理的主要目的是改善材料的硬度、强度、耐磨性、耐腐蚀性等性能,以满足不同工程要求。
通过热处理,可以改变材料的晶体结构和组织状态,从而提高材料的整体性能。
热处理通常包括加热、保温和冷却三个过程。
加热过程是将材料加热到一定温度,使其达到相应的组织状态;保温过程是在一定温度下让材料保持一段时间,使组织结构发生改变;冷却过程则是将材料从高温快速冷却到室温,固定新的组织结构。
热处理的定义和目的在于优化材料的性能,使其更适合特定的工程应用。
例如,对于金属材料,热处理可以提高其硬度和强度,延长材料的使用寿命。
对于玻璃材料,热处理可以改善其耐热性和耐冲击性。
对于塑料材料,热处理可以调节其软化温度和弯曲强度。
在工程领域中,热处理是非常重要的一环。
各种零部件、工具和设备都需要经过热处理来提高其性能和可靠性。
例如,汽车发动机的曲轴、凸轮轴等关键零部件需要经过淬火和回火等热处理工艺,以提高其耐磨性和耐久性。
刀具、模具等工具也需要经过热处理,以增强其硬度和耐用度。
总的来说,热处理是一项非常重要的工艺,在现代工业生产中发挥着不可替代的作用。
通过热处理,材料的性能得以优化,工程产品
的质量和性能得到提升。
因此,深入了解热处理的原理和方法,对于工程技术人员来说至关重要。
只有不断探索和应用新的热处理工艺,才能满足不断变化的工程需求,推动工业制造的发展。
热处理操作流程和注意事项
热处理操作流程和注意事项
以下是 6 条关于热处理操作流程和注意事项:
1. 嘿,你知道热处理第一步得干啥不?那就是得把工件准备好呀!就像战士上战场要把武器擦得亮亮的,咱这工件也得弄得干干净净、妥妥当当的。
比如说要把工件上的杂质啊、油污啥的都去掉,这可不马虎不得哟!要是没做好这一步,后面还咋搞嘞,是不?
2. 然后啊,升温这环节可太重要啦!就好比跑步比赛,出发的速度得把握好。
升温太快或太慢都不行呀,得按照要求慢慢来。
咱可不能心急,一急就容易出岔子,就像煮汤火太大了会扑出来一样!你说是不是得小心着来呀?
3. 热处理的时候,保温那可是关键一环呐!这就好像冬天你在被窝里,得捂得暖暖的。
要是保温时间不够或者温度不对,那效果就大打折扣咯!比如给一个零件保温,就得老老实实等够时间,不能偷工减料,不然最后出来的东西能好吗?
4. 冷却也很有讲究哦!这不像是大热天吃冰棍,得慢慢享受那个过程。
速度太快或太慢都不行,得根据材料来选择合适的冷却方式。
有时候就像走钢丝,得稳稳当当的,稍有不慎,前面的努力不就白费啦?
5. 别忘了随时观察呀!这就跟看孩子似的,得时刻留意着有没有啥异常。
要是发现温度不对了、工件有啥问题了,得赶紧采取措施呀。
你能眼睁睁看着出问题不管吗?肯定不能呀!
6. 最后,操作得规范呀!这就像跳舞要按舞步来一样,不能瞎跳。
每个步骤都要严格遵守,不然容易出危险嘞!想想看,要是不规范操作导致出了事故,那得多吓人呀!总之,热处理可得认真对待,一点都不能马虎!。
热处理工艺介绍
热处理工艺介绍关键信息项:1、热处理工艺的类型2、热处理的目的3、适用的材料4、处理过程中的温度控制5、保温时间6、冷却方式7、设备要求8、质量检测标准9、安全注意事项11 热处理工艺的类型111 退火退火是将金属材料加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。
其目的是降低材料的硬度,改善切削加工性能,消除残余应力,均匀化学成分等。
112 正火正火是将钢件加热到临界温度以上 30 50℃,保温适当时间后,在空气中冷却的热处理工艺。
正火的作用与退火相似,但冷却速度稍快,得到的组织较细,强度和硬度稍高。
113 淬火淬火是将钢件加热到临界温度以上,保温一段时间,然后在水、油或其他介质中快速冷却,以获得高硬度和高强度的马氏体组织。
114 回火淬火后的钢件内部存在很大的内应力和脆性,回火则是将淬火后的钢件重新加热到一定温度,保温一定时间,然后冷却。
回火可以降低钢件的脆性,调整硬度,提高韧性和塑性。
115 调质处理调质处理是淬火加高温回火的综合热处理工艺,可获得良好的综合力学性能。
12 热处理的目的121 改善材料的力学性能通过改变材料的组织结构,提高强度、硬度、韧性、耐磨性等力学性能,满足不同工作条件下的使用要求。
122 消除残余应力加工过程中产生的残余应力可能导致材料变形、开裂等问题,热处理可以有效消除残余应力,提高材料的尺寸稳定性和可靠性。
如退火可以降低材料的硬度,便于切削、冲压等加工操作。
124 提高材料的耐腐蚀性能适当的热处理工艺可以改善材料的表面组织结构,增强其耐腐蚀能力。
13 适用的材料131 钢铁材料包括碳素钢、合金钢、工具钢等,不同类型的钢铁材料需要根据其成分和性能要求选择合适的热处理工艺。
132 有色金属材料如铝合金、铜合金等,也可以通过热处理来改善其性能。
133 其他材料如一些特殊的陶瓷材料、复合材料等,在特定情况下也可能需要进行热处理。
14 处理过程中的温度控制141 加热温度的确定根据材料的成分、相变点和性能要求,精确确定加热温度是热处理成功的关键。
热处理常见的方法及分类
热处理常见的方法及分类
热处理是将金属材料加热到一定温度,以改变其性质和形态的加工方法。
热处理既可以用于制造产品,也可以用于改善材料的性能。
在工业生产中,热处理是一个非常重要的环节,常见的热处理方法包括以下几种:
1. 加热处理:将金属材料加热到适当的温度,以改变其硬度、韧性和强度等性质。
常见的加热处理包括退火、正火、火焰加热和感应加热等。
2. 冷却处理:将金属材料加热到适当的温度后,迅速冷却到室温以下,以改变其硬度、韧性和强度等性质。
常见的冷却处理包括淬火、回火和退火等。
3. 渗碳处理:将金属材料加热到适当的温度,并在其中加入一定的碳元素,以形成渗碳体。
渗碳处理可以用于制造高强度和硬度的零件,如坦克装甲、枪支零件等。
4. 强化处理:将金属材料加热到适当的温度,并在其中加入一定的元素或化合物,以形成高强度、高硬度的材料。
常见的强化处理包括热处理、冷加工和化学强化等。
5. 表面处理:将金属材料表面进行处理,以改善其机械性能和美观度。
常见的表面处理包括电镀、涂层和表面强化等。
除了以上常见的热处理方法,还有一些特殊类型的热处理,如粉末冶金、陶瓷热处理等。
在热处理过程中,还需要注意材料的控制和操作,以确保热处理的效果和质量。
随着技术的发展和需求的增加,热处理技术也在不断更新和改进。
常用热处理方法有哪些
常用热处理方法有哪些常用的热处理方法主要包括退火、正火、淬火、淬火+回火和表面改性等。
以下将详细介绍这些常用的热处理方法。
1. 退火(Annealing):退火是通过加热材料到一定温度,然后缓慢冷却的热处理方法。
退火可以改善材料的机械性能和物理性质,消除内应力,提高材料的塑性和韧性。
退火分为全退火、完全退火、球化退火等,常用于金属的冷变形加工后,或者是为了减小材料内的残余应力。
2. 正火(Normalizing):正火是将材料加热到适当温度,然后空气冷却的热处理方法。
正火可以提高材料的强度和硬度,改善材料的韧性,使晶粒细化。
正火适用于对材料进行均匀加热处理,特别适用于低碳钢。
3. 淬火(Quenching):淬火是将材料加热到适当温度,然后迅速冷却的热处理方法。
淬火可以使材料达到高硬度和高强度,但同时也会使材料变脆。
常见的淬火介质有水、油、盐水等。
淬火适用于需要高硬度、高强度和较低韧性的材料,如工具钢、轴承钢等。
4. 淬火+回火(Quenching and Tempering):淬火+回火是将材料先进行淬火处理,然后在适当温度下保温一段时间,最后进行空气冷却的热处理方法。
淬火+回火可以同时提高材料的硬度和韧性,使材料达到一种较好的强度和韧性平衡。
淬火+回火适用于需要兼具硬度、强度和韧性的材料。
5. 表面改性(Surface Modification):表面改性是通过改变材料表面的物理、化学特性,以提高材料的耐磨性、耐腐蚀性等性能的方法。
常见的表面改性方法有氮化、硬质合金涂层、渗碳等。
表面改性可以延长材料的使用寿命、提高性能,并且不改变材料的基本组织和性能。
总结来说,常用的热处理方法包括退火、正火、淬火、淬火+回火和表面改性等。
不同的热处理方法可以根据不同的材料和要求来选择,以提高材料的性能、延长使用寿命。
热处理方法
热处理方法在材料工程领域,热处理是一种常见的工艺,用于改变材料的性能和结构。
它通过改变材料的晶体结构、组织和化学成分,可以实现材料的硬度、强度、韧性和耐热性等性能的改善。
本文将介绍几种常见的热处理方法,并讨论它们的原理和应用。
1. 淬火淬火是一种常用的热处理方法,通过迅速冷却材料以获得高硬度和高强度。
淬火的原理是将材料加热至临界温度以上,使其晶体结构变为奥氏体,然后迅速冷却至室温。
这种快速冷却将阻止晶体重新排列,从而在材料中形成了一种称为马氏体的高硬度组织。
淬火常用的冷却介质包括水、油和盐水。
淬火可以用于钢材、铝合金和铜合金等材料的处理,以提高其硬度和强度。
2. 灭火退火灭火退火是一种常见的热处理方法,用于消除材料中的内应力,改善其塑性和韧性。
这种方法通常通过加热材料至高温后,迅速冷却至室温来实现。
这种快速冷却能够使材料中的晶体结构重新排列,并消除内应力。
灭火退火常用于焊接和沉积工艺后的材料处理,以减少应力和变形。
3. 固溶处理固溶处理是一种热处理方法,用于改变合金材料的性能和结构。
该方法通过将合金材料加热至高温,使固溶元素溶解在基体晶体中,然后通过迅速冷却来固定这些溶解的元素。
这种方法可以改变合金材料的力学性能和耐腐蚀性能。
固溶处理常用于铝合金、镍基合金和钛合金等材料的制备和改性。
4. 时效处理时效处理是一种常见的热处理方法,用于增强合金材料的强度和韧性。
该方法通过固溶处理后,将材料再次加热至较低的温度并保持一段时间。
在这个时间段内,固溶的元素会重新配置并形成稳定的强化相。
通过时效处理,合金材料的硬度和强度可以显著提高。
时效处理常用于铝合金、镍基合金和钛合金等材料的生产中。
5. 渗碳处理渗碳处理是一种热处理方法,主要用于提高钢材的表面硬度和耐磨性。
该方法通过将钢材加热至高温,然后将其浸入含有碳的固体或液体介质中,使钢材表面富含碳元素。
碳元素会在钢材表面形成一层高碳含量的表面层,提高钢材的硬度和耐磨性。
热处理知识及工艺介绍
1. 正火normalizing:将钢材或钢件加热到临界点AC3或ACM以上的适当温度保持一定时间后在空气中冷却,得到珠光体类组织的热处理工艺。 2. 退火annealing:将亚共析钢工件加热至AC3以上20—40度,保温一段时间后,随炉缓慢冷却(或埋在砂中或石灰中冷却)至500度以下在空气中冷却的热处理工艺 3. 淬火quenching:将钢奥氏体化后以适当的冷却速度冷却,使工件在横截面内全部或一定的范围内发生马氏体等不稳定组织结构转变的热处理工艺 4. 回火tempering:将经过淬火的工件加热到临界点AC1以下的适当温度保持一定时间,随后用符合要求的方法冷却,以获得所需要的组织和性能的热处理工艺
相区
(1)单相区 简化的Fe- Fe3C相图中有F、A、L和Fe3C 四个单相区。 (2)两相区 简化的Fe- Fe3C相图中有五个两相区,即 L+A两相区、L+Fe3C两相区、A+Fe3C两相区、A+F两相 区和F+ Fe3C两相区。 每个两相区都与相应的两个单相区相邻;两条三相共存线, 即共晶线ECF,L、A和Fe3C三相共存,共析线PSK,A、F 和Fe3C三相共存。
4)合金工具钢
(1)低合金刃具钢 车、铣、铰刀等 性能要求: 回火稳定性 a) 硬度和耐磨性;b)强度和韧性;c)红硬性 ;d)工艺性 (2)高速钢 淬透性好,红硬性高,小截面刀具空气中能淬透 典型牌号: W18Cr4V (3)模具钢 a)冷作模具钢 b)热作模具钢 P70性能 (4)量具钢 多选用碳素工具钢、低合金工具钢(9SiCr、CrMn)、轴承钢(GCr15)制作
3、奥氏体的形成速度
43
(1)温度:加热温度越高,晶粒越大; (2)合金成分: ① 碳含量增高,晶粒长大倾向增大,残余渗碳体增加,则倾向减小; ② 形成碳化物、氮化物、氧化物的元素增加,则阻碍晶粒长大; ③ 锰、磷元素增加,晶粒增大。
热处理名词解释
热处理名词解释热处理是通过在材料加热和保温过程中进行控制冷却,以改变材料的组织和性能的一种工艺。
热处理可以通过改变材料的晶粒大小、相组成、组织结构和力学性能来满足具体的工程需求。
以下是几种常见的热处理方法和相关名词的解释。
1. 退火(Annealing):将材料加热到恒定温度,然后进行恒温保温,最后缓慢冷却到室温。
退火能够去除材料中的应力和杂质,并改善其塑性和韧性。
2. 淬火(Quenching):将材料加热到临界温度,并迅速冷却,通常是通过浸入冷却介质(如油、水或气体)中实现。
淬火能够使材料快速固化,生成非常硬的组织,提高材料的硬度和强度。
3. 回火(Tempering):在淬火处理后,将材料再次加热到低于临界温度的温度,并进行恒温保温,然后冷却到室温。
回火可以减轻淬火引起的脆性,并在保持一定硬度的同时提高韧性和韧性。
4. 沉淀硬化(Precipitation hardening):通过在固溶体中加入适量的溶质元素,并进行适当的热处理,使其发生沉淀析出而提高材料的硬度和强度。
沉淀硬化常用于铝合金和不锈钢等金属材料。
5. 组织(Microstructure):材料的组织是指其晶粒大小、晶型和相组成等微观结构特征。
通过适当的热处理工艺,可以改变和控制材料的组织,从而达到所需的性能要求。
6. 形变(Deformation):在热处理过程中,材料可能经历形变,即改变其形状或尺寸。
形变可以通过加热和冷却来实现,例如冷加工和热挤压等工艺。
7. 晶界(Grain boundary):晶界是相邻晶粒之间的界面区域,是材料中的缺陷,对材料的性能和行为具有重要影响。
晶界可以通过热处理来调控,如晶界固溶和晶界扩散等机制。
总之,热处理是一种重要的材料加工工艺,通过控制材料的加热和冷却过程,改变材料的组织和性能。
不同的热处理方法可以使材料具有不同的硬度、强度、塑性和韧性等性能,以满足不同工程应用的需求。
热处理方法
热处理方法热处理是一种通过加热和冷却金属材料来改变其物理和机械性能的工艺。
在工业生产中,热处理被广泛应用于各种金属材料的加工过程中,以提高其硬度、强度、耐磨性和耐腐蚀性能。
下面将介绍几种常见的热处理方法及其特点。
1. 淬火。
淬火是一种常见的热处理方法,其主要目的是通过快速冷却来增加金属的硬度。
在淬火过程中,首先将金属加热至临界温度以上,然后迅速放入冷却介质中进行冷却。
常用的冷却介质包括水、油和气体。
淬火后的金属表面会形成马氏体组织,从而提高其硬度和强度。
2. 回火。
回火是一种通过加热和冷却来调节金属的硬度和韧性的热处理方法。
在淬火后,金属的硬度会变得过高,为了降低其脆性,需要进行回火处理。
回火的温度和时间会影响金属的硬度和韧性,通常分为低温回火和高温回火两种。
低温回火可以提高金属的强韧性,而高温回火则可以降低金属的硬度。
3. 热处理。
热处理是一种通过加热和保温来改变金属的组织和性能的方法。
在热处理过程中,金属会被加热至一定温度并保持一段时间,然后进行冷却。
热处理可以消除金属的残余应力,改善其塑性和韧性,同时提高其耐磨性和耐腐蚀性能。
4. 固溶处理。
固溶处理是一种针对固溶体金属的热处理方法,其主要目的是溶解金属中的固溶体,并通过快速冷却来形成均匀的固溶体组织。
固溶处理通常应用于铝合金、镁合金等金属材料的加工过程中,以提高其强度和塑性。
总结。
热处理是一种重要的金属加工工艺,通过改变金属的组织和性能,可以满足不同工程材料的要求。
不同的热处理方法对金属材料的性能影响不同,因此在实际生产中需要根据具体材料和要求选择合适的热处理工艺。
同时,对于热处理过程中的温度、时间、冷却速度等参数也需要严格控制,以确保金属材料达到预期的性能指标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.退火操作方法:将钢件加热到Ac3+30~50度或Ac1+30~50度或Ac1以下的温度(可以查阅有关资料)后,一般随炉温缓慢冷却。
目的:1.降低硬度,提高塑性,改善切削加工与压力加工性能;2.细化晶粒,改善力学性能,为下一步工序做准备;3.消除冷、热加工所产生的内应力。
应用要点:1.适用于合金结构钢、碳素工具钢、合金工具钢、高速钢的锻件、焊接件以及供应状态不合格的原材料;2.一般在毛坯状态进行退火。
操作方法:将钢件加热到Ac3或Accm 以上30~50度,保温后以稍大于退火的冷却速度冷却。
目的:1.降低硬度,提高塑性,改善切削加工与压力加工性能;2.细化晶粒,改善力学性能,为下一步工序做准备;3.消除冷、热加工所产生的内应力。
应用要点:正火通常作为锻件、焊接件以及渗碳零件的预先热处理工序。
对于性能要求不高的低碳的和中碳的碳素结构钢及低合金钢件,也可作为最后热处理。
对于一般中、高合金钢,空冷可导致完全或局部淬火,因此不能作为最后热处理工序。
3.淬火操作方法:将钢件加热到相变温度Ac3或Ac1以上,保温一段时间,然后在水、硝盐、油、或空气中快速冷却。
目的:淬火一般是为了得到高硬度的马氏体组织,有时对某些高合金钢(如不锈钢、耐磨钢)淬火时,则是为了得到单一均匀的奥氏体组织,以提高耐磨性和耐蚀性。
应用要点:1.一般用于含碳量大于百分之零点三的碳钢和合金钢;2.淬火能充分发挥钢的强度和耐磨性潜力,但同时会造成很大的内应力,降低钢的塑性和冲击韧度,故要进行回火以得到较好的综合力学性能。
4.回火操作方法:将淬火后的钢件重新加热到Ac1以下某一温度,经保温后,于空气或油、热水、水中冷却。
目的:1.降低或消除淬火后的内应力,减少工件的变形和开裂;2.调整硬度,提高塑性和韧性,获得工作所要求的力学性能;3.稳定工件尺寸。
应用要点:1.保持钢在淬火后的高硬度和耐磨性时用低温回火;在保持一定韧度的条件下提高钢的弹性和屈服强度时用中温回火;以保持高的冲击韧度和塑性为主,又有足够的强度时用高温回火;2.一般钢尽量避免在230~280度、不锈钢在400~450度之间回火,因为这时会产生一次回火脆性。
5.调质操作方法:淬火后高温回火称调质,即将钢件加热到比淬火时高10~20度的温度,保温后进行淬火,然后在400~720度的温度下进行回火。
目的:1.改善切削加工性能,提高加工表面光洁程度;2.减小淬火时的变形和开裂;3.获得良好的综合力学性能。
应用要点:1.适用于淬透性较高的合金结构钢、合金工具钢和高速钢;2. 不仅可以作为各种较为重要结构的最后热处理,而且还可以作为某些紧密零件,如丝杠等的预先热处理,以减小变形。
6.时效操作方法:将钢件加热到80~200度,保温5~20小时或更长时间,然后随炉取出在空气中冷却。
目的:1. 稳定钢件淬火后的组织,减小存放或使用期间的变形;2.减轻淬火以及磨削加工后的内应力,稳定形状和尺寸。
应用要点:1. 适用于经淬火后的各钢种;2.常用于要求形状不再发生变化的紧密工件,如紧密丝杠、测量工具、床身机箱等。
7.冷处理操作方法:将淬火后的钢件,在低温介质(如干冰、液氮)中冷却到-60~-80度或更低,温度均匀一致后取出均温到室温。
目的:1.使淬火钢件内的残余奥氏体全部或大部转换为马氏体,从而提高钢件的硬度、强度、耐磨性和疲劳极限;2.稳定钢的组织,以稳定钢件的形状和尺寸。
应用要点:1.钢件淬火后应立即进行冷处理,然后再经低温回火,以消除低温冷却时的内应力;2.冷处理主要适用于合金钢制的紧密刀具、量具和紧密零件。
8.火焰加热表面淬火操作方法:用氧-乙炔混合气体燃烧的火焰,喷射到钢件表面上,快速加热,当达到淬火温度后立即喷水冷却。
目的:提高钢件表面硬度、耐磨性及疲劳强度,心部仍保持韧性状态。
应用要点:1.多用于中碳钢制件,一般淬透层深度为2~6mm;2.适用于单件或小批量生产的大型工件和需要局部淬火的工件。
9.感应加热表面淬火操作方法:将钢件放入感应器中,使钢件表层产生感应电流,在极短的时间内加热到淬火温度,然后喷水冷却。
目的:提高钢件表面硬度、耐磨性及疲劳强度,心部保持韧性状态。
应用要点:1.多用于中碳钢和中堂合金结构钢制件;2.由于肌肤效应,高频感应淬火淬透层一般为1~2mm,中频淬火一般为3~5mm,高频淬火一般大于10mm.10.渗碳操作方法:将钢件放入渗碳介质中,加热至900~950度并保温,使钢件便面获得一定浓度和深度的渗碳层。
目的:提高钢件表面硬度、耐磨性及疲劳强度,心部仍然保持韧性状态。
应用要点:1.用于含碳量为0.15%~0.25%的低碳钢和低合金钢制件,一般渗碳层深度为0.5~2.5mm;2.渗碳后必须进行淬火,使表面得到马氏体,才能实现渗碳的目的。
11.氮化操作方法:利用在5..~600度时氨气分解出来的活性氮原子,使钢件表面被氮饱和,形成氮化层。
目的:提高钢件表面的硬度、耐磨性、疲劳强度以及抗蚀能力。
应用要点:多用于含有铝、铬、钼等合金元素的中碳合金结构钢,以及碳钢和铸铁,一般氮化层深度为0.025~0.8mm.12.氮碳共渗操作方法:向钢件表面同时渗碳和渗氮。
目的:提高钢件表面的硬度、耐磨性、疲劳强度以及抗蚀能力。
应用要点:1.多用于低碳钢、低合金结构钢以及工具钢制件,一般氮化层深0.02~3mm;2.氮化后还要淬火和低温回火。
[分享]常见热处理问题与解答、工艺及基本知识基本知识, 工艺, 热处理, 解答本帖最后由 QXZ-1966 于 2009-7-30 22:22 编辑1)淬火常见问题与解决技巧※Ms点随C%的增加而降低淬火时,过冷沃斯田体开始变态为麻田散体的温度称之为Ms点,变态完成之温度称之为Mf点。
%C含量愈高,Ms点温度愈降低。
0.4%C碳钢的Ms温度约为350℃左右,而0.8%C碳钢就降低至约200℃左右。
※淬火液可添加适当的添加剂(1)水中加入食盐可使冷却速率加倍:盐水淬火之冷却速率快,且不会有淬裂及淬火不均匀之现象,可称是最理想之淬硬用冷却剂。
食盐的添加比例以重量百分比10%为宜。
(2)水中有杂质比纯水更适合当淬火液:水中加入固体微粒,有助于工件表面之洗净作用,破坏蒸气膜作用,使得冷却速度增加,可防止淬火斑点的发生。
因此淬火处理,不用纯水而用混合水之淬火技术是很重要的观念。
(3)聚合物可与水调配成水溶性淬火液:聚合物淬火液可依加水程度调配出由水到油之冷却速率之淬火液,甚为方便,且又无火灾、污染及其它公害之虞,颇具前瞻性。
(4)干冰加乙醇可用于深冷处理容液:将干冰加入乙醇中可产生-76℃之均匀温度,是很实用的低温冷却液。
※硬度与淬火速度之关联性只要改变钢材淬火冷却速率,就会获得不同的硬度值,主要原因是钢材内部生成的组织不同。
当冷却速度较慢时而经过钢材的Ps曲线,此时沃斯田体变态温度较高,沃斯田体会生成波来体,变态开始点为Ps点,变态终结点为Pf点,波来体的硬度较小。
若冷却速度加快,冷却曲线不会切过Ps曲线时,则沃斯田体会变态成硬度较高的麻田散体。
麻田散体的硬度与固溶的碳含量有关,因此麻田散体的硬度会随着%C含量之增加而变大,但超过0.77%C后,麻田散体内的碳固溶量已无明显增加,其硬度变化亦趋于缓和。
※淬火与回火冷却方法之区别淬火常见的冷却方式有三种,分别是:(1)连续冷却;(2)恒温冷却及(3)阶段冷却。
为求淬火过程降低淬裂的发生,临界区域温度以上,可使用高于临界冷却速率的急速冷却为宜;进入危险区域时,使用缓慢冷却是极为重要的关键技术。
因此,此类冷却方式施行时,使用阶段冷却或恒温冷却(麻回火)是最适宜的。
回火处理常见的冷却方式包括急冷和徐冷两种冷却方法,其中合金钢一般使用急冷;工具钢则以徐冷方式为宜。
工具钢自回火温度急冷时,因残留沃斯田体变态的缘故而易产生裂痕,称之为回火裂痕;相同的,合金钢若采用徐冷的冷却方式,易导致回火脆性。
※淬火后,残留奥氏体的所扮演的角色淬火后的工件内常存在麻田散体与残留沃斯田体,在常温放置一段长久时间易引起裂痕的发生,此乃因残留沃斯田体产生变态、引起膨胀所导致,此现象尤其再冬天寒冷的气候下最容易产生。
此外,残留沃斯田体另一个大缺点为硬度太低,使得工具的切削性劣化。
可使用深冷处理促使麻田散体变态生成,让残留沃斯田体即使进一步冷却也无法再产生变态;或以外力加工的方式,使不安定的残留沃斯田体变态成麻田散体,降低残留沃斯田体对钢材特性之影响。
※淬火处理后硬度不足的原因淬火的目的在使钢材表面获得满意的硬度,若硬度值不理想,则可能是下列因素所造成:(1)淬火温度或沃斯田体化温度不够;(2)可能是冷却速率不足所致;(3)工件表面若热处理前就发生脱碳现象,则工件表面硬化的效果就会大打折扣;(4)工件表面有锈皮或黑皮时,该处的硬度就会明显不足,因此宜先使用珠击法将工件表面清除干净后,再施以淬火处理。
※淬裂发生的原因会影响淬裂的主要原因包括:工件的大小与形状、碳含量高低、冷却方式及前处理方法等。
钢铁热处理会产生淬裂,导因于淬火过程会产生变态应力,而这个变态应力与麻田散体变态的过程有关,通常钢材并非一开始产生麻田散体变态即发生破裂,而是在麻田散体变态进行约50%时(此时温度约150℃左右),亦即淬火即将结束前发生。
因此淬火过程,在高温时要急速冷却,而低温时要缓慢冷却,若能掌握『先快后缓』的关键,可将淬火裂痕的情况降至最低。
※过热容易产生淬火裂痕加热超过是当的淬火温度100℃以上,称之为过热。
过热时,沃斯田体之结晶颗粒变得粗大化,导致淬火后生成粗大的麻田散体而脆化,易使针状麻田散体之主干出现横裂痕(此称为麻田散体裂痕),此裂痕极易发展成淬火裂痕。
因此,当您的工件在沃斯田体化温度时产生过热现象时,后续的淬火、冷却均无法阻止淬裂的产生,故有人把『过热』称为发生淬火裂痕的元凶。
※淬火前的组织会影响淬火裂痕?淬火前的组织当然会影响淬火的成败。
最正常的前组织应该是正常化组织或退火组织(波来体结构),若淬火前组织为过热组织、球状化组织均会有不同的结果。
过热组织易产生淬火裂痕,球状化组织则可以均匀淬硬而避免淬裂及淬弯,因此工具钢或高碳钢在淬火前,可施行球状化处理已是淬火重要技术之一。
此时可施以球状化退火或调质球状化处理以获得球状碳化物。
碳化物若以网状组织存在,则容易由该处发生淬火裂痕。
※淬火零件因常温放置引起之瑕疵淬火后的零件,若长时间放置在室温,可能发生搁置裂痕及搁置变形两种缺陷。
搁置裂痕又称为时效裂痕,尤其在冬天寒冷的夜晚,随温度之下降导致残留沃斯田体变态为麻田散体,使裂痕因此而产生,又称之为夜泣裂痕。
搁置变形又称之为时效变形,乃淬火工件放置于室温引起尺寸形状变化之现象,大多导因于回火处理不完全所致。
为防止搁置变形,需让钢材组织安定化,因此首先要消除不安定之残留沃斯田体(实施深冷处理)。