海明码的生成和校验

合集下载

海明码校验例题

海明码校验例题

海明码校验例题
海明码是一种错误检测和纠正的校验码,它通过在数据中添加额外的校验位来检测和纠正错误。

下面是一个海明码的例题,通过这个例题来演示海明码的原理和计算方法。

题目:求信息1011的海明码。

首先,我们需要确定海明码的长度。

根据海明码的规则,数据位和校验位的总长度应该是2的整数次幂。

在本题中,我们可以选择长度为4的数据位和3个校验位,因此海明码的总长度为7位。

接下来,我们需要确定校验位的位置。

根据海明码的规则,校验位应该位于2的n(n=0,1,2....)次方位置上。

在本题中,我们可以将校验位分别放在第1、第2和第4位上。

然后,我们需要计算每个校验位的值。

海明码的每个校验位都是对应的数据位的异或运算结果。

在本题中,我们可以按照如下方式计算每个校验位的值:
●校验位1的值 = 数据位1 ^ 数据位2 ^ 数据位3 ^ 数据位4
●校验位2的值 = 数据位1 ^ 数据位2 ^ 数据位3
●校验位3的值 = 数据位1 ^ 数据位2
最后,我们将计算出的校验位和数据位组合在一起,得到海明码。

在本题中,我们的数据位为1011,因此我们可以将校验位计算结果放在第1、第2和第4位上,得到海明码为:1011 001 000。

通过这个例题,我们可以看出海明码通过添加额外的校验位来检测和纠正错误。

在实际应用中,海明码可以用于数据传输、存储等领域,提高数据的可靠性和安全性。

说明海明码校验的工作机制

说明海明码校验的工作机制

说明海明码校验的工作机制海明码校验的工作机制。

海明码校验是一种常用的错误检测和纠正技术,它可以帮助我们在数据传输过程中检测和纠正错误,确保数据的完整性和准确性。

海明码校验是由美国数学家理查德·W·海明提出的,它利用了一些数学原理和算法来实现对数据的检验和纠正。

在本文中,我们将详细介绍海明码校验的工作机制,包括海明码的生成和校验过程,以及它的应用场景和优缺点。

海明码的生成过程。

海明码是一种特殊的纠错码,它可以通过一些简单的数学运算来生成。

海明码的生成过程包括以下几个步骤:1. 数据分组,首先,需要将要传输的数据分成若干个数据块,每个数据块包含若干个比特(0或1)。

2. 添加校验位,对于每个数据块,需要添加一些校验位来实现错误检测和纠正。

校验位的数量取决于数据块的大小和需要实现的纠错能力。

3. 计算校验位,校验位的计算是通过一些数学运算来实现的,通常是利用异或操作和位移操作来计算。

校验位的值是通过对数据块中的比特进行运算得到的。

4. 合并数据块,将数据块和对应的校验位合并成一个完整的海明码。

海明码的校验过程。

一旦生成了海明码,就可以在数据传输过程中使用它来进行校验。

海明码的校验过程包括以下几个步骤:1. 数据传输,将生成的海明码发送给接收方进行数据传输。

2. 接收数据,接收方接收到海明码后,需要对其进行解码,得到原始的数据块和校验位。

3. 计算校验位,接收方利用接收到的海明码中的数据块和校验位,重新计算校验位的值。

4. 检测错误,接收方将重新计算得到的校验位和接收到的校验位进行比较,如果两者不一致,则说明数据传输过程中出现了错误。

5. 纠正错误,如果检测到错误,接收方可以利用海明码中的校验位来纠正错误,通常是通过一些数学运算来实现的。

海明码的应用场景。

海明码校验在计算机网络、通信系统、存储系统等领域都有广泛的应用。

它可以帮助我们在数据传输过程中检测和纠正错误,确保数据的完整性和准确性。

海明码的实验报告

海明码的实验报告

海明码的实验报告一、实验目的和背景海明码(Hamming Code)是一种能够检测和纠正单一错误的错误检测和纠正编码方法,它使用了冗余位(Redundancy Bit)来增加数据的可靠性。

本实验的目的是通过编写程序来实现海明码的生成、纠正和检测功能,并验证海明码的可靠性。

二、实验内容与步骤1. 生成海明码:编写程序实现海明码的生成功能,读取输入的原始数据并生成相应的海明码。

2. 引入错误:编写程序在生成的海明码中引入1个错误位。

3. 纠正错误:编写程序实现海明码的错误纠正功能,通过纠正之后的码字与原始数据进行比对,验证纠正效果。

4. 检测错误:编写程序实现海明码的错误检测功能,通过检测错误的海明码数据,输出错误位置。

三、实验过程与结果1. 生成海明码根据海明码的生成规则,我们编写了一个生成海明码的程序。

用户在控制台输入原始数据,程序经过处理后输出相应的海明码。

例如,输入数据为`1101`,生成的海明码为`1101001`。

2. 引入错误在生成的海明码中,我们通过编写程序随机选择一个位置并进行改写,引入1个错误位。

例如,原本生成的海明码为`1101001`,改写后为`1101101`。

3. 纠正错误根据海明码的纠正规则,我们编写了一个纠正错误的程序。

用户输入引入错误后的海明码,程序经过处理后输出经过纠正后的码字。

例如,输入的海明码为`1101101`,经过纠正后输出的码字为`1101001`。

4. 检测错误根据海明码的检测规则,我们编写了一个检测错误的程序。

用户输入海明码,程序经过处理后输出错误位置。

例如,输入的海明码为`1101101`,程序输出错误位置为`5`。

四、实验结果分析通过实验结果可以得出以下结论:1. 海明码的生成功能能够准确地将原始数据转换成相应的海明码。

2. 引入错误后,海明码的纠正功能可以将引入的错误位纠正回原始数据。

3. 海明码的检测功能能够准确地检测出错误位置。

综上所述,海明码具有较高的可靠性,能够有效地检测和纠正单一错误。

海明编码规则

海明编码规则

海明编码规则如下:
设k个校验位为Pk,Pk-1,...,P1,n个数据位为Dn-1,Dn-2,...,D1,D0,对应的海明码为Hn+k,Hn+k-1,...,H1。

海明码的编码位数是n+k,其中n是数据位的位数,k是校验位的位数。

校验位Pi在海明码的第2^i-1位置上,数据位则依序从低到高占据海明码中剩下的位置。

海明码中的任何一位都是由若干个校验位来校验的。

其对应关系如下:被校验的海明位的下标等于所有参与校验该位的校验位的下标之和,而校验位由自身校验。

以上就是海明编码的基本规则,按照这些规则,可以构造出海明码,实现数据的错误检测和纠正。

海明码

海明码

1.海明码的概念海明码是一种可以纠正一位差错的编码。

它是利用在信息位为k位,增加r位冗余位,构成一个n=k+r位的码字,然后用r个监督关系式产生的r个校正因子来区分无错和在码字中的n个不同位置的一位错。

它必需满足以下关系式:2^r>=n+1 或2^r>=k+r+1海明码的编码效率为:R=k/(k+r)式中k为信息位位数r为增加冗余位位数[font class="Apple-style-span" style="font-weight: bold;"id="bks_cu2htj1g"]2.[/font][font class="Apple-style-span" style="font-family: ����; font-size: 12px; line-height: normal; " id="bks_4dxtg15k"][font]海明码的原理[/font]在数据中间加入几个校验码,将玛距均匀拉大,将数据的每个二进制位分配在几个奇偶校验组里,当某一位出错,会引起几个校验位的值发生变化。

海明不等式:校验码个数为K,2的K次幂个信息,1个信息用来指出“没有错误”,其余2K-1个指出错误发生在那一位,但也可能是校验位错误,故有N<=2的K次-1-K能被校验。

海明码的编码规则:1.每个校验位Ri被分配在海明码的第2的i次的位置上,2.海明玛的每一位(Hi)是由多个/1个校验值进行校验的,被校验玛的位置玛是所有校验这位的校验位位置玛之和。

一个例题:4个数据位d0,d1,d2,d3, 3个校验位r0,r1,r2,对应的位置为:d3 d2 d1 r2 d0 r1 r0 ======b7 b6 b5 b4 b3 b2 b1校验位的取值,就是他所能校验的数据位的异或b1为b3,b5,b7的异或,b2为b3,b6,b7 b4为b5,b6,b7 [/font][font class="Apple-style-span" style="font-family: ����; font-size: 12px; line-height: normal; " id="bks_4dxtg15k"]海明玛传送到接受方后,将上三式的右边(b1,b2,b4)的逻辑表达式分别异或上左边的值就得到了校验方程,如果上题采用偶校验G1=b1 b3 b5 b7的异或G2=b2 b3 b6 b7的异或G3=b4 b5 b6 b7的异或若G1G2G3为001是第四位错若为011是第六位错[/font][font class="Apple-style-span" style="font-family: ����; font-size: 12px; line-height: normal;"] [/font]3.海明码的生成与接收特注:以下的+均代表异或方法一:1)海明码的生成。

海明校验码

海明校验码
• 依次类推,便可确定每组所包含的各位。
例如:欲传递信息为b4b3b2b1(n=4),根据 2k≥n+k+1,可求出配置成海明码需增添检测位 k=3,且它们位置的安排如下:
二进制序号 1 2 3 4 5 6 7
ห้องสมุดไป่ตู้名称
C1 C2 b4 C4 b3 b2 b1
如果按照配偶原则来配置海明码,则
C1 应使1,3,5,7位中的“1”的个数为偶数;
1234567
正确的海明码 0 1 0 0 1 0 1
接收到的海明码 0 1 0 0 1 1 1
则新的检测位为:
P4=4⊕5⊕6⊕7,即P4=0⊕1⊕1⊕1=1
P2=2⊕3⊕6⊕7,即P2=1⊕0⊕1⊕1=1
P1=1⊕3⊕5⊕7,即P1=0⊕0⊕1⊕1=0
• 由此可见,传送结果P4、P2均不呈偶数, 显然出了差错。那么,错位在哪一位呢? 极为有意思的是,P4、P2、P1所构成的二 进制值恰恰是出错的位置,即P4P2P1=110, 表示第六位出错。发现错误后,计算机便 自动地将错误的第六位“1”纠正为“0”。
P1=1⊕3⊕5⊕7,即P1=C1⊕b4⊕b3⊕b1 P2=2⊕3⊕6⊕7,即P2=C2⊕b4⊕b2⊕b1 P4=4⊕5⊕6⊕7,即P4=C4⊕b3⊕b2⊕b1
设已知传送的正确海明码(按配偶原则配置)为 0100101,若传送后接收到的海明码为0100111, 其出错位可按下述步骤进行:
令:
二进制序号
• 又如,若收到按偶配置的海明码为1100101, 则经检测得:
P4=4⊕5⊕6⊕7,即P4=0⊕1⊕0⊕1=0 P2=2⊕3⊕6⊕7,即P2=1⊕0⊕0⊕1=0 P1=1⊕3⊕5⊕7,即P1=1⊕0⊕1⊕1=1 • 所以,出错位为:P4P2P1=001,即第一位。 可是第一位不是欲传送的信息位,而是检 测位,在一般情况下,可以不予纠正。

海明码和CRC

海明码和CRC
这就是答案C了
二、CRC校验法
1、循环校验码(CRC码):
是数据通信领域中最常用的一种差错校验码,其特征是信息字段和校验字段的长度可以任意选定。
2、生成CRC码的基本原理:
任意一个由二进制位串组成的代码都可以和一个系数仅为‘0’和‘1’取值的多项式一一对应。例如:
代码10111对应的多项式为x6+x4+x2+x+1,而多项式为x5+x3+x2+x+1对应的代码1011。
2)冗余码与信息码合成的海明码是:
"0010a2a1a0"。
设S2=S1=S0=0,由监督关系式得:
a2=a4+a5+a6=1
a1=a3+a5+a6=0
a0=a3+a4+a6=1
因此,海明码码字为:
"00101"
2)海明码的接收。
例2.已知:
海明码的监督关系式为:
S2=a2+a4+a5+a6S1=a1+a3+a5+a6
A.11001
B.11011
C.11010
D.11011要正确的传输数据不出错,则在监督关系式中的S0,S1,S2的值就要为0,这样的话,将监督关系式化为:
a0=a3+a4+a6;a1=a3+a5+a6;a2=a4+a5+a6。若要发送的信息为1101,则接受端的码字格式应该为:
a6a5a4a3a2a1a0=1101XXX,这样就能求出a0,a1,a2的值(把a6,a5,a4,a3带入上面所化的关系式中)。
1#10#1#
1101###

4位数据海明校验码的生成与纠错

4位数据海明校验码的生成与纠错

数据在传输或存储过程中常常会出现错误,为了保证数据的完整性和准确性,通常会采用校验码来进行数据校验和纠错。

海明码是一种常用的校验码之一,它能够在一定程度上实现数据的纠错和校验。

本文将详细介绍4位数据海明校验码的生成与纠错原理及方法。

一、海明码的基本原理海明码是由美国数学家理查德·海明提出的一种能够检测和纠正数据中出现的错误的编码方式。

它通过向数据中添加校验位来实现对数据进行校验和纠错。

海明码的基本原理可以概括为以下几点:1. 通过向数据中添加冗余位来实现纠错功能。

2. 通过对数据进行位的异或运算来计算校验位。

3. 通过校验位的比较来检测错误位并进行纠错。

二、4位数据海明校验码的生成方法在生成4位数据海明校验码时,需要依据原始数据的位数来确定校验位的数量。

对于4位数据,通常采用2位校验位。

而具体的生成方法如下:1. 将4位原始数据表示成二维矩阵形式。

2. 根据原始数据矩阵的每一列,计算出校验位的值。

3. 将校验位添加到原始数据矩阵中。

4. 根据生成的数据矩阵,计算出校验位的值并添加到数据中。

三、4位数据海明校验码的纠错方法当使用4位数据海明校验码进行数据传输或存储时,若出现错误,需要通过校验位来检测错误位并进行纠错。

纠错方法如下:1. 对接收到的数据进行校验,计算出校验位的值。

2. 将计算得到的校验位的值与接收到的校验位的值进行比较。

3. 根据比较结果确定错误位的位置,并将其进行纠正。

四、4位数据海明校验码的应用场景4位数据海明校验码主要应用于对数据进行短距离传输和存储过程中。

其应用场景包括但不限于以下几种情况:1. 在计算机内存中对数据进行校验和纠错。

2. 在通信传输过程中对数据进行校验和纠错。

3. 在存储介质中对数据进行校验和纠错。

4. 在传感器数据采集过程中对数据进行校验和纠错。

五、4位数据海明校验码的优缺点4位数据海明校验码作为一种常见的纠错码,具有一定的优点和缺点。

主要表现在以下几个方面:优点:1. 能够有效检测和纠正数据中出现的错误。

海明码编码与校验

海明码编码与校验

海明码编码与校验(1)海明码的工作原理在传输的数据中加入几个校验位,并把数据的每个二进制位分配在几个奇偶校验组中。

当某一位出错后,就会有关的几个校验组的值的变化,这不但可以发现出错,还能指出那一位出错,为自动纠正提供了依据。

假设校验位的个数为r,则它能表示2r个信息,用其中的一个信息指出“没有错误”,其余的2r-1个信息指出错误发生在哪一位。

然而错误也可能发生在校验位,因此只有k=2r-1-r个信息能用于纠正被传送数据的位数。

满足以下关系:2r≥k+r+1(3.1.1)(2)模拟海明码工作的例子例1:要发送0101编码,求其海明码解:已知要发送的编码为0101,则k=4,根据(3.1.1)公式求出rmin=3。

r=3校验位插入的位置:P1=21-1=1………第一位P2=22-1=2………第二位P3=23-1=4………第三位则模拟编码位:7 6 5 4 3 2 10 1 0 * 1 * *D4 D3 D2 P3 D1 P2 P1D1=P1+P2,D1位置为 3=(0011)2D2=P1+P3,D2位置为 5=(0101)2D3=P2+P3,D3位置为 6=(0110)2D4=P1+P2+P3 ,D4位置为7=(0111)2求校验位PP1=D1⊕D2⊕D4=1 (对应上面二进制数右起第一位为1的参与异或操作)P2=D1⊕D3⊕D4=0P3=D2⊕D3⊕D4=1注:⊕为异或操作(相同为0,不同为1)得到最终的海明码:7 6 5 4 3 2 10 1 0 1 1 0 1D4 D3 D2 P3 D1 P2 P1↑↑ ↑例2:传输后得到错误码0001101,找出错误位并改正。

解:则模拟编码位:7 6 5 4 3 2 10 0 0 1 1 0 1D4 D3 D2 P3 D1 P2 P1S1=P1⊕D1⊕D2⊕D4=0S2=P2⊕D1⊕D3⊕D4=1S3=P3⊕D2⊕D3⊕D4=1排列S3,S2,S1=110(110)2=(6)10说明右起第六位出错!正确的码为:0101101。

海明码校验例题

海明码校验例题

海明码校验例题摘要:1.海明码的概念与原理2.海明码的校验方法3.海明码的例题解析正文:一、海明码的概念与原理海明码是一种用于数据传输时检测和纠正错误的编码方法,由美国数学家海明在1950 年提出。

海明码的主要原理是利用冗余信息来实现数据的校验和修复。

在数据传输过程中,通过增加一定的冗余信息,使得接收方能够检测到传输中出现的错误,并根据冗余信息对错误进行修复。

二、海明码的校验方法海明码的校验方法主要有两种:奇偶校验和CRC 校验。

1.奇偶校验:通过在数据位之间插入奇数或偶数个校验位,使得整个编码后的数据包中1 的个数为奇数或偶数。

接收方在接收到数据后,统计1 的个数,如果与发送方一致,则认为数据传输正确;如果不一致,则说明数据传输出现错误。

2.CRC 校验:CRC(Cyclic Redundancy Check)校验是一种基于循环冗余的校验方法。

在数据传输过程中,发送方计算待发送数据的CRC 值,并将其附加在数据后面。

接收方收到数据后,也对数据进行CRC 计算,然后将接收到的CRC 值与计算得到的CRC 值进行比较。

如果两者相同,则认为数据传输正确;如果不同,则说明数据传输出现错误。

三、海明码的例题解析假设我们有一个数据传输系统,需要传输一个4 位的数据包,为了保证数据的正确性,我们希望在传输过程中能够检测到并纠正单个比特的错误。

为了实现这一目标,我们可以使用海明码进行编码。

具体编码过程如下:1.在数据位之间插入3 个校验位,使得整个数据包中1 的个数为奇数。

这样,在传输过程中,如果出现单个比特的错误,总1 的个数将变为偶数。

2.接收方在接收到数据后,统计1 的个数。

如果1 的个数为奇数,则认为数据传输正确;如果为偶数,则说明数据传输出现错误。

3.如果检测到错误,接收方可以根据校验位信息对错误进行修复。

例如,通过奇偶校验,我们可以知道错误发生在哪个比特位置,并据此对错误进行纠正。

综上所述,海明码是一种有效的数据校验和修复方法。

海明码例举详解

海明码例举详解

S1=0⊕1⊕1⊕1⊕0 =1
S2=0⊕1⊕1⊕1⊕1 =0
S3=0⊕1⊕1⊕1
=1
S4=1⊕0⊕1
=0
按照S4S3S2S1排列得到的二进制数为:0101,对应的 值十进制为5,找到错误位置!纠错!把1改为0!
S3=M4⊕M5⊕M6⊕M7
=P3⊕D2⊕D3⊕D4
S4=M8⊕M9⊕M10 =P4⊕D5⊕D6
如果海明码没有错误信息,S1、S2、S3、S4都为0, 等式右边的值也得为0,由于是异或,所以Pi( i=1,2,3…)的值跟后边的式子必须一样才能使整个式 子的值为零,即:Pi=后边的式子的值,即:
这个公式在验证纠错的时候还会用得到,只要记住这个 公式的推导就可以解决所有问题了。
图2
接下来就是代入求值的过程了,注意“⊕”这个符号 ,这是异或符号。按照图1中的指示,把相应的值代 入到图2 的公式里,可以得到如下内容
S1=M1⊕M3⊕M5⊕M7⊕M9 =P1⊕D1⊕D2⊕D4⊕D5
S2=M2⊕M3⊕M6⊕M7⊕M10=P2⊕D1⊕D3⊕D4⊕D6
海明码详解
以D= 101101这个数字的海明码推导为例
海明码步骤: 一、确定校验码的位数k 二、确定校验码的位置 三、数据的位置 四、求出校验位的值
一、 确定校验码的位数k
数据的位数m=6,公式来计算满足条件的k的最小值 2的k次方-1>=m+k 即:2的k次方-1>=6+k 解此不等式得在我们得到了D=101101的正确海明码就是
那么出错的时候是怎么验证出来的呢?比如第5位错 了,第5位现在的值是0,如果错了,它只能是1,二 进制就这两种值即:我们得到了这样的一组编码, 现在要找出错误的位置(假定你不知道哪里错)

海明码校验公式

海明码校验公式

海明码校验公式海明码校验公式,这可真是个让人又爱又恨的家伙!咱们先来说说海明码到底是啥。

想象一下,你给朋友寄了封信,可又担心路上这信会不会被弄破了、弄乱了。

海明码就像是给这封信加的一个特殊标记,能让接收的人一下子就知道这信有没有出问题。

那海明码校验公式呢,就是算出这个特殊标记的办法。

比如说,咱们要传一个数据,像“10110”这样的。

这时候,就得用海明码校验公式来搞点“小动作”啦。

咱们先得确定需要多少个校验位。

这就好比你要给一个箱子打包,得先知道要多少绳子才够。

假设数据位有 m 位,校验位有 r 位,那满足 2^r >= m + r + 1 这个式子,就能算出 r 的值。

比如说,数据位是 5 位,那 2^r >= 5 + r + 1 ,算一算,r 至少得 3 。

然后呢,把这些校验位放在特定的位置上。

这就像把宝贝放在特定的抽屉里,可不能乱放。

比如第 1 个校验位在 1 号位,第 2 个在 2 号位,第 3 个在 4 号位,依次类推。

再接下来,就是根据公式计算校验位的值。

这一步就有点像做数学题啦,得认真仔细。

我记得有一次给学生们讲这个的时候,有个小家伙一脸懵地看着我,说:“老师,这也太难懂啦!”我笑着跟他说:“别着急,咱们一步步来。

”我带着他们一步一步地计算,看着他们从一开始的迷茫,到后来渐渐明白,那种成就感真是没得说。

海明码校验公式虽然有点复杂,但只要咱们耐心点儿,多练几遍,就能掌握它。

就像学骑自行车,一开始可能摇摇晃晃,但多练几次,就能稳稳当当地上路啦。

总之,海明码校验公式虽然看着有点吓人,但只要咱们用心去学,它也能被咱们拿下!希望大家都能跟这个家伙成为好朋友,让数据传输更可靠,更准确!。

海明码

海明码

海明码(Hamming Code)是一个可以有多个校验位,具有检测并纠正一位错误代码功能的纠错码,所以它也仅用于信道特性比较好的环境中,如以太局域网中,因为如果信道特性不好的情况下,出现的错误通常不是一位。

海明码的检错、纠错基本思想是将有效信息按某种规律分成若干组,每组安排一个校验位进行奇偶性测试,然后产生多位检测信息,并从中得出具体的出错位置,最后通过对错误位取反(也是原来是1 就变成0,原来是0 就变成1)来将其纠正。

要采用海明码纠错,需要按以下步骤来进行:计算校验位数→确定校验码位置→确定校验码→实现校验和纠错。

下面来具体介绍这几个步骤。

1. 计算校验位数要使用海明码纠错,首先就要确定发送的数据所需要的校验码(也就是“海明码”)位数(也称校验码长度)。

它是这样的规定的:假设用N 表示添加了校验码位后整个信息的二进制位数,用K 表示其中有效信息位数,r 表示添加的校验码位,它们之间的关系应满足:N=K + r ≤ 2r-1。

如K=5,则要求2r-r ≥ 5+1=6,根据计算可以得知r 的最小值为4,也就是要校验5位信息码,则要插入4 位校验码。

如果有效信息位数是8,则要求2r-r ≥ 8+1=9,根据计算可以得知r 的最小值也为4。

根据经验总结,得出信息码和校验码位数之间的关系如表5-1所示。

表5-1 信息码位数与校验码位数之间的关系2. 确定校验码位置上一步我们确定了对应信息中要插入的校验码位数,但这还不够,因为这些校验码不是直接附加在信息码的前面、后面或中间的,而是分开插入到不同的位置的。

但不用担心,校验码的位置很容易确定的,那就是校验码必须是在2n 次方位置,如第1 位,2 位,4 位,8 位,16 位,32 位……(对应20,21,22,23,24,25,……,从最左边的位数起),这样一来就知道了信息码的分布位置,也就是非2n 次方的位置,如第3 位,5 位,6 位,7 位,9 位,10 位,11 位,12 位,13 位,……(从最左边的位数起)。

海明校验码(靠谱的解释)

海明校验码(靠谱的解释)

海明校验码(靠谱的解释)
【定义】
海明码(Hamming Code)是利⽤奇偶性来检错和纠错的校验⽅法。

海明码的构成⽅法是在数据位之间的确定位置插⼊k个校验位,通过扩⼤吗距来实现检错和纠错。

对于数据位m的数据,加⼊k位的校验码,它应满⾜:
2^k>m+k+1
【例⼦】
设数据为01101001,试采⽤校验位求其偶校验⽅式的海明码。

(1)确定数据位D和校验位P在海明码中的位置:
由海明码编码规则可知:
p i在海明码的第2i-1
⽐如P4=2^(4-1)=8,所以位于第8位
(2)确定校验关系
这个难点在于如何确定校验位组。

举⼀个例⼦来说:H3=D0,海明码下标为3,我们必须⽤已知的校验位所对应的海明码下标(P1,P2,P3,P4,它们的海明码下标分别是1,2,4,8)来表⽰3,这⾥3就可以等于1+2。

H5为什么是1+4⽽不是2+3呢?因为H3不是校验位,是数据位。

⽐如P1 的校验位为表格中红⾊标记出来所对应的海明码的位数
故:P1校验:P1,D0,D1,D3,D4,D6
P1=D0⊕D1⊕D3⊕D4⊕D6=1⊕0⊕1⊕0⊕1=1
⊕符号:代表异或,相同则为0,不同则为1。

只要仔细⼀定可以计算正确。

P2、P3、P4的海明码计算也是如此,关键是要找出正确的校验位组,所以海明校验码:011001001101。

计算机组成原理--海明码的编码和校验方法(易懂)

计算机组成原理--海明码的编码和校验方法(易懂)

计算机组成原理--海明码的编码和校验⽅法(易懂)海明码(也叫汉明码)具有⼀位纠错能⼒。

本⽂以1010110这个⼆进制数为例解释海明码的编码和校验⽅法。

编码 确定校验码的位数x 设数据有n位,校验码有x位。

则校验码⼀共有2x种取值⽅式。

其中需要⼀种取值⽅式表⽰数据正确,剩下2x-1种取值⽅式表⽰有⼀位数据出错。

因为编码后的⼆进制串有n+x位,因此x应该满⾜2x-1 ≥ n+x 使不等式成⽴的x的最⼩值就是校验码的位数。

在本例中,n=7,解得x=4。

确定校验码的位置 校验码在⼆进制串中的位置为2的整数幂。

剩下的位置为数据。

如图所⽰。

位置1234567891011内容x1x21x3010x4110 求出校验位的值 以求x2的值为例。

为了直观,将表格中的位置⽤⼆进制表⽰。

位置00010010001101000101011001111000100110101011内容x1x21x3010x4110 为了求出x2,要使所有位置的第⼆位是1的数据(即形如**1*的位置的数据)的异或值为0。

即x2^1^1^0^1^0 = 0。

因此x2 = 1。

同理可得x1 = 0, x3 = 1, x4 = 0。

位置00010010001101000101011001111000100110101011内容01110100110 因此1010110的海明码为01110100110。

校验 假设位置为1011的数据由0变成了1,校验过程为: 将所有位置形如***1, **1*, *1**, 1***的数据分别异或。

***1: 0^1^0^0^1^1 = 1 **1*: 1^1^1^0^1^1 = 1 *1**: 1^0^1^0 = 0 1***: 0^1^1^1 = 1 以上四组中,如果⼀组异或值为1,说明该组中有数据出错了。

***1 **1* 1***的异或都为1,说明出错数据的位置为1011。

海明码简单分析确定校验位个数海明码的码组长度需要符合:2^r – 1 (r代表校验位个数)为什么是这个公式呢?因为:只有这样才能保证校验位⾜够覆盖整个需要校验的码组。

海明校验码原理

海明校验码原理

海明校验码原理
海明校验码是用来检测和纠正二进制数据传输中的错误的编码方式,其实现原理如下:
1. 数据转换:首先需要将要传输的数据转换成二进制码形式。

2. 生成海明码:根据生成规则生成海明校验码。

生成海明码的步骤如下:
- 确定校验位数:根据要传输的数据确定校验位的个数。

- 确定校验位的位置:将二进制数据码按一定规则排列,将二进制数据码的每一位(包括校验位)都与校验位位置有关联。

- 生成校验位:根据规则算出校验位的值,将其填入海明校验码的相应位置。

- 得到海明码:将数据码和校验位合并成海明码。

3. 传输:以海明码的形式进行传输。

4. 检测和纠正错误:接收方收到海明码时,先对码中的每个二进制数进行校验,以检测是否存在错误。

如果存在错误,可以根据海明码的规则进行修正。

如果存在多个错误,则无法进行修正。

海明校验码是一种比较简单有效的纠错码,但是其校验能力有限,无法纠正大量的错误。

海明码的原理

海明码的原理
3.海明码的计算
海明码(Hamming Code )编码的关键是使用多余的奇偶校验位来识别一位错误。 码字(Code Word)按如下方法构建: 1、把所有2的幂次方的数据位标记为奇偶校验位(编号为1, 2, 4, 8, 16, 32, 64等的位置) 2、其他数据位用于待编码数据. (编号为3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17等的位置) 3、每个奇偶校验位的值代表了代码字中部分数据位的奇偶性,其所在位置决定了要校验和跳过的比特位顺序。 位置1:校验1位,跳过1位,校验1位,跳过1位(1,3,5,7,9,11,13,15,…) 位置2:校验2位,跳过2位,校验2位,跳过2位 (2,3,6,7,10,11,14,15,…) 位置4:校验4位,跳过4位,校验4位,跳过4位 (4,5,6,7,12,13,14,15,20,21,22,23,…) 位置8:校验8位,跳过8位,校验8位,跳过8位(8-15,24-31,40-47,…) … 如果全部校验的位置中有奇数个1,把该奇偶校验位置为1;如果全部校验的位置中有偶数个1,把该奇偶校验位置为0. 举例说明: 一个字节的数据:10011010 构造数据字(Data Word),对应的校验位留空_ _ 1 _ 0 0 1 _ 1 0 1 0 计算每个校验位的奇偶性 ( ?代表要设置的比特位): 位置1检查1,3,5,7,9,11: ? _ 1 _ 0 0 1 _ 1 0 1 0. 偶数个1,因此位置1设为0,即: 0 _ 1 _ 0 0 1 _ 1 0 1 0 位置2检查2,3,6,7,10,11: 0 ? 1 _ 0 0 1 _ 1 0 1 0. 奇数个1,因此位置2设为1,即: 0 1 1 _ 0 0 1 _ 1 0 1 0 位置4检查4,5,6,7,12: 0 1 1 ? 0 0 1 _ 1 0 1 0. 奇数个1,因此位置4设为1,即: 0 1 1 1 0 0 1 _ 1 0 1 0 位置8检查8,9,10,11,12: 0 1 1 1 0 0 1 ? 1 0 1 0. 偶数个1,因此位置8设为0,即: 0 1 1 1 0 0 1 0 1 0 1 0 因此码字为: 011100101010. 查找并纠错一位错误 上例中构建了一个码字 011100101010,假定实际接收到的数据是011100101110. 则接收方可以计算出哪一位出错并对其进行更正。方法就是验证每一个校验位。记下所有出错的校验位,可以发现校验位2和8的数据不正确. 错误校验位 2 + 8 = 10, 则位置10的数据出错。一般说来,对所有校验位进行检查, 将所有出错的校验位置相加, 得到的就是错误信息所在的位置.

《海明码校验》课件

《海明码校验》课件
传输错误
在传输过程中,可能发生位错误,如1011010。
编码
根据海明码规则,将数据编码为1101010。
校验和纠正
接收端利用校验位和冗余位检测并纠正错误, 得到正确的数据1101。
海明码校验的应用领域
1 通信领域
海明码广泛应用于数据通信和网络传输,保 证数据的准确性和完整性。
2 存储技术
海明码被用于存储设备中,检测和纠正存储 介质中的位错误,保护数据的可靠性。
3 数字电路
海明码在数字电路设计中有重要作用,用于 检测和纠正硬件中的错误。
4 计算机科学
海明码被广泛应用于计算机科学领域,如数 据校验和纠错算法等。
总结和展望
海明码校验是一种有效的错误检测和纠正技术,可应用于多个领域。未来, 随着技术的发展,海明码校验将在数据传输和存储中发挥更广泛的作用。
数据完整性
通过校验位,可以确定数据是否在传输过程中发生了改变,确保数据完整性。
海明码的定义和原理
海明码是一种线性错误检测和纠正码,通过引入冗余位来检测和纠正传输中的错误。
二进制编码
奇偶校验
海明码使用二进制编码表示信息, 每个编码位代表一个数据位或校 验位。
海明码利用奇偶校验的原理,在 编码中添加冗余位来检测和纠正 错误。
《海明码校验》PPT课件
海明码校验(Hamming Code)是一种常见的错误检测和纠正技术,具有广 泛应用。本课件将分享海明码校验的定义、原理、校验过程、算法、实例以 及应用领域。
常见的错误和校验位的作用
常见错误
数据传输过程中常会发生位错误、插入错误或删除错误,影响信息的准确性。
校验位作用
校验位用于检测和纠正传输中发生的错误,提高数据的可靠性。

海明码校验检错位数

海明码校验检错位数

海明码校验检错位数
海明码是一种常用的纠错编码方法,它可以通过添加冗余位来检测和纠正数据传输中的错误。

海明码的校验检错位数取决于所使用的具体编码方案。

在最常见的海明(7,4)码中,每个数据块由4位数据和3位冗余位组成。

其中,3位冗余位用于检测和纠正单个位的错误。

这意味着海明(7,4)码可以检测和纠正1位错误。

类似地,海明(15,11)码是另一种常见海明码,每个数据块由11位数据和4位冗余位组成。

其中,4位冗余位用于检测和纠正单个位的错误。

因此,海明(15,11)码可以检测和纠正1位错误。

总的来说,海明码的校验检错位数取决于具体的编码方案,不同的海明码可以提供不同程度的错误检测和纠正能力。

较高级别的海明码可以检测和纠正更多位的错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

航空航天大学
课程设计报告
课程设计名称:计算机组成原理课程设计
课程设计题目:海明码生成与校验电路的设计
院(系):计算机学院
专业:计算机科学与技术(物联网方向)班级:
学号:
姓名:
指导教师:
完成时间:2016年1月4日-2016年1月15日
目录
第1章总体设计方案 (1)
1.1设计原理 (1)
1.2设计思路 (1)
1.3设计环境 (1)
第2章详细设计方案 (1)
2.1顶层方案图的设计与实现 (1)
2.1.1设计方案 (1)
2.1.2器件的选择与引脚锁定 (1)
2.2底层模块的设计与实现 (1)
2.2.1产生模块的设计与实现 (1)
2.2.2出错模块的设计与实现 (1)
2.2.3 纠正模块的设计与实现 (1)
2.3仿真调试 (1)
第3章编程下载与硬件测试 (1)
3.1编程下载 (1)
3.2硬件测试及结果分析 (1)
参考文献 (1)
附录(程序清单或电路原理图) (1)
第1章总体设计方案
1.1 设计原理
海明校验码是由理查得·海明(Richard Hanmming)于1950年提出的,它不仅具有检测错误的能力,同时还具有给出错误所在的准确位置的能力,这在通信领域有着很广泛的应用。

海明码是奇偶校验的一种扩充。

它采用多位校验码的方式,在这些校验位中的每一位都对不同的信息数据位进行奇偶校验,通过合理地安排每个校验位对原始数据进行校验位组合,可以达到发现错误,纠正错误的目的。

(1)数据位和校验位的关系
假设数据位有m位,如何设定校验位k的长度才能满足纠正一位错误的要求呢?我们这里做一个简单的推导。

k位的校验码可以有2k个值。

如果能够满足:2k>=m + k+1,在理论上k个校验码就可以判断是哪一位(包括信息码和校验码)出现问题。

(2)海明码的编码规律
若海明码的最高位号为m,最低位号为1,即H m H m-1…H2H1,则海明码的编码规律通常是:
a.校验位与数据位之和为m,每个校验位P i在海明码中被分在2i-1的位置,其余各位为数据位,并按从低向高逐位依次排列的关系分配各数据位。

b.海明码的每一位H i(包含数据位和校验位本身)由多个校验位校验,其关系是被校验的每一位位号要等于校验它的各校验位的位号之和。

这样安排的目的,
是希望校验的结果能正确反映出出错位的位号。

1.2 设计思路
(一)海明码的生成:因为要求的是8位的二进制数据,所以此处的m为8,按照数据位和校验位的对应关系,k应为4,故海明码的总位数为12,可表示为:H12——H1,4个校验位P4~P1对应的海明码位号分别为:H8/H4/H2/H1,则有如下排列关系:D8D7D6D5P4D4D3D2P3D1P2P1
按照海明码的原理得出如下的表格:
P1=D1⊕D2⊕D4⊕D5⊕D7
P2=D1⊕D3⊕D4⊕D6⊕D7
P3=D2⊕D3⊕D4⊕D8
P4=D5⊕D6⊕D7⊕D8
(二)海明码的校验:
海明码校验函数(S函数)及校验过程<偶校验>
S1=P1⊕D1⊕D2⊕D4⊕D5⊕D7
S2=P2⊕D1⊕D3⊕D4⊕D6⊕D7
S3=P3⊕D2⊕D3⊕D4⊕D8
S4=P4⊕D5⊕D6⊕D7⊕D8
1.3 设计环境
·硬件环境:伟福COP2000型计算机组成原理实验仪、XCV200实验板、微机;
·EDA环境:Xilinx foundation f3.1设计软件、COP2000仿真软件。

图1.1Xilinx foundation f3.1设计平台
第2章详细设计方案
2.1 顶层方案图的设计与实现
实现海明码的生成与校验逻辑功能,采用原理图设计输入方式完成,电路实现基于XCV200可编程逻辑芯片。

完成原理图的设计后,把输入/输出信号安排到XCV200指定的引脚上去,实现芯片的引脚锁定。

2.1.1设计方案
顶层图形文件是由产生(如图2.1),出错(如图2.2)和纠正(如图2.3)三个模块元件组装而成的一个完整的设计实体组成。

图2.1 产生模块
图2.2 出错模块
图2.3 纠正模块
2.1.2器件的选择与引脚锁定
(1)器件的选择
由于硬件设计环境是基于伟福COP2000型计算机组成原理实验仪和XCV200实验板,故采用的目标芯片为Xlinx XCV200可编程逻辑芯片。

(2)引脚锁定
把顶层图形文件中的输入/输出信号安排到Xlinx XCV200芯片指定的引脚上去,实现芯片的引脚锁定。

2.2 底层模块的设计与实现
海明码生成与校验设计电路是由3个模块组成,其中产生模块是由8个输入端输入海明码的8位数据位,经异或门求得校验位P1,P2,P3,P4,由此输出12位海明码;出错模块是由三八译码器来改变输入数据的某一位,从而产生错误的海明码;纠正模块是对错误的数据进行纠正修改。

2.2.1产生模块的设计与实现
(1)元件结构
海明码产生模块,原理是通过输入的数据IN1~IN8按照公式:
P1=D1⊕D2⊕D4⊕D5⊕D7,
P2=D1⊕D3⊕D4⊕D6⊕D7,
P3=D2⊕D3⊕D4⊕D8,
P4=D5⊕D6⊕D7⊕D8,
生成了4位校验码P1/P2 /P3/P4,从而得出了12位海明码。

图2.4 产生模块部电路
(2)功能仿真
对产生模块进行功能仿真,验证其功能的正确性。

图2.5 产生模块仿真
结果分析:输入IN1-IN8为10011001,输出O1-O12为1,结果是正确的海明码。

2.2.2出错模块的设计与实现
(1)元件结构
本模块的原理是通过3线8线译码器的3进1出,输出一个1,与8位输入数据中的一位异或,使之发生错误,从而得出一组错误的数据。

图2.6 出错模块部电路
(2)功能仿真
对创建的出错元件进行功能仿真,验证其功能的正确性
图2.7 出错模块仿真
结果分析:输入IN1-IN3为000,输入IN1-IN8为10011001,输出O1-O8为1,其中O1为出错位,产生了一位错误。

2.2.3 纠正模块的设计与实现
(1)元件的部结构
原理是通过公式:
S1=P1⊕D1⊕D2⊕D4⊕D5⊕D7,
S2=P2⊕D1⊕D3⊕D4⊕D6⊕D7,
S3=P3⊕D2⊕D3⊕D4⊕D8,
S4=P4⊕D5⊕D6⊕D7⊕D8,连成的电路对数据进行校验,判断数据是哪一位出错,并对出错的那一位与错误数据异或,从而得出正确的数据。

图2.8 纠正模块部电路(2)功能仿真
对纠正模块进行功能仿真,验证其功能的正确性
图2.9 纠正模块仿真
2.3 仿真调试
仿真调试是为了验证设计电路逻辑功能的正确性,输入8位二进制数据位生成12位海明码,中间经三八译码器来改变一位数据位,经校验电路修改,最后输出正确的8位二进制数据位。

(1)创建仿真信号
在进行仿真时,输入数据位用了上面的两组数据。

第一组数据,IN1~IN8为10011001,生成的海明码O1~O12为1。

第二组数据,IN1~IN8为11001100,生成的海明码O1~O12为0。

这两组数据又经三八译码器改变其中一位错的数据输入到纠正电路里,经纠正校验后输出原本的数据位,最终实现了海明码生成和校验功能。

(2)仿真结果
功能仿真结果如图2.10、图2.11所示,仿真数据结果如表2.3所示。

对表中容进行计算,可以看出功能仿真结果是正确的,进而说明此次电路设计成功。

表2.3:
10011001 000(第一位) 1 00011001 11001100 001第二位)0 10001100
图2.10 第一组数据功能仿真结果
图2.11 第二组数据功能仿真结果
第3章编程下载与硬件测试
3.1 编程下载
利用Xilinx ISE的编程下载功能,下载编译我的工程,从而得到的*.bin文件,即可下载到XCV200实验板的XCV200可编程逻辑芯片中,完成编译下载。

3.2 硬件测试及结果分析
利用XCV200实验板进行硬件功能测试。

海明码数据位的输入数据通过XCV200实验板的输入开关实现,输出数据通过XCV200实验板的LED指示灯实现,其对应关系如表3.1所示。

表3.1 XCV200实验板信号对应关系
输入数据,逐个测试输出结果,即用XCV200实验板的开关K0、K1输入数据,同时观察LEDA和LEDB的输出,得到如表3.2所示的硬件测试结果。

表3.2 硬件测试结果
输入信号输出信号
K1 K0B7-A4
000 10010001 1
图3.1 cop2000仿真下载结果
结果分析:输入K1:1-K1:3为000,对应CHUCUO.IN3-CHUCUO.IN1,输入CHANSHENGIN.1-CHANSHENG.IN8为1001001,输出B7—A4为1对应CHANSHENG.O1-CHANSHEN.O12。

参考文献
[1] 延滨,微型计算机系统原理、接口与EDA设计技术(第三版).:
邮电大学,2006
[2] 王爱英.计算机组成与结构(第4版)[M].:清华大学,2006
[3] 唐朔飞,计算机组成原理(第二版).:高等教育,2007
[4] 周大海,计算机组成原理实验与课程设计教程.:航空航天大学,
2015
. . . . . 附录(程序清单或电路原理图)
总电路原理图。

相关文档
最新文档