色谱法基本理论
色谱分析的基本理论和方法
色谱分析的基本理论和方法色谱分析是一种通过物质在不同条件下在固定相和流动相之间的物理或化学作用而实现分离、富集和检测目标物质的分析方法,它是现代化学分析中最常用的方法之一。
色谱分析主要应用于化学合成、生物化学、医药研究、环境监测、食品安全等领域。
本文将从色谱分析的基本理论、方法和实现过程三个方面阐述色谱分析的原理和应用。
基本理论色谱分析基于物质在固定相和流动相中的物理或化学作用,实现物质之间的分离和富集。
在色谱分析中,固定相是一种具有在温度和压力下稳定的化学性质的物质,称为固定相。
流动相是一种可以移动并与固定相相互作用的溶液或气体。
色谱分析常用的固定相有硅胶、氢氧化铝、聚乙烯醇、聚四氟乙烯等,流动相则可以根据不同的具体情况选择有机溶剂、缓冲液或气体。
色谱分析的基本原理是物质在固定相和流动相中的行为存在差异,这种差异可以通过物质与固定相的相互作用特性来实现分离。
常见的固定相有分子筛、离子交换树脂和填料柱等,它们都拥有独特的分离机制。
当样品进入色谱柱,被保留在柱中,而流动相则将未被保留的样品带出柱外,实现物质之间的分离。
不同的物质在流动相和固定相之间的相互作用力量不同,它们在色谱柱中停留时间的长短也不同,这就是基于物质在固定相和流动相中化学或物理性质不同而实现的分离。
实现过程色谱分析实现过程包括前处理、分离、富集和检测四个阶段。
前处理是为了加速色谱分离和提高检测灵敏度,它一般包括样品的提取、洗脱、浓缩和纯化等步骤。
在提取中,可以利用溶剂把样品中的目标化合物转移到有机相中,去除其他杂质。
浓缩和纯化则是为了提高样品中目标化合物的浓度和纯度,这样可以增加检测灵敏度和准确度。
分离是色谱分析的核心,它是通过不同组分在色谱柱中的相互作用特性来实现物质之间的分离。
富集则是为了提高检测灵敏度和准确度,采用加强色谱性能、提高目标化合物在柱中保留时间的方法,比如固定相和流动相的配比调整、温度控制等。
最后,检测是为了确定分离的组分及其含量,这可以使用不同的检测器进行检测,如荧光检测器、紫外线检测器和电导检测器等。
色谱法的基本原理
设样品分子开始全部位于第0号塔板上, 当色谱柱中通过N体积载气后,计算在第 n块塔板上出现某组分分子的概率。这个 概率应该是考虑在塔板上某组分的一个 分子出现在流动相中的概率(Mp) 等于 在该塔板上流动相中组分分子的个数与 整个塔板上组分分子个数之比。
假设色谱柱由5块塔板组成: (0号板,1号,2号,…4号板) 令N=5(N表示进入柱中载气的脉冲次数 令组分进样量为:W=1 组分在柱内的分配过程是以气液色谱分
改变固定相, 改变流动相, 改变样品本身的性质(如衍生化法)
二 区域宽度
(1)标准偏差σ (2) 半峰宽 W1/2 (3) 峰底宽度W
从色谱图中,可得许多信息: 1 色谱峰的个数,可判断所含组分的最少个数; 2 根据色谱峰的保留值,可以进行定性分析; 3 根据色谱峰的面积或峰高,可以进行定量分析; 4 色谱峰的保留值及其区域宽度,评价柱效依据;
t’R(z+n)---碳原子数为z+n的正构烷烃的调整保留时间
t’R(z) ≤t’R(x)≤ t’R(z+n) (通常 n=1)
规定正构烷烃的I 值是其他原子数的100倍, 如:正庚烷I=700
色谱柱效能的参数
柱效:也叫柱效能 。
tR 2 tR 2 n 5.54( ) 16( ) W1/ 2 W
选择性系数
KS
[ RSO3 X ] S [ X ] [ RSO3 H ] S [ H ] m
注:Ks与离子的电荷数、水合离子半径、流动相性质、 离子交换树脂性质以及温度有关 next
图示
分离机制: 依据被测组分与离子交换剂交换能力(亲和力) 不同而实现分离 back
结论:
四种色谱的分离机制各不相同,分别形成吸附平衡、 分配平衡、离子交换平衡和渗透平衡 K分别为吸附系数,狭义分配系数,选择性系数和 渗透系数
色谱基本概念和理论
Ⅱ 基本概念和理论一、基本概念和术语1.色谱图和峰参数⊕色谱图(chromatogram)--样品流经色谱柱和检测器,所得到的信号-时间曲线,又称色谱流出曲线(elution profile).⊕基线(base line)--流动相冲洗,柱与流动相达到平衡后,检测器测出一段时间的流出曲线。
一般应平行于时间轴。
⊕噪音(noise)――基线信号的波动。
通常因电源接触不良或瞬时过载、检测器不稳定、流动相含有气泡或色谱柱被污染所致。
⊕漂移(drift)基线随时间的缓缓变化。
主要由于操作条件如电压、温度、流动相及流量的不稳定所引起,柱内的污染物或固定相不断被洗脱下来也会产生漂移。
⊕色谱峰(peak)--组分流经检测器时相应的连续信号产生的曲线。
流出曲线上的突起部分。
正常色谱峰近似于对称性正态分布曲线(高斯Gauss曲线)。
不对称色谱峰有两种:前延峰(leading peak)和脱尾峰(tailing peak ).前者少见。
⊕拖尾因子(tailing factor,T)--T=B/A,用以衡量色谱峰的对称性。
也称为对称因子(symmetry factor)或不对称因子(asymmetry factor)《中国药典》规定T应为0.95~1.05。
T<0.95为前延峰,T>1.05为拖尾峰。
⊕峰底――基线上峰的起点至终点的距离。
⊕峰高(Peak height,h)――峰的最高点至峰底的距离。
⊕峰宽(peak width,W)--峰两侧拐点处所作两条切线与基线的两个交点间的距离。
W=4σ。
⊕半峰宽(peak width at half-height,Wh/2)--峰高一半处的峰宽。
W h/2=2.355σ。
⊕标准偏差(standard deviation, σ)--正态分布曲线x=±1时(拐点)的峰宽之半。
正常峰宽的拐点在峰高的0.607倍处。
标准偏差的大小说明组分在流出色谱柱过程中的分散程度。
色谱基本理论
2-1
2-2 色谱流出曲线及有关色谱术语
2.2.1 流出曲线和色谱峰
2-1
试样中各组分经色谱柱分离后,以此流出色 谱柱,经检测器转换为电信号,然后用数据 记录装臵将各组分的浓度变化记录下来,即 得色谱图。 色谱图是以组分的浓度变化引起的的电信号 作为纵坐标,流出时间作为横坐标的,这种 曲线称为色谱流出曲线。
(5) 保留体积 VR
从进样开始到被测组份在柱后出现浓度极大 点时所通过的流动相体积。保留体积与保留时间 t。 的关系如下: VR = tR· F0
(6) 调整保留体积VR′
某组份的保留体积扣除死体积后,称该组份 的调整保留体积,即 VR′ = VR- VM
(7)相对保留值γ2.1
某组份 2 的调整保留值与组份 1 的调整保留值之比, 称为相对保留值:
2-3 色谱法分析的基本原理
色谱分析根本目的:将样品中各组分彼
此分离,组分要达到完全分离,两峰间的距 离必须足够远.
两峰间的距离是由组分在两相 间的分配系数决定的,即与色 谱过程的热力学性质有关。但 是两峰间虽有一定距离,如果 每个峰都很宽,以致彼此重叠, 还是不能分开。这些峰的宽或 窄是由组分在色谱柱中传质和 扩散行为决定的,即与色谱过 程的动力学性质有关。 因此,要从热力学和动力学两 方面来研究色谱行为。
γ 2.1 t R2 t R1 VR1 VR2
由于相对保留值只与柱温及固定相的性质有关,而 与柱径、柱长、填充情况及流动相流速无关,因此, 它是色谱法中,特别是气相色谱法中,广泛使用的定 性数据. 必须注意,相对保留值绝对不是两个组份保留时间或 保留体积之比 .
*选择因子
在定性分析中,通常固定一个色谱峰作为标 准(s),然后再求其它峰(i)对这个峰的相对 保留值.在多元混合物分析中,通常选择一对最 难分离的物质对,将它们的相对保留值作为重要 参数.在这种特殊情况下,可用符号α表示:
色谱分析方法基本理论
色谱分析方法基本理论一、保留时光理论保留时光是样品从进入色谱柱到流精彩谱柱所需要的时光,不同的物质在不同的色谱柱上以不同的流淌相洗脱会有不同的保留时光,因此保留时光是色谱分析法比较重要的参数之一。
保留时光由物质在色谱中的分配系数打算: tR=t0(1+KVs/Vm)式中:tR —某物质的保留时光; t0—色谱系统的死时光,即流淌相进入色谱柱到流精彩谱柱的时光,这个时光由色谱柱的孔隙、流淌相的流速等因素打算; K-分配系数; Vs,Vm—固定相和流淌相的体积。
这个公式又叫做色谱过程方程,是色谱学最基本的公式之一。
在薄层色谱中没有样品进入和流出固定相的过程,因此人们用比移值标示物质的色谱行为。
比移值是一个与保留时光相对应的概念,它是样品点在色谱过程中移动的距离与流淌相前沿移动距离的比值。
与保留时光一样,比移值也由物质在色谱中的分配系数打算: Rf=Vm/(Vm+KVs) 式中:Rf—比移值;K一色谱分配系数; Vs,Vm—固定相和流淌相的体积。
二、塔板理论塔板理论是色谱学的基础理论。
塔板理论将色谱柱看作一个分馏塔,待分别组分在分馏塔的塔板间移动,在每一个塔板内组分分子在固定相和流淌相之间形成平衡,随着流淌相的流淌,组分分子不断从一个塔板移动到下一个塔板并不断形成新的平衡。
色谱柱的塔板数越多,其分别效果越好。
按照塔板理论,待分别组分流精彩谱柱时的浓度随时光展现二项式分布,当色谱柱的塔板数很高时,二项式分布趋于正态分布。
流出曲线上组分浓度与时光的关系可以表示如下:式中:Ct—t时刻的组分浓度; C0—组分总浓度,即峰面积;σ—半峰宽,即正态分布的标准差; tR—组分的保留时光。
该方程称作流出曲线方程。
按照流出曲线方程,色谱柱的理论塔板高度被定义为单位柱长度的色谱峰方差: H=σ2/T 理论塔板高度越低,在单位长度色谱柱中的塔板数越多,分别效果越好。
打算理论塔板高度的因素有固定相的材质、色谱柱的匀称程度、流淌相的理化性质以及流淌相的流速等。
第二章 色谱基本理论
第一节 色谱图流出曲线及有关术语 一、色谱流出曲线及色谱峰
(一)色谱流出曲线-色谱图(chromatogram) 是样品被流动相冲洗,通过色谱柱,流经检测器,所形成的浓 度信号随洗脱时间变化而形成的曲线.称为色谱流出曲线 (简称流出曲线),即浓度—时间曲线。
动画
(二) 基线(baseline) 1、基线 (baseline)在正常操作条件下,仅有流动相通
0.235 0.116
0 0 0.125 0.125 0.313
0.313 0.275
0 0 0 0.063 0.157
0.235 0.275
0 ቤተ መጻሕፍቲ ባይዱ 0 0 0.032
0.079 0.118
8 9 10
0.004 0.002 0.001
0.032 0.018 0.101
0.086 0.059 0.038
5. 假峰(ghost peak)又称鬼峰:由于仪器 条件的变化等原因而在谱图上出现的色 谱峰,即并非由试样所产生的峰。
色谱峰:
1个样品组分的色谱峰可用3个参数来描述, 即峰高(或峰面积)、峰位和峰宽。峰高 (或峰面积)用于定量;峰位用于定性; 峰宽可用于衡量柱效。若描述一组色谱 峰,还需用分离参数表述相邻峰的重叠 程度。
色谱理论需要解决的问题:色谱分离过程的热力学和动 力学问题。影响分离及柱效的因素与提高柱效的途径,柱效 与分离度的评价指标及其关系。 组分保留时间为何不同?色谱峰为何变宽? 组分保留时间:色谱过程的热力学因素控制; (组分和固定液的结构和性质) 色谱峰变宽:色谱过程的动力学因素控制; (两相中的运动阻力,扩散) 两种色谱理论:塔板理论和速率理论;
t’R(z) ≤t’R(x)≤ t’R(z+n) (通常 n=1) 规定正构烷烃的I 值是其原子数的100倍,
色谱分析理论基础
d
2 p
Dg
容量因子
液相传质阻力项CL u
试样组分从固定相表面移动到固定相内部的过程中, 由于质量交换过程需要一定时间(即传质阻力)而使分 子有滞留倾向。在此过程中,部分组分分子先离开固定 相表面,发生分子超前,引起色谱峰扩展。
C L
2 3
k (1 k)2
d
2 f
DL
液膜厚度
液相扩 散系数
气相色谱中的速率方程
1 2
(Y1
Y2
)
R1/ 2
tR(2) tR(1)
1 2
(Y1/ 2(1)
Y1/ 2(2) )
R越大,说明两组分分离得越好。 由于该定义综合了色谱动力学和热力学因素,可作为色 谱柱的总分离效能指标。
(2) 色谱分离基本方程(Purnell方程)
公式推导
tR
L uS
,tM
L u
tM tR
• 分离度R与理论塔板数N的平方根成正比关系, 增加塔板数,有利于提高分离度。
• 增加柱长可增加N,改善分离,但分析时间将 大大延长,峰产生扩展。
• 减小塔板高度H:
– 根据速率方程的启示制备一根性能优良的色谱柱是 十分重要的。
– 根据速率方程选择合适的色谱条件同样有效。
K的影响,如何改变k?
• 分离度与容量因子有关,容量因子越大,分离越好。
• 优点:应用简便,不需要其他仪器。 • 缺点:定性结果的可信度不高。
➢ 提高可信度的方法:双柱、双体系定性
文献值对照定性分析 (GC)
• 实现方法
➢ 测定相对保留值ri,s ➢ 测定保留指数I
• 优点:无需纯物质;保留指数具有较好的重现 性和精密度;只与固定相和柱温有关。
色谱法基本理论PPT课件
02 色谱法的基本原理
分离原理
分离原理
色谱法的基本原理是利用不同物质在固定相和流动相之间的分配平衡来实现分离。当流动 相经过固定相时,与固定相发生相互作用,使得不同物质在固定相和流动相之间的分配平 衡不同,从而实现分离。
开发新型色谱技术
研究和发展新型色谱技术,如微流控芯片色谱、超临界流体色谱等, 以适应不同类型和规模的样品分析。
联用技术结合
将色谱法与其他分析技术(如质谱、光谱等)联用,可以实现更复杂 样品的高效分离和鉴定。
自动化和智能化发展
通过自动化和智能化技术的引入,实现色谱分析的远程控制、实时监 测和数据分析,提高分析效率和准确性。
感谢您的观看
分配平衡
色谱法中的分配平衡是指物质在固定相和流动相之间的分布情况。物质在两相之间的分配 平衡受到多种因素的影响,如物质的性质、温度、压力等。
相互作用
物质在固定相和流动相之间的相互作用是影响分配平衡的重要因素。不同的物质与固定相 和流动相之间的相互作用力不同,因此表现出不同的分配平衡,从而实现分离。
固定相和流动相
保留机制
01
保留机制
保留机制是指物质在色谱法中通过固定相的保留作用而滞留在固定相中
的过程。物质的保留机制主要取决于物质与固定相之间的相互作用力和
性质差异。
02
竞争吸附
在色谱法中,多种物质会竞争吸附到固定相上,形成竞争吸附现象。竞
争吸附会影响物质的保留时间和分离效果,因此在选择固定相和流动相
时需要考虑竞争吸附的影响。
色谱法可用于研究化学反应动力学,通过分析反应中间产物和产物, 揭示反应机理和速率常数。
色谱法的基本原理
色谱法的基本原理
色谱法是一种分离和分析化合物的方法,它基于不同化合物在固定相和流动相
之间的分配系数不同而实现分离。
色谱法广泛应用于化学、生物、环境等领域,是一种重要的分析技术。
本文将从色谱法的基本原理入手,介绍色谱法的工作原理、分类和应用。
色谱法的基本原理是利用不同化合物在固定相和流动相之间的分配系数不同而
实现分离。
固定相是一种固体或涂覆在固体支持物上的液体,而流动相则是气体或液体。
在色谱柱中,样品通过流动相的推动在固定相中进行分离。
当样品中的化合物与固定相和流动相相互作用时,它们将以不同的速率通过色谱柱,从而实现分离。
色谱法根据固定相的不同可以分为气相色谱和液相色谱。
气相色谱主要应用于
气体和挥发性化合物的分离,而液相色谱则主要应用于非挥发性化合物的分离。
在色谱法中,固定相的选择对分离效果起着至关重要的作用,不同的固定相适用于不同类型的化合物。
色谱法的应用非常广泛,它可以用于分离和分析各种化合物,包括有机物、无
机物、生物分子等。
在化学领域,色谱法常用于分析有机合成产物的纯度和结构鉴定;在生物领域,色谱法可以用于分离和分析蛋白质、核酸等生物大分子;在环境领域,色谱法可以用于检测水体和大气中的污染物。
总之,色谱法是一种重要的分离和分析技术,它基于化合物在固定相和流动相
之间的分配系数不同而实现分离。
通过选择合适的固定相和流动相,色谱法可以实现对各种化合物的高效分离和分析。
在实际应用中,色谱法已经成为化学、生物、环境等领域不可或缺的分析工具,为科学研究和工程实践提供了重要的支持。
气相色谱基本理论
气相色谱基本理论色谱法是一种分离技术。
它是由俄国植物学家茨(Tswett)在1906年创立的。
一相固定不动,称为;另一相是携带试样混合物流过此固定相的流体(气体或液体),称为。
——实质上是一种物理化学分离方法,即利用不同物质在两相(固定相和流动相)中具有不同的分配系数(或吸附系数),当两相作相对运动时,这些物质在两相中反复多次分配(即组分在两相之间进行反复多次的吸附、脱附或溶解、挥发过程)从而使各物质得到完全分离。
:固定——固定相:固相、液相流动——流动相:液相、气相——流动相是气体的色谱分析法称为气相色谱(GC)按固定相不同:气固色谱(吸附原理);气液色谱(分配原理)——流动相是液体的色谱分析法称为液相色谱(LC)液固色谱(吸附原理);液液色谱(分配原理)色谱法:相色谱(GC)包括:气固色谱 (GSC)、气液色谱(GLC)液相色谱(LC)包括:液固色谱(LSC)、液液色谱(LLC)色谱法:柱色谱、纸色谱、薄层色谱(平板色谱)1 最低检出量为10-7~10-14克是目前灵敏度最高的一种色谱。
(高效液相色谱一般为10-6~10-8克);2 高效能表现在可以分离性质相近的化合物,例如二甲苯的三个异构体、氢的三种同位素;3 一般在几分钟到几十分钟就可完成一次复杂样品的分析。
4沸点低于400?的各种有机或无机试样的分析。
不足之处:对热不稳定的和难挥发的物质不能分析被分离组分的定性较为困难。
由色谱柱流出物经检测器系统时,所产生的响应信号对时间或载气流出体积的曲线。
每个峰代表混合物中的一种组分,理想的峰型是均匀对称的。
(1)基线:在正常操作条件下,只有载气进入检测器时的流出曲线称为基线。
OT (2)峰底:峰的起点与终点之间连接的直线。
CD(3)峰高h:峰顶到基线的垂直间距。
AB(4)峰宽W:峰两侧拐点处作的切线与峰底相交两点间的距离IJ(5)半高峰宽W1/2:峰高一半处的峰宽。
W1/2=2.354 ,(6)峰面积A:峰与峰底之间的面积。
色谱分析法基本理论
以吸附色谱为例:
过程: 吸附(固定相)→ 解吸(流动相)→再吸附 →再解吸 …… “分配”系数的微小差异→吸附能力的微小差异 微小差异积累→较大差异→吸附能力弱的组分先流出
吸附能力强的组分后流出
5—2 色谱流出曲线及有关概念 一、色谱过程、分离原理及特点
2、色谱分离特点 1)不同组分通过色谱柱时的迁移速度不等
纸色谱(PC) 薄层色谱(TLC) 薄膜色谱(TFC)
3、按分离机制分
分配色谱:利用组分在固定液中分配系数的不同 吸附色谱:利用组分在吸附剂上吸附能力的差异 离子交换色谱:利用组分在离子交换剂上的亲和力大小差异 尺寸排阻色谱:利用大小不同的分子在多孔固定相中选择渗 透性的不同
5—1 概述
三、分类
色谱法简单分类
色谱分离前提→各组分分配系数不等
t
B R
tM (1 K B
Vs ) Vm
t
A RΒιβλιοθήκη tM(1 KA
Vs Vm
)
t R
t
A R
t
B R
tM
Vs Vm
(K A
KB)
K A K B tR 0
注:应选择合适分离条件使得难分离的组分K 不等
1)组分一定,K 不等的前提 A、固定相和流动相改变 B、T 改变 2)色谱条件(s,m,T)一定时,K一定 → tR一定
2)保留体积(与流速无关)
A、保留体积 VR VR = tR Fc Fc:流动相的流速(mL/min)
B、死体积 VM VM = tM Fc [固定相颗粒间所剩余的空间、色谱仪 中管路和连接头间的空间、检测器空间]
C、调整保留体积 VR’ VR’ = VR – VM = tR’ Fc
色谱基本理论
K cs cm
分配系数与组分浓度大小无关,其色谱峰呈正态分布----线性色谱。
分配系数由组分和固定相的热力学性质决定,随柱温而变化,与两相体积
无非关线。性色谱体系的K 不是常数,K 随浓度而变化。
在液相色谱法中,还取决于流动相的性质。
10
第10页,共103页。
第一章 输入标题 一、相平衡参数
在流动相中分子传质阻力引起离散的步长取决于扩散达到固定相表面建立热力学平衡所需扩散的平均深度路pm即令l分子在色谱柱中向前移动一步所需的时间为pm用来描写传质过程阻力的大小pm在整个色谱柱内由于流动相传质阻力造成的分子集sr流动相的移动速度为u若分子集合在色谱柱固定相中的停留时间为tsm在流动相中的停留时间为trm保留值时间组分分子集合在色谱柱内总停留时间在固定相内停留时间tsm在流动相内停留时间trm分子完成深度dpm的扩散与所需要的时间pm之比就是分子集合相对于流动相移动速度为usr固定相中的传质阻力流动相固定相刚达分配平衡流动相固定相分配平衡后的瞬间由于在固定相中的扩散传质扩散系数为d分子在色谱柱中向前移动一步所需的时间为分子传质阻力引起离散的步长取决于扩散达到两相表面建立热力学平衡所需扩散的平均深度路径d在整个色谱柱内由于流动相传质阻力造成的分子集合的总离散应为流动相低线速有利于达到高柱效
3 第3页,共103页。
第一章 输入标一题 、色谱流出曲线和有关概念
3.色谱峰是流出曲线上的突起部分。
正常色谱峰为对称形正态分布曲线。
不正常色谱峰有两种:拖尾峰和前延峰
色谱峰的对称与否:对称因子(拖尾因子)。
对称因子在0.95~1.05之间的色谱峰为对称峰; 小于0.95者为前延峰 大于1.05者为拖尾峰
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分离度(1)
难分离物质对的分离度大小受色谱过程中两种 因素的综合影响:
保留值之差—色谱过程的热力学因素 区域宽度—色谱过程的动力学因素
分离度表达式:
R 2(tr(2) tr(1) )
2(tr(2) tr(1) )
W2 W1
1.699(W1/ 2(2) w1/ 2(1) )
应定期对柱效进行评价,以防柱效下降、延长 柱寿命
塔板理论(Plate theory)(2)
贡献
用热力学的观点阐明了溶质在色谱柱中的分配平衡和 分离过程
解释了流出曲线的形状及浓度极大值的位置 提出了计算和评价柱效的参数
不足
不能解释造成谱带扩张的原因和影响板高的各种因素 不能说明同一溶质为什么在不同的流速下,可以测得
即要能获得有效的分离,又要在较短时间内完成
分析。
例:在一定条件下,两个组分的调整保留时间分别 为85 s和100 s,计算达到完全分离时所需的有效塔 板数;若填充柱的有效塔板高度为0.1 cm,柱长是 多少?
解:
neff
16R 2
1
2
16
1.52
100 / 85 100 / 85
Cg 组分分子
C气 液 色 谱 Cg Cl
流动相 气液界面 固定液
0.01k 2 (1 k)2
dp2 Dg
2 3
k (1 k)2
d
2 f
Dl
Cl
小粒度填充物+小分子量载气
降低固定液含量(但是k也减小);采用比表面积大 的载体(吸附,导致峰脱尾);提高柱温(增大Dl, 但是减小k)
液液色谱传质阻力项
sm
C Cm
Cs
(m
sm Dm
)
d
2 p
s
d
2 f
Ds
Cm:小粒度大孔固定相、增加组分在固定相和流动相 中的扩散系数D
Cs:与气液色谱中的表述相同
流动相线速对板高的影响
板高H\cm
H opt
Uopt
Uopt
B C
u/cm s-1
HU
CSU
R
n 4
1
1
k
k
当=1时,R=0,无法分离两组分;增大,是改 善分离度的有效手段
GC通过选择合适的固定相和降低柱温来增大 LC通过改变固定/流动相的性质和组成,可有效增大
对一个复杂混合物的分离条件的选择,主要是提 高最难分离物质对的值
分离度与容量因子k的关系
不同的理论塔板数
速率理论
—Van Deemter/ 1956
H A B CU U
H:单位柱长色谱峰形展宽的程度 A:涡流扩散项 B:分子扩散项系数 C:传质阻力项系数
U : 流动相平均线速
吸收了塔板理论中的板高H概念,考虑了组分在两相间的 扩散和传质过程从动力学角度很好地解释了影响板高(柱 效)的各种因素!(以GC为例讲述)
12g
12g
4g
0 12g2 3 4 85g 6 7 8 129g 10 11 182g13 14 1521g6 17
阶段5
2g
8g
塔1板2g序号 8g
2g
k=0.33and3.00的二组经多次分配后的结果
K 3.00
K 0.33
17次基本分离
5次
9次
17次
塔板数n
n
L H
......................................(2)
R n ( 1)( k )............(3) 4 1k
tr
16R 2 H u
( )2 1
(1 k)3 k2
可见,分析时间与R,,k、H/u等参数有关,R
增加1倍,分析时间则是原来的4倍。实际工作中,
——热力学提出了分离的基本条件
色谱过程动力学
在满足热力学分离基本条件的情况下,如何从动 力学角度优化分离条件,从而实现分离? 塔板理论 速率理论
塔板理论(Plate theory)(1)
—詹姆斯/马丁(1941)
小室1
小室2
小室3
四点假设
小室4
小室1 小室2 小室3 小室4
k=1.0的样品经数次平衡后的结果
色谱法基本理论
4-1色谱流出曲线及相关术语 4-2 色谱基本理论 4-3分离度及色谱分离方程 4-4 色谱法的定性与定量方法
4-1 色谱流出曲线及相关术语
——以气相色谱为例
t1 t2
t0
t1
t2
t3
t4
色谱流出曲线(色谱图)
色谱流出曲线
S
进样
基线(噪音)
h/峰高(定量)
A/峰面积(定量) t
保留值
球状颗粒 低温 短柱 大分子量流动相 适当增加流速
传质阻力项CU
物质系统由于浓度不均匀而发生的物质迁移过程, 称为传质。影响这个过程进行速度的阻力称为传 质阻力。因传质阻力的存在,使分配不能“瞬间” 达至平衡,因此产生峰形展宽。
C Cm Cs
固定相传质阻力系数
流动相传质阻力系数
气液色谱传质阻力项
也可以通过在样品中加 入标准物,看试样中哪 个峰增加来确定
根据经验公式定性
碳数规律:在一定温度下,同系物的调整保留时间tr
的对数与分子中碳数n成正比:lg
t
' r
An
Cn
3
知道两种或以上同系物的调整保留值便可求出常
数A和C。未知物的碳数则可从色谱图查出tr后,以
Cm U
A
B/U
Hopt A 2 BC
固定相粒度大小对板高的影响
H
粒度越细,板高越小,受线速度影响亦小
4-3 分离度及色谱分离方程(1)
塔板理论和速率理论都难以描述难分离物质对的 实际分离程度:即柱效为多大时,相邻两组份能 够被完全分离?
色谱分离中的四种情况如图所示:
n较高,较大,完全分离 n较高,较小,基本分离 n较小,较大,分离不好 n、均小,无法分离
涡流扩散项A(多途路径项)
试样
分离柱
载气流动方向
A 2dp : 填充不规则因子 dp:填充物平均粒径
减小A的途径: 使用粒度小并且均匀的柱料并均匀填充 毛细管柱?
分子扩散项B/U(纵向扩散项)
B 2Dg :弯曲因子 Dg:组分在流动相扩散系数
柱料均匀 柱温Dg ;柱压Dg 流动相分子量,Dg u, (B/u) LC中Dm 较小,B项可勿略
理论塔板数
H板高
n 5.54 t R
2
16
tR
2
W1/ 2
W
H L / n 理论板高
L
有效塔板数
n ef f
5.54
t
' r
W1/
2
2
16
t
' r
W
2
Heff L / neff 有效板高
有关塔板数的说明
说明柱效时,必须注明该柱效是针对何种物质、 固定液种类及其含量、流动相种类及流速、操 作条件等;
n 4
1
1
k k
分离度与柱效的关系
R
n 4
1
1
k
k
R1 R2
2
n1 n2
L1 L2
增加柱长,可提高分离度,但延长了分析时间, 因此降低板高,提高柱效,才是提高分离度的 好方法。
分离度与选择因子的关系
k
组分在固定相中的质量 组分在流动相中的质量
ms mm
csVs cmVm
容量 因子
us
uR
u mm mm ms
us u
1 1k
us
L tr
u L us t0 t0 u tr
k tr t0 t'r
t0
t0
反映了组分在柱中的迁移速率,又称保留因子;液相色谱中常用k表示
1
2
1547
L neff Heff 1547 0.1 155cm
例:用一根柱长为1 m的色谱柱分离A、B两种物质,其
保留时间分别为14.4和15.4 min,对应的峰底宽分别为
1.07 min和1.16 min(死时间为4.2 min),试计算:
物质A的理论塔板数 分离度R 选择性因子 完
Байду номын сангаас全分离所需的柱长 完全分离所需的时间
解:
nA
16
14.4 1.07
2
2898
R
2
15.4 1.07
14.4 1.16
0.897
15.4 4.2 1.10 14.4 4.2
L1.5
1.52 0.8972
L0.897
2.80m
t 2.8
选择是否合适
4-2 色谱基本理论
完全分离的条件:
两组份峰间距足够远 由各组份在两相间的分配系数决定,即色谱过程的热 力学性质决定。