微分几何预备知识

合集下载

《微积分预备知识》PPT课件

《微积分预备知识》PPT课件
a a 或B={ a1 , 2 ,…, n,… }
例 如:A={2,4,6,8,10 } B={1,3,5,7,…,2n+1,…}
(2)描述法: 将集合中元素所具有的特定性质描述出来的方
法。一般形式,A={x 元素x所具有的特定性质} 例如: A={x x为不超过10的正整数} B={x x为全体奇数}
2、几何含义: a 表示点 a 到原点的距离。
a -1 0 1 3、性质
(1) a ≥0,且 a =0 a=0
(2) a = a2
(3) a a a
(4) a k k a k a k k a k
(5)设k>0,则 a k a k或a k
2、数轴:有方向,原点,单位长度的直线。
B
-1
0
A
1
2
数轴上点A的坐标是实数2,数轴上点B的坐标是实数-1。
二者关系:全体实数与数轴上的全体点之间有一一对 应关系。因此,在今后的学习中,“数a”与“点a” 就有相同的含义。
三、 实数的绝对值
1、定义:实数a的绝对值 a
a2

a a
a≥0 a<0
a =3
三条边相等 全等
A是B的什么条件 A是B的充分条件 A是B的必要条件 A是B的充要条件
符号 AB AB AB
2、 几点说明
(1)根据命题中的条件与结论是相对的,而不是绝 对的,因此充分与必要条件也是相对的,而不 是绝对的。
如:A B 表示A为条件, B为结论, A是B的充分条件 B A 表示B为条件, A为结论, B是A的必要条件
(2)几何意义:
由于: x a x a a x a U(a, ) (a , a )

《微分几何》知识点总结

《微分几何》知识点总结

《微分几何》知识点总结微分几何是数学中的一个分支,研究曲线和曲面的性质以及它们在高维空间中的表示。

它是数学分析和线性代数的交叉学科,主要涉及曲线和曲面的切空间、法线、曲率等几何性质的研究。

以下是对微分几何的一些基本知识点的总结。

1.切空间与切向量:切空间是对于一个点p而言,在该点附近的曲线的切向量的集合。

切向量是一种表示一个点的切线方向的矢量。

切空间的维度等于曲线或曲面的维度。

2.微分映射与微分:微分映射描述了曲线或曲面上点的变化率。

微分是描述切向量与其他向量之间的关系,是对于曲线或曲面上点的局部线性化。

3.曲面的参数化表示:曲面可以通过参数化函数来表示,其中一个常见的参数化函数是二维平面上的参数化函数x(u,v)=(x1(u,v),x2(u,v),x3(u,v)),其中u和v是参数。

4. 第一基本形式与长度:第一基本形式描述了曲面上的度量,它是通过内积定义的度量张量。

长度可以通过第一基本形式来计算,即√(Edu^2+2Fdudv+Gdv^2),其中E、F和G是第一基本形式的系数。

5.曲面的法向量与法曲率:曲面上的法向量是与曲面上任意切向量垂直的矢量。

法曲率描述了曲面上曲线的曲率,是切向量在法向量方向上的投影。

6.主曲率与高斯曲率:主曲率是曲面上曲线在不同方向上的最大和最小曲率,对应于最大和最小的法曲率。

高斯曲率是主曲率的乘积。

7.曲率线与嵌入曲面:曲率线是在曲面上沿着特定方向行进时曲率不变的曲线。

嵌入曲面是指将低维曲面嵌入到高维空间中的曲面。

8.流形与切丛:流形是一种具有光滑结构的空间,可以在局部上与欧几里得空间同胚。

切丛是与流形上的每一个点相关联的切空间的集合。

9.李群与李代数:李群是一种具有群结构和光滑结构的空间。

李代数是与李群相关联的矢量空间,描述了群元素之间的光滑变化。

10.黎曼度量与黎曼流形:黎曼度量是一种定义在流形上的度量,用于描述流形上的内积关系。

黎曼流形是一个具有黎曼度量的流形。

《微分几何》知识点总结

《微分几何》知识点总结

《微分几何》知识点总结微分几何是数学中的一个分支,研究的是空间中曲线和曲面的性质和变化规律。

在微分几何中,我们使用微积分的方法研究曲线和曲面上的切线、法线、曲率等概念,以及它们的几何性质。

下面是微分几何的一些重要知识点总结。

1.曲线的参数表示曲线是一些点的集合,我们可以用参数表示曲线上的点。

常用的参数方程有笛卡尔参数方程和极坐标参数方程。

曲线的切向量是曲线上一点的导数。

2.曲线的切线和弧长曲线的切线是曲线在其中一点的切向量所确定的直线。

曲线的弧长是曲线上两点之间的距离。

我们可以通过弧长参数化来表示曲线。

3.曲线的速度和加速度曲线的速度是表示曲线上一点运动快慢和方向的向量,它的大小是曲线在这一点的切线向量的模,方向是切线的方向。

曲线的加速度是速度的导数。

4.曲线的曲率和挠率曲线的曲率描述了曲线弯曲的程度,它是曲线的切线向量随曲长的变化率。

曲线的挠率描述了曲线的曲率随曲长的变化率,它是曲线的法向量随曲长的变化率。

5.曲率圆和曲率半径曲线的曲率圆是一条与曲线在其中一点相切且切向量方向相同的圆,曲率半径是曲率圆的半径。

6.空间曲线的切线、法线、副法线三向量空间曲线的切线是曲线上一点的速度向量,法线是曲线上一点的加速度向量的单位向量,副法线是切线和法线的叉积向量的单位向量。

7.曲面的参数表示曲面是三维空间中的二维平面,我们可以用参数表示曲面上的点。

常用的参数方程有笛卡尔参数方程和极坐标参数方程。

8.曲面的切平面和法线曲面的切平面是曲面在其中一点的切向量所确定的平面,法线是切平面的法线向量。

9.曲面的曲率和高斯曲率曲面的曲率描述了曲面特定点附近的曲率变化,高斯曲率描述了曲面在其中一点附近的整体几何性质。

10.高斯曲率和平均曲率的关系高斯曲率和平均曲率是曲面上两个重要的曲率指标,它们之间存在一定的关系。

11.第一基本形式和第二基本形式第一基本形式是描述曲面上两个切向量的内积,第二基本形式是描述曲面上一个切向量和一个法向量的内积。

微分几何定理知识点总结

微分几何定理知识点总结

微分几何定理知识点总结微分几何定理是微分几何学中非常重要的一部分,它主要研究了微分几何学中的一些重要的定理和结论。

微分几何定理有着非常广泛的应用,不仅在数学中有着深远的影响,同时也在物理学、工程学等领域都有着广泛的应用。

下面我们将对微分几何定理做一些知识点总结。

一、微分几何基础知识1. 曲线的切线和曲率在微分几何学中,曲线的切线和曲率是非常重要的概念。

曲线的切线是指在曲线上某一点的切线方向,而曲率则是度量了曲线弯曲程度的一个指标。

利用微分几何的知识,我们可以求解曲线在某一点的切线方向和曲率,并且可以进一步研究曲线的性质。

2. 曲面的法线和曲率类似地,对于曲面来说,曲面的法线和曲率也是非常重要的概念。

曲面的法线是指在曲面上某一点的法线方向,而曲率是指度量了曲面在某一点的弯曲程度的一个指标。

通过研究曲面的法线和曲率,我们可以进一步研究曲面的性质和特征。

3. 曲线和曲面的参数化表示在微分几何学中,曲线和曲面可以通过参数化表示来描述。

曲线的参数化表示是指用一组参数表达曲线上的点的位置,而曲面的参数化表示是指用两组参数表达曲面上的点的位置。

通过参数化表示,我们可以更加方便地研究曲线和曲面在不同点的性质。

4. 曲线和曲面的切向量和法向量在微分几何学中,曲线和曲面的切向量和法向量是非常重要的概念。

曲线的切向量是与曲线切线方向一致的向量,而曲面的切向量是与曲面切平面内法线方向一致的向量。

通过研究曲线和曲面的切向量和法向量,我们可以更好地理解曲线和曲面的性质。

5. 微分几何中的一些基本假设和定理在微分几何学中,有一些基本的假设和定理对于研究曲线和曲面的性质非常重要。

比如欧氏空间中的基本假设和定理,以及微分几何学中的一些重要的定理,如曲率定理、高斯-博拿支定理、斯托克斯定理等等。

二、微分几何的主要定理和结论1. 曲率定理曲率定理是微分几何学中非常重要的一个定理,它描述了曲线在不同点的曲率和曲线的性质之间的关系。

曲率定理可以帮助我们更好地理解曲线在不同点的弯曲程度和性质,并且可以应用到很多实际的问题中。

微分几何引论讲义.pdf

微分几何引论讲义.pdf

绪 论几何学是数学中一门古老的分支学科. 几何学产生于现实生产活动. “geometry ”就是“土地测量”.Pythagoras 定理和勾股定理(《周髀算经》). 数学:人类智慧的结晶,严密的逻辑系统. 以欧几里德(Euclid)的《几何原本》(Elements )为代表.《自然辩证法》和《反杜林论》:数学与哲学;数与形的统一:解析几何;坐标系:笛卡儿和费马引入.对微分几何做出突出贡献的数学家:欧拉(Euler),蒙日(Monge),高斯(Gauss),黎曼(Riemann). 克莱因(Klein)关于变换群的观点. E. Cartan 的活动标架方法.微分几何:微积分,拓扑学,高等代数与解析几何知识的综合运用. 内容简介第一章:预备知识. 第二章:曲线论. 第三章至第五章:曲面论. 第六章:曲面上的曲线,非欧几何. 第七章*:活动标架和外微分.第一章 预备知识本章内容:向量代数知识复习;正交标架;刚体运动;等距变换;向量函数 计划学时:3学时难点:正交标架流形;刚体运动群;等距变换群引言为什么要研究向量函数?在数学分析中,我们知道一元函数()y f x =的图像是xy 平面上的一条曲线,二元函数(,)z f x y =的图像是空间中的一张曲面.采用参数方程,空间一条曲线可以表示成()()(),(),()r r t x t y t z t ==.这是一个向量函数,它的三个分量都是一元函数.所有这些例子中,都是先取定了一个坐标系. 所以标架与坐标是建立“形”与“数”之间联系的桥梁.§ 1.1 三维欧氏空间中的标架一、向量代数复习向量即有向线段:AB ,r ,r. 向量相等的定义:大小和方向. 零向量:0,0 . 反向量:a - . 向量的线性运算. 加法:三角形法则,多边形法则. 向量的长度. 三角不等式. 数乘.内积的定义::||||cos (,)ab a b a b =∠外积的定义.二重外积公式:()()()a b c a c b b c a ⨯⨯=⋅-⋅ ;()()()a b c a c b a b c ⨯⨯=⋅-⋅内积的基本性质:对称性,双线性,正定性. 外积的基本性质:反对称性,双线性.二、标架仿射标架{};,,O OA OB OC. 定向标架.正交标架(即右手单位正交标架):{};,,O i j k. 笛卡尔直角坐标系. 坐标.内积和外积在正交标架下的计算公式. 两点距离公式. 三维欧氏空间3E 和3.三、正交标架流形取定一个正交标架{};,,O i j k (绝对坐标系). 则任意一个正交标架{}123;,,P e e e被P 点的坐标和三个基向量{}123,,e e e的分量唯一确定:123111121322122233313233,,,.OP a i a j a k e a i a j a k e a i a j a k ea i a j a k ⎧=++⎪=++⎪⎨=++⎪⎪=++⎩(1.6) 其中123(,,)a a a a =可以随意取定,而(,1,2,3)ij a i j =应满足31ikjk ij k aa δ==∑, (1.7)即过渡矩阵()ij a A =是正交矩阵. 又因为123,,e e e是右手系,det 1A =,即矩阵111213212223313233(3)a a a A a a a SO a a a ⎛⎫ ⎪=∈ ⎪ ⎪⎝⎭(1.8, 1.9) 是行列式为1的正交矩阵. 我们有一一对应:{正交标架}←→3(3)E SO ⨯,{}123;,,(,)P e e e a A ←→.所以正交标架的集合是一个6维流形.四、正交坐标变换与刚体运动,等距变换空间任意一点Q 在两个正交标架{};,,O i j k 和{}123;,,P e e e中的坐标分别为(,,)x y z 和(,,)xy z ,则两个坐标之间有正交坐标变换关系式: 111213*********132333,,.x a xaya za y a xaya za z a xa ya za =+++⎧⎪=+++⎨⎪=+++⎩ (1.10) 如果一个物体在空间运动,不改变其形状和大小,仅改变其在空间中的位置,则该物体的这种运动称为刚体运动.QOPki1e j2e 3e QO()P O σ=ki1e j2e 3e ()QQ σ=在刚体运动33:E E σ→下,若σ将正交标架{};,,O i j k 变为{}123;,,P e e e,则空间任意一点(,,)Q x y z 和它的像点 (,,)Q xy z (均为在{};,,O i j k 中的坐标)之间的关系式为 111213121222323132333,,.x a xa ya za y a xa ya za za xa ya za =+++⎧⎪=+++⎨⎪=+++⎩ (1.11) 定理1.1 3E 中的刚体运动把一个正交标架变成一个正交标架;反过来,对于3E 中的任意两个正交标架,必有3E 的一个刚体运动把其中的一个正交标架变成另一个正交标架.空间3E 到它自身的、保持任意两点之间的距离不变的变换33:E E σ→称为等距变换. 刚体运动是等距变换,但等距变换不一定是刚体运动. 一般来说,等距变换是一个刚体运动,或一个刚体运动与一个关于某平面的反射的合成(复合映射).仿射坐标变换与仿射变换.§ 1.2 向量函数所谓的向量函数是指从它的定义域D 到3中的映射3::()r p r p →D .设有定义在区间[,]a b 上的向量函数()((),(),()),r t x t y t z t a t b =≤≤. 如果(),(),()x t y t z t 都是t 的连续函数,则称向量函数()r t是连续的;如果(),(),()x t y t z t 都是t 的连续可微函数,则称向量函数()r t是连续可微的. 向量函数()r t的导数和积分的定义与数值函数的导数和积分的定义是相同的,即0000()()lim t t t r t t r t drdt t∆→=+∆-=∆0000000()()()()()()lim ,,t x t t x t y t t y t z t t z t t t t ∆→+∆-+∆-+∆-⎛⎫= ⎪∆∆∆⎝⎭()000(),(),()x t y t z t '''=,0(,)t a b ∈, (2.6)()1()lim ()(),(),()nbbbbi i aaaai r t dt r t t x t dt y t dt z t dt λ→='=∆=∑⎰⎰⎰⎰, (2.7)其中01n a t t t b =<<<= 是区间[,]a b 的任意一个分割,1i i i t t t +∆=-,1[,]i i i t t t -'∈,并且{}max |1,2,,i t i n λ=∆= . (由向量加法和数乘的定义可以得到)向量函数的求导和积分归结为它的分量函数的求导和积分,向量函数的可微性和可积性归结为它的分量函数的可微性和可积性.由(1.6)可得()()()()()(),()()()()()()a t b t a t b t t at t a t t a t λλλ''''''+=+=+. 定理2.1 (Leibniz 法则) 假定(),(),()a t b t c t是三个可微的向量函数,则它们的内积、外积、混合积的导数有下面的公式:(1) ()()()()()()()a t b t a t b t a t b t '''⋅=⋅+⋅;(2) ()()()()()()()a t b t a t b t a t b t '''⨯=⨯+⨯;(3) ()()()()(),(),()(),(),()(),(),()(),(),()a t b t c t a t b t c t a t b t c t a t b t c t ''''=++.定理2.2 设()a t是一个处处非零的连续可微的向量函数,则 (1) 向量函数()a t 的长度是常数当且仅当()()0a t a t '⋅≡. (2) 向量函数()a t的方向不变当且仅当()()0a t a t '⨯≡.(3) 设()a t 是二阶连续可微的. 如果向量函数()a t与某个固定的方向垂直,那么 ()(),(),()0a t a t a t '''≡. 反过来,如果上式成立,并且处处有()()0a t a t '⨯≠,那么向量函数()a t必定与某个固定的方向垂直.证明 (1) 因为()()22()()()()|()|a t a t a t a t a t '''== ,所以|()|a t 是常数2|()|a t ⇔是常数()()0a t a t '⇔⋅≡.(2) 因为()a t 处处非零,取()a t方向的单位向量1()|()|()b t a t a t -= . 则()()()a t f t b t = ,其中()|()|f t a t =连续可微. 于是()()2()()()()()()()()()()(),.a t a t f t b t f t b t f t b t f t b t b t t ''''⨯=⨯+=⨯∀“⇒”由条件知()b t c = 是常向量,()0b t c ''== . 从而()()0a t a t '⨯≡.“⇐”由条件得()()0b t b t '⨯≡,所以()b t ,()b t ' 处处线性相关. 因为()b t 是单位向量,处处非零,所以()()()b t t b t λ'= . 用()b t 作内积,得()12()()()()()0t b t bt b t b t λ''=⋅=⋅≡ . 于是()0b t '≡ ,()b t c =是常向量.(3) 设向量函数()a t与某个固定的方向垂直,那么有单位常向量1e 使得1()0a t e ⋅≡ . 求导得到1()0a t e '⋅≡ ,1()0a t e ''⋅≡ . 从而(),(),()a t a t a t '''共面,()(),(),()0a t a t a t '''≡ .反之,设()(),(),()0a t a t a t '''≡ . 令()()()b t a t a t '=⨯. 由条件,()b t 处处非零. 且()b t '= ()()a t a t ''⨯连续. 根据二重外积公式,()()()()()()()()()()()(),(),()()(),(),()()(),(),()()0.b t b t a t a t a t a t a t a t a t a t a t a t a t a t a t a t a t a t ''''⨯=⨯⨯⨯''''''=-'''=≡根据已经证明的(2),()b t 的方向不变. 设这个方向为1e . 则1()|()|b t b t e = . 用()a t作内积,得()1|()|()()()()()()0b t a t e a t b t a t a t a t '⋅=⋅=⋅⨯≡.由于()b t 处处非零,得到1()0a t e ⋅≡ ,即()a t与固定方向1e 垂直. □课外作业: 1. 证明定理2.1.2. 设33:E E σ→为等距变换. 在3E 中取定一个正交标架{};,,O i j k . 令3 为3E 中全体向量构成的向量空间. 定义映射33::()()AB A B σσ→ . 如果()O O σ=,证明 是线性映射.3. 设向量函数()r t 有任意阶导(函)数. 用()()k r t 表示()r t 的k 阶导数,并设()(1)()()k k r t r t +⨯处处非零. 试求()()(1)(2)(),(),()0k k k r t r t r t ++≡的充要条件.第二章 曲线论本章内容:弧长,曲率,挠率;Frenet 标架,Frenet 公式;曲线论基本定理 计划学时:14学时,含习题课3学时. 难点:曲线论基本定理的证明§ 2.1 参数曲线三维欧氏空间3E 中的一条曲线C 是一个连续映射3:[,]p a b E →,称为参数曲线. 几何上,参数曲线C 是映射p 的象.取定正交标架{};,,O i j k,则曲线上的点()([,])p t t a b ∈与它的位置向量()Op t 一一对应. 令()()r t Op t =. 则()()()()((),(),())r t x t i y t j z t k x t y t z t =++=,[,]t a b ∈, (1.3)其中t 为曲线的参数,(1.3)称为曲线的参数方程.由定义可知()()01()lim (),(),()()()t r t x t y t z t r t t r t t∆→''''==+∆-∆,(,)t a b ∈. (1.4)如果坐标函数(),(),()x t y t z t 是连续可微的,则称曲线()r t是连续可微的. 此概念与标架的取法无关.(为什么?)导数()r t '的几何意义:割线的极限位置就是曲线的切线.如果()0r t '≠ ,则()r t '是该曲线在()r t 处的切线的方向向量,称为该曲线的切向量. 这样的点称为曲线的正则点. 曲线在正则点的切线方程为()()()X u r t ur t '=+, (1.5) 其中t 是固定的,u 是切线上点的参数,()X u是切线上参数为u 的点的位置向量.定义. 如果()r t是至少三次以上的连续可微向量函数,并且处处是正则点,即对任意的t ,()0r t '≠ ,则称曲线()r t是正则参数曲线. 将参数增大的方向称为曲线的正向.上述定义与3E 中直角坐标系的选取无关. 正则曲线:正则参数曲线的等价类.曲线的参数方程中参数的选择不是唯一的. 在进行参数变换时,要求参数变换()t t u =满足:(1)()t u 是u 的三次连续可微函数;(2) ()t u '处处不为零. 这样的参数变换称为可允许的参数变换. 当()0t u '>时,称为保持定向的参数变换.根据复合函数的求导法则,[]()(())()()d d du dt t t u r t u r t t u ='=⋅ .这种可允许的参数变换在所有正则参数曲线之间建立了一种等价关系. 等价的正则参数曲线看作是同一条曲线,称为一条正则曲线. 以下总假定()r t是正则曲线.如果一条正则参数曲线只允许作保持定向的参数变换,则这样的正则参数曲线的等价类被称为是一条有向正则曲线. (返回Frenet 标架)例1.1 圆柱螺线()(cos ,sin ,),()r ta t a t bt t =∈ ,其中,ab 是常数,0a >.()()sin ,cos ,r t a t a t b '=- ,|()|0()0r t r t ''=>⇒≠所以圆柱螺线是正则曲线.例1.2 半三次曲线32()(,),()r t t t t =∈.2()(3,2)r t t t '= ,(0)0r '= .这条曲线不是正则曲线.连续可微性和曲线的正则性(光滑性)是不同的概念. (与数学分析中的结论比较) 平面曲线的一般方程()y f x =和隐式方程(,)0F x y =. 空间曲线的一般方程(),()y f x z g x == (1.6)和隐式方程(,,)0,(,,)0.F x y zG x y z =⎧⎨=⎩ (1.8) 这些方程可以化为参数方程. (习题4:正则曲线总可以用一般方程表示)曲线(1.8)的切线方向,正则性. 课外作业:习题2,5§ 2.2 曲线的弧长设3E 中一条正则曲线C 的方程为(),[,]r r t t a b =∈. 则|()|b as r t dt '=⎰(2.1)是该曲线的一个不变量,即它与正交标架的选取无关,也与曲线的可允许参数变换无关.不变量s 的几何意义是该曲线的弧长,因为1max||01|()|lim|()()|i nbi i at i s r t dt r t r t +∆→='==-∑⎰.其中01n a t t t b =<<<= 是区间[,]a b 的任意一个分割,1i i i t t t +∆=-,max λ={|1,i t i ∆=2,,n . (为什么?)令()|()|t as t r d ττ'=⎰. (2.4)则()s s t =是曲线C 的保持定向的可允许参数变换,称为弧长参数. 它是由曲线本身确定的,至多相差一个常数,与曲线的坐标表示和参数选择都是无关的. 因此任何正则曲线都可以采用弧长s 作为参数,当然,允许相差一个常数.注意|()|ds r t dt '=也是曲线的不变量,称为曲线的弧长元素(或称弧微分).虽然理论上任何正则曲线都可以采用弧长参数s ,但是具体的例子中,曲线都是用一般的参数t给出的. 由(2.4),即使|()|r t '是初等函数,()s t 也不一定是初等函数. 下面的定理给出了判别一般参数是否是弧长参数的方法.定理 2.1 设(),[,]r r t t a b =∈是3E 中一条正则曲线,则t 是它的弧长参数的充分必要条件是|()|1r t '=. 即t 是弧长参数当且仅当(沿着曲线C )切向量场是单位切向量场.证明. “⇐”由(2.4)可知,s t a =-. “⇒”如果t 是弧长参数,则s t =,从而|()|1ds r t dt '==. □以下用“﹒”表示对弧长参数s 的导数,如()r s ,()r s 等等,或简记为,rr 等等. 而“'”则用来表示对一般参数t 的导数.课堂练习:4课外作业:习题1,2(1),3.§ 2.3 曲线的曲率和Frenet 标架设曲线C 的方程为()r r s =,其中s 是曲线的弧长参数. 令()()s r s α=. (3.1) 对于给定的s ,令θ∆是()s α 与()s s α+∆之间的夹角,其中0s ∆≠是s 的增量.定理3.1 设()s α 是曲线()r r s = 的单位切向量场,s 是弧长参数. 用θ∆表示向量()s s α+∆与()s α之间的夹角,则lim|()|ss s θα∆∆∆→= . (3.2) 证明. ()001||lim lim ()()s s d s s s ds s s ααααα∆→∆→∆===+∆-∆∆()()2200022sin sin lim lim lim ||s s s s s s θθθθθ∆∆∆∆→∆→∆→∆∆===∆∆∆, ()r s 0s =图2-5O()s αs L=()s s α+∆()r s s +∆()s s α+∆()s α()()s s s αα+∆-θ∆因为θ∆=定义 )为该曲线的曲率向量.把曲线C . 其方程就是(3.3)当然,s (3.4) 所以(3.5) 即曲率κ由|()s α 如果在一点s 处()0s κ≠. 于是在该点有(3.6) 在()s κ (3.7)}),()s s γ ,称为曲线在该点的Frenet 标架(见图2-2). 它的确定不受曲线的保持定向的参数变换的影响.注意. 如果在一点0s 处0()0s κ=,则一般来说无法定义在该点的Frenet 标架. 1. 若()0s κ≡,则C 是直线,可以定义它的Frenet 标架.2. 若0s 是κ的孤立零点, 则在0s 的两侧都有Frenet 标架. 如果00()()s s ββ-+=,则可以将Frenet 标架延拓到0s 点.3. 在其他的情况下将曲线分成若干段来考察.切线、主法线和次法线,法平面、从切平面和密切平面,以及它们的方程.切线:()()()u r s u s ρα=+;主法线:()()()u r s u s ρβ=+ ;次法线:()()()u r s u s ργ=+法平面:[()]()0X r s s α-= ;从切平面:[()]()0X r s s β-= ;密切平面:[()]()0X r s s γ-=在一般参数t 下,曲率κ和Frenet 标架的计算方法.3|()()|()|()|r t r t t r t κκ'''⨯==' ,()|()|r t r t α'=' ,()()|()()|r t r t r t r t γ'''⨯='''⨯,βγα=⨯ . (3.13) 证明. 设()s s t =为弧长参数,()t t s =为其反函数. 则由(2.4),()|()|ds s t r t dt''==. 故(())()()()|()|(())()(),():(())|()|dr s t ds t r t r t r t s t s t t s t ds dt r t αααα''''====='. (3.12) 由曲率κ的定义,||0κα=≥ ,可知主法向量||αβα= 满足ακβ= . 上式再对t 求导,得 2d d ds r s s s s s s dt ds dtααααακβ'''''''''''=+=+=+.于是2333()()||r r s s s s s r r s αακβκαβκγκ'''''''''''''⨯=⨯+=⨯=⇒⨯= .所以33|()()||()()||()|r t r t r t r t s r t κ''''''⨯⨯==''. 代入上式得()()|()()|r t r t r t r t γ'''⨯='''⨯. □ 例3.1 求圆柱螺线()(cos ,sin ,),()r t a t a t bt t =∈的曲率和Frenet 标架,其中0a >.解. ()r t 'r ' 所以例3.2 .解法1. 22t k ππ=+于是当/t π=r 所以在1)-,γ=解法2. 对应的参数为0s =. 则有 (0)((0),(0),(0))(0,0,1)r x y z ==, (1)以及22222222()()()1,(,).()()()0,()()()1,x s y s z s s x s y s x s xs y s z s εε⎧++=⎪∀∈-+-=⎨⎪++=⎩ (3.14) 求导得到()()()()()()0,2()()2()()()0,()()()()()()0.x s x s y s y s z s z s x s x s y s y s x s x s x s y s y s z s z s ++=⎧⎪+-=⎨⎪++=⎩(3.15) 令0s =,由(1)和上述方程组得到(0)(0)0xz == ,(0)1y =± . 通过改变曲线的正方向,可设(0)1y= ,于是 (0)((0),(0),(0))(0,1,0)xy z α==. (3.16) 对(3.15)前两式再求导,利用(3.14)得22()()()()()()1,2()()2()2()()2()()0.x s x s y s y s z s z s x s x s x s y s y s y s x s ++=-⎧⎨+++-=⎩(3.17) 令0s =,由(3.15)和(3.16)得(0)0y= ;由(1)和(3.17)第1式得(0)1z =- ;再由(3.17)第2式得(0)2x = . 所以(0)(0)((0),(0),(0))(2,0,1)r x y zα===-. 由此得(0)(0,0,1)r =处的曲率(0)|(0)|κα== ,Frenet 标架为:(0)(0,0,1)r = ;(0)(0,1,0)α=,1(0)(0)(0)1)κβα==-,(0)(0)(0)1,0,2)γαβ=⨯=-- . □课外作业:习题1(2,4),4,7§ 2.4 曲线的挠率和Frenet 公式密切平面对弧长s 的变化率为||γ,它刻画了曲面偏离密切平面的程度,即曲线的扭曲程度. 定义4.1 函数τγβ=-⋅ ,即()()()s s s τγβ=-⋅ 称为曲线的挠率.注. 由0γγ⋅= ,()0γαγαγκβ⋅=-⋅=-⋅= 可知//γβ . 因此可设γτβ=- , (4.1)从而||||τγ= ,即挠率的绝对值刻画了曲线的扭曲程度. 定理4.1 设曲线C 不是直线,则C 是平面曲线的充分必要条件是它的挠率0τ≡.证明. 设曲线C 的弧长参数方程为()r r s =,[0,]s L ∈. 因为C 不是直线,0κ≠(见定理3.2 ),存在Frenet 标架{};,,r αβγ.“⇒” 设C 是平面曲线,在平面:()0X a n ∏-= 上,其中a是平面上一个定点的位置向量,n 是平面的法向量,a 和n均为常向量. 则有(())0,[0,]r s a n s L -=∀∈.求导得()0,()()0()0,s n s s n s n s ακββ==⇒=∀.于是()//s n γ , 由于|()|||1s n γ== ,所以()s n γ=± 是常向量,从而0γ≡ ,||||0τγ=≡ . 即有0τ≡.“⇐”设0τ≡. 由(4.1)得0γτβ=-= . 所以()0s c γ=≠ 是常向量. 由(())()()()0d r s c r s c s s ds αγ=== 可知()r s c是一个常数,即0()()r s c r s c = ,其中0[0,]s L ∈是固定的. 于是曲线C 上的点满足平面方程0[()()]0r s r s c -= ,其中0()r s 是平面上一个定点的位置向量,c是平面的法向量. □设正则曲线C 上存在Frenet 标架. 对Frenet 标架进行求导,得到Frenet 公式,,,.r αακββκατγγτβ⎧=⎪=⎪⎨=-+⎪⎪=-⎩(4.8) 上式中的后三式可以写成矩阵的形式00000ακαβκτβγτγ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪⎪ ⎪- ⎪⎝⎭⎝⎭⎝⎭. (4.9) 作为Frenet 公式的一个应用,现在来证明定理4.2 设曲线()r r s =的曲率()s κ和挠率()s τ都不为零,s 是弧长参数. 如果该曲线落在一个球面上,则有222111d a ds κτκ⎡⎤⎛⎫⎛⎫+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, (4.10) 其中a 为常数.证明. 由条件,设曲线所在的球面半径是a ,球心是0r,即有()220()rs r a -= . (4.11)求导得到()0()()0rs r s α-=. 这说明0()r s r - 垂直于()s α,可设 0()()()()()r s r s s s s λβμγ-=+. (4.12)再求导,利用Frenet 公式得()()()()[()()()()]()()()()()s s s s s s s s s s s s s αλβλκατγμγμτβ=+-++-. 比较两边,,αβγ的系数,得1λκ=-,λμτ= ,μλτ=- , (4.13) 其中略去了自变量s . 所以1λκ=-,111d d ds ds λλμτττκ⎛⎫===- ⎪⎝⎭. (4.14)将(4.12)两边平方可得()22220r r a λμ+=-=,再将(4.14)代入其中,即得(4.10). □注记 由证明过程中的(4.13)第3式还可得110d d ds ds τκτκ⎡⎤⎛⎫+= ⎪⎢⎥⎝⎭⎣⎦. (4.16) 在一般参数下挠率的计算公式.2(,,)||r r r r r τ''''''='''⨯ . (4.18)证明. 因为()|()|ds s t r t dt''==,利用Frenet 公式,有 ()()(())ds dr r t s t s t dt dsα''==,2()()(())()(())(())r t s t s t s t s t s t ακβ'''''=+,23(())()()(())3()()(())(())()(())()(())[(())(())(())(())].d s t r t s t s t s t s t s t s t s t s t dts t s t s t s t s t s t κακββκκατγ''''''''''=++'+-+于是3()()()(())(())r t r t s t s t s t κγ''''⨯= ,从而()362()()()()(())(())()(),(),()()(())(()).r t r t r t s t s t s t r t rt r t r t s t s t s t κγκτ''''''''''''''''=⨯⋅=⋅'=由(3.13)可知622()(())|()()|s t s t r t r t κ''''=⨯ ,代入上式即得(4.18). □定理4.3 曲线()r r t = 是平面曲线的充要条件是(,,)0r r r ''''''=. □例 求圆柱螺线()(cos ,sin ,)r t a t a t bt =的挠率.解. ()(sin ,cos ,)r t a t a t b '=- ,()(cos ,sin ,0)r t a t a t ''=-,|()|r t '=2(sin ,cos ,)(sin ,cos ,)r r ab t ab t a a b t b t a '''⨯=-=-,||r r '''⨯=()(sin ,cos ,0)r t a t t '''=-所以2(,,)r r r a b ''''''= ,22b a b τ=+. □课外作业:习题1(2, 4),4,10§ 2.5 曲线论基本定理已经知道正则参数曲线的弧长、曲率、挠率是曲线的不变量,与坐标系取法及保持定向的参数无关,都是曲线本身的内在不变量. 在空间的刚体运动下,弧长、曲率、挠率保持不变(为什么?). 反之,这三个量也是曲线的完备不变量系统,对确定空间曲线的形状已经足够了,即有定理 5.1 (唯一性定理) 设111222:(),:()C r r s C r r s ==是3E 中两条以弧长s 为参数的正则参数曲线,[0,]s l ∈. 如果它们的曲率处处不为零,且有相同的曲率函数和挠率函数,即12()()s s κκ=,12()()s s ττ=,则有3E 中的一个刚体运动σ将1C 变成2C .证明 选取3E 中的刚体运动σ将2C 在0s =处的Frenet 标架{}2222(0);(0),(0),(0)r αβγ变为1C 在0s =处的Frenet 标架{}1111(0);(0),(0),(0)r αβγ. 则这个刚体运动σ将2C 变为正则曲线3C .设3C 的弧长参数方程为33()r r s =. 由于在刚体运动下,弧长、曲率、挠率保持不变,1C 与3C 也有相同的曲率和挠率函数:13()()s s κκ=,13()()s s ττ=.且在0s =处它们有相同的Frenet 标架:13131313(0)(0),(0)(0),(0)(0),(0)(0).r r ααββγγ====令{}1111();(),(),()r s s s s αβγ 和{}3333();(),(),()r s s s s αβγ分别为1C 和3C 的Frenet 标架. 则它们都满足一阶线性常微分方程组初值问题,,,.r αακββκατγγτβ⎧=⎪=⎪⎨=-+⎪⎪=-⎩(5.6) 1111(0)(0),(0)(0),(0)(0),(0)(0).r r ααββγγ=⎧⎪=⎪⎨=⎪⎪=⎩(5.7)根据解的唯一性(见附录定理1.1),有13()()r s r s =,即1C 与3C 重合. □注 常微分方程组(5.6)中,共有12个未知函数:()()(),(),()r s x s y s z s =,()123()(),(),()s s s s αααα= , ()123()(),(),()s s s s ββββ= ,()123()(),(),()s s s s γγγγ=.初始条件为:()1123(0)(,,)(0),(0),(0)r a a a x y z ==,()123111213(0),(0),(0)(,,)a a a ααα=,()123212223(0),(0),(0)(,,)a a a βββ=,()123313233(0),(0),(0)(,,)a a a γγγ=.定理5.2设111222:(),:()C r r t C r r u ==是3E 中两条正则参数曲线,它们的曲率处处不为零.如果存在三次以上的连续可微函数()u t λ=([,]t a b ∈),()0t λ'≠,使得这两条曲线的弧长函数、曲率函数和挠率函数之间满足121212()(()),()(()),()(())s t s t t t t t λκκλττλ===, (5.4) 则有3E 中的一个刚体运动σ将1C 变成2C .证明 不妨设()0t λ'>. 对2C 作可允许参数变换()u t λ=,可将2C 的参数方程写成32()(())r t r t λ=. 则1C 的弧长为11()|()|t a s t r d ξξ'=⎰ ,2C 的弧长为 ()23322()()|()||()|(())()t t t a a a dr s t r d d d s t r duλλξξλξξηλη'''====⎰⎰⎰.由条件,可取132()()()s s t s t s t λ=== 作为1C 和2C 的弧长参数. 因为13()()s t s t =有相同的反函数()t s μ=,即111111322()s s s s μλλ-----==== ,12s λμ-= . 于是 1111112222()()()()()()s s s s s s s s κκκμκλμκκ--≡===≡ .同理,21()()s s ττ= 根据定理5.1,有3E 中的一个刚体运动σ将1C 变成2C . □定理5.3 (存在性定理) 设(),()s s κτ是定义在区间[,]a b 上的任意二个给定的连续可微函数,并且()0s κ>. 则除了相差一个刚体运动之外,存在唯一的3E 中的正则曲线:()C r r s =,[,]s a b ∈,使得s 是C 的弧长参数,且分别以给定的函数()s κ和()s τ为它的曲率和挠率.证明 唯一性由定理5.1即得. 只要证明存在性.考虑含有12个未知函数的一阶线性常微分方程组初值问题(5.6),(5.7).:,,,.dr ds d ds d ds d dsαακββκατγγτβ⎧=⎪⎪⎪=⎪⎨⎪=-+⎪⎪⎪=-⎩(5.6) 0000(0),(0),(0),(0).r r ααββγγ=⎧⎪=⎪⎨=⎪⎪=⎩ (5.7)根据解的唯一存在定理(见附录定理1.1),对任意给定的初始条件(5.7),(5.6)都有定义在区间[,]a b 上[,]a b 11[,]a b [0,]l λ1s 2s1κ2κμ的解. 取(5.6)的满足初始条件(0)0,(0),(0),(0)r i j k αβγ====(5.7)’的解,其中{};,,O i j k是一个正交标架(即右手单位直角标架). 为了使用求和号,记123,,,ij i j e e e g e e αβγ====, (5.9)11121321222331323300000a a a a a a a a a κκττ⎛⎫⎛⎫⎪ ⎪=- ⎪ ⎪-⎝⎭⎝⎭. (5.5) 因为123,,,r e e e 是(5.6)的解,所以()r r s = 是三阶连续可微的. 下面来证明()r r s =就是所要求的曲线. 由(5.6)可得311,,1,2,3i ij j j de dr e a e i dsds ====∑(5.6)’ 首先来证明(),,1,2,3ij ij g s i j δ==. (5.10)由(5.6)得333111()()iji j j i j i ik k j jk i k ik kj jk ki k k k dg d e e de de e e a e e a e e a g a g ds ds ds ds =====+=+=+∑∑∑, 由初始条件(5.7)’可知有(0)(0)(0)ij i j ij g e e δ==,,1,2,3i j =. 这说明9个函数()ij g s 满足一阶线性常微分方程组初值问题31()ij ik kj jk ki k dF a F a F ds==+∑,(0)ij ij F δ=,,1,2,3i j =.另一方面由(5.5)可知ij ji a a =-,,1,2,3i j =. 于是9个函数()ij ij F s δ=也满足上面的一阶线性常微分方程组初值问题. 由解的唯一性,必有()()ij ij ij g s F s δ==.因此123(),(),()e s e s e s 是两两正交的单位向量. 从而混合积()123(),(),()1e s e s e s =±. 但是函数()123()(),(),()f s e s e s e s = 是连续的,并且由初始条件得()123(0)(0),(0),(0)1f e e e ==. 所以123(),(),()e s e s e s构成右手系.现在,由(5.6)’可知11dr e ds==. 所以()r r s = 是正则曲线,并且s 是:()C r r s = 的弧长参数,1()()s e s α=是C 的单位切向量场. 由(5.6)第2式及()0s κ>可知C 的曲率为()s κ,主法向量场为2()()s e s β=. 最后,因为123(),(),()e s e s e s 是右手单位正交基,所以3()()s e s γ= 是次法向量场. 再由(5.6)第3式可知C 的挠率为()()()s s s γβτ-= . □例 求曲率和挠率分别是常数00κ>,0τ的曲线C 的参数方程.解 我们已经知道圆柱螺线()(cos ,sin ,)r t a t a t bt =的曲率和挠率都是常数,分别为22aa b +和22b a b +. 根据定理 5.1,曲线C 一定是圆柱螺线. 由022a a b κ=+和022ba bτ=+解出02200a κκτ=+,02200b τκτ=+. 因此所求曲线C 的参数方程为()00022001()cos ,sin ,r t t t t κκτκτ=+ .因为C的弧长参数s ==t就可得到C 的弧长参数方程:))()00022001()cos ,sin,r s κκτκτ=+ . □课外作业:习题1,4,6§ 2.6 曲线参数方程在一点的标准展开对于定义在区间[,]a b 上的n 次连续可微的函数()f x ,可以在区间(,)a b 内任意一点0x 邻近展开为Taylor 展式:2()11000000002!!()()()()()()()()()n n n n f x f x f x x x f x x x fx x x o x x '''=+-+-++-+- . 同样,对于一条三次连续可微的弧长参数曲线(),(,)r r s s εε=∈-,可在0s =处展开为 233112!3!()(0)(0)(0)(0)()r s r sr s r s r o s =++++ , (6.1) 其中3()o s是一个向量函数,满足330()lim 0s o s s→=. (6.2) 由Frenet 公式可得 2(0)(0),(0)(0)(0),(0)(0)(0)(0)(0)(0)(0)(0)r r r ακβκακβκτγ===-++ (6.3)代入(6.1)得23233300000()(0)(0)(0)(0)()6266r s r s s s s s o s κκκκταβγ⎛⎫⎛⎫=+-++++ ⎪ ⎪⎝⎭⎝⎭ ,其中000(0),(0),(0)κκκκττ=== . 以0s =处的Frenet 标架{}(0);(0),(0),(0)r αβγ 建立右手直角坐标系,则曲线C 在0s =附近的参数方程为2330123300233003(),6(),26().6x s s o s y s s o s z s o s κκκκτ⎧=-+⎪⎪⎪=++⎨⎪⎪=+⎪⎩(6.4) 上式称为曲线:()C r r s =在0s =处的标准展开式.在标架{}(0);(0),(0),(0)r αβγ下,考虑C 的近似曲线232300000011:(),,(0)(0)(0)(0)2626C r s s s s r s s s κκτκκταβγ⎛⎫=≡+++ ⎪⎝⎭. (6.5)近似曲线1C 与原曲线C 在0s =处有相同的Frenet 标架{}(0);(0),(0),(0)r αβγ,有相同的曲率0κ和相同的挠率0τ. 这是因为s 是1C 的一般参数,并且1(0)(0,0,0)(0)r r ==,1(0)(1,0,0)(0)r α'== ,100(0)(0,,0)(0)r κκβ''==,10000(0)(0,0,)(0)rκτκτγ'''== , 从而1(0)1r '= ,111(0)(0)(0)(0)r r αα'==' ,()1100(0)(0)(0)(0)(0)r r ακβκγ'''⨯=⨯=,110(0)(0)r r κ'''⨯=,111031(0)(0)(0)(0)r r r κκ'''⨯==' ,11111(0)(0)(0)(0)(0)(0)r r r r γγ'''⨯=='''⨯ , 111(0)(0)(0)(0)(0)(0)βγαγαβ=⨯=⨯=,2111001022011(0)(0)(0)(0)(0)(0)r r r r r κτττκ''''''⨯⋅==='''⨯ . 在0s =邻近,近似曲线1C 的性状近似地反映了原曲线C 的性状. 近似曲线1C 的图形见下图,其在各坐标平面上的投影见书上图2-6.在密切平面上的投影是抛物线:20,,02x s y s z κ===,在从切平面上的投影是三次曲线:300,0,6x s y z s κτ===,在法平面上的投影是半三次曲线:230000,,26x y s z s κκτ===.定义 设两条弧长参数曲线111222:(),:()C r r s C r r s ==相交于0p ,012(0)(0)Op r r == . 取1122,p C p C ∈∈,使得 0102p p p p s ==∆. 若有正整数n 使得121200|||()()|lim lim 0n n s s p p r s r s s s ∆→∆→∆-∆==∆∆ ,1210|()()|lim 0n s r s r s s +∆→∆-∆≠∆, (6.9) 则称1C 与2C 在0p 处有n 阶切触.定理6.1 设两条弧长参数曲线111222:(),:()C r r s C r r s ==在0s =处相交. 则它们在0s =处有n 阶切触的充分必要条件是()()12(0)(0)k k r r =,1,2,,k n = ,(1)(1)12(0)(0)n n r r ++≠ . (6.10)证明 在0s =处,有0s s s ∆=-=. 因为12,C C 在0s =处相交,所以12(0)(0)r r =. 根据Taylor 公式,12()()12121()()()(0)(0)!kn n k k k s r s r s o s r r k ++=-=+⎡⎤-⎣⎦∑ . 充分性. 由(6.10),12(1)(1)1212()()()(0)(0)(1)!n n n n s r s r s o s r r n ++++-=+⎡⎤-⎣⎦+ ,所以 2(1)(1)12121210001()||()()lim lim lim ||0(0)(0)(1)!n n n n n n s s s o s p p r s r s s r r n s s s++++∆→→→-===+⎡⎤-⎣⎦+∆, 2(1)(1)1212121110001()||()()lim lim lim 0(0)(0)(1)!n n n n n n s s s o s p p r s r s r r n s s s++++++∆→→→-==≠+⎡⎤-⎣⎦+∆. 即12,C C 在0s =处有n 阶切触.必要性. 由条件,12,C C 在0s =处有n 阶切触,则1n ≥. 如果12(0)(0)r r ''≠ ,则12121200||()()lim lim 0(0)(0)s s p p r s r s r r s s∆→→-''==>-∆, 从而120||lim0ns p p s ∆→≠∆,矛盾. 设1m ≥是满足()()12(0)(0)k k r r = ,1,2,,k m = ,(1)(1)12(0)(0)m m r r ++≠的正整数. 由充分性,12,C C 在0s =处有m 阶切触. 由条件得m n =,故(6.10)成立. □ 推论 (1) 一条曲线与它在一点的Taylor 展开式中的前1n +项之和(即略去()ns ∆的高阶无穷小)至少有n 阶切触;与它在一点的切线至少有1阶切触;与它在一点的近似曲线至少有2阶切触. (2) 两条相交曲线在交点处有二阶以上切触的充分必要条件是这两条曲线在该点处相切,且有相同的有向密切平面和相同的曲率.曲率圆(密切圆):在弧长参数曲线:()C r r s = 上一点()r s处的密切平面上,以曲率中心1()()()r s s s βκ+ 为圆心,以曲率半径1()R s κ=为半径的圆. 它的方程是:()11()()()cos ()sin ()()()X t r s s t s t s s s βαβκκ=+++ . 曲线与曲面的切触阶,密切球面,曲率轴. (略) 课外作业:习题2,3§2.7 存在对应关系的曲线偶设两条正则参数曲线111222:(),:()C r r t C r r u ==之间存在一个一一对应关系()t u t ↔=,()0u t '≠. 对曲线2C 作参数变换,可设222:()C r r t =,从而12,C C 之间的一一对应就是参数相同的点之间的一一对应.定义7.1 如果两条互不重合的曲线12,C C 之间存在一个一一对应,使得它们在对应点有公共的主法线,则称这两条曲线为Bertrand 曲线偶,其中每一条曲线称为另一条曲线的侣线,或共轭曲线.事实上,因为,所以,. 另一方面由可知. 因此//n α . 设rn κα=. 于是C 的曲率 ()()|()||||()|||(),()rs s n s x s y s κακ=====. 当常数λ充分小时,1()[1()]()0r r s s s λκα'=+≠ ,所以1C 是正则参数曲线. 因为0λ≠,所以曲线C 和1C 不重合.现在来证明在对应点C 和1C 有相同的主法线. 在相同的参数s 点处,C 的主法线l 是过()r s(的终)点且垂直于()s α 的直线,所以l 的方程为()()()X u r s un s =+,u ∈ .同理,在相同的参数s 点处,1C 的主法线1l 是过1()r s 点且垂直于1()//()r s s α' 的直线. 所以1//l l (因为它们都垂直于()s α ). 由定义可知1()r s在直线l 上,所以l 与1l 重合. □下面考虑空间挠曲线,即挠率0τ≠的曲线.定理7.1 设1C 和2C 是Bertrand 曲线偶. 则1C 和2C 在对应点的距离是常数,并且1C 和2C 在对应点的切线成定角.证明 设曲线1C 的弧长参数方程为11()r r s = ,Frenet 标架为{}1111();(),(),()r s s s s αβγ,曲率和挠率分别为1()s κ和1()s τ. 因为1C 和2C 之间存在一一对应,设2C 上与1()r s 对应的点是22()r r s = ,s 是2C 的一般参数,2C 的Frenet 标架为{}2222();(),(),()r s s s s αβγ,曲率和挠率分别为2()s κ和2()s τ. 再设2C 的弧长参数为()ss s = . 由条件,2()r s 在曲线1C 上的点1()r s 处的主法线11()()()X u r s u s β=+上,所以()121//()()()s r s r s β-,并且12()()s s ββ=± . 因此可设211()()()()r s r s s s λβ=+,21()()s s βεβ= , (7.3)其中1ε=±是常数,()121()()()()s s r s r s λβ=-是可微函数.将(7.3)两边对s 求导,利用Frenet 公式,得21111()()()()()()[()()()()]ss s s s s s s s s s ααλβλκατγ''=++-+111[1()()]()()()()()()s s s s s s s s λκαλβλτγ'=-++. (7.4)以21βεβ=分别与上式两边作内积,可得()0s λ'=,()s c λ=是常数. 再由(7.3)得211|()()||()()|||r s r s s s c λβ-==,即1C 和2C 在对应点的距离是常数||(0c >,因为1C 和2C 不重合).设12()((),())s s s θαα=∠ ,则()12()()cos ()s s s ααθ=. 因为()112212122211120d ss dsκβακαβεκβαεκαβαα''=+=+=, 所以()cos ()s θ是常数,从而()s θ是常数. □定理7.2 设正则曲线C 的曲率κ和挠率τ都不为零. 则C 是Bertrand 曲线的充分必要条件是:存在常数,λμ,且0λ≠,使得1λκμτ+=.证明 必要性. 设曲线C 有侣线1C ,它们的参数方程分别是()r s 和1()r s,其中s 是C 的弧长参数. 如同定理7.1的证明过程一样,设{}();(),(),()r s s s s αβγ和{}1111();(),(),()r s s s s αβγ分别是C和1C 的Frenet 标架,11,κτ分别是1C 的曲率和挠率,s是1C 的弧长参数. 现在(7.3)和(7.4)分别成为 1()()()r s r s s λβ=+,1()()s s βεβ= , (7.3) 1()()[1()]()()()ss s s s s s αλκαλτγ'=-+. (7.5) 其中0λ≠是常数. 因此由0τ≠得|()|0ss '=≠,()s s ε'= 其中11ε=±也是一个常数.由定理7.1,1()()s s c αα= 是常数. 用()s α与(7.5)两边作内积,得22221()(1)[1()][()]c s c s c s ελκλκλτ=-⇒--=.由()0s λτ≠可知2(1)0c -≠,从而1()()s s λκμτ-==是常数. 这就是说,存在常数0,λμ≠,使得.充分性. 设正则弧长参数曲线:()C r r s =的曲率κ和挠率τ满足1λκμτ+=,其中,λμ是常数,且0λ≠. 令1()()()r s r s s λβ=+,则1()[1()]()()()()[()()]0r s s s s s s s s λκαλτγτμαλγ'=-+=+≠. 所以由参数方程11()r r s =定义的曲线1C 是正则曲线,并且与曲线C 不重合(因为0λ≠).由于1|r τ'= 1C 的单位切向量场1()[sin ()cos ()]s s s αθαθγ=±+,其中arctan(/)θμλ=是常数,满足sin θ=,cos θ=.设s是1C 的弧长参数,利用Frenet 公式,有111(sin cos )d ds ds ds ακβθκθτβ==±- .如果sin cos 0θκθτ-≠,则有1ββ=±,从而曲线1C 是C 的侣线,1C 和C 是Bertrand 曲线偶(在参数s 相同的点,1C 和C 得主法线有相同方向,并且1()r s 在()r s处的主法线上). 如果sin cos 0θκθτ-=,则μκλτ=. 结合1λκμτ+=可知κ和τ都是非零常数,C 是圆柱螺线,从而是Bertrand 曲线. □定义7.2 如果两条曲线12,C C 之间存在一个一一对应,使得曲线1C 在任意一点的切线正好是2C 在对应点的法线(即垂直于2C 在该点的切线),则称曲线2C 是1C 的渐伸线. 同时称曲线1C 是2C 的渐缩线.定理7.3 设:()C r r s =是正则弧长参数曲线. 则C 的渐伸线的参数方程为1()()()()r s r s c s s α=+-. (7.7) 证明 设渐伸线1C 上与()r s 对应的点为1()r s . 则1()r s 在曲线C 上()r s点处的切线上,故有函数()s λλ=使得1()()()()r s r s s s λα=+. (7.8) 由渐伸线的定义,1()()r s s α'⊥,所以10()()[()()()()()()]()1()r s s s s s s s s s s ααλαλκβαλ'''==++=+. 由此得()1s λ'=-,()s c s λ=-. 代入(7.8)即得(7.7). □曲线C 的渐伸线可以看作是该曲线的切线族的一条正交轨线,位于C 的切线曲面∑上. 定理7.4设:()C r r s =是正则弧长参数曲线. 则C 的渐缩线的参数方程为()111()()()tan ()()()()r s r s s s ds s s s βτγκκ=+-⎰. (7.10) 证明 设渐缩线1C 上与()r s 对应的点为1()r s . 由定义,1[()()]()()rs r s r s s α-⊥=,可设 1()()()()()()r s r s s s s s λβμγ=++. (7.11) 求导得1()()()()()[()()()()]()()()()()r s s s s s s s s s s s s s s αλβλκατγμγμτβ'''=++-++-[1()()]()[()()()]()[()()()]()s s s s s s s s s s s λκαλμτβμλτγ''=-+-++.因为11()//[()()]()()()()r s r s r s s s s s λβμγ'-=+,所以1()[()()()()]0r s s s s s λβμγ'⨯+=,即有()()1s s λκ=,()[()()()]()[()()()]s s s s s s s s μλμτλμλτ''-=+. (7.12)所以()1/()s s λκ=,且由(7.12)第2式得22()μλλμμλτ''-=+,arctan μτλ'⎛⎫⇒=- ⎪⎝⎭,()()()tan ()s s s ds μλτ⇒=-⎰.所以有(7.10). □课外作业:习题4,8§2.8 平面曲线本节研究平面曲线的特殊性质.一、平面曲线的Frenet 标架在平面2E 上取定一个正交标架(右手直角标架){};,O i j. 则平面曲线C 的弧长参数方程为()((),())r s x s y s =, [,]s a b ∈. (8.1)它的单位切向量为()()()(),()cos(()),sin(())s xs y s s s αθθ==, (8.2) 其中()(,())s i s θα=是由i到()s α的有向角(允许相差2π的整数倍),逆时针方向为正. 当区间[,]a b 是闭区间时,函数()s θ可以成为定义在整个[,]a b 上的连续可微函数.将()s α 右旋/2π,得到与()s α正交的单位向量()s β ,()()()22()cos(()),sin(())sin(()),cos(())(),()s s s s s y s x s ππβθθθθ=++=-=- . (8.3)这样,得到沿曲线C 的(平面)Frenet 标架{}();(),()r s s s αβ.二、平面曲线的Frenet 公式由于()s α 是单位切向量场,有0αα⋅= ,故//αβ ,可设 ()()()rs s s ακβ= , (7.4) 其中()()()()()()()(),()(),()()()r x s y s s s s x s y s y s x s x s y s καβ=⋅=⋅-= (7.5)称为曲线C 的相对曲率. 曲线C 的曲率为()|()|r s s κκ=. ()r s κ的符号的几何意义见图2-8.利用(7.4)得到平面曲线的Frenet 公式Cyxs =s l=O()s α ()s β(),()x f x i。

微分几何课程知识点总结

微分几何课程知识点总结

微分几何课程知识点总结微分几何的基础知识包括:1. 曲线的参数化和切向量曲线可以通过参数化函数来描述,参数t变化从而描述曲线上的点的运动。

曲线切向量是描述曲线在某一点上的方向的向量,它是曲线在该点的切线的向量。

求切向量的方法是对参数方程分别求偏导数,然后将偏导数构成的向量进行线性组合,构成切向量。

切向量的方向可用来刻画曲线的弯曲程度。

2. 曲率和法向量曲线的曲率是曲线在某一点处的弯曲程度的数值描述,它是切向量的变化率。

曲率的计算是通过求曲线切向量在参数方程下的导数再求模得到的。

法向量是描述曲线在某一点处的朝向的向量,它垂直于切向量,并且长度为1。

法向量的求取可以通过对曲线的切向量进行求导,然后标准化得到。

3. 曲面的参数化和法向量曲面可以通过参数化函数来描述,参数u,v可以用来描述曲面上的点的位置。

曲面的参数化方程可以由曲线的参数化函数进行推广得到。

求曲面的法向量时,先求出曲面的两个切向量,再通过叉乘得到法向量。

4. 曲率和高斯曲率曲面的曲率是描述曲面在某一点处的弯曲程度的数值描述,它是切向量的变化率。

曲率的计算是通过求曲线切向量在参数方程下的导数再求模得到的。

高斯曲率是描述曲面在某一点处的弯曲性质的一个重要指标,它是曲面的两个主曲率的乘积。

5. 向量场和曲线积分向量场是描述空间中每点都有的向量的场,向量场的积分可以用来计算曲线的长度、曲面的面积等。

曲线积分是在曲线上对向量场进行积分,求取曲线上的长度、质量、力矩等。

以上就是微分几何课程中的基础知识,接下来我们将进一步介绍微分几何的一些重要概念和定理。

1. 第一基本形式和第二基本形式第一基本形式是曲面上的一个内积,它可以用来计算曲面上的长度、夹角、面积、体积等性质。

第二基本形式是曲面上的一个二次型,它可以用来描述曲面上的弯曲性质,如平均曲率、高斯曲率等。

2. 光滑曲线和光滑曲面光滑曲线是指其切向量在全局都是连续可微的曲线。

光滑曲面是指其切向量在全局都是连续可微的曲面。

《微分几何及其应用》知识点总结

《微分几何及其应用》知识点总结

《微分几何及其应用》知识点总结微分几何及其应用知识点总结微分几何是现代数学的一个分支,主要研究的是几何对象的微分学性质,以及它们之间的关系。

同时,微分几何也是理论物理和工程学的重要基础学科。

以下是微分几何及其应用的一些重要知识点:1. 流形流形是微分几何中最为重要的概念之一,是指一个局部类似欧几里得空间的拓扑空间。

流形不仅在微分几何中有广泛的应用,还可以用来刻画物理学中的时空结构。

2. 流形上的曲线和切向量在流形上,存在着曲线和切向量的概念,它们与欧几里得空间中的类似。

流形上的曲线也可以用来描述物体在空间中的运动状态,切向量则可以用来描述曲线运动的方向。

3. 流形上的度量度量是衡量空间中距离和角度的量,对于流形上的点来说,也存在着度量的概念。

在微分几何中,度量不仅可以用来衡量流形上点之间的距离,还可以用来定义流形上的曲率和其他几何量。

4. 流形上的曲率曲率是描述曲线弯曲程度的量,对于流形中的曲线,依然存在着曲率的概念。

在微分几何中,曲率不仅可以用来描述曲线的性质,还可以用来描述流形的拓扑结构和几何形态。

5. 黎曼流形和黎曼曲率张量黎曼流形是指存在度量的流形,黎曼曲率张量则是描述流形曲率的重要工具。

在黎曼流形中,黎曼曲率张量可以用来计算流形的曲率,从而可以揭示流形的几何性质。

6. 应用微分几何在物理学和工程学中有广泛的应用,例如在广义相对论中,它被用来描述时空的几何形态;在计算机图形学中,它被用来描述物体的形态和在空间中的位置关系;在机器研究中,它被用来对高维数据进行降维等。

以上是微分几何及其应用的一些重要知识点的总结。

微分几何知识点总结

微分几何知识点总结

微分几何知识点总结微分几何主要包括对曲线和曲面的研究,这些研究包括曲线和曲面的参数方程、切线、法线、曲率、曲率半径,包括封闭曲线、曲面的欧拉特性、高斯-博内定理等。

在微分几何中,有一些基本的概念和知识点是必须掌握的,下面我们来进行一些总结:1. 参数曲线在微分几何中,曲线是最基本的研究对象之一。

我们可以通过参数方程来描述曲线的形状。

设曲线上的点为P(x, y, z),则曲线在空间中的参数方程可以表示为:\[\begin{cases}x = x(t) \\y = y(t) \\z = z(t) \\\end{cases}\]其中t为参数,通过曲线上的点随参数的变化来描述曲线的形状。

参数曲线的切线方程为:\[\begin{cases}x = x(t_0) + x'(t_0)(t-t_0) \\y = y(t_0) + y'(t_0)(t-t_0) \\z = z(t_0) + z'(t_0)(t-t_0) \\\end{cases}\]其中\(t_0\)为给定的参数值,切线方程也叫做一次逼近线。

2. 曲率曲线的曲率描述了曲线的弯曲程度,曲率越大,曲线越弯曲。

在微分几何中,曲线在某一点处的曲率可以通过下列公式来计算:\[k= \frac{|r'(t)\times r''(t)|}{|r'(t)|^3}\]其中k为曲率,r(t)为参数方程,r'(t)为r(t)的导数,r''(t)为r(t)的二阶导数。

曲率的倒数称为曲率半径,曲率半径越小,曲线越弯曲。

3. 曲面的参数表示与曲线类似,我们也可以用参数方程来表示曲面。

设曲面上的点为P(x, y, z),则曲面在空间中的参数方程可以表示为:\[\begin{cases}x = x(u, v) \\y = y(u, v) \\z = z(u, v) \\\end{cases}\]其中u、v为参数,通过曲面上的点随参数的变化来描述曲面的形状。

《微分几何》知识点总结

《微分几何》知识点总结

《微分几何》知识点总结微分几何是数学的一个分支,研究曲线、曲面及高维空间中的几何性质和变换。

下面是一些关键知识点的总结:1. 切空间:切空间描述了曲线或曲面在某一点上的局部性质。

对于曲线,切向量是切线的方向;对于曲面,切空间是与曲面相切的平面。

2. 参数化曲线和曲面:参数化是将曲线或曲面表示为参数的函数形式。

通过参数化,我们可以在数学上描述曲线和曲面,并进行分析。

3. 曲率:曲率描述了曲线或曲面在某一点附近的弯曲程度。

曲线的曲率由曲率向量表示,曲面的曲率由主曲率和法向量表示。

4. 流形:流形是一个具有局部坐标系的空间,可以用一组坐标来描述其中的点。

流形可以是一维曲线、二维曲面或更高维的空间。

5. 流形上的度量:度量是流形上定义的内积结构。

度量可以用来计算距离、角度和曲率等几何量。

6. 流形上的切向量和切空间:在流形上,切向量和切空间与欧几里得空间中的相似。

切向量是切平面上的向量,切空间是与流形在某点的切平面对应的向量空间。

7. 平均曲率流:平均曲率流描述了曲线或曲面根据其曲率的时间变化。

它常用于模型匹配、图像处理和几何建模等领域。

8. 黎曼流形:黎曼流形是一种拥有黎曼度量的流形。

黎曼度量允许我们定义切向量的长度和角度。

9. 流形上的测地线:测地线是流形上的特殊曲线,沿该曲线运动的物体会保持速度恒定。

测地线在广义相对论、地理学和航天飞行等领域中具有重要应用。

10. 张量场:张量场是定义在流形上的张量函数。

张量场可以用于描述力、电磁场和应力等物理量在空间中的分布。

这些是微分几何中的一些关键知识点。

通过研究这些概念和方法,我们可以更好地理解和分析曲线、曲面和高维空间中的几何性质。

微分几何的前置知识

微分几何的前置知识

微分几何的前置知识
微分几何是一门研究曲线、曲面以及更高维度流形的数学学科,它是现代数学的一个重要分支。

在学习微分几何之前,需要掌握一些前置知识,以便更好地理解微分几何的概念和方法。

首先,需要掌握多元微积分的基础知识,包括偏导数、方向导数、梯度、Hessian矩阵等。

这些概念在微分几何中被广泛应用,例如在研究曲面的一阶、二阶微分性质时,需要使用偏导数和Hessian矩阵等工具。

其次,需要了解线性代数的相关知识,包括向量空间、矩阵、线性变换、内积等。

这些知识在微分几何中也是必不可少的,例如在研究曲线的切向量、法向量以及曲面的第一基本形式、第二基本形式时,需要使用线性代数的概念和方法。

此外,拓扑学也是微分几何的重要前置知识之一。

拓扑学研究的是空间的性质,与微分几何中的流形概念密切相关。

在学习微分几何时,需要了解拓扑空间、连通性、紧性、同胚等概念,以便更好地理解流形的拓扑性质。

最后,需要具备一定的微分方程知识,因为微分几何中的许多概念和方法都涉及到微分方程。

例如,在研究曲线的参数方程和曲面的参数表示时,需要解一些微分方程。

总之,学习微分几何需要具备多元微积分、线性代数、拓扑学和微分方程等前置知识。

只有掌握了这些基础知识,才能更好地理解微分几何的概念和方法,并在实际应用中发挥它们的作用。

科普微分几何知识点总结

科普微分几何知识点总结

科普微分几何知识点总结一、微分流形和切空间微分几何的起点是对流形的研究。

流形是局部与欧几里得空间同胚的拓扑空间,它是微分几何的研究对象。

在微分几何中,我们通常关心的是光滑流形,也就是说,我们关心的函数在流形上是光滑的。

流形上的光滑函数构成一个代数结构,我们称之为流形上的代数,用C^∞(M)来表示。

切空间是流形上切向量的集合,它也是流形上的一个代数结构。

给定流形M上的一个点p,我们可以定义切空间TpM. 切空间是一个向量空间,它可以看成是p点处的切向量的全体。

切向量是切线上的矢量,它不依赖于特定坐标系的选取,是切空间的一个重要概念。

二、微分流形上的微分结构微分流形上的微分结构是微分几何的一个重要概念。

微分结构是指在流形上定义的导数操作。

在欧几里得空间中,我们有一个明确的导数定义,而在一般的流形上,我们需要通过微分结构来定义导数。

微分结构是流形上的一个代数结构,它可以看成是切空间上的一个内积结构和一个线性映射的组合。

微分流形上的微分结构还可以由一个微分形式定义。

微分形式是流形上的一个代数结构,它可以看成是切空间上的一个线性映射。

微分形式是微分几何中的重要工具,它可以表示切空间上的微分操作,定义流形上的曲率和流形上的连接等。

三、微分流形上的测地线测地线是微分几何中的一个重要概念,它是流形上的一条最短曲线。

在欧几里得空间中,我们可以通过求解微分方程来定义最短曲线,而在一般的流形上,我们需要通过微分几何的方法来定义最短曲线。

微分流形上的测地线是流形上的一个重要概念,它可以用来确定流形上的几何结构和曲率。

四、微分流形上的光滑流形光滑流形是微分几何中的一个重要概念,它是流形上的一个代数结构,表示流形上的光滑函数。

光滑流形可以定义流形上的曲率、连接和流形上的微分结构,是微分几何中的一个基本概念。

光滑流形是微分几何的一个重要工具,它应用广泛,可以用来研究物理学中的广义相对论和物质相互作用,工程学中的材料弹性性质和热传导性质,计算机科学中的曲面建模和图像处理等。

《微分几何》知识点总结(一)

《微分几何》知识点总结(一)

《微分几何》知识点总结(一)前言微分几何是数学中的一个重要分支,研究了曲线、曲面等几何对象和它们的性质。

本文将对《微分几何》的知识点进行总结,帮助读者更好地理解和掌握微分几何的基本概念和方法。

正文1. 基本概念•曲线:一个可微的实函数参数化的图像,可以用参数方程表示。

•曲面:一个可微的二元函数参数化的图像,可以用参数方程表示。

•切向量:曲线或曲面上某一点处的切线的方向,是一种与该点有关的向量。

•法向量:曲面上某一点处垂直于曲面的向量。

2. 曲率与曲率半径•曲率:描述曲线在某一点处弯曲程度的量。

曲率越大,曲线弯曲程度越大。

•曲率半径:曲线在某一点处曲率的倒数,表示曲线弯曲的程度。

曲率半径越小,曲线弯曲程度越大。

3. 高斯曲率与平均曲率•高斯曲率:描述曲面在某一点处弯曲性质的量。

正值表示曲面向外弯曲,负值表示曲面向内弯曲。

•平均曲率:描述曲面在某一点处平均弯曲的程度。

4. 正则曲线与曲面•正则曲线:曲线在任意点处切向量不为零的曲线。

•正则曲面:曲面在任意点处切向量不为零的曲面。

5. 微分几何的应用•在计算机图形学中,微分几何用于描述和建模三维对象的形状和变换。

•在机器学习中,微分几何用于分析数据集的流形结构,帮助理解和处理高维数据。

结尾微分几何是数学中的一门复杂而有意义的学科,对于理解和解决几何问题非常重要。

本文总结了《微分几何》的一些基本知识点,希望能够帮助读者更好地理解和应用微分几何的概念和方法。

掌握微分几何的知识,可以让我们更深入地探索几何世界的奥秘,为其他学科的研究和应用提供更多可能性。

学习微分几何,需要哪些预备知识

学习微分几何,需要哪些预备知识

学习微分几何,需要哪些预备知

这几天总有人问我微分几何怎么学,这里统一答一下。

首先数分高代解几这种就不多说了。

古典微分几何(曲线曲面论)其实不是必须的,想看也可以看看。

拓扑可以看尤承业《基础拓扑学》,不用看得太认真,理解清楚基本概念就行。

学拓扑的同时可以看《From Calculus to Cohomology》,基本涵盖了微分流形的基本理论,这本书可以看得细致一点,因为大部分人第一次接触流形还是有些挑战的。

有了这些基础知识储备后,可以看do Carmo《Introduction to Riemannian Geometry》,这本书建议细看,可以花一年时间慢慢看完,题目能做的尽量做完。

这本书看完,你对“什么是(现代)微分几何”就有基本的概念了,接下来,你想看复几何/Kahler几何,或者极小曲面,或者mean curvature flow, Ricci flow,或者想做有点冷门的正曲率,Finsler几何,等等,那就可以针对性的看这些方面的教材/专著。

如果想做几何分析的话,PDE还是值得系统学一学的,尤其是椭圆方程。

其实这个答案主要还是写给一些考研的想报微分几何方向的人看的,感觉他们很多人真的是一点概念都没有,也不知道要怎么准备。

而真正学得早的人,哪怕是大一大二甚至高中就看过do Carmo我都不觉得奇怪。

数学中的微分几何基础

数学中的微分几何基础

数学中的微分几何基础微分几何是研究曲面、流形、黎曼流形的几何性质,它的基础依赖于微积分的概念。

微积分中的导数和微分概念在微分几何中具有重要的地位。

首先,我们先来介绍导数的概念。

对于一条曲线上的两个点,它们的距离越接近,斜率也就越接近于那条曲线在这个点的切线。

而导数就是用极限表示的切线斜率,记作 $f'(x)$ 或$\frac{dy}{dx}$,它代表了函数 $y = f(x)$ 在 $x$ 点的变化率。

如果我们将这个概念推广到多维空间中,就需要引入偏导数的概念。

偏导数就是指在函数所在点上,只对其中一个自变量取微分,保持其他自变量不变,而得到的导数。

对于函数 $f(x,y)$,其在点 $(x_0, y_0)$ 处沿着 $x$ 轴方向的偏导数记为 $\frac{\partialf}{\partial x}(x_0, y_0)$,同样地,它在点 $(x_0, y_0)$ 处沿着$y$ 轴方向的偏导数记为 $\frac{\partial f}{\partial y}(x_0, y_0)$。

接着,我们来研究微分的概念。

对于一元函数 $y = f(x)$,它的微分可以表示为:$$dy = f'(x) dx$$我们可以将其理解为函数 $f(x)$ 在 $x$ 点附近的微小变化,与自变量的变化量 $dx$ 相关联,从而给出的函数值的微小变化量$dy$。

在多元函数中,由于有多个自变量,微分的概念需要借助不同自变量的偏导数来表示。

对于函数 $f(x,y)$,它在点 $(x_0, y_0)$ 处的微分可以表示为:$$df = \frac{\partial f}{\partial x}(x_0, y_0) dx + \frac{\partialf}{\partial y}(x_0, y_0) dy$$我们可以理解为,函数 $f(x,y)$ 在点 $(x_0, y_0)$ 附近的微小变化,与 $x$ 方向的微小变化量 $dx$ 以及 $y$ 方向的微小变化量$dy$ 相关联,从而给出函数值的微小变化量 $df$。

大学四年级微分几何

大学四年级微分几何

大学四年级微分几何微分几何是应用数学的一个分支,其研究的对象是曲线、曲面等几何对象的性质和变化方式。

作为大学数学的重要内容之一,微分几何旨在通过微积分的方法来解决几何问题,并与其他学科相结合,如物理学、工程学等。

一、微分几何的基础概念在微分几何中,我们首先需要了解一些基础概念,如切向量、法向量和曲率等。

切向量描述了曲线或曲面上某一点的切线方向,法向量是垂直于切线的向量,而曲率则衡量了曲线曲面的弯曲程度。

以二维平面上的曲线为例,设曲线方程为y=f(x),则曲线在某点P 的切向量可以表示为T=(1,f'(x)),其中f'(x)是曲线在该点处的斜率。

曲线在P点的法向量可以表示为N=(-f'(x),1),它与切向量垂直。

而曲率K定义为曲线在P点到该点的切线的转角速度,通常用曲线的弧长参数t表示,即K=|dθ/dt|,其中θ是切线与某一固定方向的夹角。

二、微分几何的主要内容微分几何主要包括曲线的弧长、曲率、曲率半径、曲率圆等概念。

在研究曲线的性质时,我们常常需要对其进行参数化表示。

假设曲线C的参数方程为r(t)=(x(t), y(t)),其中x(t)和y(t)分别是曲线在参数t下的x坐标和y坐标。

通过对参数方程进行微分和积分运算,我们可以得到曲线的弧长公式:L = ∫√(dx/dt)²+(dy/dt)²dt,t∈[a,b]曲率描述了曲线的弯曲程度,其定义为:K = |dθ/ds|,其中ds=√(dx)²+(dy)²是曲线元素的弧长元素,θ是切线与某一固定方向的夹角。

曲线在某一点处的曲率半径R定义为曲率的倒数,即R=1/K。

对于曲线上的任意一点P,我们可以通过曲率半径来确定与该点切线相切且曲率与曲线相等的圆,这个圆就被称为曲线在P点的曲率圆。

三、微分几何的应用领域微分几何有广泛的应用领域,其中包括曲线与曲面的描述、运动学、力学、计算机图形学等。

微分几何前五章知识点总结

微分几何前五章知识点总结

微分几何前五章知识点总结微分几何是数学的一个分支,它研究了曲线、曲面等几何对象上的微分和积分运算。

微分几何在数学中有着非常广泛的应用,特别是在物理学和工程学中。

在微分几何的学习过程中,我们首先需要了解一些基本的知识点,然后逐步深入学习更加复杂的内容。

在微分几何的前五章中,我们学习了一些基本的概念和定理,下面就让我们来对这些知识点进行总结。

第一章:Euclidean Space R^n在微分几何中,我们首先要了解的是欧几里德空间R^n,它是n维空间中所有点的集合。

在R^n空间中,我们可以定义点之间的距离,以及点和点之间的向量。

我们还可以定义点的坐标,并且可以进行向量的加法和数乘操作。

欧几里德空间R^n在微分几何中有着非常重要的作用,我们可以在其上定义一些基本的几何对象,比如球面、圆柱面等,然后进行微分几何的相关研究。

第二章:Curve在微分几何中,曲线是一种最基本的几何对象。

曲线是一种一维的几何对象,在欧几里德空间R^n中可以通过参数方程或者参数化函数来描述。

在这一章中,我们学习了曲线的弧长、切向量、曲率以及曲线的导数等概念。

这些概念对于我们研究曲线的性质和特征非常重要,比如曲线的弧长可以帮助我们计算曲线的长度,切向量和曲率可以帮助我们研究曲线的走向和弯曲程度。

第三章:Surfaces在微分几何中,曲面是一种二维的几何对象。

曲面可以被参数化为一个映射函数,这个映射函数把一个二维的参数空间映射到欧几里德空间R^n中。

在这一章中,我们学习了曲面的第一和第二基本形式,以及曲面上的曲线、曲率等概念。

这些概念对于研究曲面的局部性质非常重要,比如曲面的第一和第二基本形式可以帮助我们计算曲面上的切向量、法向量和曲率等,这些信息对于我们研究曲面的局部形状非常有帮助。

第四章:Gaussian Curvature高斯曲率是一个非常重要的曲面特征,它描述了曲面在一个点处的弯曲程度。

在这一章中,我们学习了高斯曲率的定义、计算方法以及它和曲面的几何意义。

微分几何-预备知识

微分几何-预备知识

cylinder
Shape modeling
Surface reconstruction(static)
From CT or optical images, raw point data, … Data repairing, registration, resampling, smoothing
meshing
x = x(u , v) y = y (u, v) z = z (u, v)
v v r = r (t ) = ( x(t ), y (t ), z (t )) v v r = r (u, v) = ( x(u, v), y (u, v), z (u, v))
Space curve
处处非零. 试求 ( r (t ), r 充要条件
(k ) ( k +1)
(t ), r
( k + 2)
(t ) ) ≡ 0 的
– 对称性,双线性,正定性
• 外积
– 反对称性,双线性
v v a ×b v b
v a
向量内积
• 定义
a ⋅ b = a b cos ∠(a, b)
• 运算法则 c ⋅ (a + b) = c ⋅ a + c ⋅ b (λa) ⋅ b = λ (a ⋅ b) a ⋅b = b ⋅a • 常见性质
a = a ⋅a ≥ 0
2
a, b垂直 ⇔ a ⋅ b = 0
向量外积
• 定义 a × b是与a和b都垂直的向量,它与a, b构成右手系
a × b = a b sin ∠(a, b)
• 运算法则 c × (a + b) = c × a + c × b (λa) × b = λ (a × b) b S=|a × b| a × b = −b × a • 常见性质

微分几何的基础知识及其应用

微分几何的基础知识及其应用

微分几何的基础知识及其应用微分几何是数学中的一个分支,研究的是空间和曲面的性质。

通过微积分和线性代数的工具,微分几何揭示了物理和几何之间的联系,成为了现代数学和理论物理的基石。

一、微分几何的基础知识1. 曲线和曲面的概念在微分几何中,曲线指的是一条连续的线,可以用线性代数中的向量表示。

曲面指的是一个无限的平滑表面,可以用局部坐标系来刻画。

曲线和曲面是微分几何研究的基本对象。

2. 切向量和法向量曲线和曲面上的每一点都有一个切向量和一个法向量。

切向量是指与相邻点连线的方向相同的向量,而法向量是与曲面垂直的向量。

切向量和法向量在微分几何的研究中起着重要的作用。

3. 曲率和高斯曲率曲面的曲率是指曲面局部形状的弯曲程度。

曲率越大,曲面就越弯曲。

高斯曲率是曲面上每一点的曲率的乘积。

高斯曲率可以用来刻画曲面的形状,是微分几何中的一个重要指标。

二、微分几何的应用1. 电磁场的描述微分几何可以用来描述电磁场中的电磁波传播、电场分布、磁场分布等现象。

通过微分几何的理论,可以对电磁场进行分析和计算,为电磁学的研究提供了一个重要的数学工具。

2. 物理学模型的建立微分几何可以用来建立物理学模型,从而推导出物理学的定律和规律。

例如,在相对论中,微分几何可以帮助建立物理学模型,从而得出爱因斯坦场方程,解释了引力的本质。

3. 计算机视觉的研究微分几何可以用来研究计算机视觉中的几何形状。

通过微分几何的理论,可以对计算机图像进行三维形状建模、目标检测和形状识别,为计算机视觉的发展提供了一个新的方法。

总之,微分几何是数学中非常重要的一个分支,对于物理学、计算机科学等领域都有着广泛的应用。

通过对微分几何的研究,我们可以更加深入地理解空间和曲面的性质,为更广泛的研究提供一个坚实的理论基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

笛卡尔直角坐标系
• 点 P O xi yj zk,坐标为(x, y, z)
• 向量 a xi yj zk,也可以表示成 (x, y, z)
• 设向量 a (x1, y1, z1), b (x2, y2, z2 )
• 内积 a b x1x2 y1 y2 z1z2
• 外积
ab
变成一个正交标架;反过来,对于E3 中的 任意两个正交标架,必有 E3的一个刚体运
动把其中的一个正交标架变成另一个正交 标架.
• 空间 E3到它自身的、保持任意两点之间的
距离不变的变换 : E3 E3称为等距变换.
Types of Transformations
Continuous (preserves neighbourhoods) One to one, invertible Classify by invariants or symmetries
xOA yOB zOC
O
(x, y, z)称为点P的坐标
P1
B
P
A
笛卡尔直角坐标系
• 设{O,i, j, k} 是E3 的标架,并且 i, j, k 是
相互垂直、构成右手系的3个单位向量,这 样的标架是右手单位正交标架,简称正交 标架(Orthogonal Frame )。
• 由正交标架给出的坐标系叫笛卡尔直角坐 标系(rectangular Cartesian coordinate system)
• 运算法则
c (a b) c a c b
(a) b (a b)
a b b a
b
S=|a b|
• 常见性质
a
a, b平行 ab 0
向量混合积
| [abc] || a b c | | a b | | Pr jabc | S h V ab
h c
b
S=|a b| a
三维欧式空间中的标架 Coordinate system
标架与坐标是建立“形”与“数”之间联系的桥梁
向量
vector
• 向量是一个有向线段,具有大小和方向, 用 AB,r,r 表示
• •
向 内量积运算a b
abc os(a, b)
– 对称性,双线性,正定性
• 外积
– 反对称性,双线性
av
v b
y
y(u,
v)
z z(u, v)
r r(u,v) (x(u,v), y(u,v), z(u,v))
Space curve
cylinder
Shape modeling
Surface reconstruction(static)
From CT or optical images, raw point data, … Data repairing, registration, resampling, smoothing
几何意义 | [abc] || a b c | | a b | | Pr jabc | S h V
三矢 a, b, c共面 其混合积 [abc] = 0
ab
h .
c
b
a
标架
• 仿射标架 {O;OA,OB,OC}
• 对于任意点 P E3
C
OP OP1 OP2 OP3 P3
P2
v b
av
向量内积
• 定义
ab a b cos(a,b)
• 运算法则
c (a b) c a c b
(a) b (a b)
ab ba
• 常见性质 a 2 a a 0
a,b垂直 a b 0
向量外积
• 定义 ab是与a和b都垂直的向量,它与a,b构成右手系
ab a b sin (a,b)
y
o
x
x2 a2
y2 b2
1
代数几何:多项式(组)的零点集 Algebraic geometry :variety
曲线曲面的表示
• 参数表示Parametric curve & surface
x x(t)
y
y(t)
z z(t)
r r(t) (x(t), y(t), z(t))
x x(u, v)
微分几何 Differential Geometry
预备知识
曲线曲面的表示
• 显式函数表示Explicit
y y f (x) x, f (x)
z f (x, y) z
x, y, f (x, y)
xx
O
O
(x, y)mplicit
f (x, y) 0, f (x, y, z) 0
Isometry (distance preserved) – Reflections (interchanges left-handed and
right-handed) – Rigid body motion: Rotations + Translations Similarity (preserves angles) – Uniform scale Affine (preserves parallel lines) – Non-uniform scales, shears or skews Collineation (lines remain lines) – Perspective Non-linear (lines become curves) – Twists, bends, warps, morphs, ...
y1 y2
z1 , z1 z2 z2
x1 , x1 x2 x2
y1 y2
笛卡尔直角坐标系
• 距离distance
• 三维欧式空间通常写成 R3 ,向量 (x, y, z) 的长度为 x2 y2 z2
坐标变换
• 取定一个正交标架 O;i, j,k (绝对坐标系). 则任意一个正交标架 P;e1,e2,e3被 P 点的坐 标和三个基向量 e1,e2,e3 的分量唯一确定
Q
v k
O v i
ev3
ev2
v
ev1
P
j
• 变换矩阵
坐标变换
• 正交、|A|=1、旋转变换
• 对 O;i, j,k 下的一点 q(x, y, z) ,在 P;e1,e2,e3
下的坐标为 (x%, y%, z%)
正交变换
• 刚体运动 下变换的像点与原来点的关系
刚体变换
• 定理1.1 E3 中的刚体运动把一个正交标架
meshing
paramerization
Point cloud
No connection
mesh
connected
NURBS
parametric
texture
Shape modeling
▪ Dynamic modeling
– Feature driven morphing – Parametric modeling – Physical constrained animation –…
相关文档
最新文档