纳米材料热物理性能
纳米材料物理热学性质
纳米材料的热学性质纳米材料是一种既不同于晶态,又不同于非晶态的第三类固体材料,通常指三维空间尺寸至少有一维处于纳米量级 ( 1 n m~1 0 0 n m)的固体材料。
由于纳米材料粒径小,比表面积大,处于粒子表面无序排列的原子百分比高达 l 5 ~5 0 %。
纳米粒子的这种特殊结构导致其具有不同于传统材料的物理化学特性。
纳米材料的高浓度界面及原子能级的特殊结构使其具有不同于常规块体材料和单个分子的性质,纳米材料具有表面效应,体积效应,量子尺寸效应宏观量子隧道效应等,从而使得纳米材料热力学性质具有特殊性,纳米材料的各种热力学性质如晶格参数,结合能,熔点,熔解焓,熔解熵,热容等均显示出尺寸效应和形状效应。
可见,纳米材料热力学性质在各方面均显现出与块体材料的差异性,研究纳米材料的热力学性质具有极其重要的科学意义和应用价值。
一热容1996年,在低温下测定了纳米铁随粒度变化的比热,发现与正常的多晶铁相比,纳米铁出现了反常的比热行为,低温下的电子比热系数减50 %。
1998年,通过研究了粒度和温度对纳米粒子热容的影响,建立了一个预测热容的理论模型,结果表明:过剩的热容并不正比于纳米粒子的比表面,当比表面远小于其物质的特征表面积时,过剩的热容可以认为与粒度无关。
2002年,又把多相纳米体系的热容定义为体相和表面相的热容之和,因为表面热容为负值,所以随着粒径的减小和界面面积的扩大,将导致多相纳米体系总的热容的减小,二.晶格参数,结合能,内聚能纳米微粒的晶格畸变具有尺寸效应,利用惰性气体蒸发的方法在高分子基体上制备了1. 45nm 的pd纳米微粒,通过电子微衍射方法测试了其晶格参数,发现 Pd 纳米微粒的晶格参数随着微粒尺寸的减小而降低。
结合能的确比相应块体材料的结合能要低。
通过分子动力学方法,模拟 Pd 纳米微粒在热力学平衡时的稳定结构,并计算微粒尺寸和形状对晶格参数和结合能的影响,定量给出形状对晶格参数和结合能变化量的贡献研究表明:在一定的形状下,纳米微粒的晶格参数和结合能随着微粒尺寸的减小而降低,在一定尺寸时,球形纳米微粒的晶格参数和结合能要高于立方体形纳米微粒的相应量。
纳米金属材料的性能、应用与制备
由于以上特性的存在,使纳米金 属材料成为材料研究的热点,同 时金属及其合金纳米材料在现代 工业、国防和高技术发展中充当 着重要的角色。
三、纳米金属材料的应用
1.钴(Co)高密度磁记录材料 2.吸波材料 3.表面涂层材料 4.高效催化剂 5.导电浆料 6.高性能磁记录材料 7.高效助燃剂 8.高硬度、耐磨WC-Co纳米复合材料 9.Al基纳米复合材料 10.其他应用
注:电子浆料是制造厚膜元件的基础材料,是一种由固体粉末和有机溶剂经过三辊轧制混合
均匀的膏状物(可联想成牙膏、油漆等样子)。 厚膜技术是集电子材料、多层布线技术、表面微组装及平面集成技术于一体的微电子技术。
6.高性能磁记录材料 利用纳米铁粉矫顽力高、饱和磁化强度大、信噪比高和
抗氧化性能好等优点,可大幅度改善磁带和大容量软硬磁盘 的性能。
液相法特别适合制备组成均匀、纯度高的复合氧化物纳米粉体,但其缺点是 溶液中形成的粒子在干燥过程中,易发生相互团聚,导致分散性差,粒子粒度变 大。应用于液相法制备纳米微粒的设备比较简单,其生成的粒子大小可以通过控
制工艺条件来调整,如溶液浓度、溶液的PH值、反应压力、干燥方式等。
注:分散性:分散性固体粒子的絮凝团或液滴,在水或其他均匀液
铜及其合金纳米粉体用作催化剂效率高,选择性强,可用于二氧化碳和氢 合成甲醇等反应过程中的催化剂。通常的金属催化剂铁、铜、镍,钯、铂等制成 纳米微粒可大大改善催化效果。由于比表面积巨大和高活性,纳米镍粉具有极强 的催化效果,可用于有机物氢化反应、汽车尾气处理等。
5.导电浆料
用纳米铜粉替代贵金属粉末制备性能优越的电子浆料可大大降低成本,此 技术可促进微电子工艺的进一步优化。
注:1GHz=103MHz=106KHz=109Hz
纳米材料物理化学性质
第四章纳米材料的物理化学性能纳米微粒的物理性能第一节热学性能※1.1. 纳米颗粒的熔点下降由于颗粒小,纳米颗粒的表面能高、比表面原子多,这些表面原子近邻配位不全,活性大以及体积远小于大块材料的纳米粒子熔化时所需要增加的内能小得多,这就使纳米微粒熔点急剧下降。
金的熔点:1064o C;2nm的金粒子的熔点为327o C。
银的熔点:960.5o C;银纳米粒子在低于100o C开始熔化。
铅的熔点:327.4o C;20nm球形铅粒子的熔点降低至39o C。
铜的熔点:1053o C;平均粒径为40nm的铜粒子,750o C。
※1.2. 开始烧结温度下降所谓烧结温度是指把粉末先用高压压制成形,然后在低于熔点的温度下使这些粉末结合成块,密度接近常规材料的最低加热温度。
纳米颗粒尺寸小,表面能高,压制成块材后的界面具有高能量,在烧结中高的界面能成为原子运动的驱动力,有利于界面中的孔洞收缩,空位团的湮灭,因此,在较低的温度下烧结就能达到致密化的目的,即烧结温度降低。
※1.3. NPs 晶化温度降低非晶纳米颗粒的晶化温度低于常规粉末,且纳米颗粒开始长大温度随粒径的减小而降低。
※熔点降低、烧结温度降低、晶化温度降低等热学性质的显著变化来源于纳米材料的表(界)面效应。
第二节电学性能2.1 纳米金属与合金的电阻特性1. 与常规材料相比,Pd纳米相固体的比电阻增大;2. 比电阻随粒径的减小而逐渐增加;3. 比电阻随温度的升高而上升4. 随粒子尺寸的减小,电阻温度系数逐渐下降。
电阻的温度变化规律与常规粗晶基本相似,差别在于温度系数强烈依赖于晶粒尺寸。
随着尺寸的不断减小,温度依赖关系发生根本性变化。
当粒径为11nm时,电阻随温度的升高而下降。
5. 当颗粒小于某一临界尺寸时(电子平均自由程),电阻的温度系数可能会由正变负,即随着温度的升高,电阻反而下降(与半导体性质类似).电子在晶体中传播由于散射使其运动受阻,而产生电阻。
※纳米材料的电阻来源可以分为两部分:颗粒组元(晶内):当晶粒大于电子平均自由程时主要来自晶内散射界面组元(晶界):晶粒尺寸与电子平均自由程相当时,主要来自界面电子散射•纳米材料中大量的晶界存在,几乎使大量电子运动局限在小颗粒范围。
纳米材料的物理性能.
《材料科学前沿》学号:S1*******流水号:S2*******姓名:张东杰指导老师:郝耀武纳米晶材料的物理性能摘要:纳米材料由于其独特的微观结构和奇异的物理化学性质,目前已成为材料领域研究的热点之一。
纳米晶材料具有优异的物理特性,这是由所组成的微粒的尺寸、相组成和界面这三个方面的相互作用来决定的。
本文简要介绍了纳米晶材料的定义,综述了纳米晶材料的各种物理特性。
关键词:纳米材料,纳米晶材料,物理性能1、引言纳米材料是指三维空间尺度至少有一维处于纳米量级(1~100nm)的材料,它是由尺寸介于原子、分子和宏观体系之间的纳米粒子所组成的新一代材料。
由于其组成单元的尺度小,界面占用相当大的成分。
因此,纳米材料具有多种特点,这就导致由纳米微粒构成的体系出现了不同于通常的大块宏观材料体系的许多特殊性质。
纳米体系使人们认识自然又进入一个新的层次,它是联系原子、分子和宏观体系的中间环节,是人们过去从未探索过的新领域。
实际上由纳米粒子组成的材料向宏观体系演变过程中存在结构上有序度的变化和在状态上的非平衡性质,使体系的性质产生很大的差别。
对纳米材料的研究将使人们从微观到宏观的过渡有更深入的认识。
纳米材料按其结构可分为四类:晶粒尺寸至少在一个方向上在几个纳米范围内的称为三维纳米材料;具有层状结构的称为二维纳米材料;具有纤维结构的称为一维纳米材料;具有原子簇和原子束结构的称为零维纳米材料。
纳米晶材料(纳米结构材料)的概念最早是由H.Gleiter出的,这类固体是由(至少在一个方向上)尺寸为几个纳米的结构单元(主要是晶体)所构成。
纳米晶材料是一种非平衡态的结构,其中存在大量的晶体缺陷。
当然,纳米材料也可由非晶物质组成,例如:半晶态高分子聚合物是由厚度为纳米级的晶态层和非晶态层相间地构成的故是二维层状纳米结构材料。
又如纳米玻璃的组成相均为非晶态,它是由纳米尺度的玻璃珠和界面层所组成。
我们这里主要讨论纳米晶材料的物理性能。
纳米材料的热学性质
纳米材料与团簇物理结课论文纳米材料的热学性质纳米材料是一种既不同于晶态,又不同于非晶态的第三类固体材料,通常指三维空间尺寸至少有一维处于纳米量级( 1 n m~1 0 0 n m)的固体材料。
由于纳米材料粒径小,比表面积大,处于粒子表面无序排列的原子百分比高达l5~5 0%。
纳米粒子的这种特殊结构导致其具有不同于传统材料的物理化学特性。
纳米材料的高浓度界面及原子能级的特殊结构使其具有不同于常规块体材料和单个分子的性质,纳米材料具有表面效应,体积效应,量子尺寸效应宏观量子隧道效应等,从而使得纳米材料热力学性质具有特殊性,纳米材料的各种热力学性质如晶格参数,结合能,熔点,熔解焓,熔解熵,热容等均显示出尺寸效应和形状效应。
可见,纳米材料热力学性质在各方面均显现出与块体材料的差异性,研究纳米材料的热力学性质具有极其重要的科学意义和应用价值。
纳米材料的热学性质概述一、纳米材料的熔点及内能材料热性能与材料中分子、原子运动行为有着不可分割的联系。
当热载子(电子、声子及光子)的各种特征尺寸与材料的特征尺寸(晶粒尺寸、颗粒尺寸或薄膜厚度)相当时,反应物质热性能的物性参数如熔化温度、热容等会体现出鲜明的尺寸依赖性。
特别是,低温下热载子的平均自由程将变长,使材料热学性质的尺寸效应更为明显。
图1 几种纳米金属粒子的熔点降低现象上图(图1)为几种纳米金属粒子的熔点降低现象。
随粒子尺寸的减小,熔点降低。
当金属粒子尺寸小于10nm后熔点急剧下降,其中3nm左右的金微粒子的熔点只有其块体材料熔点的一半,用高倍率电子显微镜观察尺寸2nm的纳米金粒子结构可以发现,纳米金颗粒形态可以在单晶、多晶与孪晶间连续转变。
这种行为与传统材料在固定熔点熔化的行为完全不同,伴随着纳米材料的熔点降低,单位质量粒子熔化时的潜热吸收(焓变)也随尺寸的减小而减少。
人们在具有自由表面的共价半导体的纳米晶体、惰性气体和分子晶体也发现了熔化的尺寸效应现象。
根据固体物理的基本原理,可以说明材料热学性质出现尺寸效应的根本原因,一般情况下,晶体材料的内能U可依据其晶格振动的波特性在德拜假设下估计出,即:(1) 式中,Θ为德拜温度;k为波矢;T为热力学温度;h为普朗克常数;k B为玻尔兹曼常数。
纳米材料有哪四个特性
纳米材料有哪四个特性纳米材料是指在三维空间中至少有一维处在纳米尺度范围(1nm~100nm)或由他们作为基本单元构成的材料。
这是指纳米晶体粒表面原子数与总原子数之比随粒径变小而急剧增大后所引起的性质上的变化。
例如粒子直径为10纳米时,微粒包含4000个原子,表面原子占40%;粒子直径为1纳米时,微粒包含有30个原子,表面原子占99%。
纳米材料的基本特性由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。
纳米微粒尺寸小,表面能高,位于表面原子占相当大的比例。
随着粒径减小,表面原子数迅速增加。
这是由于粒径小,表面积急剧变大所致。
由于表面原子数增多,原子配位不足及高的表面能,使这些表面原子具有高的活性,极不稳定,很容易与其它原子结合。
例如:金属的纳米粒子在空气中会燃烧,无机的纳米粒空子暴露在空气中会吸附并与气体进行反应。
纳米材料的表面效应是指纳米粒子的表面原子数与总原子数之比随粒径的变小而急剧增大后所引起的性质上的变化。
随着粒径变小,表面原子所占百分数将会显著增加。
当粒径降到1nm时,表面原子数比例达到约90%以上,原子几乎全部集中到纳米粒子表面。
由于纳米粒子表面原子数增多,表面原子配位数不足和高的表面能,使这些原子易与其它原子相结合而稳定下来,故具有很高的化学活性。
2、小尺寸效应当超细微粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏;非晶态纳米微粒的颗粒表面层附近原子密度减小,导致声、光、电磁、热力学等待性呈现新的小尺寸效应。
例如:光吸收显著增加并产生吸收峰的等离子共振频移;磁有序态向磁无序态的转变;超导相向正常相的转变;声子谱发生改变等由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。
纳米材料的热学特性研究
纳米材料的热学特性研究近年来,纳米科学与纳米技术在各个领域的迅猛发展引起了广泛的关注。
作为材料科学领域的一个重要分支,研究纳米材料的热学特性成为了一个热门话题。
纳米材料由于其独特的结构和尺寸效应,具有许多与宏观材料不同的热学行为,这对于纳米材料的应用和开发具有重要的指导意义。
首先,纳米材料的比表面积很大,具有较高的热传导性能。
纳米材料常常具有具体表面积高于1 m²/g的特点,这是由于其微观结构的存在,如纳米颗粒、纳米线等。
因此,纳米颗粒可以吸附更多的热量,使得纳米材料在热管、热散热器等领域具有广泛的应用潜力。
此外,由于纳米材料具有相对较大的热辐射和热导率,可以用于制备高效的太阳能电池和热电复合材料,提高能源利用效率。
其次,纳米材料的热膨胀系数与普通材料有所不同。
纳米材料的独特尺寸效应导致其热膨胀系数在宏观材料的基础上出现了显著变化。
研究发现,当纳米材料的尺寸减小到纳米尺寸级别时,其热膨胀系数下降了数个数量级,使得纳米材料在高温环境下具有更好的热稳定性。
这对于纳米电子元器件、导热材料和烧结材料的设计和制备具有重要意义。
此外,纳米材料由于其在能带结构和电子热容方面的独特性质,表现出了与宏观材料截然不同的热学特点。
在纳米材料的尺寸下降到一定程度时,电子的能量级密度出现显著调制,电子态密度发生了量子级别的变化。
此外,纳米材料的电子热容明显小于宏观材料,在低温下表现出冷热电特性。
对于纳米热电材料的研究发现,可以利用这些独特的热学特性来开发高效的纳米热电材料,实现能量的高效转换和利用。
然而,与此同时,纳米材料在热学特性研究中也面临着一些挑战。
由于纳米领域的研究相对较新,研究方法和技术比较有限。
例如,如何准确地测量纳米材料的热导率、热容和热膨胀系数等热学参数成为了一个关键问题。
尺寸效应也增加了纳米材料的制备和性能调控的难度。
因此,如何提高研究手段和技术,深入理解纳米材料的热学特性,是当前纳米材料热学研究的重点。
纳米材料的热学性质
纳米材料的热学性质一、纳米晶体的熔化1、几种熔化机制(描述纳米粒子的熔化过程):(1) 根据熔化一级相变的两相平衡理论可以得到,熔点变化与表界面熔化前后的能量差有关,也就是与小粒子所处的环境相关。
对同质粒子,自由态和镶嵌于不同基体中时,粒子熔点降低的规律将会不同。
(2) 如果把粒子的熔化分为两个阶段,如图7-5所示,粒子的表面或与异质相接触的界面区域首先发生预熔化,完成表面的熔体形核,继而心部发生熔化,则粒子的熔化发生一个温度区间内。
该理论建立在忽略环境条件的基础上,所以小粒子的实际熔点降低与所处环境无关。
(3)随粒子尺寸的减小,表界面的体积分数较大,而且表界面处的原子振幅比心部原子的更大,均方根位移的增加引起界面过剩Gibbs自由能的增大会使小粒子的熔点降低。
图7-5 小粒子熔化过程示意图,液相层厚度用δ表示图7-4 受约束铅纳米薄膜(a)和自由铅薄膜(b)中铅的特征X-射线衍射强度随温度的变化情况原位X射线衍射测定的冷轧Pb/Al 多层膜及轧制的自由铅薄膜样品的熔化行为,图中虚线为块体Pb平衡熔点。
X射线衍射分析是测定晶体结构的重要手段, 由于原子周期排列的晶体结构对X 射线的散射会产生反映晶体结构的特征衍射,而熔化后的液态金属原子排列无序,对X 射线不会产生特征衍射. 因此,熔化过程中X 射线特征衍射只能由剩余的晶体部分产生,特征衍射强度将因晶体的熔化而显著降低.图7-4为可以看出,自由铅薄膜的四个特征衍射的强度到大约326℃开始急剧降低,并在329℃之前均下降为零。
Pb/Al多层膜样品中铅膜的四个特征衍射的强度在326~329℃也会降低,但并未降到零,而是在高于329℃不同的温度降低到零,其中的(111)衍射直到340℃才完全消失。
这说明,Pb/Al多层膜样品中部分铅膜在达到334℃时依然存在,其熔化温度超过了自由铅薄膜的熔化温度,夹在铝中的部分铅薄膜出现了过热现象。
纳米晶体的熔化2、纳米材料的过热意义:纳米材料熔点降低在很多情况下限制了其应用领域,人们经常希望提高纳米材料热稳定性。
纳米材料的优点
纳米材料的优点纳米材料是一种具有纳米级尺寸特征的新兴材料,其具有以下优点:1. 巨大的比表面积:纳米材料由于尺寸小,相同体积下的纳米材料比普通材料具有更大的表面积。
这使得纳米材料具有较高的反应活性和吸附能力,可广泛应用于催化剂、气体吸附、生物传感器等领域。
2. 独特的光、电、磁性能:纳米材料的电子、光子、声子等物理外延效应在较大程度上取决于其表面结构的变化,纳米材料的这些特性与体材料有明显不同。
如纳米材料的金属特性加强,表现出优异的导电性、磁性和光学性能等,具有潜在的应用前景,如纳米电子器件、纳米磁性材料等。
3. 特殊的力学性能:由于纳米材料的尺寸效应和界面效应,其弹性模量、硬度、屈服强度等力学性能通常会有明显的增强。
这使纳米材料具有优异的机械性能,可广泛应用于增强材料、高效能材料等领域。
4. 独特的热学性能:纳米材料的小尺寸和巨大比表面积使得其具有优异的热学性能。
纳米材料可用于改善导热性能,提高热稳定性和降低热膨胀系数,广泛应用于热界面材料、热障涂层等领域。
5. 优异的光学特性:纳米材料的光学特性受其尺寸、形状和结构的影响,具有广泛的调控能力。
纳米材料可表现出自发发射、增强荧光、拉曼散射等激发的特性,可广泛应用于光学传感器、太阳能电池、纳米生物标记等领域。
6. 突出的生物应用性能:纳米材料与生物体的相互作用特性使其具有广泛的生物应用潜力。
纳米材料可用于药物传输、生物成像、生物传感器等领域,有助于提高药物疗效、减少副作用,开辟了生物医学领域的新途径。
纳米材料的优点使其在能源、环境、生物医学及电子信息等领域具有广泛的应用前景。
然而,纳米材料也存在一些挑战和风险,如生物安全性、环境污染等问题需要进一步关注和解决。
因此,在纳米材料应用过程中需要充分考虑其优缺点,确保科学、安全和可持续发展。
纳米材料概论 第八章纳米材料的热学性能
第八章纳米材料的热学性能重点:纳米材料的热学性质及尺寸效应纳米晶体的熔化纳米晶体的热稳定性纳米晶体的点阵热力学性质纳米晶体的界面热力学重点材料的热性能是材料最重要的物理性能之一表现出一系列与块体材料明显不同的热学特性,如:比热容值升高热膨胀系数增大熔点降低纳米材料的热学性质与其晶粒尺寸直接相关Why?材料的热性能是材料最重要的物理性能之一8.1 纳米材料的热学性质及尺寸效应8.1.1纳米材料的热学性质纳米材料的熔点材料中分子、原子的运动行为决定材料的热性能当热载子(电子、声子及光子)的各种特征运动尺寸与材料尺度相当时,反映物质热性能的物性参数(如熔化温度、热容等)会体现出鲜明的尺寸依赖性。
特别是,低温下热载子的平均自由程将变长,使材料热学性质的尺寸效应更为明显。
8.1.2 纳米晶体的热容及特征温度热容是指材料分子或原子热运动的能量Q随温度T的变化率,与材料的结构密切相关。
在温度T时,材料的热容量C的表达式为:若加热过程中材料的体积不变,则测得的热容量为定容热容(CV);若加热过程中材料的压强不变,则测得的为定压热容(CP)。
晶界的过剩体积ΔV其中,V和V分别为完整单晶体和晶界的体积。
在纳米材料中,很大一部分原子处于晶界上,界面原子的最近邻原子构型与晶粒内部原子的显著不同,使晶界相对于完整晶格存在一定的过剩体积热力学计算表明:纳米晶的热容随着晶界过剩体积的增加而增加,因而亦随着晶界能的增加而增加。
由于高比例晶界组元的贡献,纳米材料的比热容会比其粗晶材料的高。
注意区分:纳米材料定容热容与比热容的特点2、德拜特征温度由固体物理,德拜特征温度的定义为:ωm表征晶格振动的最高频率;kB为玻尔兹曼常数。
纳米晶体材料的德拜特征温度θnc相对于粗晶的θc的变化率Δθnc可由下式给出:目前,对于纳米晶体材料特征温度的减小还无确切解释。
但可见,晶格振动达到最高频率变得容易了。
8.1.3纳米晶体的热膨胀热膨胀是指材料的长度或体积在不加压力时随温度的升高而变大的现象。
纳米材料的热力学性质及其应用
纳米材料的热力学性质及其应用纳米材料是一种颇为热门的材料,在物理、化学、生物、医药等领域中都有广泛的应用。
其所具有的独特性质和应用价值也受到了广泛的关注。
其中,纳米材料的热力学性质是其应用的基础而且也是极其重要的一部分。
纳米材料的热力学性质纳米材料具有高比表面积、量子尺寸效应和表面效应等特点。
这些独特的性质决定了纳米材料的热力学性质也与传统材料有很大的不同。
首先是纳米材料的比热。
由于纳米材料具有更多的表面原子和少量的体积原子,因此其比表面积将会比普通材料大得多。
这样就会产生更多的表面能和重要的贡献。
由于纳米材料的比表面积巨大,因此纳米材料的比热也会相应地增大,这将会增大材料的热容量。
其次是纳米材料的比熵。
纳米材料比熵增大的直接后果便是纳米材料的比熵增大。
当纳米材料的尺寸小得足够小时,纳米材料的比熵将达到最大值。
而当纳米材料的尺寸继续减小时,比熵将会降低。
同时,不同的纳米材料在它们的比熵变化方面也有区别。
例如,金属结构具有强的增量性,而陶瓷则具有减量性。
第三是纳米材料的比能。
纳米材料比能的变化主要是受到表面效应、量子限制和应变等因素的影响。
受到这些因素的共同作用,一些纳米材料的比能甚至超过了它们的布里渊能,因此纳米材料的比能大大增加。
纳米材料的应用纳米材料的热力学性质不用于直接的应用,但却与其许多应用息息相关。
其应用分散在物理、化学、生物和医药等多个领域中,下面对一些典型的应用进行简单的介绍。
首先是在生物、医药领域中的应用。
纳米材料由于具有超静电场和表面效应等特殊性质,因此可以用于制备肿瘤治疗和生物成像等。
例如,纳米材料可以用作分子靶向药物的载体,能够选择性地将药物送到癌细胞内,从而减少对人体正常细胞的损伤。
此外,纳米材料还可以通过修饰表面来增加生物相容性和疏水性,从而在生物体内获得更长的循环时间。
其次是在催化领域的应用。
纳米材料表面的高反应活性、化学惰性和结构特征等独特性质,使得其在催化反应中有广泛的应用。
纳米材料的性质
纳米材料的性质纳米材料的性质指的是它们相比于宏观材料表现出的特殊物理、化学和力学特性。
纳米材料具有以下几种显著的性质:1. 尺寸效应:纳米材料的尺寸通常在1到100纳米之间,与宏观材料相比非常小。
这种尺寸效应使得纳米材料的物理性质发生显著变化。
例如,纳米材料的电子结构可以改变,导致其光学、电子和磁性质的变化。
2. 表面增强效应:由于纳米材料具有更大的比表面积,纳米尺度颗粒和纳米结构的材料具有更高的表面活性。
这种表面增强效应使得纳米材料在催化、吸附、光谱、传感和生物学等领域有着广泛的应用。
3. 量子效应:当材料尺寸缩小到纳米尺度时,量子效应开始显现。
量子效应指的是纳米材料中的电子和其他粒子行为具有测量不确定性、随机性或波动性。
量子效应的发生使得纳米材料的电子结构变得复杂,因而产生了新的光学、电子和磁性质。
4. 机械性能提升:纳米结构的材料具有更高的硬度、强度和韧性。
这是因为纳米材料的晶体颗粒尺寸较小,导致晶体缺陷和位错的数量减小,从而改善了其力学性能。
5. 温度和电导率调节:纳米材料在温度和电导率方面具有显著的调节性能。
由于纳米尺度颗粒间的热传导性能较差,所以纳米材料的热电性能比宏观材料更好。
这使得纳米材料可以用于高效热电器件的制备。
6. 自组装和自修复:纳米材料具有自组装和自修复能力,可以通过自我组装形成更复杂的结构。
这些自组装的纳米材料可以用于制备纳米电路、纳米器件和纳米传感器等。
总之,纳米材料具有许多独特的性质,这些性质使得纳米材料在各个领域具有广泛的应用潜力,包括能源、环境、生物医学、电子器件等。
随着纳米科学和技术的发展,我们可以期待更多纳米材料性质的发现和应用的拓展。
纳米材料的热力学性质研究
纳米材料的热力学性质研究随着科技的不断进步以及人们对高效、多功能材料需求的增加,纳米材料所展示出的性能优势越发显著。
纳米材料不仅具备优异的物理、化学性质,其独特的热力学性质也成为同类材料的难以匹敌之处。
热力学性质的研究不仅有助于深入探究纳米材料的本质特性,而且能够为这些材料的应用提供更加准确的理论基础。
本文将就纳米材料的热力学性质研究展开探讨。
一、纳米材料的热力学性质的特殊之处纳米材料由于其结构的特异性和规模的小型化,具备独特的热力学性质,表现在以下几个方面:1、增大的表面积纳米材料由于体积小、表面大,因此表面和体积之比较高。
表面与周围物质的交互作用非常强烈,使得纳米材料的表面活性远高于同种材料的宏观晶体。
2、大量的表面结构缺陷由于纳米材料表面积很大,材料表面附近存在大量的表面缺陷,这些缺陷会对纳米材料的热力学性质产生影响。
例如,在温度较高时,表面缺陷会导致熵的增加,从而使得纳米材料的热容和热导率发生变化。
3、变化的化学反应动力学纳米材料表面活性增强,表面化学反应动力学和热可逆性也会发生变化。
当纳米材料受到热能激励时,其表面化学反应常常具有更高的速度和更大的可逆性。
二、热力学性质的研究方法纳米材料的热力学性质的研究方法包括如下几种:1、热敏感物性测量纳米材料的热敏感物性(如热容、热导率、热膨胀等)通常采用热敏感物性测量技术进行表征。
常见的热敏感物性测量仪器包括热差式微量热计、激光闪烁法、电热法、多频率热导率仪、高温热膨胀仪等。
2、热力学参数计算可以通过计算模拟的方式,计算出纳米材料在特定温度下的热力学参数。
这种方法适用于已经有高精度材料晶体结构参数的纳米材料。
3、分子动力学模拟分子动力学模拟可以通过模拟原子或分子的微观结构运动来计算纳米材料的热力学参数。
这种方法适用于未知或复杂纳米材料的热力学参数计算。
三、热力学性质的研究进展1、热容纳米材料的热容随颗粒大小的减小而降低,这意味着纳米材料在相同温度下所储存的热能要比宏观材料少。
纳米流体的热物理性质研究
纳米流体的热物理性质研究近年来,随着科技的不断发展,人们对于纳米流体的热物理性质研究越来越深入。
纳米流体是指平均粒径在1至100纳米之间的含有纳米颗粒物体系。
纳米流体的热物理性质如导热系数、比热容、热扩散系数等都与其微观结构有着密切的关系。
因此,对于纳米流体的热物理性质进行深入研究,不仅有助于解决一系列纳米技术领域中的问题,而且也具有广泛的应用前景。
本文将从几个方面对纳米流体的热物理性质进行探究。
一、纳米流体的热导率研究热传导性质是衡量物质传热效率的重要指标。
实验测定表明,纳米流体的热导率与颗粒体积分数、颗粒尺寸、纳米颗粒分散状态和相互作用等因素都有着密切的关系。
研究发现,在纳米流体体系中,当颗粒间距约为1.3倍颗粒半径时,热导率达到峰值。
此外,在低浓度下热导率呈现出线性增长,而在较高浓度下则发生了明显的非线性变化。
纳米流体的热导率研究对于纳米材料的设计和纳米传热技术的开发与应用有着重要价值。
二、纳米流体的比热容研究比热容是指物体单位质量在一定温度下吸热所需的能量。
纳米流体中的纳米颗粒与基体之间的相互作用对比热容的影响较大。
研究表明,在高温下纳米颗粒的物理状态会发生变化,颗粒表面的氧化皮层会变厚,从而导致纳米流体的比热容降低。
此外,一些研究表明,当纳米颗粒体积分数很小时,纳米颗粒的加入可以提高纳米流体的比热容。
对于理解纳米流体的热力学性质,特别是在高温下的特性变化,比热容的研究具有重要意义。
三、纳米流体的热扩散系数研究热扩散系数是指单位时间内温度梯度的导数。
纳米流体中的导热和扩散作用非常重要,对物质的传热效率和传质效率有着直接的影响。
研究发现,纳米流体的热扩散系数与纳米颗粒浓度、颗粒分散状态、颗粒尺寸以及流体基体的热扩散系数等因素密切相关。
此外,当颗粒尺寸与液体平均自由程相近时,纳米颗粒的热贡献对热扩散系数的影响就更加显著。
纳米流体热扩散系数的研究对于提高纳米材料的传热、传质性能有着重要的意义。
纳米特性
1,纳米材料与常规材料的区别?答:纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料[1] ,这大约相当于10~100个原子紧密排列在一起的尺度。
纳米级结构材料简称为纳米材料(nano material),是指其结构单元的尺寸介于1纳米~100纳米范围之间。
由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。
并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。
2,纳米技术当今发展趋势?答:纳米技术的发展,将给我们的生活带来极大的变化。
自九十年代初开始兴起的纳米技术,可以带来信息、能源、交通、医药、食品、纺织、环保等诸多领域的新变革,大大提升我们的生活质量。
如目前日本出现许多抗菌的日常用品,就是将抗菌物质进行纳米化处理,在生产过程中加进去,抗菌内衣、抗菌茶杯等便生产出来了;如果在玻璃表面涂一层渗有纳米化氧化钛的涂料,那么普通玻璃马上变成具有自己清洁功能的"自净玻璃",不用人工擦洗了;而电池使用纳米化材料制作,则可以使很小的体积容纳极大的能量,届时汽车就可以像目前的玩具汽车一样,以电池为动力在大街上奔驰了;计算机在普遍采用纳米化材料后,可以缩小成为"掌上电脑",体积将比现在的笔记本式电脑还要小得多。
普通的材料,通过纳米化处理,更能增添许多神奇特性。
如陶瓷经过纳米化加工,可制成陶瓷弹簧、刀具等;而一些固体变成纳米化微粒后,不仅粘附力增强,还新添了对紫外线光的吸收性质,除了可制成抗掉色的口红,还可开发出防灼的高级化妆品。
此外,利用纳米化材料特殊的磁、光、电等性质,还可以开发出难以计数的新的元器件,在信息工程、生物工程等方面发挥重要作用,从而衍生出新兴的高科技产业群。
纳米技术给我们生活带来的变革,将不亚于电力代替蒸气的变革。
纳米材料的性质
纳米材料的性质
纳米材料是一种具有特殊性质和应用潜力的材料,其尺寸在纳米尺度范围内。
纳米材料的性质主要包括物理性质、化学性质和生物性质。
首先,纳米材料的物理性质表现出了许多独特的特点。
由于其尺寸处于纳米尺度,纳米材料表面积大大增加,使得其表面活性增强,从而呈现出了特殊的光学、电学、磁学等性质。
比如,纳米颗粒的光学性质会随着颗粒尺寸的改变而发生变化,纳米材料的电学性质也表现出了优异的导电性和介电性。
此外,纳米材料的热学性质也呈现出了独特的特点,如纳米材料的热导率和热膨胀系数都与其尺寸密切相关。
其次,纳米材料的化学性质也具有特殊的表现。
纳米材料的化学反应活性高,
表面原子数增加,使得其化学反应速率加快,从而表现出了特殊的催化性能。
此外,纳米材料的表面能和晶界能也随着尺寸的减小而增加,使得其在催化、吸附等方面具有独特的应用潜力。
同时,纳米材料的表面修饰和功能化也成为了当前研究的热点,使得纳米材料在生物医学、环境保护等领域得到了广泛的应用。
最后,纳米材料的生物性质也备受关注。
纳米材料的尺寸与生物体内的生物大
分子尺寸相近,使得其在生物医学领域具有独特的应用前景。
纳米材料可以被用于生物成像、药物传输、生物传感等方面,其生物相容性和生物毒性也成为了当前研究的重点。
总的来说,纳米材料的性质包括物理性质、化学性质和生物性质,其独特性使
得其在材料科学、化学、生物医学等领域具有广泛的应用前景。
然而,纳米材料的安全性和环境影响也需要引起足够的重视,加强对纳米材料的研究和监管,以确保其可持续发展和安全应用。
纳米材料的特性
纳米材料的特性纳米材料是一种具有特殊结构和性能的材料,其尺寸在纳米尺度范围内。
纳米材料的特性主要包括以下几个方面:1. 尺寸效应。
纳米材料的尺寸通常在1-100纳米之间,处于这一尺寸范围内的材料会呈现出许多特殊的物理、化学和生物学特性。
其中最主要的就是尺寸效应,即当材料的尺寸缩小到纳米级别时,其表面积相对于体积增大,从而导致其表面原子或分子的比例增加,使其表面活性增强,从而呈现出与传统材料不同的特性。
2. 光学特性。
纳米材料的光学特性是其最具有代表性的特性之一。
由于其尺寸与光波长处于同一数量级,因此纳米材料会呈现出许多特殊的光学现象,如量子尺寸效应、表面等离子共振、光学增强效应等。
这些特性使得纳米材料在光电子器件、传感器、光学材料等领域具有广泛的应用前景。
3. 电子特性。
纳米材料的电子特性也具有独特之处。
由于其尺寸效应和量子限制效应的影响,纳米材料的电子结构会发生改变,导致其电子输运性能、能带结构、电子密度等发生变化。
这些变化使得纳米材料在纳米电子器件、储能材料、传感器等领域具有重要应用价值。
4. 热学特性。
纳米材料的热学特性也备受关注。
由于其尺寸效应和表面效应的存在,纳米材料的热传导、比热容等性质会发生变化,使得其在热电材料、纳米催化剂、纳米传热材料等方面具有潜在应用前景。
5. 化学特性。
纳米材料的化学特性也与其尺寸密切相关。
由于其表面原子或分子的比例增大,纳米材料的化学反应活性会增强,从而在催化剂、吸附材料、传感器等领域发挥重要作用。
总之,纳米材料的特性是多方面的,涉及物理、化学、生物等多个领域,具有广泛的应用前景。
随着纳米技术的不断发展,纳米材料的特性将会得到更加深入的研究和应用,为人类社会的发展带来新的机遇和挑战。
纳米材料的物理和化学特性
纳米材料的物理和化学特性纳米材料是一种尺寸在1~100纳米之间的物质,具有比宏观物体更特殊的物理和化学特性。
与普通材料相比,纳米材料的表面积更大,颗粒间距较小,因此具有更高的化学反应活性和更快的反应速率。
此外,纳米材料的电子结构、热力学性质、磁性、光学特性等方面也与普通材料不同,使其具有很广泛的应用前景。
一、纳米材料的电子结构纳米材料的尺寸处于量子范围之内,因此其电子结构将受到量子尺寸效应的影响。
由于电子在纳米材料中的能量状态是量子化的,因此它们只能占据在量子态。
这使得纳米材料有很多电子态,比普通材料更复杂。
纳米材料的电子结构对其性质有很大影响,特别是对催化剂、光学材料和电子材料的性能有很大的影响。
二、纳米材料的热力学性质热力学是描述物质的热学性质的科学,包括温度、压力和热量等方面。
纳米材料的尺寸在量子尺度之内,具有特殊的热力学性质。
纳米材料的比表面积较大,导致其更容易与周围环境相互作用,因此具有更高的热力学活性。
这使得纳米材料经常用于催化剂和化学催化反应等方面。
三、纳米材料的磁性纳米材料具有在宏观材料中不会出现的磁性质。
由于磁性是由电子的自旋引起的,因此纳米材料的电子结构将影响其磁性质。
在某些情况下,纳米材料的磁性质可以被调节,例如通过改变其尺寸和组成等因素,因此具有广泛的应用前景。
四、纳米材料的光学特性纳米材料具有比宏观材料更特殊的光学特性,因为纳米材料的电子能够在可见光和紫外光范围内吸收和放射光能,因此可以产生很多特殊的光学效应,例如荧光、散射和吸收特性。
此外,纳米材料的颜色也会随着其尺寸和形态的改变而发生变化。
总之,纳米材料具有很多独特的物理和化学特性,这些特性是由其尺寸、形态和电子结构等因素所决定的。
由于这些特性,纳米材料在磁性材料、光学材料、电子材料和催化剂等领域中具有广泛的应用前景。
第四章 纳米材料的特异性质
应用:
利用宽频带强吸收这个特性可以作为高效率的光热、 光电等转换材料,可以高效率地将太阳能转变为热能、电 能。此外又有可能应用于红外敏感元件、红外隐身技术等。 隐身就是把自己隐蔽起来,让别人看不见、测不到。
隐型飞机就是让雷达探测不到,它是在机身表面涂上红外 与微波吸收纳米材料来实现的,因为雷达是通过发射电磁 波再接收由飞机反射回来的电磁波来探测飞机的。1991年 海湾战争中,美国F117A型飞机的隐身材料就是含有多种 纳米粒子,故对不同的电磁波有强烈的吸收能力。在42天 战斗中,执行任务的的飞机1270架,摧毁了伊拉克95%的 军大事块设金施而美国战机无一受损。
(2)蓝移现象
与大块材料相比,纳米微粒的 吸收带普遍存在“蓝移”现象, 即吸收带移向短波方向。例如, 纳米SiC颗粒和大块SiC固体的峰 值红外吸收频率分且是814cm-1 和794cm-1。纳米氮化硅颗粒和 大 块 Si3N4 , 固 体 的 峰 值 红 外 吸 收 频 率 分 别 是 949cm-1 和 935 cm-1 。由不同粒径的Si纳米微粒 纳吸大收块光金谱看出,随着微粒尺寸 的变小而有明显的蓝移。
应用:
利用不同粒径纳米颗粒的 蓝移现象可以设计波段可 控的新型吸收材料。
大块金
(3) 吸收光谱的红移现象
• 有时候,当粒径减小至纳米级时,会观察到光吸收带 相对粗晶材料的“红移”现象。例如,在200-1400nm 范围,块体NiO单晶有八个吸收带,而在粒径为54- 84nm的NiO材料中,有4个吸收带发生兰移,有3个吸 收带发生红移,有一个峰未出现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其发射率有了大幅 0.9 度的提高,而且粒
径越小,效果越明 0.85 显。
0.8Biblioteka 0 10 20 30 40 50 60
单位:d(μm)
应用实例
纳米TiO2粒子对不同的电磁波有强烈的吸收作 用,能有效地吸收入射雷达波和红外线,而且其 尺寸小于雷达波和红外线的波长,透射率也较高, 从而可以使雷达波和红外线的反射信号大大降低, 如到“在隐战形机表”面作涂用上。一层纳米TiO2吸波材料,可起
纳米材料Cu、N、Fe-B-si,Ni—P合金 的热膨胀系数α近乎是单晶的两倍,纳米材 科晶粒的组分对α有影响,下表总结出了不 同材科的纳米、非晶和多晶的热膨胀系数。
几种材料的热膨胀系数
3、 热扩散率
纳米材料中有大量的界面,这些界面 为原子提供了短程扩散途径。高的扩散率 对蠕变、超塑性等力学性能有明显的影响, 同时可以在较低的温度对材料进行有效的 掺杂,也可以在较低的温度下使不混溶的 金属形成新的合金相:纳米材料的高扩散 率,可使其在较低的温度下被烧结。例如, 1可2n以m在Ti低O2于在常不规添烧加结任温何度烧4结00剂~的60情0℃况下下烧, 结。
纳米材料热物理性能研究
纳米材料热物理性能研究
前言 一、纳米材料发展的历史 二、纳米材料的热物理性能及其研究 结语
前言
纳米材料是纳米科技发展的重要基础,也是 纳米材料最为重要的研究对象。
纳米材料是一种具有全新结构的材料,随着 材料尺寸的降低,其表面的电子结构和晶体结构 发生变化,产生了一些宏观物质所不具有的特殊 效应:小尺寸效应、表面效应、量子尺寸效应和宏 观遂穿效应,从而具有传统材料所不具备的物理 化学性质。它所具有的独特性质使其在磁学、电 学、光学、催化以及化学传感等方面具有广阔的 应用前景。
热扩散率对SiC纳米涂层的影响
SiC 纳米涂层可降低涂层的气孔率,因 此可提高涂层的密度,而且致密的涂层也会 有较高的力学性能。在涂层升温烧结过程 中,致密化的速率与粉体颗粒尺寸的四次方 成反比,且纳米颗粒小,比面积大,并具有高 的扩散速率,这些都使涂层的致密化速率加 快,烧结温度降低。
4 、热辐射性质
一、纳米材料发展历史
随着胶体化学的建立,人们开始了对直纵观 纳米材料发展的历史,大致可以分为三个阶段。
第一阶段限于合成纳米颗粒粉体或合成块体 等单一材料和单相材料;
第二个阶段则集中于各类纳米复合材料的研 究;
第三个阶段表现为对纳米自组装、人工组装 合成的纳米阵列体系、介孔组装体系、薄膜嵌镶 体系等纳米结构材料的关注。纳米材料的研究内 涵也从最初的纳米颗粒以及由它们所组成的薄膜 与块体,扩大至纳米丝、纳米管、微孔和介孔材 料等范畴。
纳米材料的界面原子比较混乱,约束较 小,而且纳米材料的界面原子分数较大, 所以纳米材料的熵远大于粗晶材料,相应 的比热容大于粗晶材料。研究发现:晶粒 的尺寸越小,相对的比表面积越大,则热 熔增强越大。
纳米与粗晶比热容的比较
左图是粒径为 25nmFe热容值与粗晶 87nmFe热容对比图。 在80~350K温区, Fe热 容值随粒径减小而增 大这是由于表面效应 的影响所致, 随着Fe粒 径减小, 表面原子数迅 速增加, 表面积急剧变 大, 表面自由能也 随之增大。故在同一 温度下, 粒径越小, 能 量越高, 因此热容越 大。
纳米TiO2和A12O3,Si02,Fe2O3等的复合颗粒 在红外波段有很强的吸收作用,它们与纤维物复 合能制成远红外功能织物,这种纤维对人体释放 的红外线有很好的屏蔽作用,同时织物以高效发 射出同样波长的远红外线,这样人体皮肤吸收远 红外线,转换成热量向人体内部传播,能够增强 保暖效果。
5 、比热容
结语
1、 纳米尺度材料为发展高性能的材料及 对现有材料性能进行改善提供了一个新的 途径。
2、 纳米复合材料已成为当今纳米材料科 学中最为活跃的研究领域之一。
谢谢大家!
2 、热膨胀系数
纳米材料的热膨胀系数都大于同类粗晶 材料和非晶体材料的值,这是由于界面原 子排列较为混乱、原子密度低、界面原子 耦合作用变弱的结果。因此在储热材料、 纳米复合材料的机械耦合性能应用方面有 其广泛的应用前景。例如:晶粒尺寸为8nm 的纳米铜的自扩散系数比普通铜大1019倍。
几种纳米材料的热膨胀系数比较
keff =k(31/4)/(31/4+1)
K是相应的体材料的导热系数,δ1指颗粒半径和平均自由程的比值。
例如:SiC的导热率
右图为选用的 是SiC体积分数为 50%,基体合金按 共晶成分(12.1%)配 制。从图上可以看 出SiC颗粒粒径增大, 复合材料的导热率 升高,且影响较为 明显。
实际应用
二、纳米材料的热物理性能
纳米材料的热物理性能包括运输 性质和热力学性质两大类。其中,物 质的运输性质是指能量和动量传递过 程有关的导热系数、热扩散率、黏度、 热膨胀系数以及热辐射性质(发射率、 吸收率、反射率)等,热力学性质是 指比热容和热焓等。
1 、导热率
就单个纳米而言,内部的热输运在现实应用上 意义不大,纳米颗粒往往用来合成纳米复合材料, 因此纳米颗粒复合材料内的热输运具有重要的应用 价值。纳米颗粒的有效导热系数为:
将物质纳米化后,破坏了原来物质内部 固有的各种化学键,减弱了粒子间的各种 作用了,增大了组成物质的基本微观粒子 之间的平均距离,因而单位体积内粒子数 会显著地减小,能够提高热辐射的透射深 度以降低吸收系数,从而最终提高物体的 发射率与吸收率。
尺度对热辐射性质的影响
发射率与尺度的关系
图中表明,随
1
着辐射节能涂料平 均颗粒直径的减小, 0.95