纳米材料物理热学性质

合集下载

纳米材料的热力学性能研究

纳米材料的热力学性能研究

纳米材料的热力学性能研究纳米材料在科学和工程领域中引起了广泛的兴趣和重要性。

它们在材料科学、物理学、化学、生物学等各个领域都有广泛的应用。

其中,研究纳米材料的热力学性能对于深入理解其物理和化学性质至关重要。

热力学是研究能量转化和能量传递过程的学科,可以帮助我们了解纳米材料在不同温度和压力条件下的行为。

纳米材料的热力学性能与其微观结构以及相互作用有密切关系,因此,准确测量和理解其热力学性质对于纳米材料的设计和应用具有重要意义。

首先,纳米材料的热容量是一个重要参数,它描述了材料在温度变化时吸收或释放的热量。

研究人员发现,纳米材料的热容量与其体积有关,通常随着粒子尺寸的减小而降低。

这是由于纳米材料的表面积相对较大,与周围环境的相互作用增强,因此在温度升高时吸收的热量更少。

了解纳米材料的热容量可以帮助我们优化其在热管理、储能和传感器等领域的应用。

其次,纳米材料的热导率也是一个重要的热力学性质。

热导率描述了材料传导热量的能力,与纳米材料的结晶度、晶体缺陷和界面特性等因素有关。

近年来,研究人员开发了多种方法来测量纳米材料的热导率,包括热膨胀法、热电法和红外光谱法等。

通过研究纳米材料的热导率,我们可以更好地了解其在导热材料、热散热器和热电转换器等领域的应用潜力。

此外,纳米材料的相变行为也是研究的重点之一。

相变是物质从一种状态转换为另一种状态的过程,如固-液相变、固-气相变等。

由于纳米材料的尺寸和表面效应的影响,其相变行为可能与宏观材料有所不同。

例如,纳米材料可以表现出更高或更低的熔点、沸点,以及不同的晶体结构。

了解纳米材料的相变行为对于制备高性能材料和探索新的应用场景具有重要意义。

最后,纳米材料的热稳定性也是研究的关键。

热稳定性描述了材料在高温条件下其结构和性质的变化程度。

纳米材料通常具有更高的表面能量和较大的晶格畸变,因此在高温下更容易发生结构破坏和相变。

了解纳米材料的热稳定性可以帮助我们在高温环境下选择合适的材料,并优化纳米材料的热性能。

纳米材料的特性

纳米材料的特性

纳米相材料在结构上与常规的晶态和非晶态体系有很大 的差别,表现为:小尺寸、能级离散性显著、表(界)面原子比 例高、界面原子排列和键的组态的无规则性较大等。这些特 征导致纳米材料的光学性质出现一些不同于常规晶态和非晶 态的新现象。
纳米材料的光学性质
1、宽频带强吸收
大块金属具有不同颜色的金属光泽,表明它们对可见光 范围各种颜色(波长)的光的反射和吸收能力不同。而当尺寸减 小到纳米级时,各种金属纳米微粒几乎都呈黑色。它们对可 见光的反射率极低,而吸收率相当高。例如,Pt纳米粒子的 反射率为1%,Au纳米粒子的反射率小于10%。这种对可见光 低反射率,强吸收率导致粒子变黑。
纳米微粒具有大的比表面积,表面原子数、表面能和表面张力 随粒径的下降急剧增加,小尺寸效应,表面效应、量子尺寸效应及 宏观量子隧道效应等导致纳米微粒的热、磁、光、敏感特性和表面 稳定性等不同于常规粒子,这就使得它具有广阔应用前景。
§1. 纳米材料的热学性质
1、熔点显著降低
金纳米微粒的粒径与熔点的关系
35nm 15nm 8nm
纳米材料的热学性质 纳米材料的熔点降低、烧结温 度降低、晶化温度降低等热学性质 的显著变化来源于纳米材料的表
(界)面效应。
§2. 纳米材料的光学性质
纳米粒子的一个最重要的标志是尺寸与物理的特征 玻尔半径以及电子的德布罗意波长相当时,小颗粒的量 子尺寸效应十分显著。与此同时,大的比表面使处于表
纳米材料的光学性质
如图:由不同粒径的CdS纳 米微粒的吸收光谱看出,随着微 粒尺寸的变小而有明显的蓝移。 体相PbS的禁带宽度较窄, 吸收带在近红外,但是PbS体相 中的激子玻尔半径较大(大于 10nm),更容易达到量子限域。 当其尺寸小于3nm时,吸收光谱 已移至可见光区。

纳米材料的热学性质

纳米材料的热学性质

纳米材料与团簇物理结课论文纳米材料的热学性质纳米材料是一种既不同于晶态,又不同于非晶态的第三类固体材料,通常指三维空间尺寸至少有一维处于纳米量级( 1 n m~1 0 0 n m)的固体材料。

由于纳米材料粒径小,比表面积大,处于粒子表面无序排列的原子百分比高达l5~5 0%。

纳米粒子的这种特殊结构导致其具有不同于传统材料的物理化学特性。

纳米材料的高浓度界面及原子能级的特殊结构使其具有不同于常规块体材料和单个分子的性质,纳米材料具有表面效应,体积效应,量子尺寸效应宏观量子隧道效应等,从而使得纳米材料热力学性质具有特殊性,纳米材料的各种热力学性质如晶格参数,结合能,熔点,熔解焓,熔解熵,热容等均显示出尺寸效应和形状效应。

可见,纳米材料热力学性质在各方面均显现出与块体材料的差异性,研究纳米材料的热力学性质具有极其重要的科学意义和应用价值。

纳米材料的热学性质概述一、纳米材料的熔点及内能材料热性能与材料中分子、原子运动行为有着不可分割的联系。

当热载子(电子、声子及光子)的各种特征尺寸与材料的特征尺寸(晶粒尺寸、颗粒尺寸或薄膜厚度)相当时,反应物质热性能的物性参数如熔化温度、热容等会体现出鲜明的尺寸依赖性。

特别是,低温下热载子的平均自由程将变长,使材料热学性质的尺寸效应更为明显。

图1 几种纳米金属粒子的熔点降低现象上图(图1)为几种纳米金属粒子的熔点降低现象。

随粒子尺寸的减小,熔点降低。

当金属粒子尺寸小于10nm后熔点急剧下降,其中3nm左右的金微粒子的熔点只有其块体材料熔点的一半,用高倍率电子显微镜观察尺寸2nm的纳米金粒子结构可以发现,纳米金颗粒形态可以在单晶、多晶与孪晶间连续转变。

这种行为与传统材料在固定熔点熔化的行为完全不同,伴随着纳米材料的熔点降低,单位质量粒子熔化时的潜热吸收(焓变)也随尺寸的减小而减少。

人们在具有自由表面的共价半导体的纳米晶体、惰性气体和分子晶体也发现了熔化的尺寸效应现象。

根据固体物理的基本原理,可以说明材料热学性质出现尺寸效应的根本原因,一般情况下,晶体材料的内能U可依据其晶格振动的波特性在德拜假设下估计出,即:(1) 式中,Θ为德拜温度;k为波矢;T为热力学温度;h为普朗克常数;k B为玻尔兹曼常数。

纳米材料的热学性质

纳米材料的热学性质

纳米材料与团簇物理结课论文纳米材料的热学性质纳米材料是一种既不同于晶态,又不同于非晶态的第三类固体材料,通常指三维空间尺寸至少有一维处于纳米量级( 1 n m~1 0 0 n m)的固体材料。

由于纳米材料粒径小,比表面积大,处于粒子表面无序排列的原子百分比高达l5~5 0%。

纳米粒子的这种特殊结构导致其具有不同于传统材料的物理化学特性。

纳米材料的高浓度界面及原子能级的特殊结构使其具有不同于常规块体材料和单个分子的性质,纳米材料具有表面效应,体积效应,量子尺寸效应宏观量子隧道效应等,从而使得纳米材料热力学性质具有特殊性,纳米材料的各种热力学性质如晶格参数,结合能,熔点,熔解焓,熔解熵,热容等均显示出尺寸效应和形状效应。

可见,纳米材料热力学性质在各方面均显现出与块体材料的差异性,研究纳米材料的热力学性质具有极其重要的科学意义和应用价值。

纳米材料的热学性质概述一、纳米材料的熔点及内能材料热性能与材料中分子、原子运动行为有着不可分割的联系。

当热载子(电子、声子及光子)的各种特征尺寸与材料的特征尺寸(晶粒尺寸、颗粒尺寸或薄膜厚度)相当时,反应物质热性能的物性参数如熔化温度、热容等会体现出鲜明的尺寸依赖性。

特别是,低温下热载子的平均自由程将变长,使材料热学性质的尺寸效应更为明显。

图1 几种纳米金属粒子的熔点降低现象上图(图1)为几种纳米金属粒子的熔点降低现象。

随粒子尺寸的减小,熔点降低。

当金属粒子尺寸小于10nm后熔点急剧下降,其中3nm左右的金微粒子的熔点只有其块体材料熔点的一半,用高倍率电子显微镜观察尺寸2nm的纳米金粒子结构可以发现,纳米金颗粒形态可以在单晶、多晶与孪晶间连续转变。

这种行为与传统材料在固定熔点熔化的行为完全不同,伴随着纳米材料的熔点降低,单位质量粒子熔化时的潜热吸收(焓变)也随尺寸的减小而减少。

人们在具有自由表面的共价半导体的纳米晶体、惰性气体和分子晶体也发现了熔化的尺寸效应现象。

根据固体物理的基本原理,可以说明材料热学性质出现尺寸效应的根本原因,一般情况下,晶体材料的内能U可依据其晶格振动的波特性在德拜假设下估计出,即:(1) 式中,Θ为德拜温度;k为波矢;T为热力学温度;h为普朗克常数;k B为玻尔兹曼常数。

第二章纳米材料及其基本性质

第二章纳米材料及其基本性质

物理性能
表面效应 小尺寸效应 量子尺寸效应 宏观量子隧道效应
表面活性及敏感性 化学性能
催化性能
17
一、表面效应 纳米粒子的表面原子数与总原子数之比随着粒子 尺寸的减小而显著增加,粒子的表面能及表面张 力随着增加,物理、化学性质发生变化。
10纳米
1纳米
0.1纳米
随着尺寸的减小,表面积迅速增大
18
粒度减小引起的表面效应(纳米粒子)
20
【例】 把边长为1 cm的立方体1 cm3逐渐分割成小立方体时,比 表面增长情况列于下表:
边长l/m 1×10-2 1×10-3 1×10-5 1×10-7 1×10-9
立方体数
1 103 109 1015 1021
比表面Av /(m2/m3) 6 ×102 6 ×103 6 ×105 6 ×107 6 ×109
➢(1) 特殊的光学性质
(2) 特殊的热学性质
( (纳34)) 米特特殊殊的的微磁力学学性性粒质质 是指尺度处于1~100nm之间的粒子的集合
➢能级间距δ→0,费米能级 ( EF)
体,是处于该几何尺寸的各种粒子集合体的总称。 ➢----纳米Fe、Ni与r-Fe2O3混合烧结后可代替贵金属
➢1×10-9
?当纳米颗粒的尺寸与光波波长德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时当纳米颗粒的尺寸与光波波长德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时?晶体周期性的边界条件被破坏非晶态纳米颗粒表面层附近原子密度减小晶体周期性的边界条件被破坏非晶态纳米颗粒表面层附近原子密度减小26?这将导致声光电磁热力学等特性均会出现新的尺寸效应这将导致声光电磁热力学等特性均会出现新的尺寸效应26一质量m005的子弹以速率v300ms运动着其德布罗意波长为多少其德布罗意波长为多少

纳米材料是什么

纳米材料是什么

纳米材料是什么
纳米材料是一种具有纳米尺度特征的材料,其在纳米尺度下具有特殊的物理、化学和生物学性质。

纳米材料的尺寸通常在1到100纳米之间,这使得它们具有与常规材料不同的特性和应用潜力。

纳米材料可以是纳米颗粒、纳米线、纳米片、纳米管等形态,其结构和性质对于材料科学、纳米技术和生物医学等领域具有重要意义。

首先,纳米材料具有独特的物理性质。

由于其尺寸接近原子和分子尺度,纳米材料表现出与宏观材料不同的量子效应,如量子大小效应、表面效应等。

这些特殊的物理性质赋予纳米材料优异的光学、电子、磁性和热学性能,使其在纳米电子器件、纳米传感器、纳米光学器件等领域展现出巨大的应用潜力。

其次,纳米材料具有独特的化学性质。

纳米材料的表面积相对于体积非常大,这使得其在化学反应和催化过程中具有更高的活性和选择性。

纳米材料在催化剂、吸附剂、储能材料等方面的应用备受关注,其高效的化学反应活性和表面催化性能为解决环境污染和能源危机等问题提供了新的途径。

此外,纳米材料还具有独特的生物学性质。

纳米材料在生物医学领域的应用日益广泛,如纳米药物载体、纳米诊断试剂、纳米生物传感器等。

纳米材料的小尺寸使其能够穿透细胞膜,实现对细胞和组织的精准治疗和诊断,为医学诊疗带来革命性的变革。

总之,纳米材料是一种具有独特物理、化学和生物学性质的材料,其在各个领域都展现出巨大的应用潜力。

随着纳米技术的不断发展和进步,相信纳米材料将会在材料科学、纳米技术、生物医学等领域发挥越来越重要的作用,为人类社会的发展和进步做出更大的贡献。

纳米材料的热学特性研究

纳米材料的热学特性研究

纳米材料的热学特性研究近年来,纳米科学与纳米技术在各个领域的迅猛发展引起了广泛的关注。

作为材料科学领域的一个重要分支,研究纳米材料的热学特性成为了一个热门话题。

纳米材料由于其独特的结构和尺寸效应,具有许多与宏观材料不同的热学行为,这对于纳米材料的应用和开发具有重要的指导意义。

首先,纳米材料的比表面积很大,具有较高的热传导性能。

纳米材料常常具有具体表面积高于1 m²/g的特点,这是由于其微观结构的存在,如纳米颗粒、纳米线等。

因此,纳米颗粒可以吸附更多的热量,使得纳米材料在热管、热散热器等领域具有广泛的应用潜力。

此外,由于纳米材料具有相对较大的热辐射和热导率,可以用于制备高效的太阳能电池和热电复合材料,提高能源利用效率。

其次,纳米材料的热膨胀系数与普通材料有所不同。

纳米材料的独特尺寸效应导致其热膨胀系数在宏观材料的基础上出现了显著变化。

研究发现,当纳米材料的尺寸减小到纳米尺寸级别时,其热膨胀系数下降了数个数量级,使得纳米材料在高温环境下具有更好的热稳定性。

这对于纳米电子元器件、导热材料和烧结材料的设计和制备具有重要意义。

此外,纳米材料由于其在能带结构和电子热容方面的独特性质,表现出了与宏观材料截然不同的热学特点。

在纳米材料的尺寸下降到一定程度时,电子的能量级密度出现显著调制,电子态密度发生了量子级别的变化。

此外,纳米材料的电子热容明显小于宏观材料,在低温下表现出冷热电特性。

对于纳米热电材料的研究发现,可以利用这些独特的热学特性来开发高效的纳米热电材料,实现能量的高效转换和利用。

然而,与此同时,纳米材料在热学特性研究中也面临着一些挑战。

由于纳米领域的研究相对较新,研究方法和技术比较有限。

例如,如何准确地测量纳米材料的热导率、热容和热膨胀系数等热学参数成为了一个关键问题。

尺寸效应也增加了纳米材料的制备和性能调控的难度。

因此,如何提高研究手段和技术,深入理解纳米材料的热学特性,是当前纳米材料热学研究的重点。

纳米材料的热学性质

纳米材料的热学性质

纳米材料的热学性质一、纳米晶体的熔化1、几种熔化机制(描述纳米粒子的熔化过程):(1) 根据熔化一级相变的两相平衡理论可以得到,熔点变化与表界面熔化前后的能量差有关,也就是与小粒子所处的环境相关。

对同质粒子,自由态和镶嵌于不同基体中时,粒子熔点降低的规律将会不同。

(2) 如果把粒子的熔化分为两个阶段,如图7-5所示,粒子的表面或与异质相接触的界面区域首先发生预熔化,完成表面的熔体形核,继而心部发生熔化,则粒子的熔化发生一个温度区间内。

该理论建立在忽略环境条件的基础上,所以小粒子的实际熔点降低与所处环境无关。

(3)随粒子尺寸的减小,表界面的体积分数较大,而且表界面处的原子振幅比心部原子的更大,均方根位移的增加引起界面过剩Gibbs自由能的增大会使小粒子的熔点降低。

图7-5 小粒子熔化过程示意图,液相层厚度用δ表示图7-4 受约束铅纳米薄膜(a)和自由铅薄膜(b)中铅的特征X-射线衍射强度随温度的变化情况原位X射线衍射测定的冷轧Pb/Al 多层膜及轧制的自由铅薄膜样品的熔化行为,图中虚线为块体Pb平衡熔点。

X射线衍射分析是测定晶体结构的重要手段, 由于原子周期排列的晶体结构对X 射线的散射会产生反映晶体结构的特征衍射,而熔化后的液态金属原子排列无序,对X 射线不会产生特征衍射. 因此,熔化过程中X 射线特征衍射只能由剩余的晶体部分产生,特征衍射强度将因晶体的熔化而显著降低.图7-4为可以看出,自由铅薄膜的四个特征衍射的强度到大约326℃开始急剧降低,并在329℃之前均下降为零。

Pb/Al多层膜样品中铅膜的四个特征衍射的强度在326~329℃也会降低,但并未降到零,而是在高于329℃不同的温度降低到零,其中的(111)衍射直到340℃才完全消失。

这说明,Pb/Al多层膜样品中部分铅膜在达到334℃时依然存在,其熔化温度超过了自由铅薄膜的熔化温度,夹在铝中的部分铅薄膜出现了过热现象。

纳米晶体的熔化2、纳米材料的过热意义:纳米材料熔点降低在很多情况下限制了其应用领域,人们经常希望提高纳米材料热稳定性。

纳米材料的热力学性质分析

纳米材料的热力学性质分析

纳米材料的热力学性质分析纳米材料是一种具有特殊结构和性质的材料,其尺寸范围在纳米级别。

由于纳米材料的尺寸效应和表面效应的存在,其热力学性质与宏观材料有很大差异。

本文将从纳米材料的熵、内能和自由能三个方面来分析其热力学性质。

首先,我们来看纳米材料的熵。

在宏观物体中,熵是描述系统无序程度的变量。

然而,在纳米尺度下,纳米材料的表面积增大,原子之间的相对位置变得更加复杂,系统的无序性增加。

因此,纳米材料的熵相对于宏观材料来说更大。

这也意味着纳米材料更容易发生相变和热力学过程,其对外界环境的敏感性也大大增强。

其次,我们研究纳米材料的内能。

内能是一个系统所包含的全部能量,包括系统的热能和势能。

由于纳米材料的尺寸效应,其内能与宏观材料相比也有所不同。

尺寸效应是指由于纳米材料的尺寸特征不同,其内部原子排列的方式和势场能量的分布也会发生变化。

举个例子,纳米金颗粒的表面原子会形成一层类似于固体的自由电子层,与周围原子产生强烈的相互作用。

这种电子层的存在对纳米材料的热力学性质产生了显著的影响,使其内能变化与宏观材料不同。

最后,我们关注纳米材料的自由能。

自由能是在恒温恒压条件下描述系统稳定性的指标。

与宏观材料不同,纳米材料的自由能受到尺寸效应和表面效应的影响。

由于纳米材料的比表面积大,表面原子和周围原子之间会产生较大的相互作用,导致纳米材料的自由能增大。

这种增大的自由能会导致纳米材料的稳定性降低,从而使其更容易发生相变和热力学过程。

总之,纳米材料的热力学性质与宏观材料存在很大差异。

纳米材料的熵相对较大,内能与宏观材料不同,并且自由能受到尺寸效应和表面效应的影响。

这些特性使得纳米材料对环境和外界条件更加敏感,容易发生相变和热力学过程。

研究纳米材料的热力学性质有助于深入理解纳米世界的奥秘,对于纳米材料的制备和应用具有重要意义。

1.1纳米材料性质

1.1纳米材料性质

1.1纳⽶材料性质纳⽶材料性质1 纳⽶材料概述纳⽶材料是指三维空间尺⼨中⾄少有⼀维处于纳⽶级别(约1-100nm)的材料,根据其维度的差异通常可分为三类:(1)零维材料,即空间三维尺度都在纳⽶级别,包括量⼦点、纳⽶微球、纳⽶颗粒、原⼦团簇等;(2)⼀维材料,即空间三维尺度中有⼀维处于纳⽶级别,如纳⽶线、纳⽶棒、纳⽶管、纳⽶带等;(3)⼆维材料,即空间三维尺度有两维处于纳⽶级别,包括纳⽶⽚、多层膜、超薄膜⽯墨烯、⼆硫化钼、⼆硒化钼、⼆硫化钨、⼆硒化钨等⽚状纳⽶材料。

纳⽶粒⼦⼀般是⽐原⼦簇⼤,⽽⽐微粉要⼩,这个尺⼨是处于原⼦和微观物质之间很难⽤⾁眼和⼀般的显微镜观察。

图1.1 颗粒尺⼨分布图,单位:⽶(m)因为这些单元往往具有量⼦性质,所以对零维、⼀维和⼆维的基本单元⼜分别称为量⼦点、量⼦线和量⼦阱。

纳⽶材料是介于宏观和微观原⼦簇之间的⼀个新的物质层次,因⽽表现出独特的物理化学性质,具有表⾯效应、⼩尺⼨效应、量⼦尺⼨效应以及宏观量⼦隧道效应、量⼦限域效应等特性,使得纳⽶材料在包括催化、⽣物医学、材料⼯程、环保、能源等众多领域得到了⼴泛的应⽤。

2 纳⽶材料的基本性质由于组成纳⽶材料的基本单元属于纳⽶量级,当材料的尺⼨⼩到接近光的波长或接近电⼦的相⼲长度时,晶体的周期性的边界条件将会被破坏,材料的⽐表⾯积会增⼤,⽽纳⽶材料表层附近的原⼦密度将减⼩,这些改变将造成纳⽶材料相对于宏观物体的多种性质的改变。

这些纳⽶材料的尺⼨越⼩,其表⾯原⼦数所占⽐例就越⼤。

由于表⾯原⼦的配位数较低,导致表⾯原⼦活性较⾼,微电⼦状态相应会发⽣变化,从⽽使得纳⽶材料有很多独特的性质。

2.1 表⾯效应表⾯效应是指纳⽶材料表⾯原⼦的数量与纳⽶材料的总原⼦数的⽐值随着粒径的变⼩⽽快速增⼤后所引起的材料性质的变化。

表1.1中给出了纳⽶粒⼦尺⼨与表⾯原⼦数的关系。

从表1.1中可见随着纳⽶材料尺⼨的减⼩,材料⽐表⾯积和表⾯的原⼦数在迅速增加。

纳米材料的性质

纳米材料的性质

纳米材料的性质
纳米材料是一种具有特殊性质和应用潜力的材料,其尺寸在纳米尺度范围内。

纳米材料的性质主要包括物理性质、化学性质和生物性质。

首先,纳米材料的物理性质表现出了许多独特的特点。

由于其尺寸处于纳米尺度,纳米材料表面积大大增加,使得其表面活性增强,从而呈现出了特殊的光学、电学、磁学等性质。

比如,纳米颗粒的光学性质会随着颗粒尺寸的改变而发生变化,纳米材料的电学性质也表现出了优异的导电性和介电性。

此外,纳米材料的热学性质也呈现出了独特的特点,如纳米材料的热导率和热膨胀系数都与其尺寸密切相关。

其次,纳米材料的化学性质也具有特殊的表现。

纳米材料的化学反应活性高,
表面原子数增加,使得其化学反应速率加快,从而表现出了特殊的催化性能。

此外,纳米材料的表面能和晶界能也随着尺寸的减小而增加,使得其在催化、吸附等方面具有独特的应用潜力。

同时,纳米材料的表面修饰和功能化也成为了当前研究的热点,使得纳米材料在生物医学、环境保护等领域得到了广泛的应用。

最后,纳米材料的生物性质也备受关注。

纳米材料的尺寸与生物体内的生物大
分子尺寸相近,使得其在生物医学领域具有独特的应用前景。

纳米材料可以被用于生物成像、药物传输、生物传感等方面,其生物相容性和生物毒性也成为了当前研究的重点。

总的来说,纳米材料的性质包括物理性质、化学性质和生物性质,其独特性使
得其在材料科学、化学、生物医学等领域具有广泛的应用前景。

然而,纳米材料的安全性和环境影响也需要引起足够的重视,加强对纳米材料的研究和监管,以确保其可持续发展和安全应用。

纳米粒子的材料学特性

纳米粒子的材料学特性

纳米粒子的材料学特性纳米粒子是一种材料学中非常热门的研究领域。

与传统的宏观颗粒相比,纳米粒子的尺寸非常小,通常处于1-100纳米的范围内。

这种尺寸的缩小使得纳米粒子的材料学特性与传统材料有很大的区别。

本文将探讨纳米粒子的材料学特性。

一、尺寸效应纳米粒子的尺寸效应是与其尺寸相关的性质。

它是由于表面积与体积之比的变化而引起的。

随着尺寸的减小,表面积与体积之比增大,从而表面能量增大。

这使得纳米颗粒的化学、物理和光学性质发生了显著变化。

二、表面增强效应纳米粒子表面增强效应是其表面比体积更大导致的。

表面增强效应通常会导致纳米颗粒的光学、化学和催化性能的增强。

在光学应用中,表面增强效应可以用于放大拉曼光谱的强度。

在化学反应中,表面增强效应可以提高催化剂的效率。

三、量子效应当纳米粒子的尺寸减小到一定程度时,其能带结构发生了变化,导致量子效应的出现。

量子效应意味着由于纳米颗粒尺寸的缩小,电子的行为与传统宏观材料完全不同。

量子效应是纳米材料的独特特性之一,广泛应用于电子学领域。

四、热力学性质纳米颗粒的热力学性质也有所不同。

银纳米颗粒就是一个典型的例子。

在纳米尺寸下,银颗粒的熔点、沸点和凝固点都会下降。

熔点和沸点可以通过物理和化学方法改变,这对于材料加工和合成有重要意义。

五、磁学性质纳米粒子的磁学性质是由于电子自旋的量子化,导致了比常规宏观材料更高的磁性。

磁性是指由于相互作用而导致的物质的属性。

使用磁性纳米颗粒,可以制成磁性半导体和磁性存储材料,这对应用有重要作用。

六、电学性质纳米颗粒的导电性比其宏观同种材料更高,这是由于电子的行为受到尺寸限制的影响。

导电性的提高可以用于制造高清晰屏幕、高解析度传感器和高效LED。

总之,纳米粒子的材料学特性是与其尺寸相关的,通常表现为尺寸效应、表面增强效应、量子效应、热力学性质、磁学性质和电学性质上的变化。

随着对纳米颗粒的研究逐渐深入,其应用范围也会日益广泛。

纳米材料导论第一章纳米材料的基本概念与性质

纳米材料导论第一章纳米材料的基本概念与性质
17
1.1.5 纳米复合材料
❖ 0-0复合:不同成分、不同相或者不同种类的纳米粒子 复合而成的纳米固体;
❖ 0-3复合:把纳米粒子分散到常规的三维固体中;
❖ 0-2复合:把纳米粒子分散到二维的薄膜材料中.
均匀弥散:纳米粒子在薄膜中均匀分布; 非均匀弥散:纳米粒子随机地、混乱地分散在薄膜基体中。
18
高韧性陶瓷材料、
人体修复材料和抗癌制剂等。
12
1.1.3纳米粒子薄膜与纳米粒子层系
定义:含有纳米粒子和原子团簇的薄膜、纳米尺寸厚度的 薄膜、纳米级第二相粒子沉积镀层、纳米粒子复合涂层或 多层膜 具有特殊的物理性质和化学性质
13
纳米级第二相粒子沉积镀层举例
(Ni-P)-纳米Si3N4复合层 用具有很好悬浮性能的纳米Si3N4固体微粒作为镀液的第二相 粒子,通过搅拌使其悬浮在镀液中,用电刷镀的方法使Ni-P合金与 纳米Si3N4微粒共沉积于基体表面.它具有沉积速度快、镀层硬 度高和耐磨性好等优异的性能.
27
1.2.1电子能级的不连续性 - kubo理论
久保(Kubo)理论是关于金属粒子电子性质的理 论.它是由久保及其合作者提出的,以后久保和其他 研究者进一步发展了这个理论.1986年Halperin对这 一理论进行了较全面归纳,用这一理论对金属超微粒 子的量子尺寸效应进行了深人的分析。
久保理论是针对金属超微颗粒费米面附近电子能 级状态分布而提出来的,它与通常处理大块材料费米 面附近电子态能级分布的传统理论不同,有新的特点, 这是因为当颗粒尺寸进入到纳米级时由于量子尺寸效 应原大块金属的准连续能级产生离散现象.
采用两个石墨碳棒在惰性气体(He,Ar)中进行直流电 弧放电,并用围于碳棒周围的冷凝板收集挥发物。挥发 物中除了有C60外,还含有C70,C20等其它碳团簇。可以 采用酸溶去其它团簇,但往往还混有C70。

纳米材料概论 第八章纳米材料的热学性能

纳米材料概论 第八章纳米材料的热学性能

第八章纳米材料的热学性能重点:纳米材料的热学性质及尺寸效应纳米晶体的熔化纳米晶体的热稳定性纳米晶体的点阵热力学性质纳米晶体的界面热力学重点材料的热性能是材料最重要的物理性能之一表现出一系列与块体材料明显不同的热学特性,如:比热容值升高热膨胀系数增大熔点降低纳米材料的热学性质与其晶粒尺寸直接相关Why?材料的热性能是材料最重要的物理性能之一8.1 纳米材料的热学性质及尺寸效应8.1.1纳米材料的热学性质纳米材料的熔点材料中分子、原子的运动行为决定材料的热性能当热载子(电子、声子及光子)的各种特征运动尺寸与材料尺度相当时,反映物质热性能的物性参数(如熔化温度、热容等)会体现出鲜明的尺寸依赖性。

特别是,低温下热载子的平均自由程将变长,使材料热学性质的尺寸效应更为明显。

8.1.2 纳米晶体的热容及特征温度热容是指材料分子或原子热运动的能量Q随温度T的变化率,与材料的结构密切相关。

在温度T时,材料的热容量C的表达式为:若加热过程中材料的体积不变,则测得的热容量为定容热容(CV);若加热过程中材料的压强不变,则测得的为定压热容(CP)。

晶界的过剩体积ΔV其中,V和V分别为完整单晶体和晶界的体积。

在纳米材料中,很大一部分原子处于晶界上,界面原子的最近邻原子构型与晶粒内部原子的显著不同,使晶界相对于完整晶格存在一定的过剩体积热力学计算表明:纳米晶的热容随着晶界过剩体积的增加而增加,因而亦随着晶界能的增加而增加。

由于高比例晶界组元的贡献,纳米材料的比热容会比其粗晶材料的高。

注意区分:纳米材料定容热容与比热容的特点2、德拜特征温度由固体物理,德拜特征温度的定义为:ωm表征晶格振动的最高频率;kB为玻尔兹曼常数。

纳米晶体材料的德拜特征温度θnc相对于粗晶的θc的变化率Δθnc可由下式给出:目前,对于纳米晶体材料特征温度的减小还无确切解释。

但可见,晶格振动达到最高频率变得容易了。

8.1.3纳米晶体的热膨胀热膨胀是指材料的长度或体积在不加压力时随温度的升高而变大的现象。

纳米材料的特殊性质

纳米材料的特殊性质
第三节、纳米材料的特殊性质
纳米材料的热学性质 纳米材料的光学性质 纳米材料的电学性质 纳米材料的磁学性质 纳米材料的力学性质 纳米材料的化学性质
纳米材料的特性
纳米相 材料
纳米微粒
纳 米 结 构 材 料 (nanostructured materials)又称纳米固体,它是由颗 粒尺寸为1~100nm的粒子凝聚而成 的块体、薄膜、多层膜和纤维等。
35nm 15nm 8nm
纳米材料的热学性质
纳米材料的熔点降低、烧结温度 降低、晶化温度降低等热学性质的 显著变化来源于纳米材料的表(界) 面效应。
§2. 纳米材料的光学性质
纳米粒子的一个最重要的标志是尺寸与物理的特征量 相差不多,例如,当纳米粒子的粒径与超导相干波长、 玻尔半径以及电子的德布罗意波长相当时,小颗粒的量 子尺寸效应十分显著。与此同时,大的比表面使处于表 面态的原子、电子与处于小颗粒内部的原子、电子的行 为有很大的差别,这种表面效应和量子尺寸效应对纳米 微粒的光学特性有很大的影响,甚至使纳米微粒具有同 样材质的宏观大块物体不具备的新的光学特性。
烧结前
烧结后
纳米材料的热学性质
纳米TiO2在773K加热呈现出 明显的致密化,而晶粒仅有微 小 的 增 加 , 致 使 纳 米 微 粒 TiO2 在比大晶粒样品低873K的温度 下S烧结就能达到类似的硬度, 如图所示。
常 规 Al2O3 的 烧 结 温 度 为 2073~2173K,在一定条件下, 纳 米 Al2O3 可 在 1423 ~ 1773K 烧结,致密度达99.7%。
金的熔点:1064 oC;2nm的金粒子的熔点为327 oC。 银的熔点:960.5 oC;银纳米粒子在低于100 oC开始熔化。 铅的熔点:327.4 oC;20nm球形铅粒子的熔点降低至39 oC。 铜的熔点:1053 oC;平均粒径为40nm的铜粒子,750 oC。

纳米材料的物理和化学特性

纳米材料的物理和化学特性

纳米材料的物理和化学特性纳米材料是一种尺寸在1~100纳米之间的物质,具有比宏观物体更特殊的物理和化学特性。

与普通材料相比,纳米材料的表面积更大,颗粒间距较小,因此具有更高的化学反应活性和更快的反应速率。

此外,纳米材料的电子结构、热力学性质、磁性、光学特性等方面也与普通材料不同,使其具有很广泛的应用前景。

一、纳米材料的电子结构纳米材料的尺寸处于量子范围之内,因此其电子结构将受到量子尺寸效应的影响。

由于电子在纳米材料中的能量状态是量子化的,因此它们只能占据在量子态。

这使得纳米材料有很多电子态,比普通材料更复杂。

纳米材料的电子结构对其性质有很大影响,特别是对催化剂、光学材料和电子材料的性能有很大的影响。

二、纳米材料的热力学性质热力学是描述物质的热学性质的科学,包括温度、压力和热量等方面。

纳米材料的尺寸在量子尺度之内,具有特殊的热力学性质。

纳米材料的比表面积较大,导致其更容易与周围环境相互作用,因此具有更高的热力学活性。

这使得纳米材料经常用于催化剂和化学催化反应等方面。

三、纳米材料的磁性纳米材料具有在宏观材料中不会出现的磁性质。

由于磁性是由电子的自旋引起的,因此纳米材料的电子结构将影响其磁性质。

在某些情况下,纳米材料的磁性质可以被调节,例如通过改变其尺寸和组成等因素,因此具有广泛的应用前景。

四、纳米材料的光学特性纳米材料具有比宏观材料更特殊的光学特性,因为纳米材料的电子能够在可见光和紫外光范围内吸收和放射光能,因此可以产生很多特殊的光学效应,例如荧光、散射和吸收特性。

此外,纳米材料的颜色也会随着其尺寸和形态的改变而发生变化。

总之,纳米材料具有很多独特的物理和化学特性,这些特性是由其尺寸、形态和电子结构等因素所决定的。

由于这些特性,纳米材料在磁性材料、光学材料、电子材料和催化剂等领域中具有广泛的应用前景。

第四章 纳米材料的特异性质

第四章 纳米材料的特异性质
饱和键、悬挂键以及缺陷非常多。界面原子除与体相 原子能级不同外,互相之间也可能不同,从而导致能 级分布的展宽。与常规大块材料不同,没有一个单一 的、择优的键振动模,而存在一个较宽的键振动模的 分布,在红外光作用下对红外光吸收的频率也就存在 一个较宽的分布。 • 当分析具体体系要综合考虑各种因素,不能一概而论。 纳米结构材料红外吸收的微观机制研究还有待深入, 实验现象也尚需进一步系统化。
应用:
利用宽频带强吸收这个特性可以作为高效率的光热、 光电等转换材料,可以高效率地将太阳能转变为热能、电 能。此外又有可能应用于红外敏感元件、红外隐身技术等。 隐身就是把自己隐蔽起来,让别人看不见、测不到。
隐型飞机就是让雷达探测不到,它是在机身表面涂上红外 与微波吸收纳米材料来实现的,因为雷达是通过发射电磁 波再接收由飞机反射回来的电磁波来探测飞机的。1991年 海湾战争中,美国F117A型飞机的隐身材料就是含有多种 纳米粒子,故对不同的电磁波有强烈的吸收能力。在42天 战斗中,执行任务的的飞机1270架,摧毁了伊拉克95%的 军大事块设金施而美国战机无一受损。
(2)蓝移现象
与大块材料相比,纳米微粒的 吸收带普遍存在“蓝移”现象, 即吸收带移向短波方向。例如, 纳米SiC颗粒和大块SiC固体的峰 值红外吸收频率分且是814cm-1 和794cm-1。纳米氮化硅颗粒和 大 块 Si3N4 , 固 体 的 峰 值 红 外 吸 收 频 率 分 别 是 949cm-1 和 935 cm-1 。由不同粒径的Si纳米微粒 纳吸大收块光金谱看出,随着微粒尺寸 的变小而有明显的蓝移。
应用:
利用不同粒径纳米颗粒的 蓝移现象可以设计波段可 控的新型吸收材料。
大块金
(3) 吸收光谱的红移现象
• 有时候,当粒径减小至纳米级时,会观察到光吸收带 相对粗晶材料的“红移”现象。例如,在200-1400nm 范围,块体NiO单晶有八个吸收带,而在粒径为54- 84nm的NiO材料中,有4个吸收带发生兰移,有3个吸 收带发生红移,有一个峰未出现。

纳米材料的物理与化学特性

纳米材料的物理与化学特性

纳米材料的物理与化学特性随着科技的发展,人们在材料领域也不断探索创新,其中纳米材料已成为研究的热点。

纳米材料的物理和化学特性与传统的宏观材料有很大的不同,本文将对纳米材料的这些特性进行介绍。

一、纳米材料的物理特性1.尺寸效应纳米材料的尺寸一般在1-100纳米之间,相比传统的宏观材料来说,尺寸更小,因此表现出了很多独特的物理特性。

其中,最重要的一个特性便是尺寸效应。

尺寸效应是指在纳米尺度下,材料的物理性质与其尺寸变化密切相关。

由于其尺寸非常小,纳米颗粒表面原子数目相对较少,而表面原子具有更高的自由能,因此,表面的原子比体内的原子更容易移动或反应。

而导致了纳米材料表面的原子结构、比表面积以及空孔的数量都和其尺寸有关。

2.热力学不稳定性纳米材料热力学不稳定性对其物理特性的影响也非常大。

由于经典热力学和统计力学适用于传统的宏观材料,而在纳米尺度下,统计力学原理的适用性、“基于热力”的化学反应以及传热的微观机制等等,构成了一个非常有趣的热学现象。

例如,纳米颗粒的活化能相对较低,因此具有随着温度的升高呈指数增加的快速催化活性。

由于温度的提高会加速原子或分子的反应,使得纳米材料的热力学不稳定性增强,从而使表现出更多在宏观尺度下不可观察到的化学反应特性。

3.光学性质纳米材料由于其尺寸小的特性,导致了纳米材料的光学性质也与传统材料存在很大的差异。

纳米材料可以通过调节其尺寸、形状、组成以及环境等多种方式来控制其光学特性,产生颜色和与光的交互作用的其他物理效应。

二、纳米材料的化学特性1.反应活性与宏观材料相比,纳米材料的反应活性要高得多。

由于纳米材料表面具有更多的原子或离子,导致表面的能量密度更高,活性更强。

这就是为什么纳米材料能够催化许多反应的原因。

此外,纳米材料也具备更大的表面积和更多的结构缺陷,这些缺陷也会增强其反应活性。

2.氧化还原性纳米材料的氧化还原性也具有很大的特点。

由于纳米颗粒的尺寸很小,电子效应也随之发生变化,致使纳米颗粒发生氧化还原反应时,其反应速率相比宏观物质将大大增强。

纳米材料的热力学性质及其应用

纳米材料的热力学性质及其应用

纳米材料的热力学性质及其应用纳米材料是一种颇为热门的材料,在物理、化学、生物、医药等领域中都有广泛的应用。

其所具有的独特性质和应用价值也受到了广泛的关注。

其中,纳米材料的热力学性质是其应用的基础而且也是极其重要的一部分。

纳米材料的热力学性质纳米材料具有高比表面积、量子尺寸效应和表面效应等特点。

这些独特的性质决定了纳米材料的热力学性质也与传统材料有很大的不同。

首先是纳米材料的比热。

由于纳米材料具有更多的表面原子和少量的体积原子,因此其比表面积将会比普通材料大得多。

这样就会产生更多的表面能和重要的贡献。

由于纳米材料的比表面积巨大,因此纳米材料的比热也会相应地增大,这将会增大材料的热容量。

其次是纳米材料的比熵。

纳米材料比熵增大的直接后果便是纳米材料的比熵增大。

当纳米材料的尺寸小得足够小时,纳米材料的比熵将达到最大值。

而当纳米材料的尺寸继续减小时,比熵将会降低。

同时,不同的纳米材料在它们的比熵变化方面也有区别。

例如,金属结构具有强的增量性,而陶瓷则具有减量性。

第三是纳米材料的比能。

纳米材料比能的变化主要是受到表面效应、量子限制和应变等因素的影响。

受到这些因素的共同作用,一些纳米材料的比能甚至超过了它们的布里渊能,因此纳米材料的比能大大增加。

纳米材料的应用纳米材料的热力学性质不用于直接的应用,但却与其许多应用息息相关。

其应用分散在物理、化学、生物和医药等多个领域中,下面对一些典型的应用进行简单的介绍。

首先是在生物、医药领域中的应用。

纳米材料由于具有超静电场和表面效应等特殊性质,因此可以用于制备肿瘤治疗和生物成像等。

例如,纳米材料可以用作分子靶向药物的载体,能够选择性地将药物送到癌细胞内,从而减少对人体正常细胞的损伤。

此外,纳米材料还可以通过修饰表面来增加生物相容性和疏水性,从而在生物体内获得更长的循环时间。

其次是在催化领域的应用。

纳米材料表面的高反应活性、化学惰性和结构特征等独特性质,使得其在催化反应中有广泛的应用。

纳米材料的热学特性研究

纳米材料的热学特性研究

纳米材料的热学特性研究近年来,纳米材料作为一种新兴的材料,受到了越来越多的关注。

其独特的物理和化学性质,赋予了它们在许多领域的广泛应用,如超级电容器、生物传感器等。

然而,阐明纳米材料的热学特性对其更深入的研究和应用具有重要意义。

在纳米材料中,由于尺寸的缩小,其热学性质发生了明显的变化。

与宏观物体相比,纳米材料具有更高的表面积和更小的体积,因此热辐射和热传导的影响会更加显著。

同时,纳米材料表现出了新的热学现象,如热电效应、量子热力学等。

热电效应是指材料在温度梯度下产生电压和电流。

纳米结构材料中的热电效应比传统材料更加突出,因为电子在这些材料中的输运被限制在极小的空间范围内。

例如,金属纳米线的电子输运是建立在单个原子层上的,这种单个原子层的输运机制会显著影响热电性能。

研究表明,纳米材料的热电效应与其组成元素、晶体结构、尺寸等因素密切相关。

利用热电效应,我们可以开发高效的能量转换技术,如纳米器件和新型热电器件。

量子热力学是一种描述纳米材料热学行为的方法。

在低温下,量子效应主导着纳米材料的热学特性,这些效应包括量子大小效应、量子纠缠效应、量子涨落等。

例如,纳米线、纳米晶体的热容比传统晶体要小,量子大小效应是解释这种差异的重要因素。

另外,量子涨落相比于宏观尺寸的热力学过程要更加显著,这在纳米材料的热学行为中也占据着重要地位。

研究表明,纳米材料的量子热力学行为是与其尺寸、形状、温度等紧密相关的。

因此,深入研究量子热力学对了解纳米材料的热学特性至关重要。

另外,纳米材料的热传导性质也是其热学特性的重要方面。

由于尺寸的缩小,纳米材料中的热传导比宏观物体更加复杂。

在纳米材料中,热传导的机制有经典和量子两种,其中量子机制的热传导表现出非局域性和相干性。

纳米尺度下的热传导对于纳米器件的热管理至关重要。

因此,研究纳米材料的热传导行为可以为我们设计更加高效的纳米器件和热管理系统提供指导。

总之,纳米材料的热学特性是其独特性质的体现,并且与材料的尺寸、形状、温度等因素密切相关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

纳米材料的热学性质纳米材料是一种既不同于晶态,又不同于非晶态的第三类固体材料,通常指三维空间尺寸至少有一维处于纳米量级 ( 1 n m~1 0 0 n m)的固体材料。

由于纳米材料粒径小,比表面积大,处于粒子表面无序排列的原子百分比高达 l 5 ~5 0 %。

纳米粒子的这种特殊结构导致其具有不同于传统材料的物理化学特性。

纳米材料的高浓度界面及原子能级的特殊结构使其具有不同于常规块体材料和单个分子的性质,纳米材料具有表面效应,体积效应,量子尺寸效应宏观量子隧道效应等,从而使得纳米材料热力学性质具有特殊性,纳米材料的各种热力学性质如晶格参数,结合能,熔点,熔解焓,熔解熵,热容等均显示出尺寸效应和形状效应。

可见,纳米材料热力学性质在各方面均显现出与块体材料的差异性,研究纳米材料的热力学性质具有极其重要的科学意义和应用价值。

一热容1996年,在低温下测定了纳米铁随粒度变化的比热,发现与正常的多晶铁相比,纳米铁出现了反常的比热行为,低温下的电子比热系数减50 %。

1998年,通过研究了粒度和温度对纳米粒子热容的影响,建立了一个预测热容的理论模型,结果表明:过剩的热容并不正比于纳米粒子的比表面,当比表面远小于其物质的特征表面积时,过剩的热容可以认为与粒度无关。

2002年,又把多相纳米体系的热容定义为体相和表面相的热容之和,因为表面热容为负值,所以随着粒径的减小和界面面积的扩大,将导致多相纳米体系总的热容的减小,二.晶格参数,结合能,内聚能纳米微粒的晶格畸变具有尺寸效应,利用惰性气体蒸发的方法在高分子基体上制备了1. 45nm 的pd纳米微粒,通过电子微衍射方法测试了其晶格参数,发现 Pd 纳米微粒的晶格参数随着微粒尺寸的减小而降低。

结合能的确比相应块体材料的结合能要低。

通过分子动力学方法,模拟 Pd 纳米微粒在热力学平衡时的稳定结构,并计算微粒尺寸和形状对晶格参数和结合能的影响,定量给出形状对晶格参数和结合能变化量的贡献研究表明:在一定的形状下,纳米微粒的晶格参数和结合能随着微粒尺寸的减小而降低,在一定尺寸时,球形纳米微粒的晶格参数和结合能要高于立方体形纳米微粒的相应量。

三纳米粒子的熔解热力学熔解温度是材料最基本的性能,几乎所有材料的性能如力学性能,物理性能以及化学性能都是工作温度比熔解温度( T /Tm )的函数,除了熔解温度外,熔解焓和熔解熵也是描述材料熔解热力学的重要参量;熔解焓表示体系在熔解的过程中,吸收热量的多少,而熔解熵则是体系熔解过程中熵值的变化。

几乎整个熔解热力学理论就是围绕着熔解温度,熔解熵和熔解焓建立的块体材料的熔解温度(有时称熔点) 熔解焓(或称熔解热)和熔解熵一般是常数,但对于纳米材料则非如此实验表明:纳米微粒的熔解温度依赖于微粒的尺寸。

四反应体系的化学平衡利用纳米氧化铜和纳米氧化锌分别与硫酸氢钠溶液的反应,测定出不同粒径,不同温度时每个组分反应的平衡浓度,从而计算出平衡常数,进而得到化学反应的标准摩尔吉布斯函数;通过不同温度的标准摩尔吉布斯函数,可得化学反应的标准摩尔反应焓Hm 和标准摩尔反应熵 S ;通过不同粒度反应物反应的实验,得到粒度对化学反应的热力学性质和平衡常数的影响规律; Polak 等设计了纳米限域体系中化学反应平衡态的模型,指出:在密闭体系中合成纳米结构的材料时,条件的波动和化学计量数密切相关,并且在小体系中起着主导作用;温度决定反应的平衡常数。

第一节 纳米材料的热学性质及尺寸效应1.1纳米材料的熔点及内能图7-1 几种纳米金属粒子的熔点降低现象材料热性质与材料中分子、原子运动行为有着不可分割的联系。

当热载子(电子、声子及光子)的各种特征尺寸与材料的特征尺寸(晶粒尺寸、颗粒尺寸或薄膜厚度)相当时,反应物质热性质的物性参数如熔化温度、热容等会体现出鲜明的尺寸依赖性。

一般情况下,晶体材料的内能可依据其晶格振动的波特性在德拜假设下估计出,即: (7-1)的允许值由其分量表示为: 0=x k xL 2π±xL 4π± (x)L N π±, aN L k x xx π2π2==∆L 为晶格长度,N 为状态度, x k ∆为特定方向上连续波矢的差;在其它方向的k 分量也存在类似关系。

在块体材料内,式(7-1)通常简化为:⎰-Θ=Dx B bulk dx x x TT nk u 0331)exp()(9 (7-2)∑-ΘΘ=kB T k k kU 1)exp(3 k其中:bulk u 是块体材料单位容积的U 值,n 为原子数密度,D x 为与德拜温度对应的积分限。

说明:1. 块体材料声子模式的贡献(不包括表面声子)。

2.当材料尺度的降低,用上式计算内能及热容的方法不再有效。

若材料至少一个方向的原子数显著降低时,则此方向的改变量与所有容许值相比不再小到可以忽略时:(1)k 空间内点的精确数目不同于固体材料的值; (2)k 空间体积 U 必须通过离散求和来计算。

由此可以得出微小体积晶格的内能:∑∑∑∆∆∆-++++⋅=xyzk k kzy x B zy x z y x micro k k k Tk k k k c k k k cu 1)exp()π2(32222223ε(7-3)其中:∑=-=2/0223)4(3x N ix x i N N ε可见,由于晶格内能存在尺寸效应,将不可避免地导致材料基本热学性质对晶体尺寸的依赖性。

1.2纳米晶体的热容及特征温度(1) 热容定义:材料分子或原子热运动的能量Q 随温度T 的变化率,在温度T 时材料的热容量C 的表达式为:T TQC )(∂∂= 定容热容 V V V T U T Q C )()(∂∂=∂∂= 定压热容 p p p TU T Q C )()(∂∂=∂∂= 将式(7-4)代入(7-7)和(7-8)中,即可计算得出纳米晶体的热容。

(2) 热熔计算及测量结果图7-2为计算得出的几种纳米薄膜材料等容热容和相应块体热容比值与原子层数N 的关系。

可见,纳米薄膜热容小于块体热容,而对厚一些的薄膜,二者等价。

表7-1 不同方法制备的纳米晶体材料的过剩比热cpc p nc p nc p C C C C /)(-=∆ 测量结果显示:惰性气体冷凝法和高能球磨法制备的纳米晶体材料的过剩热容 ncp C ∆很大 非晶晶化和电解沉积法制备的纳米晶体材料的 ncp C ∆ 却很小,通常小于5%。

原因是不同制备方法引入不同缺陷密度。

惰性气体冷凝和高能球磨方法制备的纳米材料,存在大量的微孔、杂质和结构缺陷,使 nc p C ∆ 这种极大的差异不能代表纳米材料的本征热熔差别。

非晶晶化和电解沉积方法制备的纳米晶体 ,内部结构缺陷较少,且很少有微孔和杂质,其热容与粗晶相比增加不大。

(3) 纳米晶体的特征温度 德拜特征温度的定义为:Bm k ω =Θ其中:m ω表征了晶格振动的最高频率,B k 为玻尔兹曼常数因此德拜特征温度与材料的晶格振动有关, 同时还反映原子间结合力的强弱。

1.3纳米晶体的热膨胀热膨胀:材料的长度或体积在不加压力时随温度的升高而变大的现象。

原因:由于晶格振动中相邻质点间作用力是非线性的,点阵能曲线也是非对称的,使得加热过程材料发生热膨胀。

固体材料热膨胀的本质在于材料晶格点阵的非简谐振动。

表7-2同时给出了用不同方法制备的纳米晶材料的热膨胀系数和特征温度相对于粗晶的变化:c c nc nc ΘΘ-Θ=∆Θ/)((其中:nc Θ纳米晶体特征温度c Θ粗晶体的特征温度)/)((c L c L nc L nc L αααα-=∆其中:ncL α纳米晶热膨胀系数, cLα粗晶的热膨胀系数 表7-2 纳米晶体材料的特征温度和热膨胀系数的变化第二节 纳米晶体的熔化2.1概述:熔化 是指晶体长程有序结构到液态无序结构的相转变。

除了常见的升温过程中晶体转变成液体的熔化,晶体低温退火时的非晶化过程也是熔化的一种表现。

在近平衡状态下,晶体转变成液体时温度不变,并伴随潜热的吸收和体积变化。

这时,热力学平衡的固相和液相具有相同的自由能:l s G G =体积变化:T s T l f P G P G V ⎪⎪⎭⎫⎝⎛∂∂-⎪⎪⎭⎫ ⎝⎛∂∂=∆熵 变: PsP l f TG T G S ⎪⎪⎭⎫⎝⎛∂∂-⎪⎪⎭⎫ ⎝⎛∂∂=∆- 说明: 1. 常压下,固液相自由能相互独立;2. f T3. 图示曲线隐含着固液转变时熵(或体积)变化的不连续性,这是一级相变的典型特征。

理论上讲,如果能阻止另一相的产生,就可以研究固相在高于熔点的温度区间或液相低于熔点温度区间的自由能变化。

实际上,过冷液态容易获得,对其已有很多的研究,但使固体过热非常困难,其研究还处于初始阶段。

实际上,晶体不能以无缺陷的理想状态存在,晶体中会有不溶于固液相的杂质,固体自身也存在如晶界、位错等缺陷。

异质相界面(固/气或固/固)和同质相界面(晶界)的存在,改变了固相或液相局部的热力学状态,使熔化过程发生变化而呈现多样性。

2.2纳米材料的熔点降低当晶体的界面增多如颗粒尺寸减小使表面积增大、或多晶体晶粒减小使内晶界增多时,熔化的非均匀形核位置增多,从而导致熔化在较低温度下开始,即熔点降低。

这就是发生在纳米材料中的熔点降低现象。

仔细观察图像当材料尺度大小小于10nm 后熔点急剧下降早在本世纪初人们就从热力学上预言了小尺寸粒子的熔点降低。

但真正从实验上观察到熔化的尺寸效应则在1954年。

人们首先在Pb 、Sn 、Bi 膜中观察到熔点的降低,后来相继采用许多方法研究了不同技术制备的小颗粒金属的熔化。

大量的实验表明,随着粒子尺寸的减小,熔点呈现单调下降趋势,而且在小尺寸区比大尺寸区熔点降低得更明显。

熔点与晶粒尺寸的关系:小粒子表面的Gibbs-Thompson 方程:)11(2ln 21D D RTVp +=σ金属体系自由能p RT G G ln 0+=)11(221D D V G +=∆σ))()(1(∞-=∆m m m T D T H G m m m H V D D T D T /)11(21)(/)(21σ+-=∞其中: σ为粒子的表面张力V 为摩尔体积1D , 2D 分别为粒子晶粒表面的两个主曲率半径 0G 为积分常数p 为温度T 时金属的蒸汽压,R 为气体常数。

)(D T m 为尺寸依赖的熔化温度,D 是纳米晶体的等效直径)(∞m T 表示块体的熔化温度,m H 为)(D T m 温度时的熔化焓讨论:对于球形颗粒,21D D =mm m H V D D T D T /)11(21)(/)(21σ+-=∞得到纳米材料的熔化规律:mm m DH V T D T σ-=∞1)(/)( 小粒子的熔化温度变化与粒子尺寸的倒数是线性关系几种熔化机制(描述纳米粒子的熔化过程): (1) 根据熔化一级相变的两相平衡理论可以得到,熔点变化与表界面熔化前后的能量差有关,也就是与小粒子所处的环境相关。

相关文档
最新文档