初中数学一次函数压轴题
一次函数压轴题(含答案)
一次函数压轴题(含答案)如图,已知直线 $y=2x+2$ 与 $y$ 轴。
$x$ 轴分别交于$A$。
$B$ 两点,以 $B$ 为直角顶点在第二象限作等腰直角三角形 $\triangle ABC$。
1)求点 $C$ 的坐标,并求出直线 $AC$ 的关系式。
2)如图,在直线 $CB$ 上取一点 $D$,连接 $AD$,若$AD=AC$,求证:$BE=DE$。
3)如图,在(1)的条件下,直线 $AC$ 交 $x$ 轴于$M$,$P(,k)$ 是线段 $BC$ 上一点,在线段 $BM$ 上是否存在一点$N$,使直线$PN$ 平分$\triangle BCM$ 的面积?若存在,请求出点 $N$ 的坐标;若不存在,请说明理由。
考点:一次函数综合题。
分析:(1)如图,作 $CQ\perp x$ 轴,垂足为 $Q$,利用等腰直角三角形的性质证明 $\triangle ABO\cong \triangle BCQ$,根据全等三角形的性质求 $OQ$,$CQ$ 的长,确定$C$ 点坐标;2)同(1)的方法证明 $\triangle BCH\cong \triangle BDF$,再根据线段的相等关系证明 $\triangle BOE\cong \triangle DGE$,得出结论;3)依题意确定 $P$ 点坐标,可知 $\triangle BPN$ 中$BN$ 变上的高,再由 $\frac{1}{2}S_{\trianglePBN}=\frac{1}{2}S_{\triangle BCM}$,求 $BN$,进而得出$ON$。
解答:解:(1)如图,作$CQ\perp x$ 轴,垂足为$Q$。
因为 $\angle OBA+\angle OAB=90^\circ$,$\angleOBA+\angle QBC=90^\circ$,所以$\angle OAB=\angle QBC$。
又因为 $AB=BC$,$\angle AOB=\angle Q=90^\circ$,所以 $\triangle ABO\cong \triangle BCQ$。
一次函数压轴题经典培优
一次函数压轴题训练(一)典型例题题型一、A 卷压轴题一、A 卷中涉及到的面积问题例1、如图,在平面直角坐标系xOy 中,一次函数1223y x =-+与x 轴、y 轴分别相交于点A 和点B ,直线2 (0)y kx b k =+≠经过点C (1,0)且与线段AB 交于点P ,并把△ABO分成两部分.(1)求△ABO 的面积;(2)若△ABO 被直线CP 分成的两部分的面积相等,求点P 的坐标及直线CP 的函数表达式。
121+=x y 与x 轴练习1、如图,直线1l 过点A (0,4),点D (4,0),直线2l :交于点C ,两直线1l ,2l 相交于点B 。
(1)、求直线1l 的解析式和点B 的坐标; (2)、求△ABC 的面积。
2、如图,直线OC 、BC 的函数关系式分别是y 1=x 和y 2=-2x+6,动点P (x ,0)在OB 上运动(0<x<3),过点P 作直线m 与x 轴垂直.(1)求点C 的坐标,并回答当x 取何值时y 1>y 2?(2)设△COB 中位于直线m 左侧部分的面积为s ,求出s 与x 之间函数关系式. (3)当x 为何值时,直线m 平分△COB 的面积?(10分)二、A 卷中涉及到的平移问题例2、 正方形ABCD 的边长为4,将此正方形置于平面直角坐标系中,使AB 边落在X 轴的ABCO y 2y 1xyP ABC ODxy 1l 2l正半轴上,且A 点的坐标是(1,0)。
①直线y=43x-83经过点C ,且与x 轴交与点E ,求四边形AECD 的面积;②若直线l 经过点E 且将正方形ABCD 分成面积相等的两部分求直线l 的解析式,③若直线1l 经过点F ⎪⎭⎫ ⎝⎛-0.23且与直线y=3x 平行,将②中直线l 沿着y 轴向上平移32个单位交x 轴于点M ,交直线1l 于点N ,求NMF ∆的面积.练习1、如图,在平面直角坐标系中,直线1l:xy 34=与直线2l :b kx y += 相交于点A ,点A 的横坐标为3,直线2l 交y 轴于点B ,且OB OA 21=。
八上期末复习《一次函数》压轴题含答案解析
一次函数综合题选讲及练习例1.如图①所示,直线L:y=mx+5m与x轴负半轴,y轴正半轴分别交于A、B两点.(1)当OA=OB时,求点A坐标及直线L的解析式;(2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=,求BN的长;(3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,如图③.问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值?若是,请求出其值;若不是,说明理由.变式练习:1.已知:如图1,一次函数y=mx+5m的图象与x轴、y轴分别交于点A、B,与函数y=﹣x的图象交于点C,点C的横坐标为﹣3.(1)求点B的坐标;(2)若点Q为直线OC上一点,且S△QAC=3S△AOC,求点Q的坐标;(3)如图2,点D为线段OA上一点,∠ACD=∠AOC.点P为x轴负半轴上一点,且点P到直线CD和直线CO的距离相等.①在图2中,只利用圆规作图找到点P的位置;(保留作图痕迹,不得在图2中作无关元素.)②求点P的坐标.例2.如图1,已知一次函数y=﹣x+6分别与x、y轴交于A、B两点,过点B的直线BC 交x轴负半轴与点C,且OC=OB.(1)求直线BC的函数表达式;(2)如图2,若△ABC中,∠ACB的平分线CF与∠BAE的平分线AF相交于点F,求证:∠AFC=∠ABC;(3)在x轴上是否存在点P,使△ABP为等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.变式练习:2.如图,直线l:y=x+6交x、y轴分别为A、B两点,C点与A点关于y轴对称.动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.(1)点A坐标是,BC=.(2)当点P在什么位置时,△APQ≌△CBP,说明理由.(3)当△PQB为等腰三角形时,求点P的坐标.课后作业:1.已知,如图直线y=2x+3与直线y=﹣2x﹣1相交于C点,并且与两坐标轴分别交于A、B两点.(1)求两直线与y轴交点A,B的坐标及交点C的坐标;(2)求△ABC的面积.2.如图①,直线y=﹣x+1分别与坐标轴交于A,B两点,在y轴的负半轴上截取OC=OB(1)求直线AC的解析式;(2)如图②,在x轴上取一点D(1,0),过D作DE⊥AB交y轴于E,求E点坐标.3.如图,直线L:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)当M在x轴正半轴移动并靠近0点时,求△COM的面积S与M的移动时间t之间的函数关系式;当M在O点时,△COM的面积如何?当M在x轴负半轴上移动时,求△COM 的面积S与M的移动时间t之间的函数关系式;请写出每个关系式中t的取值范围;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.参考答案:例1.【考点】一次函数综合题.【分析】(1)当y=0时,x=﹣5;当x=0时,y=5m,得出A(﹣5,0),B(0,5m),由OA=OB,解得:m=1,即可得出直线L的解析式;(2)由勾股定理得出OM的长,由AAS证明△AMO≌△ONB,得出BN=OM,即可求出BN的长;(3)作EK⊥y轴于K点,由AAS证得△ABO≌△BEK,得出对应边相等OA=BK,EK=OB,得出EK=BF,再由AAS证明△PBF≌△PKE,得出PK=PB,即可得出结果.【解答】解:(1)∵对于直线L:y=mx+5m,当y=0时,x=﹣5,当x=0时,y=5m,∴A(﹣5,0),B(0,5m),∵OA=OB,∴5m=5,解得:m=1,∴直线L的解析式为:y=x+5;(2)∵OA=5,AM=,∴由勾股定理得:OM==,∵∠AOM+∠AOB+∠BON=180°,∠AOB=90°,∴∠AOM+∠BON=90°,∵∠AOM+∠OAM=90°,∴∠BON=∠OAM,在△AMO和△OBN中,,∴△AMO≌△ONB(AAS)∴BN=OM=;(3)PB的长是定值,定值为;理由如下:作EK⊥y轴于K点,如图所示:∵点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,∴AB=BE,∠ABE=90°,BO=BF,∠OBF=90°,∴∠ABO+∠EBK=90°,∵∠ABO+∠OAB=90°,∴∠EBK=∠OAB,在△ABO和△BEK中,,∴△ABO≌△BEK(AAS),∴OA=BK,EK=OB,∴EK=BF,在△PBF和△PKE中,,∴△PBF≌△PKE(AAS),∴PK=PB,∴PB=BK=OA=×5=.【点评】本题是一次函数综合题目,考查了一次函数解析式的求法、等腰直角三角形的性质、勾股定理、全等三角形的判定与性质等知识;本题综合性强,难度较大,特别是(3)中,需要通过作辅助线两次证明三角形全等才能得出结果.变式练习:1.【考点】一次函数综合题.【分析】(1)把点C的横坐标代入正比例函数解析式,求得点C的纵坐标,然后把点C的坐标代入一次函数解析式即可求得m的值,则易求点B的坐标;(2)由S△QAC=3S△AOC得到点Q到x轴的距离是点C到x轴距离的3倍或点Q到x轴的距离是点C到x轴距离的2倍;(3)①如图2,以点A为圆心,AC长为半径画弧,该弧与x轴的交点即为P;②如图3,作P1F⊥CD于F,P1E⊥OC于E,作P2H⊥CD于H,P2G⊥OC于G.利用△CAO∽△DAC,求出AD的长,进而求出D点坐标,再用待定系数法求出CD解析式,利用点到直线的距离公式求出公式,=,解出a的值即可.【解答】解:(1)把x=﹣3代入y=﹣x得到:y=2.则C(﹣3,2).将其代入y=mx+5m,得:2=﹣3m+5m,解得m=1.则该直线方程为:y=x+5.令x=0,则y=5,即B(0,5);(2)由(1)知,C(﹣3,2).如图1,设Q(a,﹣a).∵S△QAC=3S△AOC,∴S△QAO=4S△AOC,或S△QAO=2S△AOC,①当S△QAO=4S△AOC时,OA•y Q=4×OA•y C,∴y Q=4y C,即|﹣a|=4×2=8,解得a=﹣12(正值舍去),∴Q(﹣12,8);②当S△QAO=2S△AOC时,OA•y Q=2×OA•y C,∴y Q=2y C,即|﹣a|=2×2=4,解得a=6(舍去负值),∴Q′(6,﹣4);综上所述,Q(﹣12,8)或(6,﹣4).(3)①如图2,以点A为圆心,AC长为半径画弧,该弧与x轴的交点即为P;②如图3,作P1F⊥CD于F,P1E⊥OC于E,作P2H⊥CD于H,P2G⊥OC于G.∵C(﹣3,2),A(﹣5,0),∴AC==2,∵∠ACD=∠AOC,∠CAO=∠DAC,∴△CAO∽△DAC,∴=,∴AD=,∴OD=5﹣=,则D(﹣,0).设CD解析式为y=kx+b,把C(﹣3,2),D(﹣,0)分别代入解析式得,解得,函数解析式为y=5x+17,设P点坐标为(a,0),根据点到直线的距离公式,=,两边平方得,(5a+17)2=2×4a2,解得a=﹣5±2,∴P1(﹣5﹣2,0),P2(﹣5+2,0).【点评】本题考查了一次函数综合题,涉及坐标与图象的关系、待定系数法求函数解析式、角平分线的性质、点到直线的距离、三角形的面积公式等知识,综合性较强,值得关注.法二:例2.【考点】一次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得A、B、C点的坐标,根据待定系数法,可得函数解析式;(2)根据角平分线的性质,可得∠FCA=∠BCA,∠FAE=∠BAE,根据三角形外角的关系,可得∠BAE=∠ABC+∠BCA,∠FAE=∠F+∠FCA,根据等式的性质,可得答案;(3)根据等腰三角形的定义,分类讨论:AB=AP=10,AB=BP=10,BP=AP,根据线段的和差,可得AB=AP=10时P点坐标,根据线段垂直平分线的性质,可得AB=BP=10时P点坐标;根据两点间的距离公式,可得BP=AP 时P点坐标.【解答】解:(1)当x=0时,y=6,即B(0,6),当y=0时,﹣x+6=0,解得x﹣8,即A (8,0);由OC=OB,得OC=3,即C(﹣3,0);设BC的函数解析式为,y=kx+b,图象过点B、C,得,解得,直线BC的函数表达式y=2x+6;(2)证明:∵∠ACB的平分线CF与∠BAE的平分线AF相交于点F,∴∠FCA=∠BCA,∠FAE=∠BAE.∵∠BAE是△ABC的外角,∠FAE是△FAC的外角,∴∠BAE=∠ABC+∠BCA,∠FAE=∠F+∠FCA.∴∠ABC+∠BCA=∠F+∠BCA,∠ABC=∠F;(3)当AB=AP=10时,8﹣10=﹣2,P1(﹣2,0),8+10=18,P2(18,0);当AB=BP=10时,AO=PO=8,即P3(﹣8,0);设P(a,0),当BP=AP时,平方,得BP2=AP2,即(8﹣a)2=a2+62化简,得16a=28,解得a=,P4(,0),综上所述:P1(﹣2,0),P2(18,0),P3(﹣8,0);P4(,0).【点评】本题考查了一次函数综合题,(1)利用了函数值与自变量的关系求出A、B、C的值又利用了待定系数法求函数解析式;(2)利用了角平分线的性质,三角形外角的性质,(3)利用了等腰三角形的定义,分类讨论是解题关键.变式练习:2.【考点】一次函数综合题。
八年级期末考试数学一次函数压轴题专题练习
八年级期末考试数学一次函数压轴题专题练习题目一已知函数 `y = kx + b`,其中 `k` 的取值范围为整数。
1. 当 `k > 0` 时,函数图像是上升的,斜率越大,上升越快。
2. 当 `k < 0` 时,函数图像是下降的,斜率越小,下降越快。
3. 当 `k = 0` 时,函数图像是水平的,代表一条直线。
题目二给定函数 `y = -3x + 7`,求解以下问题:1. 函数的斜率是多少?2. 函数的截距是多少?3. 函数在坐标系中的图像是直线还是曲线?4. 通过两个已知的点可以唯一确定一条直线的方程,求使用该函数通过点 `(2, 1)` 和 `(4, -5)` 的方程。
题目三图像展示了一个一次函数 `y = 2x - 3`:![Graph](graph.png)求解以下问题:1. 函数的斜率是多少?2. 函数的截距是多少?3. 函数在坐标系中的图像是否是上升或下降的直线?4. 通过两个已知的点可以唯一确定一条直线的方程,求使用该函数通过点 `(0, -3)` 和 `(2, 1)` 的方程。
题目四给定函数 `y = 4x - 2`,求解以下问题:1. 函数的斜率是多少?2. 函数的截距是多少?3. 函数在坐标系中的图像是直线还是曲线?4. 通过两个已知的点可以唯一确定一条直线的方程,求使用该函数通过点 `(-1, -6)` 和 `(3, 10)` 的方程。
题目五已知函数 `y = ...(自定义函数)`,请自行设计一个一次函数,并回答以下问题:1. 函数的斜率是多少?2. 函数的截距是多少?3. 函数在坐标系中的图像是直线还是曲线?4. 通过两个已知的点可以唯一确定一条直线的方程,求使用该函数通过点 `(x1, y1)` 和 `(x2, y2)` 的方程。
设计的函数如下:y = mx + b请自行选择合适的斜率 `m` 和截距 `b` 来回答以上问题。
以上是八年级期末考试数学一次函数压轴题专题练习的内容,希望能对同学们的备考有所帮助。
一次函数压轴题精选(含详细答案)
一次函数压轴题精选(含详细答案答案)1.如图,在平面直角坐标系xOy中,直线y=2x+2与y轴交于点A,与x轴交于点B.直线l⊥x轴负半轴于点C,点D是直线l上一点且位于x轴上方.已知CO=CD=4.(1)求经过A,D两点的直线的函数关系式和点B的坐标;(2)在直线l上是否存在点P使得△BDP为等腰三角形,若存在,直接写出P 点坐标,若不存在,请说明理由.2.如图,直线L:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点N(0,4),动点M从A点以每秒1个单位的速度匀速沿x轴向左移动.(1)点A的坐标:;点B的坐标:;(2)求△NOM的面积S与M的移动时间t之间的函数关系式;(3)在y轴右边,当t为何值时,△NOM≌△AOB,求出此时点M的坐标;(4)在(3)的条件下,若点G是线段ON上一点,连结MG,△MGN沿MG 折叠,点N恰好落在x轴上的点H处,求点G的坐标.3.如图①,平面直角坐标系中,O为原点,点A坐标为(﹣4,0),AB∥y轴,点C在y轴上,一次函数y=x+3的图象经过点B、C.(1)点C的坐标为,点B的坐标为;(2)如图②,直线l经过点C,且与直线AB交于点M,O'与O关于直线l对称,连接CO'并延长,交射线AB于点D.①求证:△CMD是等腰三角形;②当CD=5时,求直线l的函数表达式.4.如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=,BC=,AC=;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.请从下列A、B两题中任选一题作答,我选择题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.5.如图,一次函数y=x+6的图象交x轴于点A、交y轴于点B,∠ABO的平分线交x轴于点C,过点C作直线CD⊥AB,垂足为点D,交y轴于点E.(1)求直线CE的解析式;(2)在线段AB上有一动点P(不与点A,B重合),过点P分别作PM⊥x轴,PN⊥y轴,垂足为点M、N,是否存在点P,使线段MN的长最小?若存在,请直接写出点P的坐标;若不存在,请说明理由.6.如图1,已知▱ABCD,AB∥x轴,AB=6,点A的坐标为(1,﹣4),点D 的坐标为(﹣3,4),点B在第四象限,点P是▱ABCD边上的一个动点.(1)若点P在边BC上,PD=CD,求点P的坐标.(2)若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=x﹣1上,求点P的坐标.(3)若点P在边AB,AD,CD上,点G是AD与y轴的交点,如图2,过点P 作y轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将△PGM 沿直线PG翻折,当点M的对应点落在坐标轴上时,求点P的坐标.(直接写出答案)7.如图1,在直角坐标系中放入一个边长AB长为6,BC长为10的矩形纸片ABCD,B点与坐标原点O重合.将纸片沿着折痕AE翻折后,点D恰好落在x轴上,记为F.(1)求折痕AE所在直线与x轴交点的坐标;(2)求过D,F的直线解析式;(3)将矩形ABCD水平向右移动m个单位,则点B坐标为(m,0),其中m >0.如图2所示,连接OA,若△OAF是等腰三角形,求m的值.8.阅读理解:运用“同一图形的面积相等”可以证明一些含有线段的等式成立,这种解决问题的方法我们称之为面积法.如图1,在等腰△ABC中,AB=AC,AC边上的高为h,点M为底边BC上的任意一点,点M到腰AB、AC的距离分别为h1、h2,连接AM,利用S△ABC=S△ABM+S△ACM,可以得出结论:h=h1+h2.类比探究:在图1中,当点M在BC的延长线上时,猜想h、h1、h2之间的数量关系并证明你的结论.拓展应用:如图2,在平面直角坐标系中,有两条直线l1:y=x+3,l2:y=﹣3x+3,若l2上一点M到l1的距离是1,试运用“阅读理解”和“类比探究”中获得的结论,求出点M的坐标.9.如图,在平面直角坐标系中,四边形ABCO为正方形,A点坐标为(0,2),点P为x轴负半轴上一动点,以AP为直角作等腰直角三角形APD,∠APD=90°(点D落在第四象限)(1)当点P的坐标为(﹣1,0)时,求点D的坐标;(2)点P在移动的过程中,点D是否在直线y=x﹣2上?请说明理由;(3)连接OB交AD于点G,求证:AG=DG.10.如图所示,在平面直角坐标系中,过点A(﹣,0)的两条直线分别交y 轴于B、C两点,且B、C两点的纵坐标分别是一元二次方程x2﹣2x﹣3=0的两个根(Ⅰ)试问:直线AC与直线AB是否垂直?请说明理由;(Ⅱ)若点D在直线AC上,且DB=DC,求点D的坐标;(Ⅲ)在(Ⅱ)的条件下,在直线BD上寻找点P,使以A、B、P三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.11.(1)模型建立,如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.求证△BEC≌△CDA;(2)模型应用:①已知直线y=x+4与y轴交于A点,与x轴交于B点,将线段AB绕点B逆时针旋转90度,得到线段BC,过点A,C作直线,求直线AC的解析式;②如图3,矩形ABCO,O为坐标原点,B的坐标为(8,6),A,C分别在坐标轴上,P是线段BC上动点,已知点D在第一象限,且是直线y=2x﹣6上的一点,若△APD是不以A为直角顶点的等腰Rt△,请直接写出所有符合条件的点D的坐标.12.将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,3),点O(0,0)(1)过边OB上的动点D(点D不与点B,O重合)作DE丄OB交AB于点E,沿着DE折叠该纸片,点B落在射线BO上的点F处.①如图,当D为OB中点时,求E点的坐标;②连接AF,当△AEF为直角三角形时,求E点坐标;(2)P是AB边上的动点(点P不与点B重合),将△AOP沿OP所在的直线折叠,得到△A′OP,连接BA′,当BA′取得最小值时,求P点坐标(直接写出结果即可).13.如图1,在平面直角坐标系中,点A坐标为(﹣4,4),点B的坐标为(4,0).(1)求直线AB的解析式;(2)点M是坐标轴上的一个点,若AB为直角边构造直角三角形△ABM,请求出满足条件的所有点M的坐标;(3)如图2,以点A为直角顶点作∠CAD=90°,射线AC交x轴的负半轴与点C,射线AD交y轴的负半轴与点D,当∠CAD绕点A旋转时,OC﹣OD的值是否发生变化?若不变,直接写出它的值;若变化,直接写出它的变化范围(不要解题过程).14.如图1,在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A、B 分别在x轴与y轴上,已知OA=6,OB=10.点D为y轴上一点,其坐标为(0,2),点P从点A出发以每秒2个单位的速度沿线段AC﹣CB的方向运动,当点P与点B重合时停止运动,运动时间为t秒.(1)当点P经过点C时,求直线DP的函数解析式;(2)①求△OPD的面积S关于t的函数解析式;②如图②,把长方形沿着OP折叠,点B的对应点B′恰好落在AC边上,求点P 的坐标.(3)点P在运动过程中是否存在使△BDP为等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.15.如图,在直角坐标系中,点A的坐标是(0,2),点C是x轴上的一个动点,点C在x轴上移动时,始终保持△ACP是等边三角形,当点C移动到点O时,得到等边三角形AOB(此时点P与点B重合).(1)直线AB:y=mx+n与直线OB:y=kx相交于点B,不解关于x,y的方程组,请你求出它的解;(2)点C在移动的过程中,当等边三角形ACP的顶点P在第三象限时(如图所示),求证:△AOC≌△ABP;由此你发现什么结论?(3)求点C在x轴上移动时,点P所在函数图象的解析式.16.在平面直角坐标系中,直线y=﹣x+4交x轴,y轴分别于点A,点B,将△AOB绕坐标原点逆时针旋转90°得到△COD,直线CD交直线AB于点E,如图1:(1)求:直线CD的函数关系式;(2)如图2,连接OE,过点O作OF⊥OE交直线CD于点F,如图2,①求证:∠OEF=45°;②求:点F的坐标;(3)若点P是直线DC上一点,点Q是x轴上一点(点Q不与点O重合),当△DPQ和△DOC全等时,直接写出点P的坐标.17.已知,Rt△OAB的两直角边OA、OB分别在x轴和y轴上,如图1,A,B 坐标分别为(﹣2,0),(0,4),将△OAB绕O点顺时针旋转90°得△OCD,连接AC、BD交于点E.(1)求证:△ABE≌△DCE.(2)M为直线BD上动点,N为x轴上的点,若以A,C,M,N四点为顶点的四边形是平行四边形,求出所有符合条件的M点的坐标.(3)如图2,过E点作y轴的平行线交x轴于点F,在直线EF上找一点P,使△PAC的周长最小,求P点坐标和周长的最小值.18.平面直角坐标系中,直线l1:y=﹣x+3与x轴交于点A,与y轴交于点B,直线l2:y=kx+2k与x轴交于点C,与直线l1交于点P.(1)当k=1时,求点P的坐标;(2)如图1,点D为PA的中点,过点D作DE⊥x轴于E,交直线l2于点F,若DF=2DE,求k的值;(3)如图2,点P在第二象限内,PM⊥x轴于M,以PM为边向左作正方形PMNQ,NQ的延长线交直线l1于点R,若PR=PC,求点P的坐标.19.如图,直线y=kx+k交x轴,y轴分别于A,C,直线BC过点C交x轴于B,OC=3OA,∠CBA=45°.(1)求直线BC的解析式;(2)动点P从A出发沿射线AB匀速运动,速度为2个单位/秒,连接CP,设△PBC的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式,直接写出t的取值范围;(3)在(2)的条件下,当点P在AB的延长线上运动时,过点O作OD⊥PC 于D,交BC于点E,连接AE,当∠EAB=∠CPA时,在坐标轴上有点K,且KC=KP,求点K的坐标.20.如图,平面直角坐标系中,直线AB:y=﹣x+b交y轴于点A(0,1),交x轴于点B,过点E(1,0)作x轴的垂线EF交AB于点D,点P从D出发,沿着射线ED的方向向上运动,设PD=n.(1)求直线AB的表达式;(2)求△ABP的面积(用含n的代数式表示);(3)若以P为直角顶点,PB为直角边在第一象限作等腰直角△BPC,请问随着点P的运动,点C是否也在同一直线上运动?若在同一直线上运动,请求出直线解析式;若不在同一直线上运动,请说明理由.21.如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)如图1,若点E是边BC的中点,M是边AB的中点,连接EM,求证:AE=EF.(2)如图2,若点E在射线BC上滑动(不与点B,C重合).①在点E滑动过程中,AE=EF是否一定成立?请说明理由;②在如图所示的直角坐标系中,当点E滑动到某处时,点F恰好落在直线y=﹣2x+6上,求此时点F的坐标.22.如图,将一个正方形纸片OABC放置在平面直角坐标系中,其中A(1,0),C(0,1),P为AB边上一个动点,折叠该纸片,使O点与P点重合,折痕l 与OP交于点M,与对角线AC交于Q点(Ⅰ)若点P的坐标为(1,),求点M的坐标;(Ⅱ)若点P的坐标为(1,t)①求点M的坐标(用含t的式子表示)(直接写出答案)②求点Q的坐标(用含t的式子表示)(直接写出答案)(Ⅲ)当点P在边AB上移动时,∠QOP的度数是否发生变化?如果你认为不发生变化,写出它的角度的大小.并说明理由;如果你认为发生变化,也说明理由.23.如图,边长为1的正方形OABC的顶点O为坐标原点,点A在x轴的正半轴上,点C在y轴的正半轴上.动点D在线段BC上移动(不与B,C重合),连接OD,过点D作DE⊥OD,交边AB于点E,连接OE.记CD的长为t.(1)当t=时,求直线DE的函数表达式:(2)如果记梯形COEB的面积为S,那么是否存在S的最大值?若存在,请求出这个最大值及此时t的值;若不存在,请说明理由;(3)当OD2+DE2取最小值时,求点E的坐标.24.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC 上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.25.如图,在平面直角坐标系中,直线OA的函数表达式为y=2x,直线AB的函数表达式为y=﹣3x+b,点B的坐标为.点P沿折线OA﹣AB运动,且不与点O和点B重合.设点P的横坐标为m,△OPB的面积为S.(1)请直接写出b的值.(2)求点A的坐标.(3)求S与m之间函数关系,并直接写出对应的自变量m的取值范围.(4)过点P作OB边的高线把△OPB分成两个三角形,当其中一个是等腰直角三角形时,直接写出所有符合条件的m的值.26.如图①,直线AB与x轴负半轴、y轴正半轴分别交于A、B两点,OA、OB的长度分别为a和b,且满足a2﹣2ab+b2=0.(1)判断△AOB的形状;(2)如图②,△COB和△AOB关于y轴对称,D点在AB上,点E在BC上,且AD=BE,试问:线段OD、OE是否存在某种确定的数量关系和位置关系?写出你的结论并证明;(3)将(2)中∠DOE绕点O旋转,使D、E分别落在AB,BC延长线上(如图③),∠BDE与∠COE有何关系?直接说出结论,不必说明理由.27.如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(4,0),点B 的坐标为(0,b)(b>0),点P是直线AB上位于第二象限内的一个动点,过点P作PC⊥x轴于点C,记点P关于y轴的对称点为Q,设点P的横坐标为a.(1)当b=3时,①求直线AB的解析式;②若QO=QA,求P点的坐标.(2)是否同时存在a、b,使得△QAC是等腰直角三角形?若存在,求出所有满足条件的a、b的值;若不存在,请说明理由.28.如图,平面直角坐标系中,已知直线y=x 上一点P (1,1),C 为y 轴上一点,连接PC ,线段PC 绕点P 顺时针旋转90°至线段PD ,过点D 作直线AB ⊥x 轴,垂足为B ;直线AB 与直线y=x 交于点A ,连接CD ,直线CD 与直线y=x 交于点Q .(1)求证:OB=OC ;(2)当点C 坐标为(0,3)时,求点Q 的坐标;(3)当△OPC ≌△ADP 时,直接写出C 点的坐标.29.如图1,直线AB :y=﹣x ﹣b 分别与x ,y 轴交于A (6,0)、B 两点,过点B 的直线交x 轴负半轴与C ,且OB :OC=3:1.(1)求直线BC 的函数表达式;(2)直线EF :y=x ﹣k (k ≠0)交直线AB 于E ,交直线BC 于点F ,交x 轴于D ,是否存在这样的直线EF ,使得S △EBD =S △FBD ?若存在,求出k 的值;若不存在,说明理由.(3)如图2,P 为x 轴上A 点右侧的一动点,以P 为直角顶点,BP 为一腰在第一象限内作等腰直角三角形△BPQ ,连接QA 并延长交y 轴于点K .当P 点运动时,K 点的位置是否发生变化?如果不变请求出它的坐标;如果变化,请说明理由.30.如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(﹣8,0),点B的坐标是(0,n)(n>0).P是直线AB上的一个动点,作PC⊥x轴,垂足为C.记点P关于y轴的对称点为P′(点P′不在y轴上),连接PP′,P′A,P′C.设点P的横坐标为m.(1)若点P在第一象限,记直线AB与P′C的交点为D.当P′D:DC=5:13时,求m的值;(2)若∠ACP′=60°,试用m的代数式表示n;(3)若点P在第一象限,是否同时存在m,n,使△P′CA为等腰直角三角形?若存在,请求出所有满足要求的m,n的值;若不存在,请说明理由.31.如图①所示,直线L:y=m(x+10)与x轴负半轴、y轴正半轴分别交于A、B两点.(1)当OA=OB时,试确定直线L的解析式;(2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=8,BN=6,求MN 的长;(3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,如图③.问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值?若是,请求出其值;若不是,说明理由.32.如图,一次函数的函数图象与x轴、y轴分别交于点A、B,以线段AB为直角边在第一象限内作Rt△ABC,且使∠ABC=30°;(1)如果点P(m,)在第二象限内,试用含m的代数式表示四边形AOPB 的面积,并求当△APB与△ABC面积相等时m的值;(2)如果△QAB是等腰三角形并且点Q在坐标轴上,请求出点Q所有可能的坐标;(3)是否存在实数a,b使一次函数和y=ax+b的图象关于直线y=x 对称?若存在,求出的值;若不存在,请说明理由.参考答案与试题解析1.如图,在平面直角坐标系xOy中,直线y=2x+2与y轴交于点A,与x轴交于点B.直线l⊥x轴负半轴于点C,点D是直线l上一点且位于x轴上方.已知CO=CD=4.(1)求经过A,D两点的直线的函数关系式和点B的坐标;(2)在直线l上是否存在点P使得△BDP为等腰三角形,若存在,直接写出P 点坐标,若不存在,请说明理由.【分析】(1)对于y=2x+2,分别令x与y为0求出A与B坐标,根据CO=CD=4,求出D坐标,确定出直线AD解析式即可;(2)存在,如图所示,设出P(﹣4,p),分三种情况考虑:当BD=P1D时;当BP3=BD时;当BP4=DP4,分别求出P坐标即可.【解答】解:(1)对于直线y=2x+2,当x=0时,y=2;当y=0时,x=﹣1,∴点A的坐标为(0,2),点B的坐标为(﹣1,0),又∵CO=CD=4,∴点D的坐标为(﹣4,4),设直线AD的函数表达式为y=kx+b,则有,解得:,∴直线AD的函数表达式为y=﹣x+2;(2)存在,设P(﹣4,p),分三种情况考虑:当BD=P1D时,可得(﹣1+4)2+(0﹣4)2=(p﹣4)2,解得:p=9或p=﹣1,此时P1(﹣4,9),P2(﹣4,﹣1);当BP3=BD时,则有(﹣1+4)2+(0﹣p)2=(﹣1+4)2+(0﹣4)2,解得:p=﹣4,此时P3(﹣4,﹣4);当BP4=DP4时,(﹣1+4)2+(0﹣p)2=(p﹣4)2,解得:p=,此时P4(﹣4,),综上,共有四个点满足要求.分别是P1(﹣4,9),P2(﹣4,﹣4),P3(﹣4,﹣1),P4(﹣4,).【点评】此题属于一次函数综合题,涉及的知识有:待定系数法求一次函数解析式,坐标与图形性质,等腰三角形的性质,利用了分类讨论的思想,熟练掌握一次函数性质是解本题的关键.2.如图,直线L:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点N(0,4),动点M从A点以每秒1个单位的速度匀速沿x轴向左移动.(1)点A的坐标:(4,0);点B的坐标:(0,2);(2)求△NOM的面积S与M的移动时间t之间的函数关系式;(3)在y轴右边,当t为何值时,△NOM≌△AOB,求出此时点M的坐标;(4)在(3)的条件下,若点G是线段ON上一点,连结MG,△MGN沿MG 折叠,点N恰好落在x轴上的点H处,求点G的坐标.【分析】(1)在y=﹣x+2中,令别令y=0和x=0,则可求得A、B的坐标;(2)利用t可表示出OM,则可表示出S,注意分M在y轴右侧和左侧两种情况;(3)由全等三角形的性质可得OM=OB=2,则可求得M点的坐标;(4)由折叠的性质可知MG平分∠OMN,利用角平分线的性质定理可得到=,则可求得OG的长,可求得G点坐标.【解答】解:(1)在y=﹣x+2中,令y=0可求得x=4,令x=0可求得y=2,∴A(4,0),B(0,2),故答案为:(4,0);(0,2);(2)由题题意可知AM=t,①当点M在y轴右边时,OM=OA﹣AM=4﹣t,∵N(0,4),∴ON=4,∴S=OM•ON=×4×(4﹣t)=8﹣2t;②当点M在y轴左边时,则OM=AM﹣OA=t﹣4,∴S=×4×(t﹣4)=2t﹣8;(3)∵△NOM≌△AOB,∴MO=OB=2,∴M(2,0);(4)∵OM=2,ON=4,∴MN==2,∵△MGN沿MG折叠,∴∠NMG=∠OMG,∴=,且NG=ON﹣OG,∴=,解得OG=﹣1,∴G(0,﹣1).【点评】本题为一次函数的综合应用,涉及函数与坐标轴的交点、三角形的面积、全等三角形的性质、角平分线的性质定理及分类讨论思想等知识.在(1)中注意求函数图象与坐标轴交点的方法,在(2)中注意分两种情况,在(3)中注意全等三角形的对应边相等,在(4)中利用角平分线的性质定理求得关于OG的等式是解题的关键.本题考查知识点较多,综合性很强,但难度不大.3.如图①,平面直角坐标系中,O为原点,点A坐标为(﹣4,0),AB∥y轴,点C在y轴上,一次函数y=x+3的图象经过点B、C.(1)点C的坐标为(0,3),点B的坐标为(﹣4,2);(2)如图②,直线l经过点C,且与直线AB交于点M,O'与O关于直线l对称,连接CO'并延长,交射线AB于点D.①求证:△CMD是等腰三角形;②当CD=5时,求直线l的函数表达式.【分析】(1)设点C的坐标为(0,y),把x=0代入y=x+3中得y=3,即可求出C点的坐标;设点B的坐标为(﹣4,y),把x=﹣4代入y=x+3中得y=2,即可求出B点的坐标;(2)①根据对称的性质和平行线的性质,推知∠CMD=∠MCD,故MD=CD,所以CMD是等腰三角形;②如图②,过点D作DP⊥y轴于点P.利用勾股定理求得CP的长度,然后结合坐标与图形的性质求得点M的坐标,利用待定系数法求得直线l的解析式即可.【解答】解:(1)如图①,∵A(﹣4,0),AB∥y轴,直线y=x+3经过点B、C,设点C的坐标为(0,y),把x=0代入y=x+3x+3中得y=3,∴C(0,3);设点B的坐标为(﹣4,y),把x=4代入y=x+3中得y=2,∴B(﹣4,2);故答案是:(0,3);(﹣4,2);(2)①证明:∵AB∥y轴,∴∠OCM=∠CMD.∵∠OCM=∠MCD,∴∠CMD=∠MCD,∴MD=CD,∴CMD是等腰三角形;②如图②,过点D作DP⊥y轴于点P.在直角△DCP中,由勾股定理得到:CP==3,∴OP=AD=CO+CP=3+3=6,∴AB=AD﹣DM=6﹣5=1,∴点M的坐标是(﹣4,1).设直线l的解析式为y=kx+b(k≠0).把M(﹣4,1)、C(0,3)分别代入,得,解得,故直线l的解析式为y=x+3.【点评】此题考查了一次函数综合题,需要综合利用勾股定理,等腰三角形的判定与性质,对称的性质以及待定系数法求一次函数解析式等知识点,难度不是很大,但是需要学生对所学知识有一个系统的掌握.4.如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=8,BC=4,AC=4;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.请从下列A、B两题中任选一题作答,我选择A题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【分析】(1)先确定出OA=4,OC=8,进而得出AB=8,BC=4,利用勾股定理即可得出AC;(2)A、①利用折叠的性质得出BD=8﹣AD,最后用勾股定理即可得出结论;②分三种情况利用方程的思想即可得出结论;B、①利用折叠的性质得出AE,利用勾股定理即可得出结论;②先判断出∠APC=90°,再分情况讨论计算即可.【解答】解:(1)∵一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,∴A(4,0),C(0,8),∴OA=4,OC=8,∵AB⊥x轴,CB⊥y轴,∠AOC=90°,∴四边形OABC是矩形,∴AB=OC=8,BC=OA=4,在Rt△ABC中,根据勾股定理得,AC==4,故答案为:8,4,4;(2)A、①由(1)知,BC=4,AB=8,由折叠知,CD=AD,在Rt△BCD中,BD=AB﹣AD=8﹣AD,根据勾股定理得,CD2=BC2+BD2,即:AD2=16+(8﹣AD)2,∴AD=5,②由①知,D(4,5),设P(0,y),∵A(4,0),∴AP2=16+y2,DP2=16+(y﹣5)2,∵△APD为等腰三角形,∴Ⅰ、AP=AD,∴16+y2=25,∴y=±3,∴P(0,3)或(0,﹣3)Ⅱ、AP=DP,∴16+y2=16+(y﹣5)2,∴y=,∴P(0,),Ⅲ、AD=DP,25=16+(y﹣5)2,∴y=2或8,∴P(0,2)或(0,8).B、①、由A①知,AD=5,由折叠知,AE=AC=2,DE⊥AC于E,在Rt△ADE中,DE==,②、∵以点A,P,C为顶点的三角形与△ABC全等,∴△APC≌△ABC,或△CPA≌△ABC,∴∠APC=∠ABC=90°,∵四边形OABC是矩形,∴△ACO≌△CAB,此时,符合条件,点P和点O重合,即:P(0,0),如图3,过点O作ON⊥AC于N,易证,△AON∽△ACO,∴,∴,∴AN=,过点N作NH⊥OA,∴NH∥OA,∴△ANH∽△ACO,∴,∴,∴NH=,AH=,∴OH=,∴N(,),而点P2与点O关于AC对称,∴P2(,),同理:点B关于AC的对称点P1,同上的方法得,P1(﹣,),即:满足条件的点P的坐标为:(0,0),(,),(﹣,).【点评】此题是一次函数综合题,主要考查了矩形的性质和判定,相似三角形的判定和性质,勾股定理,折叠的性质,对称的性质,解(1)的关键是求出AC,解(2)的关键是利用分类讨论的思想解决问题.5.如图,一次函数y=x+6的图象交x轴于点A、交y轴于点B,∠ABO的平分线交x轴于点C,过点C作直线CD⊥AB,垂足为点D,交y轴于点E.(1)求直线CE的解析式;(2)在线段AB上有一动点P(不与点A,B重合),过点P分别作PM⊥x轴,PN⊥y轴,垂足为点M、N,是否存在点P,使线段MN的长最小?若存在,请直接写出点P的坐标;若不存在,请说明理由.【分析】(1)先求出AB=10,进而判断出Rt△BCD≌Rt△BCO,和△ACD∽△ABO,确定出点C(﹣3,0),再判断出△EBD≌△ABO,求出OE=BE﹣OB=4,即可得出点E坐标,最后用待定系数法即可;(2)设P(﹣m,﹣m+6),∴PN=m,PM=﹣m+6,根据勾股定理得,MN2=(m﹣)2+,即可得出点P横坐标,即可得出结论.【解答】解:(1)根据题意得点B的横坐标为0,点A的纵坐标为0,∴B(0,6),A(﹣8,0),∴OA=8,OB=6,∴AB==10,∵CB平分∠ABO,CD⊥AB,CO⊥BO,∴CD=CO,∵BC=BC,∴Rt△BCD≌Rt△BCO,∴BD=BO=6,∴AD=AB﹣BD=4,∵∠ADC=∠AOB=90°,∠CAD=∠BAO,∴△ACD∽△ABO,∴,∴,∴AC=5,∴OC=OA﹣AC=3,∴C(﹣3,0),∵∠EDB=∠AOB=90°,BD=BO,∠EBD=∠ABO,∴△EBD≌△ABO,∴BE=AB=10,∴OE=BE﹣OB=4,∴E(0,﹣4),设直线CE的解析式为y=kx﹣4,∴﹣3k﹣4=0,∴k=﹣,∴直线CE的解析式为y=﹣x﹣4,(2)解:存在,(﹣,),如图,∵点P在直线y=x+6上,∴设P(﹣m,﹣m+6),∴PN=m,PM=﹣m+6,根据勾股定理得,MN2=PN2+PM2=m2+(﹣m+6)2=(m﹣)2+,∴当m=时,MN2有最小值,则MN有最小值,当m=时,y=﹣x+6=﹣×+6=,∴P(﹣,).【点评】此题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解(1)的关键是求出点C的坐标,解(2)的关键是得出MN2的函数关系式,是一道中等难度的中考常考题.6.如图1,已知▱ABCD,AB∥x轴,AB=6,点A的坐标为(1,﹣4),点D 的坐标为(﹣3,4),点B在第四象限,点P是▱ABCD边上的一个动点.(1)若点P在边BC上,PD=CD,求点P的坐标.(2)若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=x﹣1上,求点P的坐标.(3)若点P在边AB,AD,CD上,点G是AD与y轴的交点,如图2,过点P 作y轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将△PGM 沿直线PG翻折,当点M的对应点落在坐标轴上时,求点P的坐标.(直接写出答案)【分析】(1)由题意点P与点C重合,可得点P坐标为(3,4);(2)分两种情形①当点P在边AD上时,②当点P在边AB上时,分别列出方程即可解决问题;(3)分三种情形①如图1中,当点P在线段CD上时.②如图2中,当点P在AB上时.③如图3中,当点P在线段AD上时.分别求解即可;【解答】解:(1)∵CD=6,∴点P与点C重合,∴点P坐标为(3,4).(2)①当点P在边AD上时,∵直线AD的解析式为y=﹣2x﹣2,设P(a,﹣2a﹣2),且﹣3≤a≤1,若点P关于x轴的对称点Q1(a,2a+2)在直线y=x﹣1上,∴2a+2=a﹣1,解得a=﹣3,此时P(﹣3,4).若点P关于y轴的对称点Q3(﹣a,﹣2a﹣2)在直线y=x﹣1上时,∴﹣2a﹣2=﹣a﹣1,解得a=﹣1,此时P(﹣1,0)②当点P在边AB上时,设P(a,﹣4)且1≤a≤7,若等P关于x轴的对称点Q2(a,4)在直线y=x﹣1上,∴4=a﹣1,解得a=5,此时P(5,﹣4),若点P关于y轴的对称点Q4(﹣a,﹣4)在直线y=x﹣1上,∴﹣4=﹣a﹣1,解得a=3,此时P(3,﹣4),综上所述,点P的坐标为(﹣3,4)或(﹣1,0)或(5,﹣4)或(3,﹣4).(3)①如图1中,当点P在线段CD上时,设P(m,4).在Rt△PNM′中,∵PM=PM′=6,PN=4,∴NM′==2,在Rt△OGM′中,∵OG2+OM′2=GM′2,∴22+(2+m)2=m2,解得m=﹣,∴P(﹣,4)根据对称性可知,P(,4)也满足条件.②如图2中,当点P在AB上时,易知四边形PMGM′是正方形,边长为2,此时P(2,﹣4).③如图3中,当点P在线段AD上时,设AD交x轴于R.易证∠M′RG=∠M′GR,推出M′R=M′G=GM,设M′R=M′G=GM=x.∵直线AD的解析式为y=﹣2x﹣2,∴R(﹣1,0),在Rt△OGM′中,有x2=22+(x﹣1)2,解得x=,∴P(﹣,3).点P坐标为(2,﹣4)或(﹣,3)或(﹣,4)或(,4).【点评】本题考查一次函数综合题、平行四边形的性质、翻折变换、勾股定理、正方形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会构建方程解决问题,属于中考压轴题.7.如图1,在直角坐标系中放入一个边长AB长为6,BC长为10的矩形纸片ABCD,B点与坐标原点O重合.将纸片沿着折痕AE翻折后,点D恰好落在x 轴上,记为F.(1)求折痕AE所在直线与x轴交点的坐标;(2)求过D,F的直线解析式;(3)将矩形ABCD水平向右移动m个单位,则点B坐标为(m,0),其中m >0.如图2所示,连接OA,若△OAF是等腰三角形,求m的值.【分析】(1)根据四边形ABCD是矩形以及由折叠对称性得出AF=AD=10,EF=DE,进而求出BF的长,即可得出E点的坐标,进而得出AE所在直线与x 轴交点的坐标;(2)由(1)中所求可得出F点坐标,进而得出过D,F的直线解析式;(3)分三种情况讨论:若AO=AF,OF=FA,AO=OF,利用勾股定理求出即可.【解答】解:(1)∵四边形ABCD是矩形,∴AD=CB=10,AB=DC=6,∠D=∠DCB=∠ABC=90°,由折叠对称性:AF=AD=10,EF=DE,在Rt△ABF中,BF===8,∴CF=2,设EC=x,则EF=6﹣x,在Rt△ECF中,22+x2=(6﹣x)2,解得:x=,∴E点坐标为:(10,),∴设AE所在直线解析式为:y=ax+b,则,解得:,∴AE所在直线解析式为:y=﹣x+6,当y=0时,x=18,故折痕AE所在直线与x轴交点的坐标为:(18,0);(2)设D,F所在直线解析式为:y=kx+c,。
一次函数综合题(解析版)--2024年中考数学压轴题专项训练
一次函数综合题通用的解题思路:(1)一次函数与几何图形的面积问题首先要根据题意画出草图,结合图形分析其中的几何图形,再求出面积.(2)一次函数的优化问题通常一次函数的最值问题首先由不等式找到x 的取值范围,进而利用一次函数的增减性在前面范围内的前提下求出最值.(3)用函数图象解决实际问题从已知函数图象中获取信息,求出函数值、函数表达式,并解答相应的问题.1(2024•鼓楼区一模)如图,直线y =-3x +6与⊙O 相切,切点为P ,与x 轴y 轴分别交于A 、B 两点.⊙O 与x 轴负半轴交于点C .(1)求⊙O 的半径;(2)求图中阴影部分的面积.【分析】(1)由OP =OA ⋅sin60°,即可求解;(2)由图中阴影部分的面积=S 扇形COP -S ΔPOC ,即可求解.【解答】解:(1)对于直线y =-3x +6,令y =-3x +6=0,则x =23,即OA =23,由一次函数的表达式知,OB =6,则tan ∠BAC =OB AO =623=3,则∠BAC =60°连接OP ,则OP ⊥AB ,则OP =OA ⋅sin60°=23×32=3;(2)过点P 作PH ⊥AC 于点H ,∵∠POH =30°,则∠POC =150°,PH =12OP =32,则图中阴影部分的面积=S 扇形COP -S ΔPOC =150°360°×π×32-12×3×32=15π-94.【点评】本题考查了一次函数和圆的综合运用,涉及到圆切线的和一次函数的性质,解直角三角形,面积的计算等,综合性强,难度适中.2(2023•宿豫区三模)如图①,在平面直角坐标系中,直线l 1:y =x +1与直线l 2:x =-2相交于点D ,点A 是直线l 2上的动点,过点A 作AB ⊥l 1于点B ,点C 的坐标为(0,3),连接AC ,BC .设点A 的纵坐标为t ,ΔABC 的面积为s .(1)当t =2时,求点B 的坐标;(2)s 关于t 的函数解析式为s =14t 2+bt -54t -1或t 5 a t +1 t -5 (-1<t <5),其图象如图②所示,结合图①、②的信息,求出a 与b 的值;(3)在直线l 2上是否存在点A ,使得∠ACB =90°,若存在,请求出此时点A 的坐标;若不存在,请说明理由.【分析】(1)解法一:先根据t =2可得点A (-2,2),因为B 在直线l 1上,所以设B (x ,x +1),利用y =0代入y =x +1可得G 点的坐标,在Rt ΔABG 中,利用勾股定理列方程可得点B 的坐标;解法二:根据可以使用y =x +1与x 轴正半轴夹角为45度来解答;(2)先把(7,4)代入s =14t 2+bt -54中计算得b 的值,计算在-1<t <5范围内图象上一个点的坐标值:当t =2时,根据(1)中的数据可计算此时s =94,可得坐标2,94,代入s =a (t +1)(t -5)中可得a 的值;(3)存在,设B (x ,x +1),如图5和图6,分别根据两点的距离公式和勾股定理列方程可解答.【解答】解:(1)解法一:如图1,连接AG ,当t =2时,A (-2,2),设B (x ,x +1),在y =x +1中,当x =0时,y =1,∴G (0,1),∵AB ⊥l 1,∴∠ABG =90°,∴AB 2+BG 2=AG 2,即(x +2)2+(x +1-2)2+x 2+(x +1-1)2=(-2)2+(2-1)2,解得:x 1=0(舍),x 2=-12,∴B -12,12;解法二:如图1-1,过点B 作BE ⊥x 轴于E ,过点A 作AH ⊥BE 于H ,当x =0时,y =1,当y =0时,x +1=0,则x =-1,∴OF =OG =1,∵∠GOF =90°,∴∠OGF =∠OFG =45°,∴BE =EF ,∵∠ABD =90°,∴∠ABH =∠BAH =45°,∴ΔABH 是等腰直角三角形,∴AH =BH ,当t =2时,A (-2,2),设B (x ,x +1),∴x +2=2-(x +1),∴x =-12,∴B -12,12 ;(2)如图2可知:当t =7时,s =4,把(7,4)代入s =14t 2+bt -54中得:494+7b -54=4,解得:b =-1,如图3,过B 作BH ⎳y 轴,交AC 于H ,由(1)知:当t =2时,A (-2,2),B -12,12 ,∵C (0,3),设AC 的解析式为:y =kx +n ,则-2k +n =2n =3 ,解得k =12n =3 ,∴AC 的解析式为:y =12x +3,∴H -12,114,∴BH =114-12=94,∴s=12BH⋅|x C-x A|=12×94×2=94,把2,9 4代入s=a(t+1)(t-5)得:a(2+1)(2-5)=94,解得:a=-1 4;(3)存在,设B(x,x+1),当∠ACB=90°时,如图5,∵∠ABD=90°,∠ADB=45°,∴ΔABD是等腰直角三角形,∴AB=BD,∵A(-2,t),D(-2,-1),∴(x+2)2+(x+1-t)2=(x+2)2+(x+1+1)2,(x+1-t)2=(x+2)2,x+1-t=x+2或x+1-t=-x-2,解得:t=-1(舍)或t=2x+3,RtΔACB中,AC2+BC2=AB2,即(-2)2+(t-3)2+x2+(x+1-3)2=(x+2)2+(x+1-t)2,把t=2x+3代入得:x2-3x=0,解得:x=0或3,当x=3时,如图5,则t=2×3+3=9,∴A(-2,9);当x=0时,如图6,此时,A(-2,3),综上,点A的坐标为:(-2,9)或(-2,3).【点评】本题考查二次函数综合题、一次函数的性质、等腰直角三角形的判定和性质、三角形的面积、两点间距离公式等知识,解题的关键是灵活运用所学知识解决问题.3(2023•溧阳市一模)如图1,将矩形AOBC放在平面直角坐标系中,点O是原点,点A坐标为(0,4),点B坐标为(5,0),点P是x轴正半轴上的动点,连接AP,ΔAQP是由ΔAOP沿AP翻折所得到的图形.(1)当点Q落在对角线OC上时,OP= 165 ;(2)当直线PQ经过点C时,求PQ所在的直线函数表达式;(3)如图2,点M是BC的中点,连接MP、MQ.①MQ的最小值为;②当ΔPMQ是以PM为腰的等腰三角形时,请直接写出点P的坐标.【分析】(1)通过Q 点在OC 上,可以通过∠BOC 的三角函数和∠OAP 的三角函数来导出对应的边的关系,求得结果;(2)通过直角ΔAQC 中,得到QC 的长度,然后通过OP =PQ =x ,可以在Rt ΔBCP 中,得到对应的x 值然后求出结果;(3)通过QA =OA =4,可得出Q 点的运动轨迹,是以A 点为圆心,4为半径长度的圆弧,从而可知,MA 的连线上的Q 点为最短的MQ 长度,通过分类讨论,PM =PQ ,PM =QM ,PQ =QM 来求得对应的P 的坐标.【解答】解:(1)如图1,∵∠OAP +∠AOE =90°,∠BOC +∠AOE =90°,∴∠OAP =∠BOC ,又∵∠AOP =∠OBC =90°,∴ΔOAP ∽ΔBOC ,∴OP BC =OA OB ,即OP 4=45,∴OP =165,故答案为:165;(2)如图,∵AQ ⊥PQ ,∴∠AQC =90°,∴QC =AC 2-AQ 2=52-42=3,∵AQ =AO =4,设OP =PQ =x ,则CP =3+x ,PB =5-x ,∴CP 2=BP 2+BC 2,(3+x )2=(5-x )2+42,x =2,∴P 点的坐标为(2,0),将P (2,0)和C (5,4)代入y =kx +b 中,0=2k +b 4=5k +b ,解得:k =43b =-83,∴PQ 所在直线的表达式为:y =43x -83;(3)如图,①∵AQ =AO =4,∴Q 点的运动轨迹,是以A 为圆心,4为半径的圆弧,∴MQ 的最小值在AM 的连线上,如图,MQ ′即为所求,∵M 是BC 中点,CM =12BC =2,∴AM =52+22=29,MQ ′=MA -AQ ′=29-4,故答案为:29-4;②如图,设OP =PQ =x ,BP =5-x ,∴PM 2=(5-x )2+22=x 2-10x +29,当PM =PQ 时,PM 2=PQ 2,∴x 2-10x +29=x 2,x =2910,∴P 2910,0,当MP =MQ 时,如图,若点Q 在AC 上,则AQ =OA =4,∵MP =MQ ,MB =MC ,∠PBM =∠QCM ,∴ΔPMB ≅ΔQMC (HL ),∴PB =QC ,QC =AC -AQ =5-4=1,∴PB =1,∴OP =BO -PB =5-1=4,∴P (4,0);若点Q 在AC 上方时,由对称性可知OM =MQ ,∵MQ =MQ ,∴MO =MP ,∴P (10,0);当MQ =PQ 时,不符合题意,不成立,故P 点坐标为P 2910,0或P (4,0)或(10,0).【点评】本题考查一次函数的图象及应用,通过一次函数坐标图象的性质,三角函数的性质,全等三角形的性质和勾股定理,来求得对应的解.4(2022•启东市模拟)我们知道一次函数y =mx +n 与y =-mx +n (m ≠0)的图象关于y 轴对称,所以我们定义:函数y =mx +n 与y =-mx +n (m ≠0)互为“M ”函数.(1)请直接写出函数y =2x +5的“M ”函数;(2)如果一对“M ”函数y =mx +n 与y =-mx +n (m ≠0)的图象交于点A ,且与x 轴交于B ,C 两点,如图所示,若∠BAC =90°,且ΔABC 的面积是8,求这对“M ”函数的解析式;(3)在(2)的条件下,若点D 是y 轴上的一个动点,当ΔABD 为等腰三角形时,请求出点D 的坐标.【分析】(1)根据互为“M ”函数的定义,直接写出函数y =2x +5的“M ”函数;(2)现根据已知条件判断ΔABC 为等腰直角三角形,再根据互为“M ”函数的图象关于y 轴对称,得出OA =OB =OC ,再根据函数解析式求出点A 、B 、C 的坐标,再根据ΔABC 的面积是8求出m 、n 的值,从而求出函数解析式;(3)ΔABD 为等腰三角形,分以A 为顶点,以B 为顶点,以D 为顶点三种情况讨论即可.【解答】(1)解:根据互为“M ”函数的定义,∴函数y =2x +5的“M ”函数为y =-2x +5;(2)解:根据题意,y =mx +n 和y =-mx +n 为一对“M 函数”.∴AB =AC ,又∵∠BAC =90°,∴ΔABC 为等腰直角三角形,∴∠ABC =∠ACB =45°,∵OB =OC ,∴∠BAO =∠CAO =45°,∴OA =OB =OC ,又∵S ΔABC =12×BC ×AO =8且BC =2AO ,∴AO =22,∵A 、B 、C 是一次函数y =mx +n 与y =-mx +n (m ≠0)的图象于坐标轴的交点,∴A (0,n ),B -n m ,0 ,C n m ,0,∵OA =OB =n ,∴n m=22,∴m =1,∴y =x +22和y =-x +22;(3)解:根据等腰三角形的性质,分情况,∵AO =BO =22,∴AB =4,由(2)知,A (0,22),B (-22,0),C (22,0),∴①以A 为顶点,则AB =AD ,当点D 在点A 上方时,AD =22+4,当点D 在点A 下方时,AD =22-4,∴D 1(0,22+4),D 2(0,22-4),②以B 为顶点,则BA =BD ,此时点D 在y 轴负半轴,∴D 3(0,-22),③以D 为顶点,则DA =DB ,此时D 为坐标原点,∴D 4(0,0).∴D 点坐标为D 1(0,22+4),D 2(0,22-4),D 3(0,-22),∴D 4(0,0).【点评】本题考查一次函数的综合应用,以及新定义、等腰三角形的性质等知识,关键是理解新定义,用新定义解题.5(2024•新北区校级模拟)如图①,动点P 从矩形ABCD 的顶点A 出发,以v 1的速度沿折线A -B -C 向终点C 运动;同时,一动点Q 从点D 出发,以v 2的速度沿DC 向终点C 运动,当一个点到达终点时,另一个点也停止运动.点E 为CD 的中点,连接PE ,PQ ,记ΔEPQ 的面积为S ,点P 运动的时间为t ,其函数图象为折线MN -NF 和曲线FG (图②),已知,ON =4,NH =1,点G 的坐标为(8,0).(1)点P 与点Q 的速度之比v 1v 2的值为 85 ;AB AD的值为;(2)如果OM =15.①求线段NF 所在直线的函数表达式;②求FG 所在曲线的函数表达式;③是否存在某个时刻t ,使得S ≥154?若存在,求出t 的取值范围:若不存在,请说明理由.【分析】(1)由函数图象可知t =3时,Q 与E 重合,t =4时,P 与B 重合,t =6时,P 与C 重合,则Q 的速度v 2=DE 4,P 的速度v 1=AB 4,从而得出答案;(2)①当t =0时,P 与A 重合,Q 与D 重合,此时S ΔADE =2,可得AD =BC =DE =15,AB =CD =53AD =10,从而得出点P 与Q 的速度,即可得出点F 的坐标,利用待定系数法可得答案;②设FG 所在的曲线的数解析式为S =a (t -6)2+k (a ≠0),把F 5,154,G (8,0)代入解析式求得a ,k 值即可求解答;③利用待定系数法求出直线MN 的函数解析式,当S =154时,可得t 的值,根据图象可得答案.【解答】解:(1)∵ON =4,NH =1,G (8,0),∴N (4,0),H (5,0),由图象可知:t =4时,Q 与E 重合,t =5时,P 与B 重合,t =8时,P 与C 重合,∴Q 的速度v 2=DE 4,P 的速度v 1=AB 5,∵四边形ABCD 是矩形,∴AB =CD ,AD =BC ,∵E 为CD 的中点,∴DE =12CD =12AB ,∴v 1v 2=AB5DE 4=AB 5⋅4DE =85,∵P 从A 到B 用了5秒,从B 到C 用了3秒,∴AB =5v 1,BC =3v 1,∴AB =53BC ,∴AB :AD 的值为53,故答案为:85,53;(2)①∵OM =15,∴M (0,15),由题知,t =0时,P 与A 重合,Q 与D 重合,∴S ΔEPQ =12AD ⋅DE =15,∵AB :AD =53,DE =12AB ,∴DE =56AD ,∴12AD ⋅56AD =15,∴AD =BC =6(舍去负值),∴AB =CD =53AD =10,∴v 2=DE 4=54,当t =5时,DQ =v 2t =54×5=254,∴QE =DQ -DE =254-5=54,此时P 与B重合,∴S ΔEPQ =12EQ ⋅BC =12×54×6=154,∴F 5,154 ,设直线NF 的解析式为S =kt +b (k ≠0),将N (4,0)与F 5,154 代入得:4k +b =05k +b =154,∴k =154b =-15 ,∴线段NF 所在直线的函数表达式为S =154t -15(4<t ≤5);②设FG所在的曲线的数解析式为S=1254t-5(16-2t)=-54t2+15t-40,∴FG所在的曲线的函数解析式为S=-54t2+15t-40(5≤t≤8);③存在,分情况讨论如下:当Q在DE上,P在AB上时,∵直线MN经过点M(0,15),N(4,0),可求得直线MN的解析式为S=-54t+15(0≤t≤4),当s=154时,-154t+15=154,∴x=3,∵s随x的增大而减小,∴当0≤x≤3时,S≥154,当Q在CE上,P在BC上时,直线NF的解析式为S=154t-15(4<t≤5);由F5,15 4知:当t=5时,S=154,当S=154时,-54t2+15t-40=154,∴t=7或5,由图象知:当5≤x≤7,x的取值范围为0≤t≤3或5≤t≤7.【点评】本题是一次函数综合题,主要考查了待定系数法求函数解析式,三角形的面积,矩形的性质等知识,理解函数图象中每一个拐点的意义是解题的关键.6(2024•梁溪区校级模拟)在平面直角坐标系xOy 中,二次函数y =-ax 2+3ax +4a 的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴正半轴交于点C ,直线y =12x 交于第一象限内的D 点,且ΔABC 的面积为10.(1)求二次函数的表达式;(2)点E 为x 轴上一点,过点E 作y 轴的平行线交线段OD 于点F ,交抛物线于点G ,当GF =5OF 时,求点G 的坐标;(3)已知点P (n ,0)是x 轴上的点,若点P 关于直线OD 的对称点Q 恰好落在二次函数的图象上,求n 的值.【分析】(1)在y =-ax 2+3ax +4a 中,令y =0得A (-1,0),B (4,0),根据ΔABC 的面积为10,即得OC =4,C (0,4),用待定系数法即得二次函数的表达式为y =-x 2+3x +4;(2)设E (m ,0),则F m ,12m ,G (m ,-m 2+3m +4),由GF =5OF ,可得-m 2+52m +4=5×52m ,即可解得G (2,6);(3)连接PQ 交直线OD 于K ,过Q 作QT ⊥x 轴于T ,设Q (r ,s ),可得K n +r 2,s 2 ,即得s 2=12×n +r 2,n +r =2s ①,又r 2+s 2=n 2,(n +r )(n -r )=s 2②,可解得r =35n ,s =45n ,故Q 35n ,45n ,代入y =-x 2+3x +4得45n =-35n 2+3×35n +4,解得n =5或n =-209.【解答】解:(1)如图:在y =-ax 2+3ax +4a 中,令y =0得-ax 2+3ax +4a =0,解得x =4或x =-1,∴A (-1,0),B (4,0),∴AB =5,∵ΔABC 的面积为10,∴12AB ⋅OC =10,即12×5⋅OC =10,∴OC =4,∴C (0,4),把C (0,4)代入y =-ax 2+3ax +4a 得:4a =4,∴a =1,∴二次函数的表达式为y =-x 2+3x +4;(2)如图:设E (m ,0),则F m ,12m ,G (m ,-m 2+3m +4),∴OF =m 2+12m 2=52m ,GF =-m 2+3m +4-12m =-m 2+52m +4,∵GF =5OF ,∴-m 2+52m +4=5×52m ,解得m =2或m =-2(舍去),∴G (2,6);(3)连接PQ 交直线OD 于K ,过Q 作QT ⊥x 轴于T ,如图:∵P (n ,0)关于直线对称点为Q ,∴OQ =OP =|n |,K 是PQ 中点,设Q (r ,s ),∴K n +r 2,s 2,∵K 在直线y =12x 上,∴s 2=12×n +r 2,整理得:n +r =2s ①,∵OT 2+QT 2=OQ 2,∴r 2+s 2=n 2,变形得:(n +r )(n -r )=s 2②,把①代入②得:2s (n -r )=s 2,∵s ≠0,∴n -r =s2③,由①③可得r =35n ,s =45n ,∴Q 35n ,45n ,∵Q 在抛物线y =-x 2+3x +4上,∴45n =-35n 2+3×35n +4,解得n =5或n =-209,答:n 的值为5或-209.【点评】本题考查一次函数、二次函数综合应用,涉及待定系数法,三角形面积,对称变换等知识,解题的关键是用含n 的代数式表示Q 的坐标.7(2023•邗江区校级一模)如图1,在平面直角坐标系中,直线l :y =-33x +43分别与x 轴、y 轴交于点A 点和B 点,过O 点作OD ⊥AB 于D 点,以OD 为边构造等边ΔEDF (F 点在x 轴的正半轴上).(1)求A 、B 点的坐标,以及OD 的长;(2)将等边ΔEDF ,从图1的位置沿x 轴的正方向以每秒1个单位的长度平移,移动的时间为t (s ),同时点P 从E 出发,以每秒2个单位的速度沿着折线ED -DF 运动(如图2所示),当P 点到F 点停止,ΔDEF 也随之停止.①t =3或6(s )时,直线l 恰好经过等边ΔEDF 其中一条边的中点;②当点P 在线段DE 上运动,若DM =2PM ,求t 的值;③当点P 在线段DF 上运动时,若ΔPMN 的面积为3,求出t 的值.【分析】(1)把x =0,y =0分别代入y =-33x +43,即可求出点A 、B 的坐标,求出∠BAO =30°,根据直角三角形的性质,即可得出OD =12OA =6;(2)①当直线l 分别过DE 、DF 、EF 的中点,分三种情况进行讨论,得出t 的值,并注意点P 运动的最长时间;②分点P 在直线l 的下方和直线l 上方两种情况进行讨论,求出t 的值即可;③分点P 在DN 之间和点P 在NF 之间两种情况进行讨论,求出t 的值即可.【解答】解:(1)令x =0,则y =43,∴点B 的坐标为(0,43),令y =0,则-33x +43=0,解得x =12,∴点A 的坐标为(12,0),∵tan ∠BAO =OB OA=4312=33,∴∠BAO =30°,∵OD ⊥AB ,∴∠ODA =90°,∴ΔODA 为直角三角形,∴OD =12OA =6;(2)①当直线l 过DF 的中点G 时,∵ΔDEF 为等边三角形,∴∠DFE =60°,∵∠BAO =30°,∴∠FGA =60°-30°=30°,∴∠FGA =∠BAO ,∴FA =FG =12DF =3,∴OF =OA -FA =9,∴OE =OF -EF =9-6=3,∴t =3;当l 过DE 的中点时,∵DE ⊥l ,DG =EG ,∴直线l 为DE 的垂直平分线,∵ΔDEF 为等边三角形,∴此时点F 与点A 重合,∴t =12-61=6;当直线l 过EF 的中点时,运动时间为t =12-31=9;∵点P 从运动到停止用的时间为:6+62=6,∴此时不符合题意;综上所述,当t =3s 或6s 时,直线l 恰好经过等边ΔEDF 其中一条边的中点,故答案为:3或6;②∵OE =t ,AE =12-t ,∠BAO =30°,∴ME =6-t2,∴DM =DE -EM =t2,∵EP =2t ,∴PD =6-2t ,当P 在直线l 的下方时,∵DM =23DP ,∴t 2=23(6-2t ),解得:t =2411;当P 在直线l 的上方时,∵DM =2DP ,∴t2=2(6-2t ),解得t =83;综上所述:t 的值为2411或83;③当3<t ≤6时,∵∠D =60°,∠DMN =90°,DM =t2,∴∠DNM =90°-60°=30°,∴MN =DM ×tan60°=32t ,DN =2DM =2×t2=t ,∵DP =2t -6,∴PN =DN -DP =t -(2t -6)=6-t ,∵∠DNM =30°,∴边MN 的高h =12PN =3-12t ,∵ΔPMN 的面积为3,∴12×32t 3-12t =3,整理得:t 2-6t +8=0,解得t =2(舍)或t =4当点P 在NF 之间时,∵∠D =60°,∠DMN =90°,DM =t2,∴∠DNM =90°-60°=30°,∴MN =DM ×tan60°=32t ,DN =2DM =2×t2=t ,∵DP =2t -6,∴PN =DP -DN =2t -6-t =t -6,∵∠DNM =30°,∴∠FNA =∠DNM =30°,∴边MN 的高h =12PN =12t -3,∵ΔPMN 的面积为3,∴12×32t 12t -3 =3,解得t =3+17(舍)或t =3-17(舍),综上所述,t 的值为4s .【点评】本题主要考查了一次函数的性质、等边三角形的性质、直角三角形的性质、利用三角函数解直角三角形,熟练掌握含30°的直角三角形的性质并注意进行分类讨论是解题的关键.8(2023•武进区校级模拟)在平面直角坐标系xOy 中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“非常距离”,给出如下定义:若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|;若|x 1-x 2|<|y 1-y 2|,则点P 1与点P 2的“非常距离”为|y 1-y 2|.例如:点P 1(1,2),点P 2(3,5),因为|1-3|<|2-5|,所以点P 1与点P 2的“非常距离”为|2-5|=3,也就是图1中线段P 1Q 与线段P 2Q 长度的较大值(点Q 为垂直于y 轴的直线P 1Q 与垂直于x 轴的直线P 2Q 交点).(1)已知点A -12,0,B 为y 轴上的一个动点,①若点A 与点B 的“非常距离”为2,写出一个满足条件的点B 的坐标;②直接写出点A 与点B 的“非常距离”的最小值;(2)已知C 是直线y =34x +3上的一个动点,①如图2,点D 的坐标是(0,1),求点C 与点D 的“非常距离”的最小值及相应的点C 的坐标;②如图3,E 是以原点O 为圆心,1为半径的圆上的一个动点,求点C 与点E 的“非常距离”的最小值及相应的点E 与点C 的坐标.【分析】(1)①根据点B 位于y 轴上,可以设点B 的坐标为(0,y ).由“非常距离”的定义可以确定|0-y |=2,据此可以求得y 的值;②设点B 的坐标为(0,y ).因为-12-0 ≥|0-y |,所以点A 与点B 的“非常距离”最小值为-12-0 =12;(2)①设点C 的坐标为x 0,34x 0+3 .根据材料“若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|”知,C 、D 两点的“非常距离”的最小值为-x 0=34x 0+2,据此可以求得点C 的坐标;②根据“非常距离”的定义,点E 在过原点且与直线y =34x +3垂直的直线上,且C 与E 的横纵坐标差相等时,点C 与点E 的“非常距离”取最小值,据此求出C 与E 的坐标及“非常距离”的最小值.【解答】解:(1)①∵B 为y 轴上的一个动点,∴设点B 的坐标为(0,y ).∵-12-0 =12≠2,∴|0-y |=2,解得,y =2或y =-2;∴点B 的坐标是(0,2)或(0,-2);②点A 与点B 的“非常距离”的最小值为12.(2)①如图2,当点C 与点D 的“非常距离”取最小值时,需要根据运算定义“若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|”解答,此时|x 1-x 2|=|y 1-y 2|.即AC =AD ,∵C 是直线y =34x +3上的一个动点,点D 的坐标是(0,1),∴设点C 的坐标为x 0,34x 0+3 ,∴-x 0=34x 0+2,此时,x 0=-87,∴点C 与点D 的“非常距离”的最小值为:|x 0|=87,此时C -87,157;②如图3,当点E 在过原点且与直线y =34x +3垂直的直线上,且CF =EF 时,点C 与点E 的“非常距离”最小,设E (x ,y )(点E 位于第二象限).则y x=-43x 2+y 2=1 ,解得x =-35y =45,故E -35,45.设点C 的坐标为x 0,34x 0+3 ,-35-x 0=34x 0+3-45,解得x0=-8 5,则点C的坐标为-8 5,95,点C与点E的“非常距离”的最小值为1.【点评】本题考查了一次函数综合题.对于信息给予题,一定要弄清楚题干中的已知条件.本题中的“非常距离”的定义是正确解题的关键.9(2023•海安市一模)对于平面直角坐标系xOy中的图形W和点P,给出如下定义:F为图形W上任意一点,将P,F两点间距离的最小值记为m,最大值记为M,称M与m的差为点P到图形W的“差距离”,记作d(P,W),即d(P,W)=M-m,已知点A(2,1),B(-2,1)(1)求d(O,AB);(2)点C为直线y=-1上的一个动点,当d(C,AB)=1时,点C的横坐标是 (2-5)或(5-2,) ;(3)点D为函数y=x+b(-2≤x≤2)图象上的任意一点,当d(D,AB)≤2时,直接写出b的取值范围.【分析】(1)画出图形,根据点P到图形W的“差距离”的定义即可解决问题.(2)如图2中,设C(m,-1).由此构建方程即可解决问题.(3)如图3中,取特殊位置当b=6时,当b=-4时,分别求解即可解决问题.【解答】解:(1)如图1中,∵A(2,1),B(-2,1),∴AB⎳x轴,∴点O到线段AB的最小距离为1,最大距离为5,∴d(O,AB)=5-1.(2)如图2中,设C(m,-1).当点C在y轴的左侧时,由题意AC-2=1,∴AC=3,∴(2-m)2+22=9,∴m=2-5或2+5(舍弃),∴C(2-5,-1),当点C在y轴的右侧时,同法可得C(5-2,-1),综上所述,满足条件的点C的坐标为(2-5,-1)或(5-2,-1).故答案为:(2-5,-1)或(5-2,-1).(3)如图3中,当b=6时,线段EF:y=x+6(-2≤x≤2)上任意一点D,满足d(D,AB)≤2,当b=-4时,线段E′F′:y=x-4(-2≤x≤2)上任意一点D′,满足d(D′,AB)≤2,观察图象可知:当b≥6或b≤-4时,函数y=x+b(-2≤x≤2)图象上的任意一点,满足d(D,AB)≤2.【点评】本题属于一次函数综合题,考查了一次函数的性质,点P到图形W的“差距离”的定义等知识,解题的关键是理解题意,学会利用参数解决问题,学会寻找特殊位置解决问题,属于中考创新题型.10(2022•姑苏区校级模拟)平面直角坐标系xOy中,对于任意的三个点A、B、C,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的“三点矩形”.在点A,B,C的所有“三点矩形”中,若存在面积最小的矩形,则称该矩形为点A,B,C的“最佳三点矩形”.如图1,矩形DEFG,矩形IJCH都是点A,B,C的“三点矩形”,矩形IJCH是点A,B,C的“最佳三点矩形”.如图2,已知M(4,1),N(-2,3),点P(m,n).(1)①若m=2,n=4,则点M,N,P的“最佳三点矩形”的周长为18,面积为;②若m=2,点M,N,P的“最佳三点矩形”的面积为24,求n的值;(2)若点P在直线y=-2x+5上.①求点M,N,P的“最佳三点矩形”面积的最小值及此时m的取值范围;②当点M,N,P的“最佳三点矩形”为正方形时,求点P的坐标;(3)若点P(m,n)在抛物线y=ax2+bx+c上,当且仅当点M,N,P的“最佳三点矩形”面积为12时,-2≤m≤-1或1≤m≤3,直接写出抛物线的解析式.【分析】(1)①利用“最佳三点矩形”的定义求解即可,②利用“最佳三点矩形”的定义求解即可;(2)①利用“最佳三点矩形”的定义求得面积的最小值为12,②由“最佳三点矩形”的定义求得正方形的边长为6,分别将y=7,y=-3代入y=-2x+5,可得x分别为-1,5,点P的坐标为(-1,7)或(4,-3);(3)利用“最佳三点矩形”的定义画出图形,可分别求得解析式.【解答】解:(1)①如图,画出点M,N,P的“最佳三点矩形”,可知矩形的周长为6+6+3+3=18,面积为3×6=18;故答案为:18,18.②∵M(4,1),N(-2,3),∴|x M-x N|=6,|y M-y N|=2.又∵m=2,点M,N,P的“最佳三点矩形”的面积为24.∴此矩形的邻边长分别为6,4.∴n=-1或5.(2)如图,①由图象可得,点M,N,P的“最佳三点矩形”面积的最小值为12;分别将y=3,y=1代入y=-2x+5,可得x分别为1,2;结合图象可知:1≤m≤2;②当点M,N,P的“最佳三点矩形”为正方形时,边长为6,分别将y=7,y=-3代入y=-2x+5,可得x分别为-1,4;∴点P的坐标为(-1,7)或(4,-3);(3)设抛物线的解析式为y=ax2+bx+c,经过点(-1,1),(1,1),(3,3),∴a -b +c =1a +b +c =19a +3b +c =3,a =14b =0c =34,∴y =14x 2+34,同理抛物线经过点(-1,3),(1,3),(3,1),可求得抛物线的解析式为y =-14x 2+134,∴抛物线的解析式y =14x 2+34或y =-14x 2+134.【点评】本题主要考查了一次函数的综合题,涉及点的坐标,正方形及矩形的面积及待定系数法求函数解析式等知识,解题的关键是理解运用好“最佳三点矩形”的定义.11(2022•太仓市模拟)如图①,动点P 从矩形ABCD 的顶点A 出发,以v 1的速度沿折线A -B -C 向终点C 运动;同时,一动点Q 从点D 出发,以v 2的速度沿DC 向终点C 运动,当一个点到达终点时,另一个点也停止运动.点E 为CD 的中点,连接PE ,PQ ,记ΔEPQ 的面积为S ,点P 运动的时间为t ,其函数图象为折线MN -NF 和曲线FG (图②),已知,ON =3,NH =1,点G 的坐标为(6,0).(1)点P 与点Q 的速度之比v 1v 2的值为 32 ;AB :AD 的值为;(2)如果OM =2.①求线段NF 所在直线的函数表达式;②是否存在某个时刻t ,使得S ≥23?若存在,求出t 的取值范围;若不存在,请说明理由.【分析】(1)由函数图象可知t =3时,Q 与E 重合,t =4时,P 与B 重合,t =6时,P 与C 重合,则Q 的速度v 2=DE 3,P 的速度v 1=AB4,从而得出答案;(2)①当t =0时,P 与A 重合,Q 与D 重合,此时S ΔADE =2,可得AD =BC =DE =2,AB =CD =2AD =4,从而得出点P 与Q 的速度,即可得出点F 的坐标,利用待定系数法可得答案;②利用待定系数法求出直线MN 的函数解析式,当S =23时,可得t 的值,根据图象可得答案.【解答】解:(1)∵ON =3,NH =1,G (6,0),∴N (3,0),H (4,0),由图象可知:t =3时,Q 与E 重合,t =4时,P 与B 重合,t =6时,P 与C 重合,∴Q 的速度v 2=DE 3,P 的速度v 1=AB4,∵四边形ABCD 是矩形,∴AB =CD ,AD =BC ,∵E 为CD 的中点,∴DE =12CD =12AB ,∴v 1v 2=AB4DE 3=AB 4⋅3DE =AB 4⋅312AB =32,∵P 从A 到B 用了4秒,从B 到C 用了2秒,∴AB =4v 1,BC =2v 1,∴AB =2BC ,∴AB :AD 的值为2,故答案为:32,2;(2)①∵OM =2,∴M (0,2),由题知,t =0时,P 与A 重合,Q 与D 重合,∴S ΔEPQ =12AD ⋅DE =2,∵AB :AD =2,∴AD =DE =12AB ,∴12AD 2=2,∴AD =BC =DE =2,AB =CD =2AD =4,∴v 2=DE 3=23,当t =4时,DQ =v 2t =23×4=83,∴QE =DQ -DE =83-2=23,此时P 与B 重合,∴S ΔEPQ =12EQ ⋅BC =12×23×2=33,∴F 4,23,设直线NF 的解析式为S =kx +b (k ≠0),将N (3,0)与F 4,23 代入得:3k +b =04k +b =23 ,∴k =23b =-2,∴线段NF 所在直线的函数表达式为S =23x -2(3<x ≤4);②存在,分情况讨论如下:当Q 在DE 上,P 在AB 上时,∵直线MN 经过点M (0,2),N (3,0),同理求得直线MN 的解析式为S =-23x +2(0≤x ≤3),当s =23时,-23x +2=2,∴x =2,∵s随x的增大而减小,∴当0≤x≤2时,S≥23,当Q在CE上,P在AB上时,直线NF的解析式为S=23x-2(3<x≤4),由F4,2 3知:当x=4时,S=23,当Q在CE上,P在BC上时,SΔEPQ=12EQ⋅CP,∵DQ=v2t=23t,∴EQ=DQ-DE=23t-2,∵v1=AB4=44=1,∴AB+BP=v1t=t,∵AB+BC=4+2=6,∴CP=6-t,∴S=1223t-2(6-t)=-13t2+3t-6(4<x≤6),当S=23时,-13t2+3t-6=23,∴t=4或5,由图象知:当4<x≤5时,S≥2 3,综上,S≥23时,x的取值范围为0≤x≤2或4≤x≤5.【点评】本题是一次函数综合题,主要考查了待定系数法求函数解析式,三角形的面积,矩形的性质等知识,理解函数图象中每一个拐点的意义是解题的关键.12(2022•邗江区校级一模)在平面直角坐标系xOy中,对于点P和线段ST,我们定义点P关于线段ST的线段比k=PSST(PS<PT)PTST(PS≥PT) .(1)已知点A(0,1),B(1,0).①点Q(2,0)关于线段AB的线段比k= 22 ;②点C(0,c)关于线段AB的线段比k=2,求c的值.(2)已知点M(m,0),点N(m+2,0),直线y=x+2与坐标轴分别交于E,F两点,若线段EF上存在点使得这一点关于线段MN的线段比k≤14,直接写出m的取值范围.【分析】(1)①求出QA、QB、AB,根据线段比定义即可得到答案;②方法同①,分c>0和c≤0讨论;(2)分两种情况,画出图象,根据线段比定义,分别在M(N)为“临界点”时列出不等式,即可得到答案.【解答】解:(1)①∵A(0,1),B(1,0),Q(2,0),∴AB=2,QA=5,QB=1,根据线段比定义点Q(2,0)关于线段AB的线段比k=QBAB=22;故答案为:22;②∵A (0,1),B (1,0),C (0,c ),∴AB =2,AC =|1-c |,BC =1+c 2,AC 2=1+c 2-2c ,BC 2=1+c 2,当c >0时,AC 2<BC 2,即AC <BC ,由C (0,c )关于线段AB 的线段比k =2可得:|1-c |2=2,解得c =3或c =-1(舍去),∴c =3,当c ≤0时,AC 2≥BC 2,即AC ≥BC ,由C (0,c )关于线段AB 的线段比k =2可得:1+c 22=2,解得c =3(舍去)或c =-3,∴c =-3,综上所述,点C (0,c )关于线段AB 的线段比k =2,c =3或c =-3;(2)∵直线y =x +2与坐标轴分别交于E ,F 两点,∴E (-2,0),F (0,2),∵点M (m ,0),点N (m +2,0),∴MN =2,N 在M 右边2个单位,当线段EF 上的点到N 距离较小时,分两种情况:①当M 、N 在点E 左侧时,如图:线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,∴NE MN≤14,即-2-(m +2)2≤14,解得:m ≥-92,②当N 在E 右侧,M 在E 左侧时,过M 作MG ⊥EF 于G ,如图:线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,∴GM MN ≤14,即GM 2≤14,∴GM ≤12,而E (-2,0),F (0,2),∴∠FEO =45°,∴ΔHEM 时等腰直角三角形,∴GM =22EM ,∴22EM ≤12,即22[(m +2)-(-2)]≤12,解得m ≤-4+22,∴线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,线段EF 上的点到N 距离较小时,-92≤m ≤-4+22,当线段EF 上的点到M 距离较小时,也分两种情况:①当N 在E 右侧,M 在E 左侧时,如图:线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,∴ME MN≤14,即-2-m 2≤14,解得m ≥-52,②当M 、N 在点E 右侧时,过M 作MH ⊥EF 于H ,如图:线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,∴HM MN ≤14,即HM 2≤14,∴HM ≤12,而E (-2,0),F (0,2),∴∠FEO =45°,∴ΔHEM 时等腰直角三角形,∴HM =22EM ,∴22EM ≤12,即22[m -(-2)]≤12,解得:m ≤-2+22,∴线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,线段EF 上的点到M 距离较小时,-52≤m ≤-2+22,综上所述,线段EF 上存在点使得这一点关于线段MN 的线段比k ≤14,则-92≤m ≤-4+22或-52≤m ≤-2+22.【点评】本题考查一次函数应用,解题的关键是读懂线段比的定义,找出“临界点”列不等式.13(2022•泰州)定义:对于一次函数y 1=ax +b 、y 2=cx +d ,我们称函数y =m (ax +b )+n (cx +d )(ma +nc ≠0)为函数y 1、y 2的“组合函数”.(1)若m =3,n =1,试判断函数y =5x +2是否为函数y 1=x +1、y 2=2x -1的“组合函数”,并说明理由;(2)设函数y 1=x -p -2与y 2=-x +3p 的图像相交于点P .①若m +n >1,点P 在函数y 1、y 2的“组合函数”图像的上方,求p 的取值范围;②若p ≠1,函数y 1、y 2的“组合函数”图像经过点P .是否存在大小确定的m 值,对于不等于1的任意实数p ,都有“组合函数”图像与x 轴交点Q 的位置不变?若存在,请求出m 的值及此时点Q 的坐标;若不存在,请说明理由.【分析】(1)由y =5x +2=3(x +1)+(2x -1),可知函数y =5x +2是函数y 1=x +1、y 2=2x -1的“组合函数”;(2)①由y =x -p -2y =-x +3p得P (2p +1,p -1),当x =2p +1时,y =m (2p +1-p -2)+n (-2p -1+3p )=(p-1)(m +n ),根据点P 在函数y 1、y 2的“组合函数”图象的上方,有p -1>(p -1)(m +n ),而m +n >1,可得p <1;②由函数y 1、y 2的“组合函数” y =m (x -p -2)+n (-x +3p )图象经过点P ,知p -1=m (2p +1-p -2)+n (-2p -1+3p ),即(p -1)(1-m -n )=0,而p ≠1,即得n =1-m ,可得y =(2m -1)x +3p -(4p +2)m ,令y =0得(2m -1)x +3p -(4p +2)m =0,即(3-4m )p +(2m -1)x -2m =0,即可得m =34时,“组合函数”图象与x 轴交点Q 的位置不变,Q (3,0).【解答】解:(1)函数y =5x +2是函数y 1=x +1、y 2=2x -1的“组合函数”,理由如下:∵3(x +1)+(2x -1)=3x +3+2x -1=5x +2,∴y =5x +2=3(x +1)+(2x -1),∴函数y =5x +2是函数y 1=x +1、y 2=2x -1的“组合函数”;(2)①由y =x -p -2y =-x +3p得x =2p +1y =p -1 ,∴P (2p +1,p -1),∵y 1、y 2的“组合函数”为y =m (x -p -2)+n (-x +3p ),∴x =2p +1时,y =m (2p +1-p -2)+n (-2p -1+3p )=(p -1)(m +n ),∵点P 在函数y 1、y 2的“组合函数”图象的上方,∴p -1>(p -1)(m +n ),∴(p -1)(1-m -n )>0,∵m +n >1,∴1-m -n <0,∴p -1<0,∴p <1;②存在m =34时,对于不等于1的任意实数p ,都有“组合函数”图象与x 轴交点Q 的位置不变,Q (3,0),理由如下:由①知,P (2p +1,p -1),∵函数y 1、y 2的“组合函数”y =m (x -p -2)+n (-x +3p )图象经过点P ,∴p -1=m (2p +1-p -2)+n (-2p -1+3p ),∴(p -1)(1-m -n )=0,∵p ≠1,∴1-m -n =0,有n =1-m ,∴y =m (x -p -2)+n (-x +3p )=m (x -p -2)+(1-m )(-x +3p )=(2m -1)x +3p -(4p +2)m ,令y =0得(2m -1)x +3p -(4p +2)m =0,变形整理得:(3-4m )p +(2m -1)x -2m =0,∴当3-4m =0,即m =34时,12x -32=0,∴x =3,∴m =34时,“组合函数”图象与x 轴交点Q 的位置不变,Q (3,0).【点评】本题考查一次函数综合应用,涉及新定义,函数图象上点坐标的特征,一次函数与一次方程的关系等,解题的关键是读懂“组合函数“的定义.14(2024•钟楼区校级模拟)在同一平面内,具有一条公共边且不完全重合的两个全等三角形,我们称这两个三角形叫做“共边全等”.(1)下列图形中两个三角形不是“共边全等”是③;AB,点E、F分别在AC、BC边(2)如图1,在边长为6的等边三角形ABC中,点D在AB边上,且AD=13上,满足ΔBDF和ΔEDF为“共边全等”,求CF的长;(3)如图2,在平面直角坐标系中,直线y=-3x+12分别与直线y=x、x轴相交于A、B两点,点C是OB 的中点,P、Q在ΔAOB的边上,当以P、B、Q为顶点的三角形与ΔPCB“共边全等”时,请直接写出点Q 的坐标.【分析】(1)由于第③个图不符合共边要求,所以图③即为答案;(2)DF为两个全等三角形的公共边,由于F点在BC边上,E在AC边上,两个三角形的位置可以如图②,在公共边异侧,构成一个轴对称图形,也可以构成一个平行四边形(将图③的两条最长边重合形成),分两类讨论,画出图形,按照图②构图,会得到一个一线三等角模型,利用相似,列出方程来解决,按照平行四边形构图,直接得到ΔADE为等边三角形,计算边长即可求得;(3)由题目要求,可以知道两个全等三角形的公共边为PB边,由于要构成ΔPCB,所以P点只能在OA和OB边上,当P在OA边上,两个三角形可以在PB同侧,也可以在PB异侧,当在PB异侧构图时,可以得到图3和图4,在图3中,当在PB同侧构图时,可以得到图6,当P在OB边上时,Q只能落在OA上,得到图7,利用已知条件,解三角形,即可求出Q点坐标.【解答】解:(1)①②均符合共边全等的特点,只有③,没有公共边,所以③不符合条件,∴答案是③;(2)①如图1,当ΔBDF≅ΔEFD,且是共边全等时,∠BFD=∠EDF,∴DE⎳BC,∵ΔABC是等边三角形,∴ΔADE是等边三角形,AB=2,∵AD=13∴DE=AE=BF=2,∴CF=BC-BF=4,②如图2,当ΔBDF≅ΔEDF,且是共边全等时,BD=DE=6-AD=4,∠DEF=∠B=60°,EF=BF,∴∠AED+∠FEC=120°,又∠AED+∠EDA=120°,。
专题01 一次函数 压轴题(十大题型)(原卷版)
(1)OC 的长为______,OD 的长为______;(2)如图,点()1,M a -是线段CD 上一点,连接OM ,作ON 并判断MON △的形状;(3)如备用图,若点()1,E b 为直线AB 上的点,点P 为y 轴上的点,是以点E 为直角顶点的等腰直角三角形,若存在,请求出此时(1)求直线CD 的函数表达式和点D 的坐标;(2)点P 为线段DE 上的一个动点,连接BP .①若直线BP 将ACD 的面积分为7:9两部分,试求点②点P 是否存在某个位置,将BPD △沿着直线BP 翻折,使得点在,请直接写出点P 的坐标;若不存在,请说明理由.题型2:取值范围问题(1)求点A 的坐标;(2)若点C 在第二象限,ACD ①求点C 的坐标;②直接写出不等式组4x kx +>③将CAD 沿x 轴平移,点C(1)求点C 的坐标及直线BC 的表达式;(2)在点E 运动的过程中,若△DEF 的面积为5,求此时点(3)设点E 的坐标为(0,m );①用m 表示点F 的坐标;②在点E 运动的过程中,若△DEF 始终在△ABC 的内部(包括边界)题型3:最值问题5.已知一次函数()134502y kx k k =++≠.的坐标为(),a a ,求CM MP +的最小值.6.如图1,在平面直角坐标系xoy 中,直线1:1l y x =+与x 轴交于点A ,直线2:33l y x =-与x 轴交于点B ,与1l 相交于C 点,过x 轴上动点(),0E t 作直线3l x ⊥轴分别与直线1l 、2l 交于P 、Q 两点.(1)①请直接写出点A ,点B ,点C 的坐标:A ______,B ______,C ______.②若2PQ =,求t 的值;(2)如图2,若E 为线段AB 上动点,过点P 作直线PF PQ ⊥交直线2l 于点F ,求当t 为何值时,PQ PF -最大,并求这个最大值.题型4:旋转问题7.如图1,在平面直角坐标系中,一次函数()0y kx b k =+≠的图象交y 轴于点()0,1A -,交x 轴交于点B ,且2OB OC OA ==,过点C 作y 轴的垂线,交直线AB 于点D .(1)求点D 的坐标;(2)点E 是线段CD 上一动点,直线BE 与y 轴交于点F .①若BDF V 的面积为8,求点F 的坐标;②如图2,当点F 在y 轴正半轴上时,将直线BF 绕点B 顺时针旋转45︒后的直线与线段CD 交于点M ,连接FM ,若1OF MF =+,求线段MF 的长.备用图(1)求直线1l 的表达式;(2)过M 作y 轴的平行线,分别交直线1l ,直线2l 于点D ,E ,连接DE ,①当3m =时,求DE 的长;(1)求n 的值及直线2l 的表达式;(2)在直线2l 上是否存在点E ,使BO ABE A S S =△△若存在,则求出点(3)如图2,点P 为线段AD 上的一个动点,一动点H(1)求直线AB 的表达式;(2)由图象直接写出关于x 的不等式102x kx b <<+的解集;(3)如图②所示,P 为x 轴上A 点右侧任意一点,以BP 为边作等腰Rt BPM 直线MA 交y 轴于点Q .当点P 在x 轴上运动时,线段OQ 的长度是否发生变化?若不变,求出线段长度;若变化,求线段OQ 的取值范围.题型6:定值问题11.如图1所示,直线l :10y mx m =+与x 轴负半轴、y 轴正半轴分别交于(1)若点D坐标为(12,3).①求直线BC的函数关系式;②若Q为RS中点,求点P坐标.(2)在点P运动的过程中,PQCR的值是否变化?若不变,求出该值;若变化,请说明理由.题型7:新定义题型13.函数图象是研究函数的重要工具,类比一次函数的学习,表是探究过程中的部分信息:x…2-1-01232y x=-…4a2-14(1)a的值为______;(2)在图中画出该函数的图象;(3)结合函数的图象,解决下列问题:①下列说法正确的是:______.(填所有正确选项)A.函数图像关于x轴对称x=时,函数有最小值,最小值为B.当0x>时,y随x的增大而增大C.当0③若12x -≤≤,则y 的取值范围为【拓展提升】18.对于两个不同的函数,通过加法运算可以得到一个新函数,我们把这个新函数称为两个函数的数”.例如:对于函数12y x =和231y x =-,则函数1y ,2y 的“和函数”3y =(1)已知函数1y x =和2=y ①写出3y 的表达式,并求出当②函数1y ,2y 的图象如图①所示,则....(2)已知函数4y x =和5y =,这两个函数的“和函数”记为6y .按照上图的速度步行前往学校,记录下小东10天到达学校所用的时间,如表.上学日期4号5号6号7号8号11号到达学校所用时间(单位:min)2524.825.324.925.124.8某天早上7:20,小东按照上表的速度步行上学.t(0<t≤10)分钟后,小明骑自行车以从小区出发,沿着相同的路线上学.骑行7分钟后,自行车因零件损坏无法继续骑行,小明只好将自行车停在路边非机动车停靠点(停车时间忽略不计),改用步行前往学校.为了赶时间,小明的步行速度不小于。
最新初二数学一次函数综合压轴题精选汇总(含答案)
最新初二数学一次函数综合压轴题精选汇总例1.如图①所示,直线L:y=mx+5m与x轴负半轴,y轴正半轴分别交于A、B两点.(1)当OA=OB时,求点A坐标及直线L的解析式;(2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,作直线OQ,过A、B 两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=,求BN的长;(3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,如图③.问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值?若是,请求出其值;若不是,说明理由.变式练习:1.已知:如图1,一次函数y=mx+5m的图象与x轴、y轴分别交于点A、B,与函数y=﹣x的图象交于点C,点C的横坐标为﹣3.(1)求点B的坐标;(2)若点Q为直线OC上一点,且S△QAC=3S△AOC,求点Q的坐标;(3)如图2,点D为线段OA上一点,∠ACD=∠AOC.点P为x轴负半轴上一点,且点P到直线CD和直线CO的距离相等.①在图2中,只利用圆规作图找到点P的位置;(保留作图痕迹,不得在图2中作无关元素.)②求点P的坐标.例2.如图1,已知一次函数y=﹣x+6分别与x、y轴交于A、B两点,过点B的直线BC 交x轴负半轴与点C,且OC=OB.(1)求直线BC的函数表达式;(2)如图2,若△ABC中,∠ACB的平分线CF与∠BAE的平分线AF相交于点F,求证:∠AFC=∠ABC;(3)在x轴上是否存在点P,使△ABP为等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.变式练习:2.如图,直线l:y=x+6交x、y轴分别为A、B两点,C点与A点关于y轴对称.动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.(1)点A坐标是 ,BC= .(2)当点P在什么位置时,△APQ≌△CBP,说明理由.(3)当△PQB为等腰三角形时,求点P的坐标.课后作业:1.已知,如图直线y=2x+3与直线y=﹣2x﹣1相交于C点,并且与两坐标轴分别交于A、B 两点.(1)求两直线与y轴交点A,B的坐标及交点C的坐标;(2)求△ABC的面积.2.如图①,直线y=﹣x+1分别与坐标轴交于A,B两点,在y轴的负半轴上截取OC=OB(1)求直线AC的解析式;(2)如图②,在x轴上取一点D(1,0),过D作DE⊥AB交y轴于E,求E点坐标.3.如图,直线L:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)当M在x轴正半轴移动并靠近0点时,求△COM的面积S与M的移动时间t之间的函数关系式;当M在O点时,△COM的面积如何?当M在x轴负半轴上移动时,求△COM的面积S与M的移动时间t之间的函数关系式;请写出每个关系式中t的取值范围;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.参考答案:例1.【考点】一次函数综合题.【分析】(1)当y=0时,x=﹣5;当x=0时,y=5m,得出A(﹣5,0),B(0,5m),由OA=OB,解得:m=1,即可得出直线L的解析式;(2)由勾股定理得出OM的长,由AAS证明△AMO≌△ONB,得出BN=OM,即可求出BN的长;(3)作EK⊥y轴于K点,由AAS证得△ABO≌△BEK,得出对应边相等OA=BK,EK=OB,得出EK=BF,再由AAS证明△PBF≌△PKE,得出PK=PB,即可得出结果.【解答】解:(1)∵对于直线L:y=mx+5m,当y=0时,x=﹣5,当x=0时,y=5m,∴A(﹣5,0),B(0,5m),∵OA=OB,∴5m=5,解得:m=1,∴直线L的解析式为:y=x+5;(2)∵OA=5,AM=,∴由勾股定理得:OM==,∵∠AOM+∠AOB+∠BON=180°,∠AOB=90°,∴∠AOM+∠BON=90°,∵∠AOM+∠OAM=90°,∴∠BON=∠OAM,在△AMO和△OBN中,,∴△AMO≌△ONB(AAS)∴BN=OM=;(3)PB的长是定值,定值为;理由如下:作EK⊥y轴于K点,如图所示:∵点B为直角顶点在第一、二象限内作等腰直角△OBF 和等腰直角△ABE,∴AB=BE,∠ABE=90°,BO=BF,∠OBF=90°,∴∠ABO+∠EBK=90°,∵∠ABO+∠OAB=90°,∴∠EBK=∠OAB,在△ABO和△BEK中,,∴△ABO≌△BEK(AAS),∴OA=BK,EK=OB,∴EK=BF,在△PBF和△PKE中,,∴△PBF≌△PKE(AAS),∴PK=PB,∴PB=BK=OA=×5=.【点评】本题是一次函数综合题目,考查了一次函数解析式的求法、等腰直角三角形的性质、勾股定理、全等三角形的判定与性质等知识;本题综合性强,难度较大,特别是(3)中,需要通过作辅助线两次证明三角形全等才能得出结果.变式练习:1.【考点】一次函数综合题.【分析】(1)把点C的横坐标代入正比例函数解析式,求得点C的纵坐标,然后把点C的坐标代入一次函数解析式即可求得m的值,则易求点B的坐标;(2)由S△QAC=3S△AOC得到点Q到x轴的距离是点C到x轴距离的3倍或点Q到x轴的距离是点C到x轴距离的2倍;(3)①如图2,以点A为圆心,AC长为半径画弧,该弧与x轴的交点即为P;②如图3,作P1F⊥CD于F,P1E⊥OC于E,作P2H⊥CD于H,P2G⊥OC于G.利用△CAO∽△DAC,求出AD的长,进而求出D点坐标,再用待定系数法求出CD解析式,利用点到直线的距离公式求出公式,=,解出a的值即可.【解答】解:(1)把x=﹣3代入y=﹣x得到:y=2.则C(﹣3,2).将其代入y=mx+5m,得:2=﹣3m+5m,解得m=1.则该直线方程为:y=x+5.令x=0,则y=5,即B(0,5);(2)由(1)知,C(﹣3,2).如图1,设Q(a,﹣a).∵S△QAC=3S△AOC,∴S△QAO=4S△AOC,或S△QAO=2S△AOC,①当S△QAO=4S△AOC时,OA•y Q=4×OA•y C,∴y Q=4y C,即|﹣a|=4×2=8,解得a=﹣12(正值舍去),∴Q(﹣12,8);②当S△QAO=2S△AOC时,OA•y Q=2×OA•y C,∴y Q=2y C,即|﹣a|=2×2=4,解得a=6(舍去负值),∴Q′(6,﹣4);综上所述,Q(﹣12,8)或(6,﹣4).(3)①如图2,以点A为圆心,AC长为半径画弧,该弧与x轴的交点即为P;②如图3,作P1F⊥CD于F,P1E⊥OC于E,作P2H⊥CD于H,P2G⊥OC于G.∵C(﹣3,2),A(﹣5,0),∴AC==2,∵∠ACD=∠AOC,∠CAO=∠DAC,∴△CAO∽△DAC,∴=,∴AD=,∴OD=5﹣=,则D(﹣,0).设CD解析式为y=kx+b,把C(﹣3,2),D(﹣,0)分别代入解析式得,解得,函数解析式为y=5x+17,设P点坐标为(a,0),根据点到直线的距离公式,=,两边平方得,(5a+17)2=2×4a2,解得a=﹣5±2,∴P1(﹣5﹣2,0),P2(﹣5+2,0).【点评】本题考查了一次函数综合题,涉及坐标与图象的关系、待定系数法求函数解析式、角平分线的性质、点到直线的距离、三角形的面积公式等知识,综合性较强,值得关注.法二:例2.【考点】一次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得A、B、C点的坐标,根据待定系数法,可得函数解析式;(2)根据角平分线的性质,可得∠FCA=∠BCA,∠FAE=∠BAE,根据三角形外角的关系,可得∠BAE=∠ABC+∠BCA,∠FAE=∠F+∠FCA,根据等式的性质,可得答案;(3)根据等腰三角形的定义,分类讨论:AB=AP=10,AB=BP=10,BP=AP,根据线段的和差,可得AB=AP=10时P点坐标,根据线段垂直平分线的性质,可得AB=BP=10时P点坐标;根据两点间的距离公式,可得BP=AP时P点坐标.【解答】解:(1)当x=0时,y=6,即B(0,6),当y=0时,﹣x+6=0,解得x﹣8,即A (8,0);由OC=OB,得OC=3,即C(﹣3,0);设BC的函数解析式为,y=kx+b,图象过点B、C,得,解得,直线BC的函数表达式y=2x+6;(2)证明:∵∠ACB的平分线CF与∠BAE的平分线AF相交于点F,∴∠FCA=∠BCA,∠FAE=∠BAE.∵∠BAE是△ABC的外角,∠FAE是△FAC的外角,∴∠BAE=∠ABC+∠BCA,∠FAE=∠F+∠FCA.∴∠ABC+∠BCA=∠F+∠BCA,∠ABC=∠F;(3)当AB=AP=10时,8﹣10=﹣2,P1(﹣2,0),8+10=18,P2(18,0);当AB=BP=10时,AO=PO=8,即P3(﹣8,0);设P(a,0),当BP=AP时,平方,得BP2=AP2,即(8﹣a)2=a2+62化简,得16a=28,解得a=,P4(,0),综上所述:P1(﹣2,0),P2(18,0),P3(﹣8,0);P4(,0).【点评】本题考查了一次函数综合题,(1)利用了函数值与自变量的关系求出A、B、C 的值又利用了待定系数法求函数解析式;(2)利用了角平分线的性质,三角形外角的性质,(3)利用了等腰三角形的定义,分类讨论是解题关键.变式练习:2.【考点】一次函数综合题。
一次函数压轴题(含答案)
1.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.考点:一次函数综合题。
分析:(1)如图1,作CQ⊥x轴,垂足为Q,利用等腰直角三角形的性质证明△ABO≌△BCQ,根据全等三角形的性质求OQ,CQ的长,确定C点坐标;(2)同(1)的方法证明△BCH≌△BDF,再根据线段的相等关系证明△BOE≌△DGE,得出结论;(3)依题意确定P点坐标,可知△BPN中BN变上的高,再由S△PBN=S△BCM,求BN,进而得出ON.解答:解:(1)如图1,作CQ⊥x轴,垂足为Q,∵∠OBA+∠OAB=90°,∠OBA+∠QBC=90°,∴∠OAB=∠QBC,又∵AB=BC,∠AOB=∠Q=90°,∴△ABO≌△BCQ,∴BQ=AO=2,OQ=BQ+BO=3,CQ=OB=1,∴C(﹣3,1),由A(0,2),C(﹣3,1)可知,直线AC:y=x+2;(2)如图2,作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,∵AC=AD,AB⊥CB,∴BC=BD,∴△BCH≌△BDF,∴BF=BH=2,∴OF=OB=1,∴DG=OB,∴△BOE≌△DGE,∴BE=DE;(3)如图3,直线BC:y=﹣x﹣,P(,k)是线段BC上一点,∴P(﹣,),由y=x+2知M(﹣6,0),∴BM=5,则S△BCM=.假设存在点N使直线PN平分△BCM的面积,则BN•=×,∴BN=,ON=,∵BN<BM,∴点N在线段BM上,∴N(﹣,0).点评:本题考查了一次函数的综合运用.关键是根据等腰直角三角形的特殊性证明全等三角形,利用全等三角形的性质求解.3.如图直线ℓ:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0)(1)求k的值.(2)若P(x,y)是直线ℓ在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围.(3)当点P运动到什么位置时,△OPA的面积为9,并说明理由.考点:一次函数综合题;待定系数法求一次函数解析式;三角形的面积。
一次函数相关中考压轴题(含分析和答案)
一次函数是初中数学的重点内容之一,也是中考的主要考点。
现举几例以一次函数为背景的中考压轴题供同学们在中考复习时参考一.解答题(共30小题)1.在平面直角坐标系中,△AOC中,∠ACO=90°.把AO绕O点顺时针旋转90°得OB,连接AB,作BD⊥直线CO于D,点A的坐标为(﹣3,1).(1)求直线AB的解析式;(2)若AB中点为M,连接CM,动点P、Q分别从C点出发,点P沿射线CM以每秒个单位长度的速度运动,点Q沿线段CD以每秒1个长度的速度向终点D运动,当Q点运动到D点时,P、Q同时停止,设△PQO的面积为S(S≠0),运动时间为T秒,求S与T的函数关系式,并直接写出自变量T的取值范围;(3)在(2)的条件下,动点P在运动过程中,是否存在P点,使四边形以P、O、B、N(N为平面上一点)为顶点的矩形?若存在,求出T的值.2.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.3.如图直线ℓ:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0)(1)求k的值.(2)若P(x,y)是直线ℓ在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x 的取值范围.(3)当点P运动到什么位置时,△OPA的面积为9,并说明理由.4.如图,在平面直角坐标系xoy中,点A(1,0),点B(3,0),点,直线l经过点C,(1)若在x轴上方直线l上存在点E使△ABE为等边三角形,求直线l所表达的函数关系式;(2)若在x轴上方直线l上有且只有三个点能和A、B构成直角三角形,求直线l所表达的函数关系式;(3)若在x轴上方直线l上有且只有一个点在函数的图形上,求直线l所表达的函数关系式.5.如图1,直线y=﹣kx+6k(k>0)与x轴、y轴分别相交于点A、B,且△AOB的面积是24.(1)求直线AB的解析式;(2)如图2,点P从点O出发,以每秒2个单位的速度沿折线OA﹣OB运动;同时点E从点O出发,以每秒1个单位的速度沿y轴正半轴运动,过点E作与x轴平行的直线l,与线段AB相交于点F,当点P与点F重合时,点P、E均停止运动.连接PE、PF,设△PEF的面积为S,点P运动的时间为t秒,求S与t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,过P作x轴的垂线,与直线l相交于点M,连接AM,当tan∠MAB=时,求t值.6.首先,我们看两个问题的解答:问题1:已知x>0,求的最小值.问题2:已知t>2,求的最小值.问题1解答:对于x>0,我们有:≥.当,即时,上述不等式取等号,所以的最小值.问题2解答:令x=t﹣2,则t=x+2,于是.由问题1的解答知,的最小值,所以的最小值是.弄清上述问题及解答方法之后,解答下述问题:在直角坐标系xOy中,一次函数y=kx+b(k>0,b>0)的图象与x轴、y轴分别交于A、B两点,且使得△OAB 的面积值等于|OA|+|OB|+3.(1)用b表示k;(2)求△AOB面积的最小值.7.如图①,过点(1,5)和(4,2)两点的直线分别与x轴、y轴交于A、B两点.(1)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.图中阴影部分(不包括边界)所含格点的个数有_________个(请直接写出结果);(2)设点C(4,0),点C关于直线AB的对称点为D,请直接写出点D的坐标_________;(3)如图②,请在直线AB和y轴上分别找一点M、N使△CMN的周长最短,在图②中作出图形,并求出点N 的坐标.8.如图,已知AOCE,两个动点B同时在D的边上按逆时针方向A运动,开始时点F在点FA位置、点Q在点O 位置,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位.(1)在前3秒内,求△OPQ的最大面积;(2)在前10秒内,求x两点之间的最小距离,并求此时点P,Q的坐标.9.若直线y=mx+8和y=nx+3都经过x轴上一点B,与y轴分别交于A、C(1)填空:写出A、C两点的坐标,A_________,C_________;(2)若∠ABO=2∠CBO,求直线AB和CB的解析式;(3)在(2)的条件下若另一条直线过点B,且交y轴于E,若△ABE为等腰三角形,写出直线BE的解析式(只写结果).10.如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(﹣4,0),点B的坐标为(0,b)(b>0).P是直线AB上的一个动点,作PC⊥x轴,垂足为C.记点P关于y轴的对称点为P'(点P'不在y轴上),连接P P',P'A,P'C.设点P的横坐标为a.(1)当b=3时,求直线AB的解析式;(2)在(1)的条件下,若点P'的坐标是(﹣1,m),求m的值;(3)若点P在第一像限,是否存在a,使△P'CA为等腰直角三角形?若存在,请求出所有满足要求的a的值;若不存在,请说明理由.11.如图,四边形OABC为直角梯形,BC∥OA,A(9,0),C(0,4),AB=5.点M从点O出发以每秒2个单位长度的速度向点A运动;点N从点B同时出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.(1)求直线AB的解析式;(2)t为何值时,直线MN将梯形OABC的面积分成1:2两部分;(3)当t=1时,连接AC、MN交于点P,在平面内是否存在点Q,使得以点N、P、A、Q为顶点的四边形是平行四边形?如果存在,直接写出点Q的坐标;如果不存在,请说明理由.12.如图所示,在平面直角坐标系中,已知点A(0,6),点B(8,0),动点P从A开始在线段AO上以每秒1个单位长度的速度向点O运动,同时动点Q从B开始在线段BA上以每秒2个单位长度的速度向点A运动,设运动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,△APQ与△ABO相似?13.如图,在平面直角坐标系中,O为坐标原点,P(x,y),PA⊥x轴于点A,PB⊥y轴于点B,C(a,0),点E 在y轴上,点D,F在x轴上,AD=OB=2FC,EO是△AEF的中线,AE交PB于点M,﹣x+y=1.(1)求点D的坐标;(2)用含有a的式子表示点P的坐标;(3)图中面积相等的三角形有几对?14.如图,在直角坐标平面中,Rt△ABC的斜边AB在x轴上,直角顶点C在y轴的负半轴上,cos∠ABC=,点P在线段OC上,且PO、OC的长是方程x2﹣15x+36=0的两根.(1)求P点坐标;(2)求AP的长;(3)在x轴上是否存在点Q,使四边形AQCP是梯形?若存在,请求出直线PQ的解析式;若不存在,请说明理由.15.已知函数y=(6+3m)x+(n﹣4).(1)如果已知函数的图象与y=3x的图象平行,且经过点(﹣1,1),先求该函数图象的解析式,再求该函数的图象与y=mx+n的图象以及y轴围成的三角形面积;(2)如果该函数是正比例函数,它与另一个反比例函数的交点P到轴和轴的距离都是1,求出m和n的值,写出这两个函数的解析式;(3)点Q是x轴上的一点,O是坐标原点,在(2)的条件下,如果△OPQ是等腰直角三角形,写出满足条件的点Q的坐标.16.如图,Rt△OAC是一张放在平面直角坐标系中的直角三角形纸片,点O与原点重合,点A在x轴上,点C在y轴上,OA和OC是方程的两根(OA>OC),∠CAO=30°,将Rt△OAC折叠,使OC 边落在AC边上,点O与点D重合,折痕为CE.(1)求线段OA和OC的长;(2)求点D的坐标;(3)设点M为直线CE上的一点,过点M作AC的平行线,交y轴于点N,是否存在这样的点M,使得以M、N、D、C为顶点的四边形是平行四边形?若存在,请求出符合条件的点M的坐标;若不存在,请说明理由.17.如图,在平面直角坐标系中,O为坐标原点,点A在x轴的正半轴上,△AOB为等腰三角形,且OA=OB,过点B作y轴的垂线,垂足为D,直线AB的解析式为y=﹣3x+30,点C在线段BD上,点D关于直线OC的对称点在腰OB上.(1)求点B坐标;(2)点P沿折线BC﹣OC以每秒1个单位的速度运动,当一点停止运动时,另一点也随之停止运动.设△PQC的面积为S,运动时间为t,求S与t的函数关系式,并写出自变量t的取值范围;(3)在(2)的条件下,连接PQ,设PQ与OB所成的锐角为α,当α=90°﹣∠AOB时,求t值.(参考数据:在(3)中,取.)18.如图,在平面直角坐标系中,直线l经过点A(2,﹣3),与x轴交于点B,且与直线平行.(1)求:直线l的函数解析式及点B的坐标;(2)如直线l上有一点M(a,﹣6),过点M作x轴的垂线,交直线于点N,在线段MN上求一点P,使△PAB是直角三角形,请求出点P的坐标.19.已知如图,直线y=﹣x+4与x轴相交于点A,与直线y=x相交于点P.(1)求点P的坐标;(2)求S△OPA的值;(3)动点E从原点O出发,沿着O→P→A的路线向点A匀速运动(E不与点O、A重合),过点E分别作EF⊥x 轴于F,EB⊥y轴于B.设运动t秒时,F的坐标为(a,0),矩形EBOF与△OPA重叠部分的面积为S.求:S与a之间的函数关系式.20.如图,在平面直角坐标系中,点A(2,0),C(0,1),以OA、OC为边在第一象限内作矩形OABC,点D(x,0)(x>0),以BD为斜边在BD上方做等腰直角三角形BDM,作直线MA交y轴于点N,连接ND.(1)求证:①A、B、M、D四点在同一圆周上;②ON=OA;(2)若0<x≤4,记△NDM的面积为y,试求y关于x的函数关系式,并求出△NDM面积的最大值;(3)再点D运动过程中,是否存在某一位置,使DM⊥DN?若存在,请求出此时点D的坐标;若不存在,请说明理由.21.如图(1),直线y=kx+1与y轴正半轴交于A,与x轴正半轴交于B,以AB为边作正方形ABCD.(1)若C(3,m),求m的值;(2)如图2,连AC,作BM⊥AC于M,E为AB上一点,CE交BM于F,若BE=BF,求证:AC+AE=2AB;(3)经过B、C两点的⊙O1交AC于S,交AB的延长线于T,当⊙O1的大小发生变化时,的值变吗?若不变证明并求其值;若变化,请说明理由.22.如图:直线y=﹣x+18分别与x轴、y轴交于A、B两点;直线y=2x分别与AB交于C点,与过点A且平行于y轴的直线交于D点.点E从点A出发,以每秒1个单位的速度沿x轴向左运动,过点E作x轴的垂线,分别交直线AB、OD于P、Q,以PQ为边向右作正方形PQMN,设正方形PQMN与△ACD重叠部分(阴影部分)的面积为S(平方单位),点E的运动时间为t(秒).(1)当0<t<12时,求S与t之间的函数关系式;(2)求(1)中S的最大值;(3)当t>0时,若点(10,10)落在正方形PQMN的内部,求t的取值范围.23.直线l:y=﹣x+3分别交x轴、y轴于B、A两点,等腰直角△CDM斜边落在x轴上,且CD=6,如图1所示.若直线l以每秒3个单位向上作匀速平移运动,同时点C从(6,0)开始以每秒2个单位的速度向右作匀速平移运动,如图2所示,设移动后直线l运动后分别交x轴、y轴于Q、P两点,以OP、OQ为边作如图矩形OPRQ.设运动时间为t秒.(1)求运动后点M、点Q的坐标(用含t的代数式表示);(2)若设矩形OPRQ与运动后的△CDM的重叠部分面积为S,求S与t的函数关系式,并写出t相应的取值范围;(3)若直线l和△CDM运动后,直线l上存在点T使∠OTC=90°,则当在线段PQ上符合条件的点T有且只有两个时,求t的取值范围.24.如图,将边长为4的正方形置于平面直角坐标系第一象限,使AB边落在x轴正半轴上,且A点的坐标是(1,0).(1)直线经过点C,且与x轴交于点E,求四边形AECD的面积;(2)若直线l经过点E,且将正方形ABCD分成面积相等的两部分,求直线l的解析式;(3)若直线l1经过点F()且与直线y=3x平行.将(2)中直线l沿着y轴向上平移1个单位,交x轴于点M,交直线l1于点N,求△NMF的面积.25.如图,直线l1的解析表达式为:y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求直线l2的解析表达式;(2)求△ADC的面积;(3)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,求出点P的坐标;(4)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、D、C、H为顶点的四边形是平行四边形?若存在,请直接写出点H的坐标;若不存在,请说明理由.26.如图,直线y=x+6与x轴、y轴分别相交于点E、F,点A的坐标为(﹣6,0),P(x,y)是直线y=x+6上一个动点.(1)在点P运动过程中,试写出△OPA的面积s与x的函数关系式;(2)当P运动到什么位置,△OPA的面积为,求出此时点P的坐标;(3)过P作EF的垂线分别交x轴、y轴于C、D.是否存在这样的点P,使△COD≌△FOE?若存在,直接写出此时点P的坐标(不要求写解答过程);若不存在,请说明理由.27.如图,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C.(1)若直线AB解析式为y=﹣2x+12,①求点C的坐标;②求△OAC的面积.(2)如图,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.28.已知直角梯形OABC在如图所示的平面直角坐标系中,AB∥OC,AB=10,OC=22,BC=15,动点M从A点出发,以每秒一个单位长度的速度沿AB向点B运动,同时动点N从C点出发,以每秒2个单位长度的速度沿CO 向O点运动.当其中一个动点运动到终点时,两个动点都停止运动.(1)求B点坐标;(2)设运动时间为t秒;①当t为何值时,四边形OAMN的面积是梯形OABC面积的一半;②当t为何值时,四边形OAMN的面积最小,并求出最小面积;③若另有一动点P,在点M、N运动的同时,也从点A出发沿AO运动.在②的条件下,PM+PN的长度也刚好最小,求动点P的速度.29.如图,在平面直角坐标系xoy中,直线AP交x轴于点P(p,0),交y轴于点A(0,a),且a、b满足.(1)求直线AP的解析式;(2)如图1,点P关于y轴的对称点为Q,R(0,2),点S在直线AQ上,且SR=SA,求直线RS的解析式和点S 的坐标;(3)如图2,点B(﹣2,b)为直线AP上一点,以AB为斜边作等腰直角三角形ABC,点C在第一象限,D为线段OP上一动点,连接DC,以DC为直角边,点D为直角顶点作等腰三角形DCE,EF⊥x轴,F为垂足,下列结论:①2DP+EF的值不变;②的值不变;其中只有一个结论正确,请你选择出正确的结论,并求出其定值.30.如图,已知直线l1:y=﹣x+2与直线l2:y=2x+8相交于点F,l1、l2分别交x轴于点E、G,矩形ABCD顶点C、D分别在直线l1、l2,顶点A、B都在x轴上,且点B与点G重合.(1)求点F的坐标和∠GEF的度数;(2)求矩形ABCD的边DC与BC的长;(3)若矩形ABCD从原地出发,沿x轴正方向以每秒1个单位长度的速度平移,设移动时间为t(0≤t≤6)秒,矩形ABCD与△GEF重叠部分的面积为s,求s关于t的函数关系式,并写出相应的t的取值范围.答案与评分标准一.解答题(共30小题)1.在平面直角坐标系中,△AOC中,∠ACO=90°.把AO绕O点顺时针旋转90°得OB,连接AB,作BD⊥直线CO于D,点A的坐标为(﹣3,1).(1)求直线AB的解析式;(2)若AB中点为M,连接CM,动点P、Q分别从C点出发,点P沿射线CM以每秒个单位长度的速度运动,点Q沿线段CD以每秒1个长度的速度向终点D运动,当Q点运动到D点时,P、Q同时停止,设△PQO的面积为S(S≠0),运动时间为t秒,求S与t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,动点P在运动过程中,是否存在P点,使四边形以P、O、B、N(N为平面上一点)为顶点的矩形?若存在,求出T的值.考点:一次函数综合题。
专题10 一次函数的三种压轴应用问题-2023年初中数学8年级下册同步压轴题(学生版)
专题10 一次函数的三种压轴应用问题类型一、分配方案问题例.某水果超市欲购进甲,乙两种水果进行销售.甲种水果每千克的价格为a元,如果一次购买超过40千克,超过部分的价格打八折,乙种水果的价格为26元/千克.设水果超市购进甲种水果x千克,付款y元,y与x之间的函数关系如图所示.(1)a=____(2)求y与x之间的函数关系式;(3)若经销商计划一次性购进甲,乙两种水果共80千克,且甲种水果不少于30千克,但又不超过50千克.如何分配甲,乙两种水果的购进量,才能使经销商付款总金额W(元)最少?【变式训练1】为了净化空气,美化校园环境,某学校计划种植A,B两种树木.已知购买20棵A种树木和15棵B种树木共花费2680元;购买10棵A种树木和20棵B种树木共花费2240元.(1)求A,B两种树木的单价分别为多少元.(2)如果购买A种树木有优惠,优惠方案是:购买A种树木超过20棵时,超出部分可以享受八折优惠.若该学校购买m(m>0,且m为整数)棵A种树木花费w元,求w与m之间的函数关系式.(3)在(2)的条件下,该学校决定在A,B两种树木中购买其中一种,且数量超过20棵,请你帮助该学校判断选择购买哪种树木更省钱.【变式训练2】我校为了丰富校园活动,计划购买乒乓球拍和羽毛球拍共100副,其中乒乓球拍每副50元,羽毛球拍每副100元,(1)若购买两种球拍刚好用去8000元,则购买两种球拍各多少副?(2)若购买羽毛球拍的数量不少于乒乓球拍的数量,请设计一种购买方案使所需总费用最低,并求出该购买方案所需总费用.【变式训练3】某公司经营甲、乙两种商品,每件甲种商品进价12万元,售价14.5万元;每件乙种商品进价8万元,售价10万元,且它们的进价和售价始终不变.(1)现准备购进甲、乙两种商品共20件,所用资金不低于190万元不高于200万元,该公司有哪几种进货方案?(2)在第(1)小题的条件下,该公司采用哪种进货方案可获得最大利润?最大利润是多少?(3)利用第(2)小题中所求得的最大利润再次进货,请直接写出获得最大利润的进货方案.类型二、最大利润问题例.某书店计划同时购进A,B两类图书,已知购进3本A类图书和4本B类图书共需288元;购进6本A 类图书和2本B类图书共需306元,(1)A,B两类图书每本的进价各是多少元?(2)该书店计划用4500元全部购进两类图书,设购进A类x本,B类y本.①求y关于x的关系式;②进货时,A类图书的购进数量不少于60本,已知A类图书每本的售价为38元,B类图书每本的售价为50元,若书店全部售完可获利W元,求W关于x的关系式,并说明应该如何进货才能使书店所获利润最大,最大利润为多少元?【变式训练1】为了防范疫情,顺利复学,某市教育局决定从甲、乙两地用汽车向A、B两校运送口罩,甲、乙两地分别可提供口罩40万个、10万个;A、B两校分别需要口罩30万个、20万个两地到A、B两校的路程如表(每万个口罩每千米运费为2元).设甲地运往A校x万个口罩:(1)根据题意,在答题卡中填该表:(2)设总运费为W元,求W与x的函数关系式;当甲地运往A校多少万个口罩时总运费最少?最少的运费是多少元?【变式训练2】为了做好防疫工作,学校准备购进一批消毒液.已知2瓶A型消毒液和3瓶B型消毒液共需41元,5瓶A型消毒液和2瓶B型消毒液共需53元.(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且A型消毒液的数量不超过67瓶,请设计出最省钱的购买方案,并求出最少费用.【变式训练3】某扶贫小组实施产业扶贫,帮助贫困农户进行盆景的培植和销售,在第一期培植销售完成后,统计发现,若2盆A种盆景和1盆B种盆景共获利润340元;如果3盆A种盆景和2盆B种盆景共获利润560元.(1)每盆A种盆景、B种盆景的利润各是多少元?(2)为更好服务于农户,扶贫小组决定进行二期盆景培植,培植A种、B种盆景的总数量100盆,若要求第二期A种盆景的数量不超过B种盆景数量的3倍,当A种、B种盆景各多少盆时,总利润最高,最高利润是多少?类型三、几何问题例.如图,l1和l2分别是走私船和我公安快艇航行路程与时间的函数图象,请结合图象解决下列问题:(1)在刚出发时,我公安快艇距走私船海里;(2)求出l1和l2的解析式;(3)求公安快艇追上走私船的时间.【变式训练1】为发展旅游经济,某景区对门票采用灵活的售票方法吸引游客.设某旅游团路人数为x人,非节假日购票款为1y (元),节假日购票款为2y (元),1y 、2y 与x 之间的函数图像如图所示.(1)非节假日门票定价为______元/人.(2)求当10x 时,2y 与x 之间的函数关系式。
【常考压轴题】一次函数实际应用压轴—2023-2024学年八年级数学下册(人教版)(解析版)
一次函数实际应用压轴题型1:利用一次函数解决方案问题题型2:利用一次函数解决销售利润问题题型3:利用一次函数解决行程问题题型4:利用一次函数解决运输问题题型1:利用一次函数解决方案问题【典例1】我校将举办一年一度的秋季运动会,需要采购一批某品牌的乒乓球拍和配套的乒乓球,一副球拍标价80元,一盒球标价25元.体育商店提供了两种优惠方案,具体如下:方案甲:买一副乒乓球拍送一盒乒乓球,其余乒乓球按原价出售;方案乙:按购买金额打9折付款.学校欲购买这种乒乓球拍10副,乒乓球x(x≥10)盒.(1)请直接写出两种优惠办法实际付款金额y甲(元),y乙(元)与x(盒)之间的函数关系式.(2)如果学校需要购买15盒乒乓球,哪种优惠方案更省钱?(3)如果学校提供经费为1800元,选择哪个方案能购买更多乒乓球?【答案】(1)y甲=25x+550,y乙=22.5x+720;(2)方案甲更省钱;(3)学校提供经费为1800元,选择方案甲能购买更多乒乓球.【解答】解:(1)由题意得:y甲=10×80+25(x﹣10)=25x+550,y乙=25×0.9x+80×0.9×10=22.5x+720,(2)根据(1)中解析式,y甲=25x+550,y乙=22.5x+720,当x=15时y甲=25×15+550=925(元),y乙=22.5×15+720=1057.5(元),∵925<1057.5,∴方案甲更省钱;(3)根据(1)中解析式,y甲=25x+550,y乙=22.5x+720,当y甲=1800元时,1800=25x+550,解得:x=50,当y乙=1800元时,1800=22.5x+720,解得:x=48,∵50>48,∴学校提供经费为1800元,选择方案甲能购买更多乒乓球.【变式1-1】已知用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有34吨货物,计划同时租用A型和B型车辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.共有几种租车方案,哪种方案租车费用最少?【答案】(1)1辆A型车载满货物一次可运货3吨,1辆B型车载满货物一次可运货4吨;(2)该物流公司共有三种租车方案,方案1:租用A型车10辆,B型车1辆;方案2:租用A型车6辆,B型车4辆;方案3:租用A型车2辆,B型车7辆.方案3租用A型车2辆、B型车7辆最省钱,最少租车费为1040元.【解答】解:(1)设1辆A型车载满货物一次可运货x吨,1辆B型车载满货物一次可运货y吨,依题意,得:,解得:.答:1辆A型车载满货物一次可运货3吨,1辆B型车载满货物一次可运货4吨.(2)设A型车租a辆,B型车租b辆,依题意,得:3a+4b=34,∴a=.∵a,b均为非负整数,∴,,,∴该物流公司共有三种租车方案,方案1:租用A型车10辆,B型车1辆;方案2:租用A型车6辆,B型车4辆;方案3:租用A型车2辆,B型车7辆.方案1所需租金:100×10+120×1=1120(元),方案2所需租金:100×6+120×4=1080(元),方案3所需租金:100×2+120×7=1040(元).∵1120>1080>1040,∴方案3租用A型车2辆、B型车7辆最省钱,最少租车费为1040元.【变式1-2】2022年秋,郑州新冠疫情牵动全国,社会各界筹集的医用,建设等物资不断从各地向郑州汇集.这期间,恰逢春节承运资源短缺,紧急情况下,多家物流企业纷纷开通特别通道,驰援郑州,为生产药品,口罩,医疗器械等紧急物资的企业提供全方位支持.已知用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B 型车载满货物一次可运货11吨,某物流公司计划租用这两种车辆运输物资.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)若A型车每辆需租金90元/次,B型车每辆需租金110元/次.物流公司计划共租用8辆车,请写出总租车费用w A型车数量a(辆)的函数关系式.(3)如果汽车租赁公司的A型车只剩了6辆,B型车还有很多.在(2)的条件下,请选出最省钱的租车车方案,并求出最少租车费用.【答案】(1)1辆A型车和1辆B型车都装满货物一次可分别运货3吨、4吨;(2)w=﹣20a+880;(3)租6辆A型车,2辆B型车,租车费用最少,最少费用为760元.【解答】解:(1)设1辆A型车和1辆B型车都装满货物一次可分别运货x吨、y吨,由题意得:,解得,∴1辆A型车和1辆B型车都装满货物一次可分别运货3吨、4吨.(2)由题意可得:w=90a+110(8﹣a)=﹣20a+880;(3)在一次函数w=﹣20a+880中,∵﹣20<0,∴w随a的增大而小;由题意知:a≤6,则当a=6时,总租车费用最少,最少费用为:w=﹣20×6+880=760.8﹣6=2.∴最省钱的租车方案为租6辆A型车,2辆B型车,租车费用最少,最少费用为760元.题型2:利用一次函数解决销售利润问题【典例2】2023年第一届全国学生(青年)运动会在南宁市某中学初中部举行火炬传递仪式,有幸参与该盛事的学校的九年级1000名学生将在火炬传递经过的校道两边为火炬手摇旗呐喊,年级制定的活动经费初步方案是采购一些手摇式小国旗,每面小国旗售价为0.8元.经过进一步商讨之后,年级决定再补购印有运动会吉祥物“壮壮”和“美美”的头戴式小彩旗若干个.询问甲、乙两家吉祥物特许经销商,他们考虑到学校情况给出了不同的销售方案.甲经销商的销售方案是每个头戴式小彩旗卖2.2元.乙经销商的方案是:购买不超过200个头戴式小彩旗,每个售价2.5元;若超过200个,则超过部分每个售价2元.(1)设向乙经销商购买x个头戴式小彩旗,所需费用为y元,求出y关于x的函数关系式;(2)年级最终决定必须要买1000面小国旗及若干个头戴式小彩旗,最终总费用不低于1600元,不超过2000元.若向甲、乙两家经销商中的一家购买头戴式小彩旗,年级该向哪一家购买头戴式小彩旗最合算?【答案】(1)y=;(2)当总费用大于或等于1600而小于1900元时,向甲经销商购买最合算;当购买小彩旗费用为1900元时,两家一样合算;当购买总费用大于1900元而小于或等于2000元时,向乙经销商购买最合适.【解答】解:(1)当0≤x≤200时,y=2.5x;当x>200时,y=200×2.5+2(x﹣200)=2x+100;综上,y关于x的函数关系式为y=.(2)设在甲、乙两家经销商购买x个头戴式小彩旗所需费用分别为y1元、y2元,则y1=2.2x.由(1)得,y2=.它们的函数图象如图所示:∵最终总费用不低于1600元,不超过2000元,购买1000面小国旗的费用是1000×0.8=800(元),∴购买头戴式小彩旗的费用最少800元,最多1200元,即800≤y1≤1200,800≤y2≤1200.当y1=y2时,2.2x=2x+100x=500,此时y1=y2=1100.由图象可知,当购买头戴式小彩旗的费用低于1100元时,向甲经销商购买最合算;当购买头戴式小彩旗费用为1100元时,两家一样合算;当购买头戴式小彩旗费用大于1100元时,向乙经销商购买最合适.综上,当总费用大于或等于1600而小于1900元时,向甲经销商购买最合算;当购买小彩旗费用为1900元时,两家一样合算;当购买总费用大于1900元而小于或等于2000元时,向乙经销商购买最合适.【变式2-1】“互联网+”让我国经济更具活力.牡丹花会期间,某网店直接从工厂购进A、B两款花会纪念钥匙扣进行销售,进货价和销售价如表:(1)网店第一次用1100元购进A、B两款钥匙扣共50件,求两款钥匙扣分别购进的件数;(2)第一次购进的花会纪念钥匙扣售完后,该网店计划再次购进A、B两款钥匙扣共240件(进货价和销售价都不变),且第二次进货总价不高于5800元.网店这次应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?【答案】(1)购进A款钥匙扣30件,B款钥匙扣20件;(2)当购进40件A款钥匙扣,200件B款钥匙扣时,才能获得最大销售利润,最大销售利润是2800元.【解答】解:(1)设购进A款钥匙扣x件,B款钥匙扣y件,根据题意得:答:购进A款钥匙扣30件,B款钥匙扣20件;(2)设购进m件A款钥匙扣,则购进(240﹣m)件B款钥匙扣,根据题意得:20m+25(240﹣m)≤5800,解得:m≥40.设再次购进的A、B两款钥匙扣全部售出后获得的总利润为w元,则w=(30﹣20)m+(37﹣25)(240﹣m)=﹣2m+2880.∵﹣2<0,∴w随m的增大而减小,∴当m=40时,w取得最大值,最大值=﹣2×40+2880=2800(元),此时240﹣40=200(元).答:当购进40件A款钥匙扣,200件B款钥匙扣时,才能获得最大销售利润,最大销售利润是2800元.【变式2-2】2023年杭州亚运会期间,吉祥物徽章受到了众多人的喜爱.某网店直接从工厂购进A款礼盒120盒,B款礼盒50盒,两款礼盒全部售完.两款礼盒的进货价和销售价如下表:(1)求该网店销售这两款礼盒所获得的总利润.(2)网店计划用第一次所获的销售利润再次去购买A、B两款礼盒共80盒.该如何设计进货方案,使网店获得最大的销售利润?最大销售利润是多少?【答案】(1)该网店销售这两款礼盒所获得的总利润为2200元;(2)该网店购进A款礼盒和B款礼盒各40盒网店获得最大的销售利润,最大利润为920元.【解答】解:(1)120×(45﹣30)+50(33﹣25)=1800+400=2200(元),答:该网店销售这两款礼盒所获得的总利润为2200元;(2)设购进x盒A款礼盒,则购进(80﹣x)盒B款礼盒,网店所获利润为y元,根据题意得:y=(45﹣30)x+(33﹣25)(80﹣x)=7x+640,又∵30x+25(80﹣x)≤2200,∴x≤40,∵7>0,∴y随x的增大而增大,∴当x=40时,y有最大值,最大值为920,∴该网店购进A款礼盒和B款礼盒各40盒网店获得最大的销售利润,最大利润为920元.【变式2-3】“书香中国,读领未来”,4月23日是世界读书日,我市某书店同时购进A,B 两类图书,已知购进3本A类图书和4本B类图书共需160元;购进6本A类图书和2本B类图书共需170元.(1)A,B两类图书每本的进价各是多少元?(2)该书店计划用2000元购进这两类图书,设购进A类x本,B类y本.①求y关于x的关系式;②进货时,A类图书的购进数量不少于50本,已知A类图书每本的售价为28元,B类图书每本的售价为40元,如何进货才能使书店所获利润最大?最大利润为多少元?【答案】(1)A类图书每本的进价是20元,B类图书每本的进价是25元;(2)①;②购进A类图书50本,B类图书40本时,才能使书店所获利润最大,最大利润为1000元.【解答】解:(1)设A类图书每本的进价是a元,B类图书每本的进价是b元,根据题意得:,解得:,答:A类图书每本的进价是20元,B类图书每本的进价是25元;(2)①根据题意得:20x+25y=2000,∴y关于x的关系式为;②设书店所获利润为w元,根据题意得:W=(28﹣20)x+(40﹣25)y=8x+15y==﹣4x+1200∵﹣2<0,∴W随x的增大而减小,∵A类图书的购进数量不少于50本,∴x≥50,∴当x=50时,W4×50+1200=1000,此时,答:购进A类图书50本,B类图书40本时,才能使书店所获利润最大,最大利润为1000元.【变式2-4】为迎接新春佳节的到来,一水果店计划购进甲、乙两种新出产的水果共160千克,这两种水果的进价、售价如表所示:(1)若该水果店预计进货款为1000元,则这两种水果各购进多少千克?(2)若该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?【答案】(1)甲种水果购进110千克,则乙种水果购进50千克;(2)安排购买甲种水果40kg,乙种水果120千克,才能使水果店在销售完这批水果时获利最多,此时利润为600元.【解答】解:(1)设甲种水果购进x千克,则乙种水果购进(160﹣x)千克,由题意可得:5x+9(160﹣x)=1000,解得x=110,∴160﹣x=50,答:甲种水果购进110千克,则乙种水果购进50千克;(2)设购进甲种水果m千克,则乙种水果购进(160﹣m)千克,获得的利润为w元,由题意可得:w=(8﹣5)m+(13﹣9)(160﹣m)=﹣m+640,∴w随m的增大而减小,∵该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,∴160﹣m≤3m,解得m≥40,∴当m=40时,w取得最大值,此时w=600,160﹣m=120,答:安排购买甲种水果40kg,乙种水果120千克,才能使水果店在销售完这批水果时获利最多,此时利润为600元.【变式2-5】随着“双减”政策的逐步落实,其中增加中学生体育锻炼时间的政策引发社会的广泛关注,体育用品需求增加,某商店决定购进A、B两种羽毛球拍进行销售,已知每副A种球拍的进价比每副B种球拍贵20元,用2800元购进A种球拍的数量与用2000元购进B种球拍的数量相同.(1)求A、B两种羽毛球拍每副的进价;(2)若该商店决定购进这两种羽毛球拍共100副,考虑市场需求和资金周转,用于购买这100副羽毛球拍的资金不超过5900元,那么该商店最多可购进A种羽毛球拍多少副?(3)若销售A种羽毛球拍每副可获利润25元,B种羽毛球拍每副可获利润20元,在第(2)问条件下,如何进货获利最大?最大利润是多少元?【答案】见试题解答内容【解答】解:(1)设A种羽毛球拍每副的进价为x元,根据题意,得,解得x=70,经检验,x=70是原分式方程的根,且符合题意,70﹣20=50(元),答:A种羽毛球拍每副的进价为70元,B种羽毛球拍每副的进价为50元;(2)设该商店购进A种羽毛球拍m副,根据题意,得70m+50(100﹣m)≤5900,解得m≤45,m为正整数,答:该商店最多购进A种羽毛球拍45副;(3)设总利润为w元,w=25m+20(100﹣m)=5m+2000,∵5>0,∴w随着m的增大而增大,当m=45时,w取得最大值,最大利润为5×45+2000=2225(元),此时购进A种羽毛球拍45副,B种羽毛球拍100﹣45=55(副),答:购进A种羽毛球拍45副,B种羽毛球拍55副时,总获利最大,最大利润为2225元.【变式2-6】新春佳节来临,某公司组织10辆汽车装运苹果、芦柑、香梨三种水果共60吨去外地销售,要求10的车辆都不少于2辆,根据下表提供的信息,解答以下问题:(1)设装运苹果的车辆为x辆,装运芦柑的车辆为y辆,求y与x之间的函数关系式,并直接写出x的取值范围(2)用w来表示销售获得的利润,那么怎样安排车辆能使此次销售获利最大?并求出w 的最大值.【答案】见试题解答内容【解答】解:(1)设装运苹果的车辆为x辆,装运芦柑的车辆为y辆,则运香梨的车辆(10﹣x﹣y)辆.7x+6y+5(10﹣x﹣y)=60,∴y=﹣2x+10(2≤x≤4);(2)w=7×0.15x+6×0.2(﹣2x+10)+5×0.1[10﹣x﹣(﹣2x+10)],即w=﹣0.85x+12,∵﹣0.85<0,∴w随x的增大而减小,∴当x=2时,w有最大值10.3万元,∴装运苹果的车辆2辆,装运芦柑的车辆6辆,运香梨的车辆2辆时,此次销售获利最大,最大利润为10.3万元.【变式2-7】商店销售1台A型和2台B型电脑的利润为400元,销售2台A型和1台B 型电脑的利润为350元,该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润y 元.(1)①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(2)实际进货时,厂家对A型电脑出厂价下调了m(0<m≤50)元,且限定商店最多的进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出售这100台电脑销售总利润最大的进货方案.【答案】(1)①y=﹣50x+15000,②商店购进34台A型电脑和66台B型电脑的销售利润最大.(2)①当0<m<50时,商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润.【解答】解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得:,解得∴y=100x+150(100﹣x),即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,﹣50<0,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.(2)据题意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,33≤x≤70①当0<m<50时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000,即商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润.【变式2-8】某水果种植基地为响应政府号召,大力种植优质水果.某超市看好甲、乙两种优质水果的市场价值,决定开始销售这两种水果.已知该超市购进甲种水果10千克和乙种水果3千克共需要197元;若购进甲种水果15千克和乙种水果6千克,则共需要324元.(1)求甲、乙两种水果每千克的进价分别是多少元?(2100千克进行销售,甲种水果的售价为20元/千克,乙种水果的售价为24元/千克.其中甲种水果的数量不少于20千克,但不超过60千克.若超市当天购进的水果当天售完(运输和销售过程中水果的损耗忽略不计),写出每天销售这两种水果获得的利润w(元)与购进甲种水果的数量a(千克)之间的关系式,并求出a为何值时能获得最大利润?最大利润是多少元?【答案】(1)甲种水果每千克的进价是14元,乙种水果每千克的进价是19元;(2)每天销售这两种水果获得的利润w(元)与购进甲种水果的数量a(千克)之间的关系式为w=a+500;当a=60时,能获得最大利润,最大利润是560元.【解答】解:(1)设甲种水果每千克的进价是x元,乙种水果每千克的进价是y元,根据题意得:,解得,答:甲种水果每千克的进价是14元,乙种水果每千克的进价是19元;(2)由题意得:w=(20﹣14)a+(24﹣19)(100﹣a)=6a+5(100﹣a)=a+500,∵1>0,20≤a≤60,∴当a=60时,w最大,最大值为560,∴每天销售这两种水果获得的利润w(元)与购进甲种水果的数量a(千克)之间的关系式为w=a+500;当a=60时,能获得最大利润,最大利润是560元.【变式2-9】某商店销售A型和B型两种型号的电脑,销售一台A型电脑可获利120元,销售一台B型电脑可获利140元.该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A型电脑的3倍.设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y与x的函数关系式,并求出自变量x的取值范围;(2)该商店购进A型、B型电脑各多少台,才能使销售利润最大?最大利润是多少?【答案】见试题解答内容【解答】解:(1)由题意可得,A型电脑的总利润为:120x,B型电脑的总利润为:140(100﹣x),∴A、B电脑的总利润:y=120x+140(100﹣x)=﹣20x+14000,∴y与x的函数关系式为:y=﹣20x+14000,又B型电脑的进货量不超过A型电脑的3倍,∴100﹣x≤3x,解得:x≥25,∴自变量x的取值范围为:25≤x≤100,且x为正整数,∴y=﹣20x+14000(25≤x≤100,且x为正整数);(2)∵y=﹣20x+14000,且﹣20<0,∴y随x的增大而减小,∵25≤x≤100,且x为正整数,∴x=25时,y有最大值为:﹣20×25+14000=13500,∴A型电脑进货25台,B型电脑进货75台,销售利润最大为13500元.【变式2-10】在近期“抗疫”期间,某药店销售A,B两种型号的口罩,已知销售80只A 型和45只B型的利润为21元,销售40只A型和60只B型的利润为18元.(1)求每只A型口罩和B型口罩的销售利润;(2)该药店计划一次购进两种型号的口罩共2000只,其中B型口罩的进货量不少于A 型口罩的进货量且不超过它的3倍,则该药店购进A型、B型口罩各多少只,才能使销售总利润y最大?最大值是多少?【答案】(1)每只A型口罩销售利润为0.15元,每只B型口罩销售利润为0.2元;(2)药店购进A型口罩500只、B型口罩1500只,才能使销售总利润最大,总利润最大为375元.【解答】解:(1)设每只A型口罩销售利润为a元,每只B型口罩销售利润为b元,根据题意得:,解得,答:每只A型口罩销售利润为0.15元,每只B型口罩销售利润为0.2元;(2)根据题意得,y=0.15x+0.2(2000﹣x),即y=﹣0.05x+400;根据题意得,,解得500≤x≤1000,∴y=﹣0.05x+400(500≤x≤1000),∵﹣0.05<0,∴y随x的增大而减小,∵x为正整数,∴当x=500时,y取最大值为375元,则2000﹣x=1500,即药店购进A型口罩500只、B型口罩1500只,才能使销售总利润最大为375元.【变式2-11】第19届亚运会已于2023年9月23日至10月8日在中国浙江杭州成功举行.这国关注,举世瞩目.杭州亚运会三个吉祥物分别取名“琮琮”“宸宸”“莲莲”.某专卖店购进A,B两种杭州亚运会吉祥物礼盒进行销售.A种礼盒每个进价160元,售价220元;B种礼盒每个进价120元,售价160元.现计划购进两种礼盒共100个,其中A种礼盒不少于60个.设购进A种礼盒x个,两种礼盒全部售完,该专卖店获利y元.(1)求y与x之间的函数关系式;(2)若购进100个礼盒的总费用不超过15000元,求最大利润为多少元?(3)在(2)的条件下,该专卖店对A种礼盒以每个优惠m(0<m<20)元的价格进行优惠促销活动,B种礼盒每个进价减少n元,售价不变,且m﹣n=4,若最大利润为4900元,请直接写出m的值.【答案】(1)y与x之间的函数关系式为y=20x+4000;(2)最大利润为5500元;(3)m=10.【解答】解:(1)由题意得:y=(220﹣160)x+(160﹣120)×(100﹣x)=20x+4000,∴y与x之间的函数关系式为y=20x+4000;(2)由题意得:,∴60≤x≤75,∵y=20x+4000中,20>0,∴y随x的增大而增大,∴当x=75时,y有最大值,最大值=20×75+4000=5500(元),∴最大利润为5500元;(3)∵m﹣n=4,∴n=m﹣4,由题意得:y=(220﹣160﹣m)x+(160﹣120+n)(100﹣x)=(60﹣m)x+(40+n)×100﹣(40+n)x=(24﹣2m)x+100m+3600.∵60≤x≤75,0<m<20,∴当0<m<12时,24﹣2m>0,∴y随x的增大而增大,∴当x=75时,y最大=(24﹣2m)×75+100m+3600=4900,∴m=10,符合题意;当m=12时,y=100×12+3600=4800≠4950,不合题意;当12<m<20时,24﹣2m<0,∴y随x的增大而减小.∴当x=60时,y最大=(24﹣2m)×60+100m+3600=4900,∴m=7,不合题意,舍去.综上,m=10.题型3:利用一次函数解决行程问题【典例3】2023年12月18日,甘肃积石山县发生6.2级地震,全国各地连夜出发实施紧急救援.一辆货车先从甲地出发运送赈灾物资到灾区,稍后一辆轿车从甲地急送医疗团队到灾区,已知甲地与灾区的路程是330km,货车行驶时的速度是60km/h.两车离甲地的路程s(km)与时间t(h)的函数图象如图.(1)求出a的值;(2)求轿车离甲地的路程s(km)与时间t(h)的函数表达式;(3)问轿车比货车早多少时间到达灾区?【答案】(1)1.5h;(2)s=100t﹣150(1.5≤t≤4.8);(3)轿车比货车早1.2h到达灾区.【解答】解:(1)∵货车的速度是60km/h,∴a==1.5(h);(2)由图象可得点(1.5,0),(3,150),设直线的表达式为s=kt+b,把(1.5,0),(3,150)代入得:,解得,∴s=100t﹣150(1.5≤t≤4.8);(3)由图象可得货车走完全程需要+0.5=6(h),∴货车到达乙地需6h,∵s=100t﹣150,s=330,解得t=4.8,∴两车相差时间为6﹣4.8=1.2(h),∴货车还需要1.2h才能到达,即轿车比货车早1.2h到达灾区.【变式3-1】我市莲池区开展了“阳光体育,强身健体”系列活动,小明积极参与,他每周末和哥哥一起练习赛跑.哥哥先让小明跑若干米,哥哥追上小明后,小明的速度降为原来的一半,已知他们所跑的路程y(m)与哥哥跑步的时间x(s)之间的函数图象如图.(1)哥哥的速度是m/s,哥哥让小明先跑了米,小明后来的速度为m/s.(2)哥哥跑几秒时,哥哥追上小明?(3)求哥哥跑几秒时,两人相距10米?【答案】(1)8,14,3;(2)7;(3)2或9.【解答】解:(1)根据图象可知,哥哥的速度是24÷3=8(m/s),哥哥让小明先跑了14m;在哥哥追上小明之前,小明的速度为(32﹣14)÷3=6(m/s),∴在哥哥追上小明之后,小明的速度为6÷2=3(m/s),故答案为:8,14,3.(2)设哥哥跑t秒时,哥哥追上小明.14+6t=8t,解得t=7,∴哥哥跑7秒时,哥哥追上小明.(3)设哥哥所跑的路程y与哥哥跑步的时间x之间的函数关系式为y=kx(k为常数,且k≠0).将x=3,y=24代入y=kx,得3k=24,解得k=8,∴y=8x;小明所跑的路程y与哥哥跑步的时间x之间的函数关系式:当哥哥追上小明时,哥哥所跑的路程为8×7=56(m),∴图象交点坐标为(7,56).当0≤x<7时,设y=k1x+b1(k1、b1为常数,且k1≠0).将x=0,y=14和x=7,y=56代入y=k1x+b1,得,解得,∴y=6x+14(0≤x<7);哥哥出发后8s时,小明跑的总路程为56+(8﹣7)×3=59(m),∴坐标(8,59)对应的点在图象l3上.当x≥7时,设y=k2x+b2(k2、b2为常数,且k2≠0).将x=7,y=56和x=8,y=59代入y=k2x+b2,得,解得,∴y=3x+35(x≥7);综上,y=.两人相距10米时:当0≤x<7时,|6x+14﹣8x|=10,整理得|x﹣7|=5,解得x=2或12(不符合题意,舍去);当x>7时,|3x+35﹣8x|=10,整理得|x﹣7|=2,解得x=5(不符合题意,舍去)或9;∴哥哥跑2秒或910米.【变式3-2】一辆汽车和一辆摩托车分别从A,B两地去同一城市C,它们离A地的路程随时间变化的图象如图所示,已知汽车的速度为60km/h,摩托车比汽车晚1个小时到达城市C.(1)求摩托车到达城市C所用的时间;(2)求摩托车离A地的路程y(km)关于时间x(h)的函数表达式;(3)当x为何值时,摩托车和汽车相距30km.【答案】(1)4小时;(2)y=40x+20;(3)或小时.【解答】解:(1)根据图象信息,得到A到C点的距离为180千米,∵汽车的速度为60km/h,∴汽车到达中点的用时,∵摩托车比汽车晚1个小时到达城市C,∴摩托车到达城市C的时间为4小时.(2)设解析式为y=kx+b,把(0,20),(4,180)分别代入解析式得:,解得,故摩托车离A地的路程y(km)关于时间x(h)的函数表达式为y=40x+20.(3)根据题意,得到汽车的函数解析式为y=60x,根据题意,得:60x﹣(40x+20)=30,解得,40x+20+30=180,x=,故经过或小时,摩托车和汽车相距30km.【变式3-3】已知A,B两港口相距150海里,甲船从A港行驶到B港后,休息一段时间,速度不变,沿原航线返回,同时,乙船从A港出发驶向B港,甲、乙两船离A港的距离s(海里)与甲船行驶时间t(小时)之间的函数关系如图所示,当两船相遇时,两船到A 港的距离为90海里,乙船在行驶过程中,速度不变.(假设甲、乙两船沿同一航线航行)(1)直接写出M点的坐标;(2)分别求线段DM、EF的表达式;(3)甲船行驶多少小时后两船在甲船返航过程中相距30海里?【答案】(1)(13,0);(2)s=﹣30t+390(8≤t≤13),;(3)9.6小时或10.4小时.【解答】解:(1)∵甲船返回时速度不变,∴返回时间为5小时,8+5=13,所以,点M的坐标为(13,0),故答案为:(13,0);(2)由图可知:点D(8,150),设DM所在直线的解析式为:s=kt+b,把点D(8,150),点M(13,0)分别代入解析式,得:,解得,故线段DM的表达式为:s=﹣30t+390(8≤t≤13);甲船的速度=150÷5=30(海里/时),(150﹣90)÷30=2(小时),∴乙船的速度为:90÷2=45(海里/时),∴乙船行驶的时间为:(小时),此时,故点G(10,90),由图可知:点E(8,0),设直线EF的表达式为s=mt+n,把点G(10,90),点E(8,0)分别代入解析式,得:,解得,故线段EF的表达式为:;(3)设甲船行驶x小时后两船相距30海里,①若相遇前相距30海里,则(30+45)×(x﹣8)=150﹣30,解得x=9.6,②若相遇后再相距30海里,则(30+45)×(x﹣8)=150+30,解得x=10.4,所以,甲船行驶9.6小时或10.4小时后,两船相距30海里.【变式3-4】甲、乙两车早上从A城车站出发匀速前往B城车站,在整个行程中,两车离开A城的距离s与时间t的对应关系如图所示.(1)A,B两城之间距离是多少?(2)求甲、乙两车的速度分别是多少?(3)乙车出发多长时间追上甲车?(4)从乙车出发后到甲车到达B城车站这一时间段,在何时间点两车相距40km?【答案】(1)A、B两城之间距离是300千米;(2)甲、乙两车的速度分别是60千米/小时和100千米/小时;(3)乙车出发1.5小时追上甲车;(4)分别在上午6:30,8:30,9:20这三个时间点两车相距40千米.【解答】解:(1)由图象可知A、B两城之间距离是300千米;(2)由图象可知,甲的速度==60(千米/小时),乙的速度==100(千米/小时),∴甲、乙两车的速度分别是60千米/小时和100千米/小时;(3)设乙车出发x小时追上甲车,由题意:60(x+1)=100x,解得:x=1.5,∴乙车出发1.5小时追上甲车;(4)设乙车出发后到甲车到达B城车站这一段时间内,甲车与乙车相距40千米时甲车行驶了m小时,①当甲车在乙车前时,得:60m﹣100(m﹣1)=40,解得:m=1.5,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∵AC=AD,AB⊥CB,
∴BC=BD,
∴△BCH≌△BDF,
∴BF=BH=2,
∴OF=OB=1,
∴DG=OB,
∴△BOE≌△DGE,
∴BE=DE;
(3)如图3,直线BC:y=﹣ x﹣ ,P( ,k)是线段BC上一点,
∴P(﹣ , ),
解答:解:(1)如图1,作CQ⊥x轴,垂足为Q,
∵∠OBA+∠OAB=90°,∠OBA+∠QBC=90°,
∴∠OAB=∠QBC,
又∵AB=BC,∠AOB=∠Q=90°,
∴△ABO≌△BCQ,
∴BQ=AO=2,OQ=BQ+BO=3,CQ=OB=1,
∴C(﹣3,1),
由A(0,2),C(﹣3,1)可知,直线AC:y= x+2;
把D(6,2),E(﹣4,0)代入,得
6m+n=2,﹣4m+n=0,
解得m= ,n= ,
∴直线DE的解析式为y= x+ .
令x=0,得y= ,
∴点N的坐标为(0, ).
故答案为10;(6,2).
点评:本题考查了待定系数法求一次函数的解析式,横纵坐标都为整数的点的坐标的确定方法,轴对称的性质及轴对称﹣最短路线问题,综合性较强,有一定难度.
2.如图直线ℓ:y=kx+6与x轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0)
(1)求k的值.
(2)若P(x,y)是直线ℓ在第二象限内一个动点,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围.
(3)当点P运动到什么位置时,△OPA的面积为9,并说明理由.
考点:一次函数综合题;待定系数法求一次函数解析式;三角形的面积。
专题:动点型。
分析:(1)将B点坐标代入y=kx+6中,可求k的值;
(2)用OA的长,y分别表示△OPA的底和高,用三角形的面积公式求S与x的函数关系式;
(3)将S=9代入(2)的函数关系式,求x、y的值,得出P点位置.
解答:解:(1)将B(﹣8,0)代入y=kx+6中,得﹣8k+6=0,解得k= ;
分析:(1)如图1,作CQ⊥x轴,垂足为Q,利用等腰直角三角形的性质证明△ABO≌△BCQ,根据全等三角形的性质求OQ,CQ的长,确定C点坐标;
(2)同(1)的方法证明△BCH≌△BDF,再根据线段的相等关系证明△BOE≌△DGE,得出结论;
(3)依题意确定P点坐标,可知△BPN中BN变上的高,再由S△PBN= S△BCM,求BN,进而得出ON.
考点:一次函数综合题。
分析:(1)先利用待定系数法求得直线AB的解析式为y=﹣x+6;再分别把x=2、3、4、5代入,求出对应的纵坐标,从而得到图中阴影部分(不包括边界)所含格点的坐标;
(2)首先根据直线AB的解析式可知△OAB是等腰直角三角形,然后根据轴对称的性质即可求出点D的坐标;
(3)作出点C关于直线y轴的对称点E,连接DE交AB于点M,交y轴于点N,则此时△CMN的周长最短.由D、E两点的坐标利用待定系数法求出直线DE的解析式,再根据y轴上点的坐标特征,即可求出点N的坐标.
由y= x+2知M(﹣6,0),
∴BM=5,则S△BCM= .
假设存在点N使直线PN平分△BCM的面积,
则 BN• = × ,
∴BN= ,ON= ,
∵BN<BM,
∴点N在线段BM上,
∴N(﹣ ,0).
点评:本题考查了一次函数的综合运用.关键是根据等腰直角三角形的特殊性证明全等三角形,利用全等三角形的性质求解.
(2,1),(2,2),(2,3),
(3,1),(3,2),
(4,1).
一共10个;
(2)∵直线y=﹣x+6与x轴、y轴交于A、B两点,
∴A点坐标为(6,0),B点坐标为(0,6),
∴OA=OB=6,∠OAB=45°.
∵点C关于直线AB的对称点为D,点C(4,0),
∴AD=AC=2,AB⊥CD,
∴∠DAB=∠CAB=45°,
解答:解:(1)设直线AB的解析式为y=kx+b,
把(1,5),(4,2)代入得,
kx+b=5,4k+b=2,
解得k=﹣1,b=6,
∴直线AB的解析式为y=﹣x+6;
当x=2,y=4;
当x=3,y=3;
当x=4,y=2;
当x=5,y=1.
∴图中阴影部分(不包括边界)所含格点的有:
(1,1),(1,2),(1,3),(1,4),
(2)由(1)得y= x+6,又OA=6,
∴S= ×6×y= x+18,(﹣8<x<0);
(3)当S=9时, x+18=9,解得x=﹣4,
此时y= x+6=3,
∴P(﹣4,3).
点评:本题考查了一次函数的综合运用,待定系数法求一次函数解析式,三角形面积的求法.关键是将面积问题转化为线段的长,点的坐标来表示.
初中数学一次函数压轴题
————————————————————————————————作者:
————————————————————————————————日期:
ﻩ
一次函数压轴题
1.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC
(1)求点C的坐标,并求出直线AC的关系式.
Hale Waihona Puke ∴∠DAC=90°,∴点D的坐标为(6,2);
(3)作出点C关于直线y轴的对称点E,连接DE交AB于点M,交y轴于点N,则NC=NE,点E(﹣4,0).
又∵点C关于直线AB的对称点为D,∴CM=DM,
∴△CMN的周长=CM+MN+NC=DM+MN+NE=DE,此时周长最短.
设直线DE的解析式为y=mx+n.
3.如图①,过点(1,5)和(4,2)两点的直线分别与x轴、y轴交于A、B两点.
(1)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.图中阴影部分(不包括边界)所含格点的个数有10个(请直接写出结果);
(2)设点C(4,0),点C关于直线AB的对称点为D,请直接写出点D的坐标(6,2);
(3)如图②,请在直线AB和y轴上分别找一点M、N使△CMN的周长最短,在图②中作出图形,并求出点N的坐标.
(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.
(3)如图3,在(1)的条件下,直线AC交x轴于M,P( ,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.
考点:一次函数综合题。