期权定价模型介绍

合集下载

金融衍生品定价模型

金融衍生品定价模型

金融衍生品定价模型金融衍生品是一种金融工具,其价值来源于基础资产或指标的变动。

为了准确地定价金融衍生品,金融市场中涌现了各种定价模型。

本文将介绍几种常见的金融衍生品定价模型,并分析其优缺点。

一、期权定价模型期权是一种金融衍生品,它赋予持有者在未来某个时间点以特定价格购买或出售某个资产的权利。

期权定价模型的目标是确定期权的公平价值。

著名的期权定价模型包括布莱克-斯科尔斯模型和它的变种。

布莱克-斯科尔斯模型是一种基于随机漫步理论的期权定价模型。

它假设市场价格的变动是随机的,并且基础资产的价格服从几何布朗运动。

该模型通过假设无风险利率、标的资产价格、期权到期时间、期权执行价格和标的资产价格的波动率等参数,计算出期权的公平价值。

优点:布莱克-斯科尔斯模型简单易懂,计算速度快,适用于欧式期权的定价。

缺点:该模型假设市场价格变动服从几何布朗运动,忽略了市场的非理性行为和波动率的变动性,因此在实际应用中可能存在一定的误差。

二、期货定价模型期货是一种金融衍生品,它是一种标准化合约,约定在未来某个时间点以特定价格交割某个资产。

期货定价模型的目标是确定期货的公平价值。

期货定价模型主要有成本理论模型和无套利模型。

成本理论模型认为期货价格应该等于标的资产的现货价格加上持有期间的成本。

该模型假设市场没有套利机会,即不存在可以从无风险套利中获利的机会。

无套利模型是一种基于无风险套利原理的期货定价模型。

该模型假设市场存在无风险套利机会,即可以通过组合多个金融工具来实现无风险利润。

根据无风险套利原理,期货价格应该等于标的资产的现值加上持有期间的无风险利率。

优点:期货定价模型基于无风险套利原理,能够较准确地确定期货的公平价值。

缺点:成本理论模型假设市场没有套利机会,忽略了市场的非理性行为和交易成本的影响;无套利模型假设市场存在无风险套利机会,但实际市场中很难找到完全无风险的套利机会。

三、利率衍生品定价模型利率衍生品是一种以利率为基础的金融衍生品,如利率互换、利率期权等。

《期权定价模型》课件

《期权定价模型》课件
置比例。
03
投资组合绩效评估
通过期权定价模型计算投资组合 的绩效指标,评估投资组合表现

02
投资组合调整
根据市场走势和投资者需求,调 整投资组合中的期权和其他资产

04
投资组合再平衡
定期或不定期地重新调整投资组 合,以保持其与投资者风险偏好
和投资目标的匹配。
THANKS FOR WATCHING
感谢您的观看
02
期权定价模型简介
几种常见的期权定价模型
Black-Scholes模型
二叉树模型
基于一系列假设条件,通过随机微分方程 来描述期权价格的运动过程,并给出了欧 式期权价格的解析解。
一种离散时间模型,通过模拟标的资产价 格的上升和下降来计算期权价格,适用于 美式期权和欧式期权。
三叉树模型
有限差分模型
市场中不存在可以通过买 卖标的资产和衍生品来获 得无风险利润的策略。
市场中存在足够的标的资 产供买卖,且交易成本为 零。
即投资者可以以一个固定 的无风险利率无限借贷。
即标的资产价格的波动率 在整个期权存续期内保持 不变。
定价模型的适用范围
欧式期权:适用于只能在到期 日行权的期权。
美式期权:适用于在到期日之 前任何时间都可以行权的期权

股票期权、期货期权、利率期 权等:适用于各种类型的金融 衍生品。
长期期权、短期期权:适用于 不同存续期的期权。
03
Black-Scholes模型
模型的基本假设
假设1
股票价格变动符合几何布朗运 动,即股票价格连续变动,并
且其收益率服从正态分布。
假设2
市场无摩擦,即没有交易费用 和税收,所有证券都可以无限 分割。

期权定价模型及其应用

期权定价模型及其应用

期权定价模型及其应用引言期权是金融市场中一种重要的金融衍生品,它给予持有人在未来某个时间点以特定价格购买或出售某个资产的权利。

在期权交易中,合理的定价模型对于投资者和交易者来说至关重要。

本文将介绍期权定价模型的基本原理,并探讨其在金融市场中的应用。

一、期权定价模型的基本原理1. Black-Scholes模型Black-Scholes模型是最著名的期权定价模型之一,它是由费舍尔·布莱克和米伦·斯科尔斯于1973年提出的。

该模型基于一些假设,如市场无摩擦、无风险利率恒定、资产价格服从几何布朗运动等。

通过这些假设,Black-Scholes模型可以计算出欧式期权的理论价格。

2. 布莱克-斯科尔斯-默顿模型布莱克-斯科尔斯-默顿模型是对Black-Scholes模型的改进,它考虑了股票支付的股利和股票价格的波动率。

该模型的应用范围更广,可以用于定价包括股票支付股利的期权。

3. 蒙特卡洛模拟蒙特卡洛模拟是一种基于随机模拟的定价方法,它通过生成大量随机路径来估计期权的价值。

蒙特卡洛模拟可以应用于各种类型的期权,包括美式期权和亚式期权。

二、期权定价模型的应用1. 期权定价期权定价模型可以帮助投资者和交易者确定期权的合理价格。

通过使用合适的定价模型,投资者可以判断期权是否被低估或高估,从而做出相应的投资决策。

例如,当一个看涨期权的市场价格低于其理论价格时,投资者可以考虑购买该期权以获取超额收益。

2. 风险管理期权定价模型在风险管理中起着重要的作用。

通过使用期权定价模型,投资者可以计算出对冲策略,以降低投资组合的风险。

例如,一个投资者持有某个股票,并购买相应的看跌期权作为对冲,当股票价格下跌时,看跌期权的价值上升,从而抵消了股票的损失。

3. 交易策略期权定价模型可以帮助交易者制定有效的交易策略。

通过分析期权的定价,交易者可以发现市场上的套利机会,并进行相应的交易。

例如,当一个看涨期权的市场价格低于其理论价格时,交易者可以同时购买该期权和相应的标的资产,从而获得无风险的套利收益。

期权的定价

期权的定价

期权的定价期权定价是金融学中重要的一部分,它可以帮助投资者确定期权的合理价值,并基于此做出相应的投资决策。

期权定价模型主要有两种,即BSM模型(Black-Scholes-Merton 模型)和二叉树模型。

BSM模型是最早也是最经典的期权定价模型之一。

该模型是由Fisher Black、Myron Scholes 和 Robert C. Merton于1973年提出的。

该模型的核心思想是建立一个无风险投资组合,其和期权组合有相同的收益率。

通过对组合进行数学推导,可以得到期权价格的解析公式。

BSM模型的前提假设包括:市场不存在摩擦成本、资产价格符合几何布朗运动、市场无风险利率恒定、无红利支付、市场不存在套利机会等。

有了这些假设,可以通过标的资产价格、行权价格、剩余期限、无风险利率、标的资产波动率和期权类型等因素来计算期权的市场价值。

与BSM模型不同,二叉树模型采用离散化的方法进行期权定价。

该模型将剩余期限分为若干个时间步长,并在每个时间步长内考虑标的资产价格的上涨和下跌情况。

通过逐步计算,可以得到期权价格的近似值。

二叉树模型的优点在于它可以应用于各种类型的期权,并且容易理解和计算。

无论是BSM模型还是二叉树模型,期权定价都是基于一定的假设和参数。

其中,最关键的参数是标的资产的波动率。

波动率代表了市场对标的资产未来价格变动的预期。

根据波动率的不同,期权的价格也会有所变化。

其他参数如标的资产价格、行权价格、剩余期限和无风险利率等也会对期权定价产生影响。

需要注意的是,期权定价模型只是对期权价格的估计,并不保证期权的实际市场价格与估计值完全相同。

实际市场存在许多因素都会导致期权价格的变动,例如市场情绪、供需关系、经济指标等。

因此,在进行期权交易时,投资者需要结合市场情况和自身风险偏好做出相应的决策。

总之,期权定价是金融学中的重要内容,通过定价模型可以帮助投资者确定期权的合理价格。

BSM模型和二叉树模型是常用的定价方法,但投资者需要注意,这些模型只是对期权价格的估计,实际市场价格可能有所变动。

期权定价模型

期权定价模型

期权定价模型期权定价模型是金融衍生品定价领域的重要模型之一,它通过考虑期权的各项特性,将期权的价值与其相关的标的资产、行权价格、到期时间、波动率、无风险利率等一系列因素联系起来,从而确定期权的公平价格。

在期权定价模型中,常用的模型有布莱克-斯科尔斯模型(Black-Scholes Model)和它的改进模型,如布莱克-斯科尔斯-默顿模型(Black-Scholes-Merton Model)。

这些模型基于一些假设,包括市场无摩擦、无风险利率不变、标的资产价格服从几何布朗运动等。

布莱克-斯科尔斯模型是最早的期权定价模型之一,它将期权价格视为标的资产价格的函数,通过假设标的资产价格服从几何布朗运动,并应用风险中性估计,推导出了一个偏微分方程,即著名的布莱克-斯科尔斯方程。

利用该方程可以计算出欧式看涨/看跌期权的价格。

然而,布莱克-斯科尔斯模型在实际应用中存在一些限制,例如假设市场无摩擦和无风险利率不变的条件,并且假设标的资产价格服从几何布朗运动,这些假设在现实市场中并不总是成立。

因此,为了更准确地定价期权,学者们提出了一系列改进的模型。

其中,布莱克-斯科尔斯-默顿模型是对布莱克-斯科尔斯模型的一个重要改进。

该模型引入了对标的资产价格波动率的估计,通过蒙特卡洛模拟或数值方法,可以计算出更加准确的欧式期权价格。

此外,还有许多其他的改进模型,如跳跃扩散模型、随机波动率模型等,针对不同的市场和期权特性提供了更加精确的定价方法。

总之,期权定价模型是金融衍生品定价领域的重要工具,它通过考虑期权的各项特性和相关因素,计算出期权的公平价格。

布莱克-斯科尔斯模型和其改进模型是常用的期权定价模型,但也存在一些假设和限制。

为了更精确地定价期权,学者们提出了一系列改进模型,以适应不同市场和期权特性的需求。

在期权定价领域,除了布莱克-斯科尔斯模型和其改进模型外,还有许多其他的期权定价模型被广泛应用。

这些模型包括跳跃扩散模型、随机波动率模型、二叉树模型等等,它们分别在不同的金融市场和期权类型中发挥着重要的作用。

期权定价模型

期权定价模型

二、期权价值评估的方法(一)期权估价原理1、复制原理基本思想复制原理的基本思想是:构造一个股票和贷款的适当组合,使得无论股价如何变动投资组合的损益都与期权相同,那么创建该投资组合的成本就是期权的价值。

基本公式每份期权价格(买价)=借钱买若干股股票的投资支出=购买股票支出-借款额计算步骤(1)确定可能的到期日股票价格Su和Sd上行股价Su=股票现价S×上行乘数u下行股价Sd=股票现价S×下行乘数d(2)根据执行价格计算确定到期日期权价值Cu和Cd:股价上行时期权到期日价值Cu=上行股价-执行价格股价下行时期权到期日价值Cd=0(3)计算套期保值率:套期保值比率H=期权价值变化/股价变化=(CU-Cd)/(SU-Sd)(4)计算投资组合的成本(期权价值)=购买股票支出-借款数额购买股票支出=套期保值率×股票现价=H×S0借款数额=价格下行时股票收入的现值=(到期日下行股价×套期保值率)/(1+r)= H×Sd/(1+r)2、风险中性原理基本思想假设投资者对待风险的态度是中性的,所有证券的预期收益率都应当是无风险利率;假设股票不派发红利,股票价格的上升百分比就是股票投资的收益率。

因此:期望报酬率(无风险收益率)=(上行概率×股价上升时股价变动百分比)+(下行概率×股价下降时股价变动百分比)=p×股价上升时股价变动百分比+(1-p)×股价下降时股价变动百分比计算步骤(1)确定可能的到期日股票价格Su和Sd(同复制原理)(2)根据执行价格计算确定到期日期权价值Cu和Cd(同复制原理)(3)计算上行概率和下行概率期望报酬率=(上行概率×股价上升百分比)+(下行概率×股价下降百分比)(4)计算期权价值期权价值=(上行概率×Cu+下行概率×Cd)/(1+r)(二)二叉树期权定价模型1、单期二叉树定价模型基本原理风险中性原理的应用计算公式(1)教材公式期权价格=U=股价上行乘数=1+股价上升百分比d=股价下行乘数=1-股价下降百分比(2)理解公式:(与风险中性原理完全一样)2、两期二叉树模型基本原理把到期时间分成两期,由单期模型向两期模型的扩展,实际上就是单期模型的两次应用。

Black-Scholes期权定价模型和特性

Black-Scholes期权定价模型和特性

Black-Scholes期权定价模型和特性Black-Scholes期权定价模型是一个广泛应用于金融市场的数学模型,它被用来计算欧式期权的价格。

该模型是由美国经济学家费希尔·布莱克(Fischer Black)和莱蒙德·斯科尔斯(Myron Scholes)于1973年开发的,并获得了1997年诺贝尔经济学奖。

Black-Scholes模型基于一些假设,包括市场无摩擦、标的资产价格服从几何布朗运动、无风险利率恒定不变、期权可以无限制地买卖等。

它利用随机微分方程和偏微分方程来描述期权价格的变化以及与标的资产价格和时间的关系。

Black-Scholes模型的公式如下:C = S*N(d1) - X*e^(-r*T)*N(d2)P = X*e^(-r*T)*N(-d2) - S*N(-d1)其中,C代表期权的买入价格,P代表期权的卖出价格,S代表标的资产的当前价格,X代表期权的行权价格,r代表无风险利率,T代表期权的时间,在期权到期日之间的年份,N(d1)和N(d2)代表标准正态分布的累积分布函数。

Black-Scholes模型的特性有以下几点:1. 理论完备性:Black-Scholes模型是一个完备的期权定价模型,可以通过输入特定的参数来计算期权的价格。

它提供了一种可行的方法,用来解决期权定价的问题。

2. 自洽性:Black-Scholes模型是自洽的,意味着如果市场满足了模型的所有假设条件,那么模型计算的期权价格将与实际市场价格一致。

3. 敏感性分析:Black-Scholes模型可以用来分析期权价格对各个因素的敏感性。

通过改变模型中的参数,例如标的资产价格、无风险利率、期权行权价格和时间等,我们可以研究它们如何影响期权的价格。

4. 适用性:Black-Scholes模型广泛适用于欧式期权的定价,包括股票期权、货币期权和商品期权等。

然而,对于美式期权和一些特殊类型的期权,Black-Scholes模型可能不适用。

期权定价的二叉树模型介绍

期权定价的二叉树模型介绍
险利率。
计算期权的价值
计算期权的现值
根据预期收益和折现率,我们可以计算出期权的现值。 看涨期权的现值是每个节点的股票价格与执行价格的差 值与风险中性概率的乘积之和;看跌期权的现值是每个 节点的执行价格与股票价格的差值与风险中性概率的乘 积之和。
校准二叉树模型参数
为了使模型的预测结果与实际期权价格一致,我们需要 校准模型参数。通常,我们使用历史数据来估计参数, 例如股票价格的波动率和无风险利率。
建立二叉树
以时间步长为单位,从最后一个时间步长开始,依 次向前建立二叉树,每个节点代表一个时间步长。
确定初始股票价格
确定股票的当前价格
通常以市场价格为基础确定初始股票价格 。
考虑股息
如果股票在期权有效期内发放股息,需要 在每个时间步长上调整股票价格。
确定无风险利率与时间步长
要点一
确定无风险利率
无风险利率是投资者在相同风险水平下可以获得的最低 回报率。
05
二叉树模型的结果分析
模拟结果展示
假设一个股票价格变动模型,通过二叉树模型模拟股 票价格的涨跌情况,并计算期权的价值。
根据不同的利率和波动率等参数设置,模拟不同的股 票价格路径,从而得到期权价格的模拟结果。
结果分析与比较
将模拟结果与实际期权价格进行比较,分析二叉树模型 定价的准确性。
对比不同参数设置下的模拟结果,分析利率和波动率等 因素对期权价格的影响。
期权定价的二叉树模型介绍
2023-11-06
目 录
• 引言 • 二叉树模型基本原理 • 构建二叉树模型 • 计算期权价值 • 二叉树模型的结果分析 • 二叉树模型在金融实践中的应用 • 结论与展望
01
引言
研究背景与意义

如何评估期权的价值

如何评估期权的价值

如何评估期权的价值期权是一种金融衍生品,它赋予购买者在未来某个特定时间内以特定价格购买或者卖出某一标的资产的权利,而并非义务。

在金融市场中,期权的价值评估对于投资者和交易者来说至关重要。

合理的期权定价模型可以帮助投资者做出明智的决策,并降低投资风险。

本文将详细介绍如何评估期权的价值。

一、期权定价模型期权的价值评估主要使用两种经典的定价模型:Black-Scholes模型和Binomial模型。

1. Black-Scholes模型Black-Scholes模型是最常用的期权定价模型之一,基于以下几个关键因素对期权进行定价:- 标的资产的价格(S):即期权对应的股票、商品或指数的当前价格;- 行权价格(K):即期权买卖方约定的交易价格;- 到期时间(T):即期权有效期限;- 无风险利率(r):市场上的无风险利率,使用国债利率或短期利率作为参考;- 标的资产的波动率(σ):标的资产价格的波动程度。

通过以上因素,Black-Scholes模型可以计算出一个期权理论价格,即市场上合理的期权价格。

2. Binomial模型Binomial模型是另一种常用的期权定价模型,它基于二叉树的计算方法。

该模型通过构建一个期权价格的二叉树,从期权到期时的所有可能价格路径中,使用回溯法计算出期权的价值。

二、评估期权的价值在实际应用中,我们可以使用以下几种方法来评估期权的价值:1. 市价法市价法是最常用的评估期权价值的方法,即根据市场上实际交易的期权价格来确定期权的价值。

这种方法可以反映市场对该期权的整体认知和供需状况,并具有一定的市场有效性。

2. 基于历史波动率的模型在Black-Scholes模型中,波动率是期权定价的一个重要参数。

我们可以根据过去的历史波动率来估计未来的波动率,然后将其代入到Black-Scholes模型中进行计算。

这种方法适用于市场波动率相对稳定的情况下。

3. 基于隐含波动率的模型隐含波动率是指使市场观察到的期权价格与Black-Scholes模型计算得出的价格相匹配的波动率。

期权投资中的期权定价模型与风险中性估值

期权投资中的期权定价模型与风险中性估值

期权投资中的期权定价模型与风险中性估值期权是金融衍生品中重要的一种工具,它赋予持有者在未来某个时间以约定价格买入或卖出标的资产的权利。

为了准确定价期权合约并评估其风险,金融学家们提出了多种期权定价模型和风险中性估值方法。

1. 期权定价模型期权定价模型是对期权市场价值进行估计的数学模型。

其中最为经典的模型是BSM期权定价模型(Black-Scholes-Merton Model)。

BSM模型基于以下假设:- 市场具有无风险利率,期权交易无限制,并且期权的期限内无股息支付;- 资产价格连续且遵循几何布朗运动(Geometric Brownian Motion);- 市场无摩擦,投资者可以实施无限制的买卖交易。

根据BSM模型,最基本的欧式看涨期权(Call Option)定价公式为:C = S0 * N(d1) - X * exp(-r * T) * N(d2)其中,- C为期权的价格;- S0为标的资产的当前价格;- N为标准正态分布函数;- d1和d2的计算公式为:d1 = (ln(S0 / X) + (r + σ^2 / 2) * T) / (σ * s qrt(T))d2 = d1 - σ * sqrt(T)- X为期权的行权价格;- r为连续复利无风险利率;- σ为标的资产的波动率;- T为期权的剩余到期时间。

BSM模型为分析和定价欧式期权提供了理论基础,但在实际应用中,由于市场的不完美性和各种假设条件的不成立,通常需要结合其他模型和修正来增加其定价的准确性。

2. 风险中性估值风险中性估值是一种基于风险中性假设的期权定价方法。

风险中性假设认为市场参与者在无风险收益率下对所持有的所有风险资产的期望收益为相同的值。

基于风险中性估值,可以通过消除风险,把期权定价问题转化为无套利机会的定价问题。

在风险中性估值框架下,可以运用风险中性概率来计算期权价值。

对于欧式期权而言,其价格通过期权价值与风险中性概率的乘积来计算。

布莱克-舒尔斯期权定价模型

布莱克-舒尔斯期权定价模型

布莱克-舒尔斯期权定价模型布莱克-舒尔斯期权定价模型是一种用于计算欧式期权的理论定价模型。

该模型于1973年由费舍尔·布莱克和麦伦·舒尔斯提出,并且在同年被罗伯特·默顿-米勒进一步完善和发展。

布莱克-舒尔斯期权定价模型的基本原理是通过建立股票和债券的投资组合,获得一个无风险的合成证券,该合成证券与欧式期权具有相同的收益率。

该模型的关键假设包括资产价格满足几何布朗运动、市场无摩擦、无交易成本和无道德风险等。

根据这些假设,布莱克-舒尔斯期权定价模型的基本公式可以表示为:C = S*N(d1) - X*e^(-rt)*N(d2),其中C表示期权的价格,S是标的资产(如股票)的当前价格,X是期权的行权价格,r是无风险利率,t是期权的剩余期限,e是自然常数(约等于2.71828),N(d1)和N(d2)分别表示标准正态分布的累积分布函数。

在该公式中,d1=(ln(S/X) + (r+σ^2/2)t) / (σ*√t),d2=d1-σ*√t。

其中σ是标的资产的波动率,它衡量标的资产的波动程度。

布莱克-舒尔斯期权定价模型的优点是可以较为准确地计算欧式期权的理论定价,并且可以用于不同类型的期权,如看涨期权、看跌期权等。

它在金融市场中得到了广泛的应用,并为投资者和金融机构提供了重要的参考依据。

然而,布莱克-舒尔斯期权定价模型也存在一些限制。

首先,该模型基于一系列假设,不一定适用于所有市场和资产。

其次,该模型仅适用于欧式期权,而不适用于美式期权等其他类型的期权。

最后,该模型假设市场无摩擦和无道德风险,这在实际市场中并不总是成立。

综上所述,布莱克-舒尔斯期权定价模型为计算欧式期权的理论价格提供了一个重要的工具,但在实际应用中需要对假设进行谨慎评估,并结合其他方法进行综合分析和决策。

布莱克-舒尔斯期权定价模型是金融领域中非常重要且广泛应用的一种定价模型。

它的提出对于金融市场的发展和期权的交易产生了巨大的影响。

期权定价模型介绍

期权定价模型介绍

期权定价模型介绍期权是指其中一方在合约规定的时间内,以合约规定的价格购买(或出售)一定数量的标的资产的权利。

期权作为一种金融衍生品,其价格可以由期权定价模型来确定。

期权定价模型的目标是为了找出一个公平的价格,使买方和卖方在交易中没有不利的地位。

最早的期权定价模型是1973年由Black、Scholes和Merton提出的Black-Scholes-Merton模型(BSM模型)。

该模型假设市场中不存在无风险套利的机会,并且标的资产的价格满足几何布朗运动。

BSM模型使用了随机微分方程与偏微分方程的方法,利用股票价格、期权执行价格、无风险利率、标的资产波动率以及到期时间等变量来计算期权的价格。

BSM模型的基本原理是将期权的价值分解为两个部分:delta和vega。

Delta表明期权价格对标的资产价格的变动的敏感度,而vega则表明期权价格对波动率的变动的敏感度。

BSM模型通过动态对冲策略来调整delta的大小,并通过对冲操作来避免无风险套利的机会。

BSM模型的假设条件是非常严格的,因此它并不适用于所有的情况。

后续的研究对BSM模型进行了改进和扩展,提出了多种不同的期权定价模型。

其中比较有代表性的是二叉树模型、蒙特卡洛模型和波动率曲面模型等。

二叉树模型使用一个二叉树来模拟标的资产价格的随机过程。

从根节点开始,每一步向上或向下移动,直到到达期权到期日。

通过计算每一步的价格和概率,可以得到到期时期权的价值。

二叉树模型相对于BSM模型的优势是更加灵活,可以处理更加复杂的市场情况。

蒙特卡洛模型通过模拟大量的随机路径来估计期权的价格。

在每一个时间步骤上,生成一个随机数,根据随机数和标的资产价格的变动方程计算出未来的价格。

重复这一过程,最终可以得到到期时期权的价值的分布。

蒙特卡洛模型的优势是可以处理更加复杂的市场情况,但计算量较大。

波动率曲面模型使用波动率曲面来刻画标的资产价格波动率与期限之间的关系。

该模型认为波动率并不是恒定的,而是根据期限的不同而变化的。

布莱克-斯科尔斯期权定价模型

布莱克-斯科尔斯期权定价模型
欧式看涨期权的下限:c S D XerT 欧式看跌期权的下限:p D XerT S
其中:D表示期权有效期内红利的现值
Sichuan University
一、期权
注: 1、提前执行不付红利美式看涨期权是不明智的。 2、不付红利的美式看跌期权可能提前执行。 3、在红利的影响下,美式看涨期权可能提前执行。
那么,则有: 在第6个月末,该头寸将服从正态分布,均值为60,标准差 为:30√0.5=21.21的正态分布; 在第1年末,该头寸将服从正态分布,均值为70,标准差为 30。
分析:随机变量值在பைடு நூலகம்来某一确定时刻的不确定性(用标准 差来表示)是随着时间长度的平方根增加而增加的。
Sichuan University
3、股价过程是马尔科夫过程等于股票市场的弱有效性。
Sichuan University
二、随机过程
➢(二)标准布朗运动或维纳过程: 变量z是一个随机变量,设一个小的时间间隔长度为Δt,
定义Δz为在Δt时间内z的变化。要使z遵循维纳过程,Δz必须 满足两个基本性质:
性质1:Δz与Δt的关系满足方程式:
2、Put Option: Gives owner the right to sell an asset for a given price on or before the expiration date.
3、 European Option:Gives owner the right to exercise the option only on the expiration date.
所以有: XerT p 。
如果不存在这一关系,则套利者出售期权并将所得收入以 无风险利率进行投资,可以轻易获得无风险收益。

期权定价理论

期权定价理论

期权定价理论期权定价理论是衡量期权合约价格的数学模型。

它基于一系列假设和推导出的公式,通过评估期权的相关因素来确定其合理的市场价格。

这些因素包括标的资产价格、期权执行价格、期限、波动率以及无风险利率等。

期权的定价理论中最著名的模型是布莱克-斯科尔斯模型(Black-Scholes Model)。

该模型基于以下假设:市场无摩擦,即不存在交易费用和税收;标的资产价格服从连续时间的几何布朗运动;期权可以在任意时间点以市场价格进行买卖。

布莱克-斯科尔斯模型通过以下公式计算欧式期权的价格:C = S0 * N(d1) - X * e^(-r * T) * N(d2)其中,C是期权的市场价格,S0是标的资产的当前价格,N()是标准正态分布函数,d1和d2分别是两个维度上的标准正态分布变量,X是期权的行权价格,r是无风险利率,T是期权剩余时间。

布莱克-斯科尔斯模型的原理是通过构建组合,使得期权价格与标的资产价格的变动相对冲,从而消除风险。

通过调整组合中的权重,可以确定合理的期权价格。

这一模型在市场上得到广泛应用,被视为期权定价的标准模型之一。

除了布莱克-斯科尔斯模型外,还有其他一些期权定价模型,如考虑股息的期权定价模型、跳跃扩散模型等。

这些模型在不同情况下,可以更准确地预测期权价格。

需要注意的是,期权定价理论是基于一系列假设和前提条件建立的。

市场实际情况中可能存在不符合这些假设的情况,因此实际期权价格可能与模型计算结果存在一定的差异。

此外,期权定价也受到市场供求关系、交易量以及市场情绪等因素的影响。

总之,期权定价理论是一种基于数学模型的方法,用于评估期权合约的合理价格。

布莱克-斯科尔斯模型是最著名的期权定价模型之一,通过构建相对冲抗风险的组合来确定期权价格。

然而,需要注意实际市场中的差异和其他影响因素。

期权定价理论是金融衍生品定价的核心理论之一,它对金融市场的有效运行和风险管理起着重要作用。

期权是一种约定,赋予期权持有人在未来某个特定时间以特定价格买入或卖出某个标的资产的权利,而不是义务。

布莱克 斯科尔斯期权定价模型

布莱克 斯科尔斯期权定价模型
布莱克 斯科尔斯期权定价模型
经济领域术语
01 发展历程
03 定价方法
目录
0--由布莱克与斯科尔斯在20世纪70年代提出。该模型认为,只有股价的当前值与未 来的预测有关;变量过去的历史与演变方式与未来的预测不相关。模型表明,期权价格的决定非常复杂,合约期 限、股票现价、无风险资产的利率水平以及交割价格等都会影响期权价格。
理论前驱
理论前驱
1、巴施里耶(Bachelier,1900) 巴施里耶2、斯普伦克莱(Sprenkle,1961) 3、博内斯(Boness,1964) 4、萨缪尔森(Samuelson,1965)
定价方法
定价方法
(1)Black—Scholes公式 (2)二项式定价方法 (3)风险中性定价方法 (4)鞅定价方法等
主要模型
B-S模型
二项式模型
B-S模型
期权定价模型基于对冲证券组合的思想。投资者可建立期权与其标的股票的组合来保证确定报酬。在均衡时, 此确定报酬必须得到无风险利率。期权的这一定价思想与无套利定价的思想是一致的。所谓无套利定价就是说任 何零投入的投资只能得到零回报,任何非零投入的投资,只能得到与该项投资的风险所对应的平均回报,而不能 获得超额回报(超过与风险相当的报酬的利润)。从Black-Scholes期权定价模型的推导中,不难看出期权定价 本质上就是无套利定价。
谢谢观看
假设条件 1、标的资产价格服从对数正态分布; 2、在期权有效期内,无风险利率和金融资产收益变量是恒定的; 3、市场无摩擦,即不存在税收和交易成本; 4、金融资产在期权有效期内无红利及其它所得(该假设后被放弃); 5、该期权是欧式期权,即在期权到期前不可实施。
二项式模型
二项式模型的假设主要有: 1、不支付股票红利。 2、交易成本与税收为零。 3、投资者可以以无风险利率拆入或拆出资金。 4、市场无风险利率为常数。 5、股票的波动率为常数。 假设在任何一个给定时间,金融资产的价格以事先规定的比例上升或下降。如果资产价格在时间t的价格为S, 它可能在时间t+△t上升至uS或下降至dS。假定对应资产价格上升至uS,期权价格也上升至Cu,如果对应资产价 格下降至dS,期权价格也降至Cd。当金融资产只可能达到这两种价格时,这一顺序称为二项程序。

期权定价模型

期权定价模型

期权定价模型期权定价模型是金融学中一种重要的定价工具,用于估计期权的合理价值。

期权是金融衍生品的一种,它为买方提供了在未来某个时间以特定价格购买或出售标的资产的权利,而无需承担义务。

期权定价模型的主要目的是通过考虑不同的因素,如标的资产价格、行权价格、到期时间、无风险利率、波动率等,来计算期权的合理价格。

传统上,期权定价模型主要分为两类:基于风险中性定价(Risk-neutral pricing)的模型和基于实物资产价格和风险度量的模型。

其中,最著名的模型包括布莱克-斯科尔斯(Black-Scholes)期权定价模型和它的变体。

布莱克-斯科尔斯期权定价模型是由费希尔·布莱克、默顿·米勒和罗伯特·斯科尔斯于20世纪70年代提出的。

该模型基于以下几个假设:1)市场是完全的,不存在交易费用和税收;2)资产的价格满足几何布朗运动;3)没有风险套利机会;4)无风险利率和波动率是已知且恒定的。

根据布莱克-斯科尔斯模型,期权的定价公式如下:C = S(t)e^(-qt)N(d1) - Xe^(-rt)N(d2)P = Xe^(-rt)N(-d2) - S(t)e^(-qt)N(-d1)其中,C表示买方购买的看涨期权的价格,P表示买方购买的看跌期权的价格,S(t)为资产在当前时间的价格,X为行权价格,r为无风险利率,t为到期时间,q为股息率,N(d1)和N(d2)为标准正态分布的累积分布函数,d1和d2的计算公式如下:d1 = (ln(S(t)/X) + (r - q + σ^2/2)t) / (σsqrt(t))d2 = d1 - σsqrt(t)其中,σ为资产的波动率。

布莱克-斯科尔斯模型的优点是计算简单,结果直观易懂。

然而,该模型的假设有时不符合实际情况,特别是在市场不完全时。

因此,研究人员开发了各种变体模型,以修正或扩展布莱克-斯科尔斯模型的假设。

此外,还有其他的期权定价模型,如二叉树模型、蒙特卡洛模拟、期权隐含波动率等。

布莱克斯克尔斯期权定价模型

布莱克斯克尔斯期权定价模型

布莱克斯克尔斯期权定价模型汇报人:日期:目录CATALOGUE•引言•布莱克斯克尔斯模型原理•模型应用•模型优势与局限•布莱克斯克尔斯模型与其他模型的比较•未来展望与研究方向01 CATALOGUE引言1背景介绍23布莱克斯克尔斯模型起源于1973年,由费雪·布莱克斯克尔斯(Fischer Black)和迈伦·斯科尔斯(Myron Scholes)提出。

当时,该模型是为了解决金融衍生品,特别是期权定价的问题而建立的。

金融衍生品是一种金融合约,其价值取决于其他金融资产或指标。

模型发展历程布莱克斯克尔斯模型的发展得益于许多重要的突破,其中包括无套利原则:模型利用无套利原则,这意味着在市场上不能通过买卖资产来赚取无风险利润。

欧式期权定价:该模型适用于欧式期权,即只能在到期日行使的期权。

随机过程:模型运用随机过程来描述股票价格的变化。

模型应用领域布莱克斯克尔斯模型被广泛应用于金融衍生品市场,包括期权:该模型用于定价欧式和美式期权。

互换:该模型用于定价利率互换和其他类型的互换合约。

其他衍生品:该模型还可用于定价其他金融衍生品,如期货、认股权证等。

02CATALOGUE布莱克斯克尔斯模型原理基础概念布莱克斯克尔斯模型是一种用于定价欧式期权的数学模型,该模型基于随机过程,并使用偏微分方程来描述。

在该模型中,期权价格被表示为时间t和股票价格S的函数,用C(t,S)表示。

股票价格服从几何布朗运动,即dS = μSdt + σSdwt,其中μ是股票的预期收益率,σ是股票的波动率,wt是威纳过程。

布莱克斯克尔斯模型的期权定价公式为:C(t, S) = SN(d1) - Ke^(-r)(T-t)N(d2),其中N是正态分布函数,d1和d2是由模型参数确定的公式。

d2 = d1 - σ√(T - t)K 是期权的执行价格,r 是无风险利率,T 是到期时间,t 是当前时间,σ是股票的波动率。

d1 = (ln(S/K) + (r + 0.5σ^2)(T - t)) / (σ√(T - t))期权定价公式参数确定方法参数σ(波动率)通常由历史数据估计得出,也可以使用市场波动率作为其近似值。

期权定价模型介绍

期权定价模型介绍

C uuM AX[0,u2SK]
Cu
C
C duM A X [0 ,udSK ]
Cd
C ddM A X[0,d2SK ]
图19.4 期权收益的二叉树图
假设有一个投资组合包含了 份股票和价值为B的无风险债券,那
么在期末,这个组合的价值会变成(r为无风险利率),
S B
uSrB
以概率q
dSrB 以概率1-q
以此类推
u 2S
uS
S
udS
dS
d 2S
图19.3 资产价格的二叉树图
下面来分析一下以上述资产为标的物的期权的二叉树情况。
在0时刻,期权价格为C;时间为 t 时,期权价格有两种可
能:Cu和Cd ;时间为 2 t 时,期权价格有三种可能
Cuu,Cdu和Cdd。以此类推,图19.4中给出了期权价格的完整树 图。在时刻 i t ,期权价格有i+1种可能:
Black-Scholes期权定价模型的一个重要假设是资产价格遵循对 数正态分布,即 F(S,t)ln S(t)。将该式与(19.9)式同时代入 (19.10)式,有
d lS n (t) ( 1 2 2 )d td(tB )
从而有 Rt lnS((St( t)1))Zt
其中 122,R t 为资产在t期的收益率,Zt B(t)B(t1)i~idN(0,1)
二叉树期权定价模型
衍生证券的有效期可分为n段时间间隔t,假设在每一个时间段 内资产价格从开始的S运动到两个新值uS和dS中的一个。其中 u>1,d<1,设价格上升的概率是p,下降的概率则为1-p。在0时
刻,股票价格为S;时间为 t 时,股票价格有两种可能:uS和 dS;时间为 2 t 时,股票价格有三种可能:u2S,udS和d2S ,

期权定价模型

期权定价模型

期权定价模型期权定价模型是用于计算期权价格的数学模型。

它的目的是通过考虑不同的因素和变量来估计期权价格,以便投资者可以在进行期权交易时做出明智的决策。

期权是一种金融工具,给予购买者在特定期限内以约定价格购买或出售某种资产的权利。

期权分为两种类型:看涨期权和看跌期权。

看涨期权授予购买者在未来某个时间点以约定价格购买资产的权利,而看跌期权则授予购买者在未来某个时间点以约定价格出售资产的权利。

期权定价模型最为被广泛接受和使用的是布莱克-斯科尔斯期权定价模型(Black-Scholes Option Pricing Model)。

该模型于1973年由弗ィ舍尔·布莱克和迈伦·斯科尔斯开发。

这个模型基于了以下假设:市场是完全有效的,不存在无风险套利机会,资产价格服从几何布朗运动等。

布莱克-斯科尔斯期权定价模型利用了几个变量来计算期权价格,包括资产价格、行权价格、无风险利率、到期日和资产价格的波动率。

这些变量被组合成一个数学方程,可以通过计算得出期权的理论价格。

除了布莱克-斯科尔斯模型,还有其他的期权定价模型,如考虑了股利支付的扩展布莱克-斯科尔斯模型(Extended Black-Scholes Model)、考虑了远期价格的黑-92模型(Black-92 Model)、实践中广泛使用的哥莫兹模型(Geske Model)等等。

这些模型的应用范围涵盖了各种期权交易策略,包括常见的看涨看跌期权交易、套利交易策略等。

然而,期权定价模型并不是完美的,它们基于了一系列的假设和简化,因此并不能完全准确地预测期权价格。

此外,市场条件的变化和实际操作中的问题也可能导致期权定价与实际价格之间存在差距。

因此,投资者在使用期权定价模型计算期权价格时,应考虑到这些局限性并结合其他因素做出决策。

综上所述,期权定价模型是计算期权价格的数学模型。

它的应用范围广泛,并且可以帮助投资者做出明智的决策。

然而,使用期权定价模型时需要考虑到模型的假设和简化,同时结合其他因素进行综合分析。

《2024年期权定价方法综述》范文

《2024年期权定价方法综述》范文

《期权定价方法综述》篇一一、引言期权定价是金融领域中一个重要的研究课题,它涉及到金融工程、投资策略和风险管理等多个方面。

随着金融市场的不断发展和复杂化,期权定价方法也在不断地演进和改进。

本文将对现有的期权定价方法进行综述,分析各种方法的优缺点及适用范围。

二、经典期权定价模型1. 黑-舒尔斯(Black-Scholes)模型黑-舒尔斯模型是最为广泛应用的期权定价模型之一。

该模型基于无套利原则,假设标的资产价格服从几何布朗运动,并考虑了标的资产价格、执行价格、无风险利率、到期时间以及波动率等因素。

黑-舒尔斯模型为欧式期权提供了明确的定价公式,但在实际运用中仍需根据具体情况对模型参数进行校准和调整。

优点:模型简单明了,为期权定价提供了明确的公式;考虑了多种影响期权价格的因素。

缺点:假设条件较为严格,如标的资产价格服从几何布朗运动等;对模型参数的校准和调整较为复杂。

2. 二叉树模型二叉树模型是一种离散时间的期权定价方法。

该方法通过构建一个二叉树状的价格路径图来模拟标的资产价格的可能变化,并根据这些路径计算期权的预期收益。

优点:模型较为灵活,可以灵活地调整参数以适应不同的市场环境;容易理解和实现。

缺点:对于复杂的期权和长期期权,二叉树模型的计算量较大;对短期期权的定价可能不够准确。

三、现代期权定价方法1. 局部波动率模型局部波动率模型考虑了标的资产的局部波动性,即在不同时间点上标的资产价格的波动率可能不同。

该模型通过引入局部波动率参数来描述这种波动性的变化。

优点:能够更好地反映标的资产的波动性变化;对隐含波动率的估计更为准确。

缺点:模型参数的估计较为复杂;对于非标准期权的定价仍需进一步研究。

2. 随机森林等机器学习方法在期权定价中的应用随着机器学习技术的发展,随机森林等算法也被应用于期权定价领域。

这些方法通过训练大量的历史数据来预测未来标的资产价格的变化,从而为期权定价提供依据。

优点:能够充分利用历史数据提供的信息;对非线性关系的描述更为准确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章 期权定价模型【学习目标】本章是期权部分的重点内容之一。

本章主要介绍了著名的Black-Scholes 期权定价模型和由J. Cox 、S. Ross 和M. Rubinstein 三人提出的二叉树模型,并对其经济理解和应用进行了进一步的讲解。

学习完本章,读者应能掌握Black-Scholes 期权定价公式及其基本运用,掌握运用二叉树模型为期权进行定价的基本方法。

自从期权交易产生以来,尤其是股票期权交易产生以来,学者们即一直致力于对期权定价问题的探讨。

1973年,美国芝加哥大学教授 Fischer Black 和Myron Scholes 发表《期权定价与公司负债》1一文,提出了著名的Black-Scholes 期权定价模型,在学术界和实务界引起强烈的反响,Scholes 并由此获得1997年的诺贝尔经济学奖。

在他们之后,其他各种期权定价模型也纷纷被提出,其中最著名的是1979年由J. Cox 、S. Ross 和M. Rubinstein 三人提出的二叉树模型。

在本章中,我们将介绍以上这两个期权定价模型,并对其进行相应的分析和探讨2。

第一节 Black-Scholes 期权定价模型一、Black-Scholes 期权定价模型的假设条件Black-Scholes 期权定价模型的七个假设条件如下:1. 期权标的资产为一风险资产(Black-Scholes 期权定价模型中为股票),当前时刻市场价格为S 。

S 遵循几何布朗运动3,即dz dt SdS σμ+= 其中,dS 为股票价格瞬时变化值,dt 为极短瞬间的时间变化值,dz 为均值为零,方差为dt 的无穷小的随机变化值(dt dz ε=,称为标准布朗运动,ε代表从标准正态分布(即均值为0、标准差为1.0的正态分布)中取的一个随机值),μ为股票价格在单位时间内的期望收益率(以连续复利表示),σ则是股票价格的波动率,即证券收益率在单位时间内的标准差。

μ和σ都是已知的。

简单地分析几何布朗运动,意味着股票价格在短时期内的变动(即收益)来源于两个方面:一是单位时间内已知的一个收益率变化μ,被称为漂移率,可以被看成一个总体的变化趋势;二是随机波动项,即dz σ,可以看作随机波动使得股票价格变动偏离总体趋势的部分。

2.在期权有效期内,标的资产没有现金收益支付。

综合1和2,意味着标的资产价格的变动是连续而均匀的,不存在突然的跳跃。

1 Black, F., and Scholes (1973) “The Pricing of Options and Corporate Liabilities ”, Journal of Political Economy , 81( May-June), p. 637-6592 从本书难度的设定出发,本章只介绍期权定价模型的基本内容及其理解,而不具体推导模型,更深入的内容可参见郑振龙. 金融工程. 北京: 高等教育出版社, 2003. 第六章3 有关股票价格及其衍生证券所遵循的随机过程的详细信息,可参见郑振龙. 金融工程. 北京: 高等教育出版社, 2003. 115页-121页3. 没有交易费用和税收,不考虑保证金问题,即不存在影响收益的任何外部因素。

综合2和3,意味着投资者的收益仅来源于价格的变动,而没有其他影响因素。

4. 该标的资产可以被自由地买卖,即允许卖空,且所有证券都是完全可分的。

5. 在期权有效期内,无风险利率r 为常数,投资者可以此利率无限制地进行借贷。

6.期权为欧式看涨期权,其执行价格为X ,当前时刻为t ,到期时刻为T 。

7.不存在无风险套利机会。

二、Black-Scholes 期权定价模型(一)Black-Scholes 期权定价公式在上述假设条件的基础上,Black 和Scholes 得到了如下适用于无收益资产欧式看涨期权的一个微分方程:rf Sf S S f rS t f =∂∂+∂∂+∂∂222221σ (11.1) 其中f 为期权价格,其他参数符号的意义同前。

通过解这个微分方程,Black 和Scholes 得到了如下适用于无收益资产欧式看涨期权的定价公式:)()(2)(1d N Xe d SN c t T r ---= (11.2)其中,t T d tT t T r X S d t T t T r X S d --=---+=--++=σσσσσ12221))(2/()/ln())(2/()/ln(c 为无收益资产欧式看涨期权价格;N (x )为标准正态分布变量的累计概率分布函数(即这个变量小于x 的概率),根据标准正态分布函数特性,我们有)(1)(x N x N -=-。

(二)Black-Scholes 期权定价公式的理解1.期权价格的影响因素首先,让我们将Black-Scholes 期权定价公式与第十章中分析的期权价格的影响因素联系起来。

在第十章中,我们已经得知期权价格的影响因素包括:标的资产市场价格、执行价格、波动率、无风险利率、到期时间和现金收益。

在式(11.2)中,除了由于我们假设标的资产无现金收益之外,其他几个参数都包括在内,且影响方向与前文分析的一致。

2.风险中性定价原理其次我们要谈到一个对于衍生产品定价非常重要的原理:风险中性定价原理。

观察式(11.2),以及第十章中的期权价格影响因素分析,我们可以注意到期权价格是与标的资产的预期收益率无关的。

即在第一节我们描述标的资产价格所遵循的几何布朗运动时曾经出现过的预期收益率μ在期权定价公式中消失了。

这对于寻求期权定价的人们来说无疑是一个很大的好消息。

因为迄今为止,人们仍然没有找到计算证券预期收益率的确定方法。

期权价格与μ的无关性,显然大大降低了期权定价的难度和不确定性。

进一步考虑,受制于主观风险收益偏好的标的证券预期收益率μ并未包括在期权的价值决定公式中,公式中出现的变量为标的证券当前市价(S )、执行价格(X )、时间(t )、证券价格的波动率(σ)和无风险利率r ,它们全都是客观变量,独立于主观变量——风险收益偏好。

既然主观风险偏好对期权价格没有影响,这使得我们可以利用Black-Scholes 期权定价模型所揭示的期权价格的这一特性,作出一个可以大大简化我们工作的简单假设:在对衍生证券定价时,所有投资者都是风险中性的。

在所有投资者都是风险中性的条件下(有时我们称之为进入了一个“风险中性世界”),所有证券的预期收益率都可以等于无风险利率r ,这是因为风险中性的投资者并不需要额外的收益来吸引他们承担风险。

同样,在风险中性条件下,所有现金流量都可以通过无风险利率进行贴现求得现值。

这就是风险中性定价原理。

应该注意的是,风险中性假定仅仅是一个人为假定,但通过这种假定所获得的结论不仅适用于投资者风险中性情况,也适用于投资者厌恶风险的所有情况。

为了更好地理解风险中性定价原理,我们可以举一个简单的例子来说明。

假设一种不支付红利股票目前的市价为10元,我们知道在3个月后,该股票价格要么是11元,要么是9元。

现在我们要找出一份3个月期协议价格为10.5元的该股票欧式看涨期权的价值。

由于欧式期权不会提前执行,其价值取决于3个月后股票的市价。

若3个月后该股票价格等于11元,则该期权价值为0.5元;若3个月后该股票价格等于9元,则该期权价值为0。

为了找出该期权的价值,我们可构建一个由一单位看涨期权空头和∆单位的标的股票多头组成的组合。

若3个月后该股票价格等于11元时,该组合价值等于(11∆-0.5)元;若3个月后该股票价格等于9元时,该组合价值等于9∆元。

为了使该组合价值处于无风险状态,我们应选择适当的∆值,使3个月后该组合的价值不变,这意味着:11∆-0.5=9∆∆=0.25因此,一个无风险组合应包括一份看涨期权空头和0.25股标的股票。

无论3个月后股票价格等于11元还是9元,该组合价值都将等于2.25元。

在没有套利机会情况下,无风险组合只能获得无风险利率。

假设现在的无风险年利率等于10%,则该组合的现值应为:元19.225.225.01.0=⨯-e由于该组合中有一单位看涨期权空头和0.25单位股票多头,而目前股票市场为10元,因此:元31.019.225.010==-⨯f f这就是说,该看涨期权的价值应为0.31元,否则就会存在无风险套利机会。

从该例子可以看出,在确定期权价值时,我们并不需要知道股票价格上涨到11元的概率和下降到9元的概率。

但这并不意味着概率可以随心所欲地给定。

事实上,只要股票的预期收益率给定,股票上升和下降的概率也就确定了。

例如,在风险中性世界中,无风险利率为10%,则股票上升的概率P 可以通过下式来求:0.10.2510[119(1)]e P P -⨯=⨯+-P=62.66%。

又如,如果在现实世界中股票的预期收益率为15%,则股票的上升概率可以通过下式来求:0.150.2510[119(1)]e P P -⨯=⨯+-P=69.11%。

可见,投资者厌恶风险程度决定了股票的预期收益率,而股票的预期收益率决定了股票升跌的概率。

然而,无论投资者厌恶风险程度如何,从而无论该股票上升或下降的概率如何,该期权的价值都等于0.31元。

3. 对期权定价公式的经济理解。

首先,从Black-Scholes 期权定价模型自身的求解过程来看1,N(d 2)实际上是在风险中性世界中S T 大于X 的概率,或者说是欧式看涨期权被执行的概率,因此,e -r(T-t)XN(d 2)是X 的风险中性期望值的现值,更朴素地说,可以看成期权可能带来的收入现值。

SN(d 1)= e -r(T-t)S T N(d 1)是S T 的风险中性期望值的现值,可以看成期权持有者将来可能支付的价格的现值。

因此整个欧式看涨期权公式就可以被看作期权未来期望回报的现值。

其次,1)df N d dS∆==(,显然反映了标的资产变动一个很小的单位时,期权价格的变化量;或者说,如果要避免标的资产价格变化给期权价格带来的影响,一个单位的看涨期权多头,就需要∆单位的标的资产空头加以保值。

事实上,我们在第十二章中将看到,1)Nd ∆=(是复制交易策略中股票的数量,SN (d 1)就是股票的市值, -e -r(T-t)XN(d 2)则是复制交易策略中负债的价值。

最后,从金融工程的角度来看,欧式看涨期权可以分拆成资产或无价值看涨期权(Asset-or-noting call option )多头和现金或无价值看涨期权(cash-or-nothing option )空头,SN(d 1)是资产或无价值看涨期权的价值,-e -r(T-t)XN(d 2)是X 份现金或无价值看涨期权空头的价值。

这是因为,对于一个资产或无价值看涨期权来说,如果标的资产价格在到期时低于执行价格,该期权没有价值;如果高于执行价格,则该期权支付一个等于资产价格本身的金额,根据前文对N(d 2)和SN(d 1)的分析,可以得出该期权的价值为e -r(T-t)S T N(d 1)= SN(d 1)的结论;同样,对于(标准)现金或无价值看涨期权,如果标的资产价格在到期时低于执行价格,该期权没有价值;如果高于执行价格,则该期权支付1元, 由于期权到期时价格超过执行价格的概率为N(d 2),则1份现金或无价值看涨期权的现值为-e -r(T-t) N(d 2)。

相关文档
最新文档