碳纤维历史

合集下载

防静电碳纤维发展历程(精)

防静电碳纤维发展历程(精)

防静电碳纤维发展历程有机导电纤维产生于20世纪60年代末期。

最早问世的是表面涂覆碳和黑的有机导电纤维。

帝人公司、BASF公司自相继开发了此类纤维。

碳黑涂覆型导电纤维的导电成分都分布在纤维表面,因此导电性能好,但纤维在受到摩擦或弯折时碳黑易于脱落,导电性能会下降。

随后出现的是表面镀覆金属的导电纤维。

Rohm and Haas公司用化学镀层方法在尼龙纤维表面镀银制成导电纤维X-Static,东洋纺公司用低温融态金属浸渍制成具有金属皮层的导电纤维。

Statex公司的Ex-Stat则采用非电解镀银技术制成导电纤维。

纤维表面金属化的导电纤维,机械性能与普通纤维差异较大,使混纺较为困难,因而并未得到广泛的应用。

1975年,Du Pont公司采用复合纺丝技术制成含有碳黑导电芯的复合导电纤维Antron III,从此,各大化纤公司纷纷开始以碳黑为导电成分的复合纤维的研究与开发。

孟山都公司制并列型tron导电纤维,钟纺公司开发Belltron 锦纶导电纤维,尤尼吉卡公司开发Megana III导电纤维,可乐丽公司Kuracarbo,东洋纺织KE-9导电纤维等,使碳黑复合型导电纤维得到了广泛的发展。

到80年代末期,日本碳黑复合型导电纤维的年产量达到200吨。

但由于碳黑复合型导电纤维以碳黑为导电成分,因此,纤维通常为灰黑色,独应用范围倒限制。

80年代开始了导电纤维的白色化研究。

普遍采用的方法是用铜、银、镍和镉等金属的硫化物、碘化物或氧化物与普通高聚物共混或复合纺丝而制成导电纤维。

如Rhone-poulence公司利用化学反应制成CuS导电层的Rhodiastat导电纤维;帝人公司制成表面含有Cul的导电纤维T-25;钟纺公司制成ZnO2导电的Belltron632、Belltron638;尤尼吉卡公司开发了 Megana。

以金属化合物或氧化物为导电物质的白色导电纤维导电性能较碳黑复合型导电纤维差。

但其应用不受颜色的影响。

碳纤维的发展现状

碳纤维的发展现状

碳纤维的发展现状碳纤维(carbon fiber),它不仅具有碳材料的固有本征特性,乂兼具纺织纤维的柔软可加工性,是新一代增强纤维碳,是纤维状的碳素材料,含碳量在90% 以上,其中含碳量高于99%的称石墨纤维。

与传统的玻璃纤维(GF)相比,氏模量是其3倍多;它与凯芙拉纤维(KF-49)相比,不仅氏模量是其2倍左右,而且在有机溶剂、酸、碱中不溶不胀,耐蚀性出类拔萃。

有学者在1981年将聚丙烯膳(PAN)基碳纤维浸泡在强碱洛液中,时间已过去20多年,它至今仍保持纤维形态。

图1碳纤维碳纤维最早山美国联合碳化物公司和美国空军材料实验室于1959年投产,原丝采用粘胶纤维。

1962年,日本碳公司进行了通用级聚丙烯睹基碳纤维的生产。

1971年,曰本东丽公司的高性能聚内•烯月青基碳纤维投产。

沥青基碳纤维是日本吴羽化学工业公司于1973年投产的。

联合碳化物公司生产了高模量沥青基碳纤维,1985年,美国、日本及西欧的聚丙烯月青基碳纤维年生产能力共约有7.25kt,沥青基碳纤维为1.28kto碳纤维一般以力学性能和制造原材料来进行分类。

按力学性能一般可分为两类:a)通用型(GP)碳纤维;b)高性能型(HP)碳纤维。

通用型碳纤维强度lOOOMPa、模量lOOGPa左右,高性能型碳纤维乂可分为高强型(强度2000MPa、模量250GPa)和高模型(模量在300GPa以上)。

强度大于4000MPa者称为超高强型;模量大于450GPa者称为超高模型。

按原材料可分为3类:a)聚丙烯膳基(PAN)碳纤维;b)沥青基碳纤维;c)粘胶基(纤维素)碳纤维。

3种原料碳纤维的主要性能见表1。

表1 3种原料碳纤维的主要性能种类抗拉强度/MPa 抗拉模量/GPa密度/g ■ cm_3断后延伸率,%PAN基碳纤维>3 500>230 1.76 ~ 1.940.6-L2沥青基碳纤维1 600379 1.7 1.0粘胶基碳纤维2 100 ~2 800414 ~552 2.00.7碳纤维按照一束纤维中根数的多少分为小丝束和大丝束碳纤维。

碳纤维在中国发展历程

碳纤维在中国发展历程

中国碳纤维研究的过去与现在2010-09-21 | 作者:李克健 | 来源:价值中国网 | 【大中小】【打印】【关闭】久攻难克的碳纤维技术1959年,日本人发明了用聚丙烯腈为原丝加张力牵伸制造碳纤维的方法,成为当前的主流产品,制造技术主要掌握在日本及美国的少数公司手中。

中国用聚丙烯腈为原料生产碳纤维的研究始于1962年,起步可谓不晚,但长期未取得实质性进展。

由于碳纤维在航天航空等国防工业中有重要用途,西方国家将其视为军用物资,对中国“禁运” ,更不转让生产技术。

20世纪70年代,美国在战略导弹和作战飞机中开始使用碳纤维增强树脂材料,使得武器性能大幅提高。

我国国防科技系统认定,我国战略武器和军用飞机采用树脂基复合材料代替金属也势在必行。

1975年由当时的国防科委主任张爱萍亲自主持召开了一次专题会议,部署国内碳纤维研究工作,由国家计委安排500万元资金做启动费,制定了10年发展规划,组织了原丝、碳化、结构材料、防热材料、测试检验技术5个“攻关组” ,安排20多家研究和企业单位参加,如由吉林化学工业公司研究院、吉林辽源石油化工厂、兰州化学工业公司化纤厂、上海合成纤维研究所采用不同溶剂路线研发聚丙烯睛(PAN)原丝,上海合成纤维研究所、吉林、上海、兰州、抚顺4家碳素厂、山西燃化所、中科院化学所等负责碳化技术研究,另外还安排了织物和材料应用研究。

这次会议对促进中国碳纤维研究起到了重要推动作用,调动了研究人员和企业为国防建设做贡献的热情。

各单位陆续生产出不同质量的原丝和碳纤维,虽然其力学性能较差、稳定性不好,但毕竟解决了有无问题,并成功用于某些型号的非结构件。

1978年5月,国家科委恢复,碳纤维转由科委为主管理,我由当时的石化部调国家科委二局新材料处,主管碳纤维项目。

新材料处把碳纤维视为重中之重,花了很大精力和经费,力图把碳纤维质量抓上去,先后会同国防科工委等召开了多次会议。

据不完全统计,从1975至1981年底,中央各部委共投入到承担碳纤维原丝、碳纤维制品等的民用研制长所的资金约2600多万元,共建设厂房、试验室20000多平方米。

碳纤维复合材料的发展及应用---丁建队

碳纤维复合材料的发展及应用---丁建队

碳纤维复合材料的发展及应用——邳州高新区招商局丁建队1.1 碳纤维材料的历史背景碳纤维材料的发现和使用始于1860年斯旺制作碳丝灯泡,成为发明和使用碳纤维的第一人。

之后爱迪生使用竹丝制作碳丝作为灯丝,达到了照明45小时的效果。

20世纪90年代中期,美国、日本、英国相继开始展开对碳纤维材料的研究。

1972年,日本用碳纤维材料制造鱼竿,美国使用碳纤维材料制造高尔夫球杆,碳纤维材料开始应用于日常生活。

1992年,日本东丽公司研制成功高模中强碳纤维。

其后,碳纤维材料趋向于高强度高弹性模量的方向发展。

如今,碳纤维材料已经广泛应用于建筑、航空航天以及汽车制造行业。

1.2 碳纤维材料的特性简介碳纤维材料是由碳元素构成的一种纤维材料,其在微观上呈类似人造石墨的乱层石墨结构。

碳纤维材料具有良好的物理化学性质。

碳纤维密度小、质量轻,密度为1. 5~ 2 g /cm3,它的比重不到钢的四分之一,但抗拉强度是钢的七到九倍,其良好的比强度使得其被广泛应用于航空航天等对重量限制要求苛刻的领域。

其化学性质同样良好,具有耐腐蚀,耐疲劳,耐高温和低温,同时其具有良好的导电性,介于金属和非金属之间。

除此之外,碳纤维还具有耐油、抗辐射、抗放射、吸收有毒气体和使中子减速等特性。

[1]2 碳纤维材料的种类及其发展按碳纤维原丝不同主要可以分为:1.PAN基碳纤维;2.黏胶基碳纤维;3.沥青基碳纤维;4.酚醛基碳纤维。

2.1 PAN基碳纤维聚丙烯腈(PAN)基碳纤维由聚丙烯腈经纺丝、预氧、碳化几个阶段形成。

PAN基碳纤维具有高强度、高刚度、重量轻、耐高温、耐腐蚀、优异的电性能等特点,并具有很强的抗压抗弯性能,一直在增强复合材料中保持着主导地位。

目前,PAN基碳纤维仍是碳纤维市场中的主流。

PAN基碳纤维应用的主要领域有:航空航天工业,地面交通工具,如汽车、赛车、快速列车等,造船工业、码头和海上设施,体育用品与休闲用品,电子产品,基础设施以及造纸、纺织、医疗器械、化工、冶金、石油、机械工业等领域,要求零部件在高强度、高刚度、重量轻、耐高温、耐腐蚀等环境下工作。

碳纤维

碳纤维

沟通知识概述
— 26 —
LOG O
Thank you
聂旋 2015年6月7日
沟通知识概述
— 27 —
— 11 —
2
碳纤维特性
LOG O
碳纤维的分类
聚丙烯腈基碳纤维
沥青基碳纤维
黏胶基碳纤维
制备高性能碳纤维, 总量不足世界总 是碳纤维制备的主流 碳化率高,成本最低。产量的1%,碱金属含 方法,总产量的95%。 量低。
沟通知识概述
— 12 —
2
碳纤维特性
LOG O
聚丙烯腈基碳纤维制备工艺
1,原丝制备 2 预氧化 3 碳化 4 石墨化 5 表面处理 6 上浆处理
沟通知识概述
— 8—
1
碳纤维的发展Байду номын сангаас史
LOG O
国内厂家和国外厂家对比
东丽、东邦、三菱丽阳号称日本碳纤维领 域“三剑客”。每年他们都悉数亮相复材展。 占世界40%市场份额。 技术不够先进,厂家众多,利润低。
沟通知识概述
技术先进,资本雄厚,处于垄断地位。
— 9—
碳纤维的照片
2 碳纤维的特性
2
碳纤维特性
正负离子对撞机中的束 流管主漂移室内外筒构件 采用碳纤维复合材料。
在核聚变方面,托马克 聚变反应直接接触的部件 用C/C复合材料。 在铀的分离和浓缩中也 作为装置材料。
沟通知识概述
— 23 —
4
碳纤维的应用及前景
LOG O
碳纤维在民用领域的应用
汽 车 工 业
能 源 工 业
土 木 建 筑
沟通知识概述
碳纤维增强的环氧树脂
碳纤维增强热塑性树脂 基体复合材料(CFRTR)

国产碳纤维 发展历史

国产碳纤维 发展历史

国产碳纤维发展历史
国产碳纤维的发展历史可以追溯到上世纪80年代末期。

当时,我国开始关注碳纤维这一领域,并于1987年在上海成立碳纤维研究所,专门从事碳纤维的研究开发工作。

此后,随着我国经济的快速发展和高科技产业的崛起,碳纤维逐渐成为了我国战略性新兴产业之一。

在1990年代初期,我国开始启动碳纤维产业化的计划,并投入大量资金和人力物力加快了碳纤维的研究和生产。

1994年,我国首次成功生产出了复合材料预浸料,标志着我国碳纤维产业进入了一个崭新的阶段。

2000年以后,我国碳纤维产业得到了进一步发展。

在碳纤维生产技术、产品品质、应用领域等方面都取得了显著的进展。

目前,我国已经成为了全球最大的碳纤维生产国之一,碳纤维产品广泛用于汽车、航空航天、体育器材、建筑、医疗等领域。

近年来,我国政府将碳纤维列为新材料战略性发展重点,加大了对碳纤维产业的支持力度。

未来,随着技术的不断进步和应用领域的不断扩展,国产碳纤维有望成为我国制造业升级和转型升级的重要支撑。

碳素纤维简介

碳素纤维简介

碳素纤维又称碳纤维(Carbon Fiber,简称CF)。

在国际上被誉为“黑色黄金”,它继石器和钢铁等金属后,被国际上称之为“第三代材料”,因为用碳纤维制成的复合材料具有极高的强度,且超轻、耐高温高压。

碳纤维主要是由碳元素组成的一种特种纤维,其含碳量随种类不同而异,一般在90%以上。

碳纤维具有一般碳素材料的特性,如耐高温、耐摩擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工成各种织物,沿纤维轴方向表现出很高的强度。

碳纤维比重小,因此有很高的比强度。

1880年美国爱迪生首先将竹子纤维碳化丝,作为电灯泡内之发光灯丝,开启了碳纤维(Carbon Fiber,简称CF)之纪元。

碳纤维用在结构材料,首先问世者,则以美国Union Carbide公司(U.C.C.)为代表,并于1959年将嫘萦纤维为原料,经过数千百度之高温碳化后,得到弹性率约40GPa,强度约为0.7GPa之碳纤维;尔后,1965年该公司又用相同原料于3000℃高温下延伸,开发出丝状高弹性率石墨化纤维,弹性率约500GPa,强度约为2.8GPa。

另外,于日本大阪工业技术试验所之进藤博士,则以Polyacrylonitrile(简称PAN)聚丙烯腈为原料,经过氧化与数千度之碳化工程后,得到弹性率为160GPa,强度为0.7GPa之碳纤维。

1962年日本碳化公司(Nippon Carbon Co.)则用PAN为原料,制得低弹性系数(L.M.)之碳纤维。

东丽公司亦以PAN纤维为原料,开发了高强度之CF,弹性率约为230GPa,强度约为2.8GPa,并于1966年起有每月量产1吨之规模;同时亦开发了碳化温度2000℃以上之高弹性率CF,弹性率约400GPa,强度约为2.0GPa。

于1965年,群马大学大谷教授,利用加热氯乙烯(Vinyl Chloride)得到之沥青(Pitch),经过熔融纺丝、不融化与碳化工程处理后,得到普通级碳纤维;大谷教授亦可利用木质素(Lignin)为原料制作碳纤维。

复合材料的增强材料--碳纤维

复合材料的增强材料--碳纤维

10
制作碳纤维的主要原材料有三种: ①人造丝(粘胶纤维); ②聚丙烯腈(PNN) 纤维; ③沥青。
2014-6-5
陕理工材料学院高分子教研室
11
用人造丝、聚丙烯腈纤维、沥青为 原料生产的碳纤维各有其不同特点。
其中,制造高强度、高模量碳纤维 多选聚丙烯腈为原料。
2014-6-5
陕理工材料学院高分子教研室
27
硼纤维在空气中的拉伸强度随温度升高而
降低。
在200 ℃左右硼纤维性能基本不变;而在 315 ℃ 、1000小时硼纤维强度将损失70%;而
加热到650 ℃时硼纤维强度将完全丧失。
2014-6-5
陕理工材料学院高分子教研室
28
硼纤维的弯曲强度比拉伸强度高,
其平均拉伸强度为310 MPa,拉伸模量 为420 GPa。
2014-6-5
陕理工材料学院高分子教研室
31
硼纤维在常温下为惰性物质,但在高温下易 与金属反应。
因此,需在表面沉积SiC层,称之为Bosic纤维。
硼纤维主要用于聚合物基和金属基复合材料。
2014-6-5
陕理工材料学院高分子教研室
32
硼纤维增强铝基复合材料用于航天飞机主舱体支柱
陕理工材料学院高分子教研室
2014-6-5
陕理工材料学院高分子教研室
26
硼纤维的优点
硼纤维具有很高的弹性模量和强度,但其 性能受沉积条件和纤维直径的影响。 硼纤维的密度为2.4 ~ 2.65 g / cm3,拉伸强 度为3.2 ~ 5.2 GPa,弹性模量为350 ~ 400 GPa。
2014-6-5
陕理工材料学院高分子教研室
2014-6-5 陕理工材料学院高分子教研室 13

碳纤维资料总结

碳纤维资料总结

读《碳纤维及石墨纤维》总结一、碳纤维和石墨纤维的发展概况1.研究碳纤维的先驱:1860年,英国人约琴夫•斯旺(J. Swan)用碳丝制作灯泡的灯丝,早于美国人爱迪生(T. A. Edsion)。

斯旺未能解决灯泡的真空问题,爱迪生解决的真空问题。

斯旺提出利用孔口挤压纤维素成纤维技术,为后来的合成纤维提供启示。

2.聚丙烯腈基碳纤维的发明者:进藤昭男(日本大阪工业技术试验所)从事碳素的崩散现象和崩散素胶状粒子的研究以及反应堆所用碳材料中微量彭元素的去除。

进一步,他研究了民用腈纶在一些列热处理过程中物性和结构的变化,即开始研制PAN基碳纤维。

研究结论是PAN纤维需要经氧化处理才能得到碳纤维,确定了制取PAN基碳纤维的基本工艺流程,即氧化和碳化。

但未能制造性能好的碳纤维。

英国人瓦特(W. Watt)在预氧化的过程中施加张力牵引打通了制取高性能碳纤维的流程工艺,从此牵伸贯穿于氧化和碳化的始终,成为制造碳纤维最重要的工艺参数。

目前,牵张力已细化和量化,在不同热处理过程中施加适量的牵张力,以满足结构的转化。

3.从东丽公司碳纤维发展历程看原丝的重要性:日本东丽公司在碳纤维的质量和产量均位于世界之首。

公司发展启示:原丝是制取高性能碳纤维的前提。

1962年,公司采用民用腈纶为原丝,但生产不出质量较好的碳纤维。

1967年,研究适合制造碳纤维的共聚原丝,把提高PAN(聚丙烯腈)原丝质量放在第一位。

目前主要经营T300(碳纤维,300为拉伸强度3Gpa),M40(石墨纤维,拉伸模量40Gpa)。

1981年,波音公司提出高强度、大伸长的碳纤维需求,制造大型客机的一次结构材料。

1984年,东丽公司成功研制T800,满足波音公司需求。

1986年,研制T1000;1992年,研制了M70J。

目前,T800H已经是制造大飞机(A380和B787)的主要增强纤维。

T1000是碳纤维中拉伸强度最高、断裂伸长最大的碳纤维。

M70J的拉伸模量最高达到690Gpa,是目前PAN基石墨纤维中最高的纤维。

碳纤维材料小知识

碳纤维材料小知识
断降低,其应用范围会越来越广。
五、耐磨性好
碳纤维与金属对磨时,很少磨损,用碳纤维来取代石 棉制成高级的摩檫材料,已作为飞机和汽车的刹车片材料。
六、耐高温性能好
碳纤维在400℃以下性能非常稳定,甚至在1000℃时 仍无太大变化。复合材料耐高温性能主要取决于基体的耐 热性,树脂基复合材料其长期耐热性只达300℃左右,陶 瓷基、碳基和金属基的复合材料耐高温性能可与碳纤维本 身匹配。因此碳纤维复合材料作为耐高温材料广泛用于航
一次登上历史舞台。 1959年日本人近藤昭男发明了聚丙烯腈(PAN)基碳纤 维,聚丙烯腈基碳纤维具有生产工艺成熟、综合性能好和 生产成本较低的优势,产量占碳纤维全部产量的90%以上。 今天我们说的碳纤维,不指明的话一般指PAN基碳纤维。
碳纤维材料
成分结构
成分结构
碳纤维是由有机纤维经碳化及石墨化处理而得到的 微晶石墨材料。碳纤维的微观结构类似人造石墨(C原子

纤维的固相碳化制得的。


生 产 流 程
主 要 生 产 商
日本和美国掌握着世界碳纤维的大多数产能,并控制了高端 碳纤维的生产。
日本东丽公司在PAN基碳纤维研制生产中最早起步,是日本 碳纤维生产企业的代表。美国赫氏Hexcel公司也紧随日本东丽的 步伐,20世纪80年代美国研制的三叉戟II潜射导弹和侏儒小型机
迅速扩张。 大丝束碳纤维的主要生产商包括美国Zoltek、Aldila公司,
日本东邦、日本东丽和德国SGL公司等。 总的说来美国在大丝束碳纤维生产上优势明显,日本在小丝
束碳纤维的生产上垄断地位更为稳固。
主 要 生 产 商
碳纤维材料
碳纤维的分类


20世纪50年代,美国研发大 型火箭和人造卫星以及全面提升 飞机性能,急需新型结构材料及

碳纤维历史及应用

碳纤维历史及应用

什么是碳纤维目前,碳纤维主要是制成碳纤维增强塑料这种复合材料来应用碳纤维是一种纤维状碳材料。

它是一种强度比钢的大、密度比铝的小、比不锈钢还耐腐蚀、比耐热钢还耐高温、又能像铜那样导电,具有许多宝贵的电学、热学和力学性能的新型材料。

碳纤维发展简史1860年,斯旺制作碳丝灯泡1878年,斯旺以棉纱试制碳丝1879年,爱迪生以油烟与焦油、棉纱和竹丝试制碳丝(持续照明45小时)1882年,碳丝电灯实用化1911年,钨丝电灯实用化1950年,美国Wright--Patterson空军基地开始研制黏胶基碳纤维1959年,美国UCC公司生产低模量黏胶基碳纤维“Thornel—25”,日本大阪工业试验所的进藤昭男发明了PAN基碳纤维1962年,日本碳公司开始生产低模量PAN基碳纤维(0.5吨/月)1963年,英国皇家航空研究所(RAE)的瓦特和约翰逊成功地打通了制造高性能PAN基碳纤维(在热处理时施加张力)的技术途径1964年,英国Courtaulds,Morganite和Roii--Roys公司利用RAE技术生产PAN基碳纤维1965年,日本群马大学的大谷杉郎发明了沥青基碳纤维美国UCC公司开始生产高模量黏胶基碳纤维(石墨化过程中牵伸)1970年,日本吴羽化学公司生产沥青基碳纤维(10吨/月),日本东丽公司与美国UCC进行技术合作1971年,日本东丽公司工业规模生产PAN基碳纤维(1吨/月),碳纤维的牌号为T300,石墨纤维为M401972年,美国Hercules公司开始生产PAN基碳纤维日本用碳纤维制造钓竿,美国用碳纤维制造高尔夫球棒1973年,日本东邦人造丝公司开始生产PAN基碳纤维(0.5吨/月)日本东丽公司扩产5吨/月1974年,碳纤维钓竿、高尔夫球棒迅速发展日本东丽公司扩产13吨/月1975年,碳纤维网球拍商品化美国UCC公司公布利用中间相沥青制造高模量沥青基碳纤维“Thornel—P”美国UCC的高性能沥青基碳纤维商品化1976年,东邦人造丝公司与美国塞兰尼斯进行技术合作住友化学与美国赫格里斯(Hercules)成立联合公司1979年,日本碳公司与旭化成工业公司成立旭日碳纤维公司1980年,美国波音公司提出需求高强度、大伸长的碳纤维1981年,台湾台塑设立碳纤研究中心,日本三菱人造丝公司与美国Hitco公司进行技术合作1984年,台湾台塑与美国Hitco公司进行技术合作,日本东丽公司研制成功高强中模碳纤维T800 1986年,日本东丽公司研制成功高强中模碳纤维T10001989年,日本东丽公司研制成功高模中强碳纤维M601992年,日本东丽公司研制成功高模中强碳纤维M70J,杨氏摸量高达690GPa“格林易能”一直使用日本东丽(TORAY)生产的优质长纤碳纤维材料1971年,TORAY成了世界上第一人制造商,从事PAN基碳纤维的人型工业化生产,并将其产品命名为“TORAYCA”,是TORAY碳纤维的缩写。

国产碳纤维的前世今生

国产碳纤维的前世今生

国产碳纤维的前世今生此文对目前国内碳纤维发展有详细论述,由于文章太长,本人只将后段有参考价值转过来。

从此文得知,目前国内正在研制70T的碳原丝(日本东丽已经掌握100T碳原丝的生产技术),不过估计以供军用为主!以下是我国碳纤维主要生产企业:安徽华皖碳纤维(集团)有限公司位于蚌埠市高新区长华路中段,注册资金16500万元,主要生产销售碳纤维、原丝及其碳纤维复合制品。

碳纤维生产线设计能力为年产500吨原丝,最终年产200吨聚丙烯腈基碳纤维。

碳纤维生产线于2004年开工建设,截止目前已完成受让土地使用权,房屋建筑物的建设,机械设备采购安装。

PAN原丝采用亚砜一步法,技术由国外引进;产品以12K的T300级碳纤维为主,并准备引进成熟的预浸料生产线。

华皖集团(原蚌埠灯芯绒集团公司)二期建设规模将使碳纤维产量翻一番,达到400t/a,下游产品的开发也列入发展规划。

不过,最近的消息是碳纤维生产线项目目前处于停滞状况。

由于无力清偿到期债务,于2008年6月29日被安徽省蚌埠市中级人民法院依法裁定破产。

中宝碳纤维责任有限公司在浙江嘉兴。

2002 年公司引进欧洲最先进预浸料生产线,具有年生产碳纤维、芳纶、玻璃纤维及其织物预浸料300万平方米的能力。

建400t/a大丝束碳纤维生产线,部分引进技术和设备,投资数亿元,并配套300万m2预浸料。

该项目国家已批准,并积极开展了前期论证和考察工作。

根据国内外市场动向及投资与回报等因素,暂缓建立碳纤维生产线,而集中力量开发预浸料等下游产品。

同时,还成立了浙江省碳纤维工程技术研究开发中心,全面推进碳纤维事业。

2009年,公司成功完成了国家*的《采用大丝束碳纤维预料制备技术实现国产碳纤维规模化应用》项目,大幅度提高了公司的预浸料生产能力,年生产大克重(500g/m2以上)预浸料可达100万平方米。

目前,公司产品已经广泛应用于体育休闲制品和工业制品中。

吉化公司研究院,将依靠自己的技术建立500t/a原丝和200t/a碳纤维生产线。

国外碳纤维大丝束小丝束发展历史

国外碳纤维大丝束小丝束发展历史

国外碳纤维大丝束小丝束发展历史碳纤维,这个词儿一听就觉得高科技,仿佛是外星人带来的玩意儿。

可是你知道吗?它的历史其实并没有那么复杂,也没那么遥远。

碳纤维的起源可以追溯到上世纪五十年代,那时候,大家都在琢磨如何把材料变得更轻更强,军方和航空业是最积极的推动者。

想象一下,飞机飞得更高更快,那可是个大新闻呀!于是,科学家们开始玩弄石墨,这东西有个“黑金”之称,听起来就像是富豪们的最爱。

在这个阶段,碳纤维基本上还是个“青涩的小伙子”,没有现在那么成熟。

到了六十年代,随着科技的进步,碳纤维终于有了点名气,甚至被用在了一些高级的航空器上。

这就像是个在追星路上慢慢崭露头角的小明星,渐渐地吸引了不少眼球。

那时候的碳纤维还是大丝束的,听上去像是个玩具,但其实却很有用,强度大,重量轻,简直就是科技界的小白鼠。

七十年代,事情开始发生变化。

小丝束的出现就像是华丽的转身,这一转身真是让人眼前一亮。

小丝束的优势在于可以更灵活地应用,做成各种形状的材料,就像是变魔术一样。

想做什么就做什么。

跑车、运动器材,甚至是高尔夫球杆都开始用了小丝束,大家纷纷为之欢呼,科技的魅力真是无处不在。

然后在八十年代,碳纤维又迎来了一个大飞跃。

随着日本的企业开始大力投资,这玩意儿的成本开始下降,越来越多的厂家加入了这个“疯狂的派对”。

这种材料的使用范围一下子扩大了,从航空航天到汽车制造,几乎无所不包。

就像是开了个大趴,大家都想来蹭热度。

你想想,如果能在跑车上用上碳纤维,那得多拉风啊,谁不想开着轻飘飘的车,跟朋友们炫耀一番呢?九十年代,随着人们环保意识的提升,碳纤维又被推到了风口浪尖。

绿色出行、可持续发展成了新趋势,碳纤维这种轻质材料恰恰符合这个潮流。

就像是新时代的“环保小战士”,越来越受到欢迎。

很多汽车制造商开始考虑用碳纤维来减轻车重,提高燃油效率,大家都想在这个环保的赛道上跑得更快。

进入二十一世纪,碳纤维真是如鱼得水,成为了众多行业的“明星”。

不光是交通工具,连体育用品、建筑材料,甚至医疗设备都能看到它的身影。

碳纤维的前世今生

碳纤维的前世今生

碳材料的前世今生要说碳材料大家肯定会想到煤炭,但碳材料大家庭可不止煤炭一种。

从石墨到金刚石、从碳纤维到碳纳米管、从富勒烯到石墨烯,碳材料大家庭可谓五彩缤纷,各行各业都有碳材料的应用。

碳材料是人类最早利用的元素,人类对碳材料的利用伴随着人类文明史的发展,本篇我们回顾一下碳材料的前世今生。

中国人是最早利用碳材料的,从文献记载和考古发掘来看,至迟在汉代就已用煤了。

《汉书。

地理志》说:“豫章郡出石,可燃为薪。

”豫章郡在今江西省南昌附近,这里所说的可燃为薪的石头,其实就是煤。

可见这时煤已用于群众的日常生活。

18世纪工业革命,开启了煤炭作为工业燃料的时代,直到今天煤炭也是我们重要的能量来源,全国煤炭发电占总发电量的80%。

碳材料的另一种存在形式是金刚石,印度是世界上最早发现钻石的国家,3000年前,印度是钻石的唯一产地。

自2500年前至18世纪初印度克里希纳河、彭纳河及其支流是世界唯一产出钻石的地方,历史上许多著名钻石如光明之山(kohi-noor)、奥尔洛夫(orloff)和大莫卧儿(great mogul)都来自印度,但印度的钻石产量很小。

至1725年巴西钻石的发现及开采,使巴西取代印度,成为当时全球钻石的最重要产地。

1867年以后,南非发现了冲积砂矿床和大量原生金伯利岩筒使得南非成为世界上最重要的钻石生产国,其产量长期处于世界前列,并由此开创了钻石业的新纪元。

1905年,在南非阿扎氏亚发现了世界上最大的金伯利岩岩筒—普列米尔岩筒,并在此发现最大的钻石(库利南钻石)。

南非拥有世界上产量最大、且最现代化的维尼蒂亚钻石矿。

虽然人类对碳材料的利用非常早,但是人类真正对碳材料的认识却是最近200-300年的事。

1722年,瑞尼·瑞欧莫发现铁在转变为钢的过程中会吸收一种物质,今天人们知道这就是碳。

1772年,安东万·拉瓦锡证明钻石是完全由碳组成的。

他燃烧了木炭和钻石,发现两者都没有产生水,而且形成的二氧化碳质量相同。

碳纤维

碳纤维


我国从20世纪60年代后期开始研制碳纤维。
碳纤维的生产现状

世界PAN 基碳纤维的主要生产厂商有:
日本 Toray(东丽) 、Toho (东邦) 、Mitsubishi Rayon (三菱人造丝) ,美国 Hexcel (赫克塞尔) 、Amoco (阿 莫科) 和 Zoltek (卓尔泰克) 等公司。
加氢 各种 沥青
预中间相 沥青 拟 似 中 间 潜在中间 相 相沥青 加氢 中间相 沥青
各向同性 熔 沥青纤维 融 纺 丝 各向异性 沥青纤维
氧 化 不 熔 化 250 | 400 ℃
炭 各向同性 化 不熔纤维 1100 | 1800 ℃ 各向异性 各向异性 高性能 不熔纤维 碳纤维 各向异性 不熔纤维
活性碳纤维
按力学性能 通用级 高性能 标准型 高强型 高模型 高强高模型
长丝
按制品形态
束丝短纤维 超细短纤维 织物等
碳纤维的结构



条带模型 微原纤结构模型 皮芯结构 三维结构模型 葱皮结构
碳纤维结构的条带模型
碳纤维的微原纤模型
碳纤维的皮芯结构模型
高模量碳纤维的三维结构模型
碳纤维的葱皮结构与石墨晶须的结构模型

方法:将碳纤维在密闭的石墨化炉中、2000℃以
上、惰性气体保护下处理。 变化: 石墨化处理过程中,纤维结构得到完善, 非碳原子几乎全部排除,C—C键重新排列,结晶 碳的比例增多,纤维取向度增加。纤维内部由紊

乱的乱层石墨结构转变为类似石墨的层状结晶结
构。
PAN纤维在热处理过程中化学反应 历程及结构分析
2004年我国碳纤维用量为4 000 t ,其中体育休闲领域需求量 约占87 % ,一般产业需求量约占11 % ,军工领域需求量约占 2 % ,到2009 年碳纤维需求将达到7 500 t/ a 。

碳纤维材料小知识

碳纤维材料小知识

碳纤维应用实例
波音787
波音777
碳纤维应用实例
碳纤维应用实例
美称中国为歼20走私20吨碳纤维 每斤2000美元
2012年12月,联邦调查局宣布挫败了一起中国人试图非法获得碳纤维 的行为:被怀疑的物品是M60JB碳纤维,洽谈购买量达20吨,售价每公斤 2000美元(几乎是银价的2倍),是中国仍在开发之中的隐形战斗机(歼20,歼-31)的重要部件。据称,中国已经获得了某些这种纤维,(注,按 该说法,碳纤维每吨200万美元,20吨合计4000万美元,约2.5亿元人民 币。)
新一代LEAP涡扇发动机的风扇叶片
建造期间的国际空间站,其巨大的桁架 也由碳纤维复合材料制造
碳纤维应用实例
碳纤维应用实例
现在的F1(世界一级方 程锦标赛)赛车,车身大部 分结构都用碳纤维材料。顶 级跑车的一大卖点也是周身 使用碳纤维,用以提高气动 性和结构强度
碳纤维应用实例
兰博基尼生产中使用的碳纤维材料
二、热膨胀系数小
绝大多数碳纤维本身的热膨胀系数,室内为负数(0.5~-1.6)×10-6/K,在200~400℃时为零,在小于 1000℃时为1.5×10-6/K。由它制成的复合材料膨胀系数自 然比较稳定,可作为标准衡器具。
碳纤维数显卡尺
三、导热性好
通常无机和有机材料的导热性均较差,但碳纤维的导 热性接近于钢铁。利用这一优点可作为太阳能集热器材料、 传热均匀的导热壳体材料。
碳化、渗碳及电化学腐蚀现象。因此,碳纤维
在使用前须进行表面处理。
生 产 方 式
通常采用一些含碳的有机纤维(如尼龙丝、
腈纶丝、人造丝等)做原料,将有机纤维跟塑
料树脂结合在一起,放在稀有气体的气氛中, 在一定压强下强热炭化而成。

碳纤维行业发展历程

碳纤维行业发展历程

碳纤维行业发展历程全文共四篇示例,供读者参考第一篇示例:碳纤维,一种轻质、高强度的新型纤维材料,是一种由碳元素组成的纤维,通常用于增强材料的制造。

碳纤维由于其重量轻、强度高、耐腐蚀等优良性能,在航空航天、汽车、体育用品等领域得到了广泛应用。

其在航空航天领域的应用更是发展迅猛,成为当今世界上最重要的材料之一。

碳纤维的历史可以追溯到20世纪60年代,当时美国的一家化学公司首次发现了碳纤维的制备方法。

在此之后,碳纤维经过多年的发展和研究,逐渐成为了一种备受人们青睐的新型材料。

在上世纪80年代,碳纤维开始在航空航天领域得到广泛应用,被用来制造飞机、导弹等高性能产品。

在航空航天领域,碳纤维的轻量化、高强度、高刚度等优点得到了充分发挥,成为现代航空航天技术的重要支柱。

随着技术的不断提升和制造工艺的不断改进,碳纤维的性能和品质也在不断提高。

在汽车领域,碳纤维的轻量化优势使得汽车更加节能环保,并且在车身结构、悬挂系统等方面得到广泛应用。

在体育用品领域,碳纤维制成的高尔夫球杆、网球拍等产品因其轻盈、坚固的特性备受运动爱好者青睐。

在中国,碳纤维产业也在不断壮大。

随着中国经济的快速发展,碳纤维行业也逐渐崛起。

中国在碳纤维领域的技术水平和产能已经达到了国际先进水平,成为全球碳纤维市场的重要参与者。

中国的碳纤维行业主要分布在江苏、广东、山东等地区,形成了完整的产业链和较为成熟的技术体系。

随着碳纤维产业的不断发展,碳纤维在未来的应用前景也是非常广阔的。

随着汽车工业的转型升级,碳纤维在汽车领域的应用将会更加广泛,不仅可以提高汽车的性能,还可以减轻车身重量,降低燃油消耗。

在航空航天领域,碳纤维也将继续发挥其优势,开发出更加轻便、高性能的航空器。

碳纤维在建筑、体育用品、医疗等领域也有很大的应用潜力。

第二篇示例:起初,碳纤维的制造工艺十分繁琐,成本较高,限制了其在大规模应用领域的推广。

但随着材料科学技术的进步,碳纤维的生产成本逐渐下降,生产工艺也越来越成熟。

国际碳纤维发展历程

国际碳纤维发展历程

国际碳纤维发展历程
碳纤维是一种以碳为主要成分的纤维材料,具有高强度、高刚度、轻质化、耐高温等特点,被广泛应用于航空航天、汽车、体育器材、建筑等领域。

以下是国际碳纤维发展的一些里程碑事件:
1. 1958年:美国杜邦公司研发出第一种商用碳纤维。

2. 1970年代:日本开始大规模生产碳纤维,成为全球碳纤维的主要生产国。

3. 1980年代:碳纤维在航空航天领域得到广泛应用,用于制造飞机、卫星等。

4. 1990年代:汽车制造业开始使用碳纤维材料,以提高汽车的轻量化和燃油效率。

5. 2000年代:碳纤维开始应用于体育器材领域,如高尔夫球杆、网球拍等。

6. 2010年代:碳纤维逐渐应用于建筑领域,用于制造高楼大厦、桥梁等结构。

7. 近年:碳纤维发展呈现出向高性能、高强度发展的趋势,新型碳纤维材料不断涌现,推动碳纤维应用领域的扩大。

总的来说,国际碳纤维的发展历程经历了从初步研发、商业化生产、大规模应用到不断创新升级的过程,广泛应用于航空航天、汽车、体育器材、建筑等领域,为各行业的技术创新和进步提供了重要支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

碳纤维历史
碳纤维发展简史:
1860年,斯旺制作碳丝灯泡
1878年,斯旺以棉纱试制碳丝
1879年,爱迪生以油烟与焦油、棉纱和竹丝试制碳丝(持续照明45小时)
1882年,碳丝电灯实用化
1911年,钨丝电灯实用化
1950年,美国Wright--Patterson空军基地开始研制黏胶基碳纤维
1959年,美国UCC公司生产低模量黏胶基碳纤维“Thornel—25”,日本大阪工业试验所的进藤昭男发明了PAN基碳纤维
1962年,日本碳公司开始生产低模量PAN基碳纤维(0.5吨/月)
1963年,英国皇家航空研究所(RAE)的瓦特和约翰逊成功地打通了制造高性能PAN基碳纤维(在热处理时施加张力)的技术途径
1964年,英国Courtaulds,Morganite和Roii--Roys公司利用RAE技术生产PAN基碳纤维1965年,日本群马大学的大谷杉郎发明了沥青基碳纤维美国UCC公司开始生产高模量黏胶基碳纤维(石墨化过程中牵伸)
1970年,日本吴羽化学公司生产沥青基碳纤维(10吨/月),日本东丽公司与美国UCC进行技术合作
1971年,日本东丽公司工业规模生产PAN基碳纤维(1吨/月),碳纤维的牌号为T300,石墨纤维为M40
1972年,美国Hercules公司开始生产PAN基碳纤维日本用碳纤维制造钓竿,美国用碳纤维制造高尔夫球棒
1973年,日本东邦人造丝公司开始生产PAN基碳纤维(0.5吨/月)日本东丽公司扩产5吨/月
1974年,碳纤维钓竿、高尔夫球棒迅速发展日本东丽公司扩产13吨/月
1975年,碳纤维网球拍商品化美国UCC公司公布利用中间相沥青制造高模量沥青基碳纤维“Thornel—P”美国UCC的高性能沥青基碳纤维商品化
1976年,东邦人造丝公司与美国塞兰尼斯进行技术合作住友化学与美国赫格里斯(Hercules)成立联合公司
1979年,日本碳公司与旭化成工业公司成立旭日碳纤维公司
1980年,美国波音公司提出需求高强度、大伸长的碳纤维
1981年,台湾台塑设立碳纤研究中心,日本三菱人造丝公司与美国Hitco公司进行技术合作1984年,台湾台塑与美国Hitco公司进行技术合作,日本东丽公司研制成功高强中模碳纤维T800
1986年,日本东丽公司研制成功高强中模碳纤维T1000
1989年,日本东丽公司研制成功高模中强碳纤维M60
1992年,日本东丽公司研制成功高模中强碳纤维M70J,杨氏摸量高达690GPa。

相关文档
最新文档