数字温度计设计
数字式温度计设计完整版新
数字式温度计设计一、引言意大利科学家伽利略在1592年差一点儿发明了温度计。
他制作了一个称为“验温计”的仪器。
其中有一根开口的管子伸到一只盛水的容器中,管内水的水平面随室内温度而变化。
糟糕的是当空气压力变化时,水平面也随之改变。
17世纪初,意大利托斯卡纳的公爵斐迪南二世对伽利略的仪器着了迷,并且还用它来做实验。
1644年,他将该装置密封以隔绝周围的空气,从而排除了空气压力的影响。
但是,这第一支温度计与我们如今所知道的那些温度计相仿,是水银温度计。
在18世纪初,它由出生于波兰仪器制造者D.G.华伦海特加以改进和完善。
这类温度计的工作原理是物质受热后膨胀。
温度计由一根底部为一个球体的狭窄玻璃管组成,球体中灌满了诸如水银之类的液体。
当温度上升时,液体就膨胀,并且朝管子上方推移。
人们根据管子上或管子旁的标记可以读出温度数。
华伦海特还采用了一种以他的名字命名的温度测定标度。
华伦海特标度过去曾经广泛使用,但如今由瑞典天文学家安德斯·摄尔修斯在1742年开发的摄氏标度,或称百分标度,却更受人们的喜爱。
1867年,托马斯·阿巴特医生第一次运用水银温度计,给前来就诊的病人测量体温。
现在,液体温度计已经广泛的应用与各个方面了。
但是随着人们对测量要求的不断提高,液体温度计已经不能满足人们的需求了。
这也就引出了课题。
温度测量的原理主要是:将随温度变化而变化的物理参数,如膨胀、电阻、电容、热电动势、磁性、频率、光学特性等通过温度传感器转变成电的或其他信号,传给处理电路。
,最后转换成温度数值显示出来。
数字式温度计以热敏电阻作感温元件,采用电压-频率变换电路克服热敏电阻的非线性缺点;通过调节电路中两只微调电容可替换不同参数的热敏电阻;利用自平衡电桥消除了远距离测温时连接热敏电阻的传输线的影响;采用BGD进位制计数显示电路使结构简单可靠.因此,数字式温度计是一种具有读数直观、反映被测温度时间短,测温范围宽和精度高等特点,并能进行远距离测温和控温的新型的数字式温度计。
(数电)数字温度计的设计
数字温度计的设计一、总体方案的选择1.拟定系统方案框图(1)方案一:本方案采用AD590单片集成两段式敢问电流源温度传感器对温度进行采集,采集的电压经过放大电路将信号放大,然后经过3.5位A/D转换器转换成数字信号,在进行模拟/数字信号转换的同时, 还可直接驱动LED显示器,将温度显示出来。
系统方框图如下:图1.1 系统方案框图(2)方案二:使用数字传感器采集温度信号,然后将被测温度变化的电压或电流采集过来放大适当的倍数,进行A/D转换后,将转换后的数字进行编码,然后再经过译码器通过七段数字显示器将被测温度显示出来。
图1.2系统方案框图2. 方案的分析和比较方案一中的模数转换器ICL7107集A/D转换和译码器于一体,可以直接驱动数码管,不仅省去了译码器的接线,使电路精简了不少,而且成本也不是很高。
ICL7107只需要很少的外部元件就可以精确测量0到200mv电压,AD590可以将温度线性转换成电压输出。
而方案二经过A/D转换后,需要先经过编码器再经过译码器才能将数字显示出来。
比较上述两个方案,方案一明显优越于方案二,它用AD590采集温度信号,用ICL7107驱动数码管直接实现数字信号的显示,实现数字温度计的设计;省去了另加编码器和译码器的设计,所以线路更简单、直观;即采用方案一。
二、单元电路的设计通过AD590对温度进行采集,通过温度与电压近乎线性关系,以此来确定输出电压和相应的电流,不同的温度对应不同的电压值,故我们可以通过电压电流值经过放大进入到A/D 转换器和译码器,再由数码管表示出来。
2.1传感电路AD590是半导体结效应式温度传感器,PN 结正向压降的温度系数为-2mV/℃ , 利用硅热敏晶体管PN 结的温度敏感特性测量温度的变化测量温度,其测量温度范围为-50~150。
AD590输出电流值(μA 级)等于绝对温度(开尔文)的度数。
使用时一般需要将电流值转换为电压值, 如图2.1.1图中,Ucc 为激励电压, 取值为4~40 V;输出电流I0以绝对温度零度-273℃为基准, 温度每升高1℃ ,电流值增加1μA。
数字温度计的设计
数字温度计的设计一、课程设计目的:通过《电子系统设计》课程设计,使掌握现代电子系统设计的方法和计原则以及使用Protel软件进行原理图和PCB板图设计的方法。
进一步加深对电子系统设计和应用的理解。
二、课程设计的内容及要求1)数字温度计的设计内容:①数字式温度计测温范围在-55~125℃,误差在±0.5℃以内。
②显示部分可以采用LED数码管直读显示(四连排LED数码管)。
③可以用键盘(至少4个)设置温度的上/下限,当温度不在范围内时,启动报警装置。
④发声器件为8Ω、0.25W动圈式扬声器;2)课程设计要求:1)独立设计原理图及相应的硬件电路。
2)独立焊接电路板并对电路板调试。
3)针对选择的设计题目,设计系统软件。
软件要做到:操作方便,实用性强,稳定可靠。
4)设计说明书格式规范,层次合理,重点突出。
并附上设计原理图、电路板图及相应的源程序。
三、总体设计方案本设计以检测温度并显示温度提供上下限报警为目的,按照系统设计功能的要求,确定系统由5个模块组成:主控器[4]、测温电路,报警电路,按键电路及显示电路。
系统以DS18B20为传感器用以将温度模拟量转化为电压数字量以总线传入单片机,以AT89S52为主芯片,在主芯片对DS18B20传入的温度值进行处理,由单片机程序控制,将经处理后的温度由LED数码管显示出来。
本系统具有电路简洁,性能可靠等特点,易于实现。
图3-1 数字温度计设计总体的原理图3.1 温度的检测每次测温由单片机向测温传感器发出特定脉冲,测温传感器能够检测到脉冲并做相应的工作。
传感器将模拟温度信号经过采集,数字处理,放大后输出。
DS18B20使用一个单线接口发送或接受信息,因此在单片机和DS18B20之间只需要一条线链接,用于读写和温度转换的电源可以从数据线获得,无需外接电源。
3.2 数字信号的处理送入单片机内部的数字信号经过单片机的处理,将数据用LED 数码管显示出来。
其处理过程主要由单片机能存储的程序进行控制。
数字温度计设计.doc
引言 (1)第一章系统总体方案及硬件设计 (2)1.1设计方案选择 (2)1.2系统基本组成 (2)1.3 原理图 (3)1.4模块简介 (3)1.4.1 主控制器 (4)1.4.2 显示电路 (4)1.4.3温度传感器 (4)1.4.4报警温度调整按键 (5)第二章软件设计 (6)2.1主程序流程图 (6)2.2读出温度子程序 (7)2.3温度转换命令子程序 (7)2.4 计算温度子程序 (8)2.5 显示数据刷新子程序 (8)第三章电路仿真 (9)第四章电路板制作过程 (10)4.1 原理图编辑 (10)4.2 PCB制作 (11)第五章心得体会 (12)附录一 (13)参考文献 (21)温度是工农业生产中最常见的工艺参数之一,与产品质量、生产效率、安全生产等密切相关,因此在生产过程中常需对温度进行检测和监控。
相比于传统的液体温度计,数字温度计具有读数直观,测量时间短等特点,其应用十分广泛。
常用于温度测量的传感器有金属热电阻、热敏电阻、热电偶等。
动手操作硬件进行要受到各种条件的约束。
而用软件对实验进行模拟则不仅没有时间、地点的限制,还使实验更加方便快捷,减少了硬件操作中一些偶然因素的影响。
本次课程设计重点在加深对单片机知识的认识,用Protues软件进行模拟实验,可以得到比硬件操作更加快速和准确的实验结果,修改设计方案更便捷。
Protues软件是实验很好的辅助工具,使我们充分理解理论知识而不会受到硬件的限制。
将Keil软件与Protues软件联调使用,可以在计算机上模拟实现单片机所有硬件的功能,有助于我们对单片机知识的理解。
做本课题的所用到的知识是我们学过的模拟电子电路以及数字逻辑电路等,当然还用到了刚刚学过不久的单片机知识。
本次课设是把理论和实践结合起来,这不但可以锻炼自己的动手能力,而且还可以加深对数字逻辑电路和模拟电子电路的学习和理解。
同时也激起了我学好单片机的斗志。
第一章系统总体方案及硬件设计1.1设计方案选择方案一由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D 转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来。
数字电路温度计设计
数字电路温度计设计全文共四篇示例,供读者参考第一篇示例:数字电路温度计设计数字电路温度计的设计原理主要是利用数字电路的优势,通过传感器将物体的温度信号转换为电信号,再通过数字电路进行处理和显示,从而实现温度的测量和显示。
数字电路温度计的设计原理主要包括传感器、模数转换器、显示器等几个关键部分。
首先是传感器部分,传感器是将温度信号转换为电信号的关键部件。
常用的传感器有热敏电阻、热电偶、半导体传感器等。
传感器的选择直接影响到数字电路温度计的测量精度和灵敏度。
在设计数字电路温度计时,我们需要根据实际需求选择合适的传感器,以确保温度测量的准确性。
最后是显示器部分,显示器是将数字信号转换为可视化信息的关键部件。
在设计数字电路温度计时,我们通常选择LED数码管、液晶显示屏等作为显示器。
显示器的选择不仅要考虑显示效果和美观度,还要考虑功耗、驱动电路等因素。
通过合理选择和设计显示器,我们可以实现数字电路温度计的数据显示和人机交互功能。
数字电路温度计的工作原理主要是通过传感器实时监测物体的温度变化,将温度信号转换为电信号后经过模数转换器转换为数字信号,最终通过显示器显示出温度数值。
在工作过程中,数字电路温度计还可以设置报警功能,当温度超出设定范围时会发出警报,提醒使用者及时处理。
制作数字电路温度计的流程主要包括以下几个步骤:第一步,设计电路原理图。
根据数字电路温度计的设计要求,我们需要设计出完整的电路原理图,包括传感器、模数转换器、显示器等各个部分的连接关系和工作原理。
第三步,焊接电路板。
在选择好电子元器件后,我们需要进行电路板的焊接工作,将各个元器件按照设计原理图连接到电路板上,并进行焊接和固定,以组成完整的数字电路温度计电路。
第四步,进行测试和调试。
在焊接完成后,我们需要进行测试和调试工作,确保数字电路温度计正常工作。
在测试中,我们需要测试传感器的灵敏度、模数转换器的精度和显示器的正确性等。
第五步,封装和外壳设计。
数字温度计系统详细设计报告
数字温度计系统详细设计报告一设计要求1.1.系统功能要求对于设计的数字温度计系统,主要是以AT89C51(AT89C52)单片机为控制核心,采用高精度的传感器(DS18B20)对需要测量的周围温度进行周期性的测量,并用简单的通信技术,数码管显示技术,误差修正等技术,以最新的DS18B20温度传感器作为测量元件,构成一个较简单的温度测量系统。
并最终能实现对周围环境中的温度数据的精确采集,加以处理后显示在由数码管组成的显示器上。
1.2.其他要求:该测量系统尽量做到体积小、精度较高、数据传输可靠性高、功耗低、功能易扩展,对周围环境的适应性要强。
另外从经费方面除了特殊元件外,本着一切在能实现功能的基础上从简选择的原则。
2.1方案论证与选择该系统主要由温度测量和数据采集两部分电路组成,实现的方法有很多种,下面将列出两种在日常生活中和工农业生产中经常用到的实现方案(1)温度采集电路方案一采用热电偶温差电路测温,温度检测部分可以使用低温热偶,热电偶由两个焊接在一起的异金属导线所组成,热电偶产生的热电势由两种金属的接触电势和单一导体的温差电势组成。
通过将参考结点保持在已知温度并测量该电压,便可推断出检测结点的温度。
数据采集部分则使用带有A/D 通道的单片机,在将随被测温度变化的电压或电流采集过来,进行A/D 转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来。
热电偶的优点是工作温度范围非常宽,且体积小,但是它们也存在着输出电压小、容易遭受来自导线环路的噪声影响以及漂移较高的缺点,并且这种设计需要用到A/D 转换电路,感温电路比较麻烦。
系统主要包括对A/D0809 的数据采集,自动手动工作方式检测,温度的显示等,这几项功能的信号通过输入输出电路经单片机处理。
此外还有复位电路,晶振电路,启动电路等。
故现场输入硬件有手动复位键、A/D 转换芯片,处理芯片为51 芯片,执行机构有4 位数码管、报警器等。
数字温度计的设计4
一、总体设计思想1.基本原理传统的测量方法,大都使用那些利用固、液体的热膨胀原理而制造的传统温度计,它们都具有一定的局限性,特别是在深度和远距离测温场合中,其不足表现的更为突出。
本文所述的电子温度计完全克服了传统温度计的缺点,它是使用温度传感器将温度信号转化为电信号,然后进行温度指示的。
数字温度计一般由温度传感器、放大电路、模数转换、译码显示等几个部分组成。
温度传感器A/D变换器放大电路译码器显示器图1数字温度计(1)温度传感器温度是最普通最基本的物理量,用电测法测量温度时,首先要通过温度传感器将温度转换成电量,温度传感器有热膨胀式(双金属元件和水银柱开关),温差电势效应电压式(热电偶),电阻效应式电阻温度计(有铂、镍及镍铁合金和热敏电阻)。
半导体感受式(测温电阻、二极管和集成电路器件)。
(2)温度检测电路温度检测电路是将温度信号转化为电流信号,再转化为相应的电压信号以便测量。
(3)A/D转换及显示电路A/D转换主要的任务是对模拟电信号进行分析,将其信号转换成数码显示出来,可能的话还可以对信号进行分析预处理。
这里也主要是采用MC14433芯片,采用这个芯片可以大大减少A/D转换及译码电路,因为它本身输出就是BCD码,而且是按十进制位串行输出的,同时它还包含了时序电路即用来串行输出用扫描显示用的电路及超过适用范围时发出提示信号,极大简化了电路,从而提高了电路的稳定性及减少功耗。
(4)温度的数字显示运算放大器输出电压需经A/D变换、译码器送至数码管显示。
应注意显示的温度数值与电压之间的换算关系。
2.系统框图主控制器LE D 显示温度传感器复位电路位时钟振荡报警点按键图2 总体设计方框图二、设计步骤和调试过程1、总体设计电路原理图图5 总体电路2、模块设计和相应模块程序(1).温度传感器为了提高精度,扩大测量范围,在A/D转换前还要将信号加以放大并进行零点迁移,因而一个高稳定性的、高精度的放大电路是必须的。
数字温度计设计课程设计范本
数字温度计设计课程设计范本
设计题目:数字温度计设计
设计目的:通过设计数字温度计,学习数字电路设计基础知识,掌握数字温度计的设计方法和实现过程。
设计要求:
1.温度测量范围:-40℃ ~ 120℃;
2.温度分辨率:0.1℃;
3.显示方式:7段LED数码管显示,至少显示4位数字,其中小
数点占据一位;
4.温度传感器:使用DS18B20数字温度传感器;
5.显示方式:采用共阴极数码管,使用74HC595锁存器进行驱动,
使用AT89C51单片机进行控制;
6.设计过程:包括硬件设计和软件设计两个部分,其中硬件设计
包括电路原理图设计和PCB板设计,软件设计包括单片机程序
设计和烧录。
设计步骤:
1.硬件设计
1)根据DS18B20数字温度传感器的特性,设计传感器电路,包括电源电路和传感器接口电路。
2)根据温度范围和分辨率要求,设计ADC电路,将传感器输出的模拟信号转换为数字信号。
3)设计数码管驱动电路,使用74HC595锁存器进行驱动。
4)设计单片机接口电路,将数字信号传输到单片机,实现温度数据的处理和显示。
5)根据硬件设计结果,绘制电路原理图和PCB板图。
2.软件设计
1)根据硬件设计结果,编写单片机程序,实现温度数据的读取、处理和显示。
2)使用Keil C51软件进行编程和调试。
3)将程序烧录到单片机中。
4)进行系统测试和调试,确保数字温度计的正常工作。
设计结果:
1.电路原理图和PCB板图。
2.单片机程序。
3.数字温度计实物。
数字温度计设计方案
数字温度计设计方案数字温度计是一种利用数字显示温度值的仪器,目前已广泛应用于家庭、实验室、医疗等领域。
为了设计一个稳定、可靠的数字温度计,以下是一个初步设计方案。
1. 传感器选择温度传感器是数字温度计的核心部件,常用的有热敏电阻、热电偶、半导体传感器等。
在设计中,我们可以选择适用范围广、精度高的数字温度传感器,如DS18B20。
该传感器具有数字接口、高精度、高稳定性等特点。
2. 微控制器选择微控制器是数字温度计的处理器,负责监测温度传感器的数据,并将其转化为数字信号。
在设计中,我们可以选择具有足够计算能力、低功耗的微控制器,如STM32系列中的STM32F103C8T6。
该微控制器具有高性能、低功耗、丰富的外设等特点,适合用于数字温度计的设计。
3. 电路设计在电路设计中,可以采用数字传感器和微控制器之间的串行通信方式,使用一对引脚(数据引脚和电源引脚)实现数据的传输和供电。
同时,需要添加稳压电路和滤波电路,保证电路的稳定性和抗干扰能力。
4. 数字显示模块选择数字显示模块是数字温度计的输出设备,负责将测得的温度值以数字形式显示出来。
在设计中,可以选择7段LED数码管,该数码管具有明亮的显示效果、低功耗、容易驱动等优点。
5. 电源选择数字温度计需要稳定的电源供电,可选择直流电源供电,电压范围5V。
在设计中,可以添加电源管理电路,包括稳压电路、过压保护、短路保护等,以增加设备的安全性和稳定性。
6. 程序设计程序设计是数字温度计的重要环节,需要编写相应的程序实现温度的测量、显示、存储等功能。
在程序设计中,可以使用C 语言或者嵌入式开发平台进行编程,实现温度测量值的读取、温度值的转换、温度值的显示等功能。
总之,以上是一个基本的数字温度计的初步设计方案,通过选择合适的传感器、微控制器、显示模块,并进行稳压电路和滤波电路的设计,再加上适当的程序编写,可以设计出一个稳定、可靠的数字温度计。
当然,具体的设计方案还需要参照实际需求进行调整和优化。
数字温度计课程设计
数字温度计课程设计一、引言本文档旨在设计一门名为“数字温度计”的课程,旨在教授学生如何设计并制作一个简单的数字温度计。
通过这门课程,学生将了解温度的概念、温度测量的原理,并通过实践操作来设计、制作和调试一个数字温度计原型。
二、课程大纲1. 课程简介在本节课中,我们将介绍本门课程的内容、目标和教学方法。
2. 温度的概念和单位这一节课中,我们将学习温度的基本概念,温度的不同单位以及它们之间的转换关系。
3. 温度测量的原理在本节课中,我们将讲解温度测量的一些基本原理,包括使用热敏电阻、红外线传感器和半导体温度传感器等。
4. 温度传感器的选择和使用这节课我们将学习如何选择合适的温度传感器,并了解它们的使用方法和注意事项。
5. 数字温度计的设计与制作在本节课中,我们将介绍数字温度计的基本原理和电路设计。
学生们将分组进行设计并制作一个数字温度计原型。
6. 数字温度计的调试和应用这节课中,学生需要将制作好的数字温度计原型进行调试,并学习如何将其应用到实际生活中。
7. 课程总结和展望在最后一节课中,我们将对整个课程进行总结,并展望学生们在将来可以进一步深入研究的方向。
三、教学方法本门课程采用以下教学方法:1.授课:教师将通过讲解的方式,将温度概念、温度测量原理等知识传达给学生。
2.实验:学生将参与到温度计设计与制作的实验中,通过实际操作来理解概念和原理。
3.小组讨论:学生将分组进行温度计设计的讨论和合作,提高团队合作和问题解决能力。
4.实际应用:学生将通过调试和应用数字温度计原型,加深对温度测量的理解和实践能力。
四、课程评估本门课程的评估主要分为以下几个方面:1.实验成果:学生根据实验设计制作的数字温度计原型的质量和完成情况。
2.调试和应用:学生能否成功调试数字温度计原型,并将其应用到实际生活中。
3.报告和展示:学生需要撰写相关实验报告,并进行课程展示,展示他们的学习成果和理解。
五、参考资料以下是一些参考资料,供学生们深入了解和学习:1.电子技术基础教程2.温度传感器原理与应用3.温度计原理与设计以上是对《数字温度计课程设计》的简要说明,希望这门课程能够为学生们提供实践操作和实际应用的机会,帮助他们更深入地理解温度测量的原理与方法,培养他们的实践能力和问题解决能力。
新型数字温度计课程设计
新型数字温度计课程设计一、课程目标知识目标:1. 学生能理解新型数字温度计的工作原理与构造,掌握其使用方法。
2. 学生能描述温度的物理意义,并运用温度单位进行换算。
3. 学生了解新型数字温度计与传统温度计的区别及各自的优势。
技能目标:1. 学生能够正确使用新型数字温度计进行温度测量,并准确读取数据。
2. 学生通过实验操作,培养动手能力和观察分析能力。
3. 学生能够运用所学知识解决实际生活中的温度测量问题。
情感态度价值观目标:1. 学生对物理学产生兴趣,认识到物理知识与日常生活的紧密联系。
2. 学生在实验中培养合作意识,学会分享与交流,增强团队协作能力。
3. 学生在探索新型数字温度计的过程中,培养创新意识和科学探究精神。
本课程针对初中生设计,结合学生好奇心强、动手能力逐步提高的特点,注重理论知识与实践操作的相结合。
通过学习新型数字温度计的知识,使学生能够更好地理解物理学科,提高科学素养,同时培养其解决实际问题的能力。
教学过程中,注重启发式教学,引导学生主动探索,激发学生的学习兴趣和积极性。
课程目标的设定旨在让学生在学习过程中获得具体、可衡量的学习成果,为后续教学设计和评估提供依据。
二、教学内容1. 新型数字温度计的原理与构造- 温度测量的基本概念- 数字温度计的工作原理- 新型数字温度计的构造及功能特点2. 温度单位与换算- 摄氏度、华氏度等温度单位- 温度单位之间的换算方法3. 新型数字温度计的使用方法- 新型数字温度计的操作步骤- 正确读取温度数据的方法- 注意事项及安全操作规范4. 实践操作与数据分析- 实验室温度测量实践- 数据记录与处理- 分析新型数字温度计与传统温度计的优缺点5. 温度测量在生活中的应用- 生活中常见的温度测量场景- 新型数字温度计在实际应用中的优势教学内容依据课程目标,紧密结合教材,按照以下进度安排:第一课时:新型数字温度计的原理与构造,温度单位与换算第二课时:新型数字温度计的使用方法,实践操作与数据分析第三课时:温度测量在生活中的应用,总结讨论教学内容注重科学性和系统性,结合实验操作,使学生在实践中掌握新型数字温度计的相关知识,提高学生的实际操作能力。
数字温度计设计毕业设计(两篇)2024
数字温度计设计毕业设计(二)引言概述数字温度计是一种用于测量温度的电子设备,它通过传感器将温度转换为数字信号,然后显示在数字屏幕上。
本文将针对数字温度计的设计进行详细讨论,包括硬件设计和软件设计两个主要方面。
硬件设计部分将包括传感器选择、信号调理电路设计和数字显示设计;软件设计部分将包括嵌入式程序设计和用户界面设计。
通过本文的详细介绍,读者将能够了解到数字温度计的设计原理、设计流程和关键技术。
正文内容1. 传感器选择1.1 温度传感器类型1.2 温度传感器比较与选择1.3 温度传感器参数测试与校准2. 信号调理电路设计2.1 信号条件2.2 放大和滤波电路设计2.3 ADC(模数转换器)选型和使用3. 数字显示设计3.1 显示芯片选型和使用3.2 显示屏尺寸和分辨率选择3.3 显示内容设计和显示方式选择4. 嵌入式程序设计4.1 控制器选型和使用4.2 温度数据采集与处理4.3 温度数据存储和传输5. 用户界面设计5.1 按键和控制部分设计5.2 显示界面设计与实现5.3 温度单位与切换设计正文详细阐述1. 传感器选择1.1 温度传感器类型在数字温度计的设计中,可以选择多种温度传感器,包括热电偶、热敏电阻和半导体温度传感器等。
本文将比较各种传感器的特点和适用范围,从而选择最合适的传感器。
1.2 温度传感器比较与选择通过比较热电偶、热敏电阻和半导体温度传感器的精度、响应时间和成本等特点,结合设计需求和成本预算,选择最佳的温度传感器。
1.3 温度传感器参数测试与校准为了确保传感器的准确性,需要对其参数进行测试和校准。
本文将介绍传感器参数测试的方法和仪器,以及校准的步骤和标准。
2. 信号调理电路设计2.1 信号条件传感器输出的信号需要进行电平调整和滤波等处理,以便进一步处理和显示。
本文将介绍信号调理的基本原理和设计方法。
2.2 放大和滤波电路设计为了放大和滤波传感器输出的微弱信号,本文将介绍放大和滤波电路的设计原理和实现方法,包括运放、滤波器和滤波器的选型和参数设置。
数字温度计的设计word版本
数字温度计的设计实验六数字温度计的设计一、设计目的通过电子技术的综合设计,熟悉一般电子电路综合设计过程、设计要求、应完成的工作内容和具体的设计方法。
通过设计有助于复习、巩固以往的学习内容,达到灵活应用的目的。
设计完成后在实验室进行自行安装、调试,从而加强学生的动手能力。
在该过程中培养从事设计工作的整体概念。
二、设计要求1、利用所学的知识,通过上网或到图书馆查阅资料,完成数字温度计的设计;要求写出实验原理,画出原理功能框图,描述其功能。
2、需采用单片机STC15W404AS、NTC热敏电阻、共阳数码管等元器件进行设计,试确定设计方案详细工作原理,计算出参数。
3、技术指标:1)温度范围: 0 --- +100℃; 误差≤± 2 ℃;2)选择设计方案;3)根据设计方案分析设计原理及写出详细的硬件电路设计过程;方案概要本设计是利用NTC热敏电阻 MF52E-10K(B=3950)1%精度,作为温度传感器,其输出的信号通过STC15W404AS内部AD进行模数转换,然后STC15W404AS 对该温度数据进行处理,并由一个4位一体共阳数码管显示显示温度值。
收集于网络,如有侵权请联系管理员删除实验报告要求原理、计算等)1、根据设计要求确定数字温度计方案,并完成电路设计,分别说明设计方案、电路工作原理:2、完成电路连接并进行数字温度计测试:参考设计电路收集于网络,如有侵权请联系管理员删除图1 参考电路图收集于网络,如有侵权请联系管理员删除表1元器件清单收集于网络,如有侵权请联系管理员删除收集于网络,如有侵权请联系管理员删除图2 参考电路图收集于网络,如有侵权请联系管理员删除表2元器件清单收集于网络,如有侵权请联系管理员删除图3 数码管引脚图参考程序:******************************************/ #define MAIN_Fosc 22118400L //定义主时钟#include "STC15Fxxxx.H"收集于网络,如有侵权请联系管理员删除/****************************** 用户定义宏***********************************/#defineTimer0_Reload (65536UL -(MAIN_Fosc / 1000)) //Timer 0 中断频率, 1000次/秒/*****************************************************************************/#define DIS_DOT 0x20#define DIS_BLACK 16#define DIS_ 17#define AD_Cha 2 //0-4通道/************* 本地常量声明**************/ u8 code t_display[]={ //标准字库共阳// 0 1 2 3 4 5 6 7 8 9 A B C D E F 0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e,收集于网络,如有侵权请联系管理员删除//black - H J K L N o P U t G Q r M y0xff,0xBF,0x76,0x1E,0x70,0x38,0x37,0x5C,0x73,0x3E,0x78,0x3d,0x67,0x50,0x37,0x6e,0x40,0x79,0x24,0x30,0x19,0x12,0x02,0x78,0x00,0x10,0x46}; //0. 1. 2. 3. 4. 5.6. 7. 8. 9. -1/*u8 code t_display[]={ //标准字库// 0 1 2 3 4 5 6 7 8 9 A B C D E F 0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F,0x77,0x7C,0x39,0x5E,0x79,0x71,//black - H J K L N o P U t G Q r M y0x00,0x40,0x76,0x1E,0x70,0x38,0x37,0x5C,0x73,0x3E,0x78,0x3d,0x67,0x50,0x37,0x6e,0xBF,0x86,0xDB,0xCF,0xE6,0xED,0xFD,0x87,0xFF,0xEF,0x46}; //0. 1. 2.3. 4. 5. 6. 7. 8. 9. -1*/u8 code T_COM[]={0xEF,0xDF,0xBF,0x7F,0xEF,0xDF,0xBF,0x7F}; //位码/************* IO口定义**************/sbit P_HC595_SER = P4^0; //pin 14 SER data inputsbit P_HC595_RCLK = P5^4; //pin 12 RCLk store (latch) clocksbit P_HC595_SRCLK = P4^3; //pin 11 SRCLK Shift data clock/************* 本地变量声明**************/u8 LED8[8]; //显示缓冲u8 display_index; //显示位索引bit B_1ms; //1ms标志u8 offled;u16 msecond;/************* 本地函数声明**************/ u16 get_temperature(u16 adc);u16 Get_ADC10bitResult(u8 channel); //channel = 0~7void Delayms(u16 dlayT);void DisplayScan(void);/**********************************************/void main(void){u8 i,k;u16 j;P0M1 = 0; P0M0 = 0; //设置为准双向口P1M1 = 0; P1M0 = 0; //设置为准双向口P2M1 = 0; P2M0 = 0; //设置为准双向口P3M1 = 0; P3M0 = 0; //设置为准双向口P4M1 = 0; P4M0 = 0; //设置为准双向口P5M1 = 0; P5M0 = 0; //设置为准双向口P6M1 = 0; P6M0 = 0; //设置为准双向口P7M1 = 0; P7M0 = 0; //设置为准双向口display_index = 4;offled = 0;P1ASF = 0x0F; //P1.0 P1.1 P1.2 P1.3做ADC ADC_CONTR = 0xE0; //90T, ADC power onCLK_DIV = CLK_DIV&0xDF; //CLK_DIV.5 ADRJ=0 AUXR = 0x80; //Timer0 set as 1T, 16 bits timer auto-reload, TH0 = (u8)(Timer0_Reload / 256);TL0 = (u8)(Timer0_Reload % 256);ET0 = 1; //Timer0 interrupt enableTR0 = 1; //Tiner0 runEA = 1; //打开总中断for(k=11;k>0;k--){for(i=0; i<4; i++) LED8[i] = k-1; //上电消隐Delayms(1000);}while(1){if(B_1ms) //1ms到{B_1ms = 0;if(++msecond >= 300) //300ms到{msecond = 0;j = Get_ADC10bitResult(AD_Cha); //参数0~7,查询方式做一次ADC, 返回值就是结果, == 1024 为错误//j = 768;if(j < 1024){LED8[0] = j / 1000; //显示ADC值LED8[1] = (j % 1000) / 100;LED8[2] = (j % 100) / 10;LED8[3] = j % 10;if(LED8[0] == 0) LED8[0] = 16;}else //错误{for(i=0; i<4; i++) LED8[i] = 14;}j = Get_ADC10bitResult(3); //参数0~7,查询方式做一次ADC, 返回值就是结果, == 1024 为错误j += Get_ADC10bitResult(3);j += Get_ADC10bitResult(3);j += Get_ADC10bitResult(3);if(j < 1024*4){LED8[0] = j / 1000; //显示ADC值LED8[1] = (j % 1000) / 100;LED8[2] = (j % 100) / 10;LED8[3] = j % 10;if(LED8[0] == 0) LED8[0] = DIS_BLACK;j = get_temperature(j); //计算温度值if(j >= 400) F0 = 0, j -= 400; //温度 >= 0度else F0 = 1, j = 400 - j; //温度 < 0度LED8[4] = j / 1000; //显示温度值LED8[5] = (j % 1000) / 100;LED8[6] = (j % 100) / 10 + DIS_DOT;LED8[7] = j % 10;if(LED8[4] == 0) LED8[4] = DIS_BLACK;if(F0) LED8[4] = DIS_; //显示-}else //错误{for(i=0; i<8; i++) LED8[i] = DIS_;}}}}}/**********************************************///========================================================================// 函数: u16 Get_ADC10bitResult(u8 channel)// 描述: 查询法读一次ADC结果.// 参数: channel: 选择要转换的ADC.// 返回: 10位ADC结果.// 版本: V1.0, 2012-10-22//========================================================================u16 Get_ADC10bitResult(u8 channel) //channel = 0~7{ADC_RES = 0;ADC_RESL = 0;ADC_CONTR = (ADC_CONTR & 0xe0) | 0x08 | channel; //start the ADCNOP(4);while((ADC_CONTR & 0x10) == 0) ;//wait for ADC finishADC_CONTR &= ~0x10; //清除ADC结束标志return (((u16)ADC_RES << 2) | (ADC_RESL & 3));}// MF52E 10K at 25, B = 3950, ADC = 12 bitsu16 code temp_table[]={140, //;-40 0149, //;-39 1159, //;-38 2168, //;-37 3178, //;-36 4188, //;-35 5199, //;-34 6210, //;-33 7222, //;-32 8233, //;-31 9246, //;-30 10259, //;-29 11272, //;-28 12286, //;-27 13301, //;-26 14317, //;-25 15333, //;-24 16349, //;-23 17367, //;-22 18385, //;-21 19403, //;-20 20423, //;-19 21443, //;-18 22486, //;-16 24 509, //;-15 25 533, //;-14 26 558, //;-13 27 583, //;-12 28 610, //;-11 29 638, //;-10 30 667, //;-9 31 696, //;-8 32 727, //;-7 33 758, //;-6 34 791, //;-5 35 824, //;-4 36 858, //;-3 37 893, //;-2 38 929, //;-1 39 965, //;0 40 1003, //;1 41 1041, //;2 42 1080, //;3 43 1119, //;4 44 1160, //;5 45 1201, //;6 46 1243, //;7 47 1285, //;8 481371, //;10 50 1414, //;11 51 1459, //;12 52 1503, //;13 53 1548, //;14 54 1593, //;15 55 1638, //;16 56 1684, //;17 57 1730, //;18 58 1775, //;19 59 1821, //;20 60 1867, //;21 61 1912, //;22 62 1958, //;23 63 2003, //;24 64 2048, //;25 65 2093, //;26 66 2137, //;27 67 2182, //;28 68 2225, //;29 69 2269, //;30 70 2312, //;31 71 2354, //;32 72 2397, //;33 73 2438, //;34 742519, //;36 76 2559, //;37 77 2598, //;38 78 2637, //;39 79 2675, //;40 80 2712, //;41 81 2748, //;42 82 2784, //;43 83 2819, //;44 84 2853, //;45 85 2887, //;46 86 2920, //;47 87 2952, //;48 88 2984, //;49 89 3014, //;50 90 3044, //;51 91 3073, //;52 92 3102, //;53 93 3130, //;54 94 3157, //;55 95 3183, //;56 96 3209, //;57 97 3234, //;58 98 3259, //;59 99 3283, //;60 1003328, //;62 102 3351, //;63 103 3372, //;64 104 3393, //;65 105 3413, //;66 106 3432, //;67 107 3452, //;68 108 3470, //;69 109 3488, //;70 110 3506, //;71 111 3523, //;72 112 3539, //;73 113 3555, //;74 114 3571, //;75 115 3586, //;76 116 3601, //;77 117 3615, //;78 118 3628, //;79 119 3642, //;80 120 3655, //;81 121 3667, //;82 122 3679, //;83 123 3691, //;84 124 3702, //;85 125 3714, //;86 1263735, //;88 128 3745, //;89 129 3754, //;90 130 3764, //;91 131 3773, //;92 132 3782, //;93 133 3791, //;94 134 3799, //;95 135 3807, //;96 136 3815, //;97 137 3822, //;98 138 3830, //;99 139 3837, //;100 140 3844, //;101 141 3850, //;102 142 3857, //;103 143 3863, //;104 144 3869, //;105 145 3875, //;106 146 3881, //;107 147 3887, //;108 148 3892, //;109 149 3897, //;110 150 3902, //;111 151 3907, //;112 1523917, //;114 1543921, //;115 1553926, //;116 1563930, //;117 1573934, //;118 1583938, //;119 1593942 //;120 160};/******************** 计算温度***********************************************/// 计算结果: 0对应-40.0度, 400对应0度, 625对应25.0度, 最大1600对应120.0度.// 为了通用, ADC输入为12bit的ADC值.// 电路和软件算法设计: Coody/**********************************************/#define D_SCALE 10 //结果放大倍数, 放大10倍就是保留一位小数u16 get_temperature(u16 adc){u16 code *p;u16 i;u8 j,k,min,max;adc = 4096 - adc; //Rt接地p = temp_table;if(adc < p[0]) return (0xfffe);if(adc > p[160]) return (0xffff);min = 0; //-40度max = 160; //120度for(j=0; j<5; j++) //对分查表{k = min / 2 + max / 2;if(adc <= p[k]) m ax = k;else min = k;}if(adc == p[min]) i = min * D_SCALE;else if(adc == p[max]) i = max * D_SCALE;else // min < temp < max{while(min <= max){min++;if(adc == p[min]) {i = min * D_SCALE; break;}else if(adc < p[min]){min--;i = p[min]; //minj = (adc - i) * D_SCALE / (p[min+1] - i);i = min;i *= D_SCALE;i += j;break;}}}return i;}void Delayms(u16 dlayT){u16 i,j;for(i=0;i<dlayT;i++)for(j=0;j<1280;j++){_nop_();}}/********************** 显示扫描函数 ************************/void DisplayScan(void){u8 i;for(i=0;i<10;i++){P3=0xff;P1 = 0xff;}P3 = t_display[LED8[display_index]]; //输出段码P1 = T_COM[display_index]; //输出位码if(++display_index >= 8) display_index = 4; //8位结束回0}/********************** Timer0 1ms中断函数 ************************/ void timer0 (void) interrupt TIMER0_VECTOR{DisplayScan();//1ms扫描显示一位B_1ms = 1; //1ms标志}附件:1 、NTC热敏电阻原理及应用2、STC15Fxxxx.H程序头文件3、STC15.pdf单片机芯片资料(a 请仔细阅读第10章STC15系列A/D转换第863页b 第7章定时器/计数器第578页)4 、stc-isp-15xx-v6.80.exe程序烧写软件5、STC-ICE-VER2-chinese.DOC烧写软件使用说明书NTC热敏电阻原理及应用NTC热敏电阻是指具有负温度系数的热敏电阻。
基于51单片机的数字温度计设计
基于51单片机的数字温度计设计数字温度计是一种广泛使用的电子测量设备,通过传感器将温度转化为数字信号,并显示出来。
本文将介绍基于51单片机的数字温度计的设计。
该设计将使得使用者能够准确、方便地测量温度,并实时显示在液晶显示屏上。
1. 硬件设计:- 传感器选择:在设计数字温度计时,我们可以选择使用NTC(负温度系数)热敏电阻或者DS18B20数字温度传感器作为温度传感器。
这里我们选择DS18B20。
- 信号转换:DS18B20传感器是一种数字传感器,需要通过单总线协议与51单片机进行通信。
因此,我们需要使用DS18B20专用的驱动电路,将模拟信号转换为数字信号。
- 51单片机的选择:根据设计要求选择合适的51单片机,如STC89C52、AT89S52等型号。
单片机应具备足够的IO口来与传感器和液晶显示屏进行通信,并具备足够的计算和存储能力。
- 显示屏选择:为了实时显示温度,我们可以选择使用1602型字符液晶显示屏。
该显示屏能够显示2行16个字符,足够满足我们的需求。
通过与51单片机的IO口连接,我们可以将温度数据显示在屏幕上。
2. 软件设计:- 采集温度数据:通过51单片机与DS18B20传感器进行通信,采集传感器传输的数字温度数据。
通过解析传感器发送的数据,我们可以获得当前的温度数值。
- 数据处理:获得温度数据后,我们需要对其进行处理。
例如,可以进行单位转换,从摄氏度到华氏度或者开尔文度。
同时,根据用户需求,我们还可以对数据进行滤波、校准等处理。
- 显示数据:通过与液晶显示屏的连接,我们可以将温度数据显示在屏幕上。
可以使用51单片机内部的LCD模块库来控制液晶显示屏,显示温度数据以及相应的单位信息。
- 用户交互:可以设置一些按键,通过与51单片机的IO口连接,来实现用户与数字温度计的交互。
例如,可以设置一个按钮来进行温度单位的切换,或者设置一个按钮来启动数据保存等功能。
3. 功能拓展:- 数据存储:除了实时显示当前温度,我们还可以考虑增加数据存储功能。
数字温度计课程设计最新
数字温度计课程设计最新一、教学目标本课程的学习目标包括知识目标、技能目标和情感态度价值观目标。
知识目标要求学生掌握数字温度计的工作原理、构造及使用方法。
技能目标要求学生能够运用数字温度计进行温度测量,并能够进行简单的故障排查和维修。
情感态度价值观目标要求学生培养对科学的兴趣和好奇心,提高学生对物理实验的热爱,培养学生团结协作、勇于探索的精神。
二、教学内容本课程的教学内容主要包括数字温度计的工作原理、构造及使用方法。
首先,介绍数字温度计的工作原理,让学生了解其内部结构和工作机制。
其次,讲解数字温度计的构造,包括各个部分的功能和作用。
最后,教授学生如何使用数字温度计进行温度测量,以及如何进行简单的故障排查和维修。
三、教学方法本课程的教学方法包括讲授法、实验法、讨论法和案例分析法。
首先,通过讲授法向学生传授数字温度计的相关理论知识。
其次,利用实验法让学生亲自动手操作数字温度计,加深对理论知识的理解。
接着,通过讨论法引导学生进行思考和交流,培养学生的创新思维和团队协作能力。
最后,运用案例分析法让学生分析实际问题,提高学生解决问题的能力。
四、教学资源本课程的教学资源包括教材、参考书、多媒体资料和实验设备。
教材和参考书为学生提供理论知识的学习材料,多媒体资料为学生提供形象的视觉感受,实验设备则是学生进行实践操作的重要工具。
通过丰富多样的教学资源,为学生提供全面、立体的学习体验,提高学生的学习效果。
五、教学评估本课程的评估方式包括平时表现、作业和考试等。
平时表现主要评估学生的课堂参与度、提问回答和团队协作等情况,占总评的30%。
作业主要包括课后练习和小论文,占总评的20%。
考试包括期中考试和期末考试,占总评的50%。
评估方式应客观、公正,能够全面反映学生的学习成果。
六、教学安排本课程的教学安排如下:共16周,每周2课时。
教学进度安排合理、紧凑,确保在有限的时间内完成教学任务。
教学地点选在教室和实验室,方便学生进行理论学习和实践操作。
基于51单片机数字温度计的设计与实现
基于51单片机数字温度计的设计与实现数字温度计是一种能够测量环境温度并显示数值的设备。
基于51单片机的数字温度计设计与实现是指利用51单片机作为核心,结合温度传感器和其他辅助电路,实现一个能够测量温度并通过数码管显示温度数值的系统。
本文将从硬件设计和软件实现两个方面介绍基于51单片机数字温度计的具体设计与实现过程。
一、硬件设计1. 温度传感器选取在设计数字温度计时,首先需要选取合适的温度传感器。
市面上常用的温度传感器有热敏电阻、功率型温度传感器(如PT100)、数字温度传感器(如DS18B20)等。
根据设计需求和成本考虑,我们选择使用DS18B20数字温度传感器。
2. 电路设计基于51单片机的数字温度计的电路设计主要包括单片机与温度传感器的连接、数码管显示电路和电源电路。
(1)单片机与温度传感器的连接在电路中将51单片机与DS18B20数字温度传感器相连接,可采用一线总线的方式。
通过引脚的连接,实现单片机对温度传感器的读取控制。
(2)数码管显示电路为了能够显示温度数值,我们需要设计一个数码管显示电路。
根据温度传感器测得的温度值,通过数字转换和数码管驱动,将温度数值显示在数码管上。
(3)电源电路电源电路采用稳压电源设计,保证整个系统的稳定供电。
根据实际需求选择合适的电源电压,并添加滤波电容和稳压芯片,以稳定电源输出。
3. PCB设计根据电路设计的原理图,进行PCB设计。
根据电路元件的布局和连线的走向,绘制PCB板的线路、元件和连接之间。
二、软件实现1. 单片机的编程语言选择对于基于51单片机的数字温度计的软件实现,我们可以选择汇编语言或者C语言进行编程。
汇编语言的效率高,但编写难度大;C语言的可读性好,开发效率高。
根据实际情况,我们选择使用C语言进行编程。
2. 温度传感器数据获取利用单片机的IO口与温度传感器相连,通过一线总线协议进行数据的读取。
根据温度传感器的通信规则,编写相应的代码实现数据的读取。
数字温度计课程设计mul
数字温度计课程设计mul一、课程目标知识目标:1. 学生能理解数字温度计的工作原理,掌握温度测量单位摄氏度(℃)和华氏度(℉)的转换方法。
2. 学生能描述数字温度计在日常生活和科学实验中的应用,了解不同场合下温度测量的重要性。
3. 学生了解温度对环境、生物及物体性质的影响,理解温度变化与自然现象之间的关系。
技能目标:1. 学生能够正确使用数字温度计进行温度测量,并准确读取温度值。
2. 学生能够运用所学知识解决实际生活中的温度测量问题,如体温测量、气温观测等。
3. 学生通过小组合作和实验探究,培养观察、分析、解决问题的能力。
情感态度价值观目标:1. 学生养成对温度测量数据的严谨态度,注重实验操作的准确性和安全性。
2. 学生认识到温度测量在科学研究、生活实践等方面的重要意义,增强对科学技术的兴趣和好奇心。
3. 学生通过学习数字温度计相关知识,培养环保意识,关注气候变化对环境的影响。
4. 学生在小组合作中学会沟通、协作,培养团队精神和尊重他人意见的品质。
本课程设计针对学生年级特点,结合数字温度计相关知识,注重理论与实践相结合,旨在提高学生的科学素养和实践能力。
课程目标具体、可衡量,便于教学设计和评估。
在教学过程中,教师需关注学生个体差异,充分调动学生的积极性,引导他们主动探究、合作交流,实现课程目标。
二、教学内容本章节教学内容依据课程目标,紧密结合教材,确保科学性和系统性。
主要包括以下几部分:1. 数字温度计工作原理:介绍数字温度计的基本结构、传感器原理以及温度测量方法。
2. 温度单位及转换:讲解摄氏度与华氏度的定义,引导学生掌握两者之间的转换公式及计算方法。
3. 数字温度计的使用方法:教授如何正确使用数字温度计进行温度测量,包括操作步骤、注意事项等。
4. 温度测量的应用:分析数字温度计在日常生活、科学实验、医疗健康等领域的应用,强调温度测量在实际生活中的重要性。
5. 温度对生物及物体性质的影响:探讨温度对生物生长、物体状态变化等方面的影响,引导学生了解温度与自然现象之间的关系。
数字温度计课程设计
数字温度计课程设计
一、数字温度计课程设计
1. 数字温度计的原理
数字温度计是一种用于测量温度的仪器,它通过将温度转换成一个数字值来表示温度,这个数字值有可能是摄氏度、华氏度或其他单位的温度计。
数字温度计的原理是改变温度,会改变某种传感器的电阻值,这种电阻值改变可以通过计算机来进行捕捉,然后转换成数字形式,来测量温度。
2. 数字温度计的结构
数字温度计由传感器、显示模块、控制模块和电源模块组成。
传感器:主要用于检测周围环境的温度变化,由于温度的变化会使电阻值发生变化,这种变化可以被传感器捕捉,转换成数字信号。
显示模块:用于将温度信号转换成易于人们阅读的数字值,例如显示温度读数。
控制模块:根据传感器反馈的信号,控制显示模块显示不同的温度值。
电源模块:为数字温度计提供电源,使传感器、显示模块和控制模块能够正常工作。
3. 数字温度计的应用
数字温度计可以用来测量室内、室外的温度,它可以准确的读出温度,而且易于使用。
另外,它也可以用于检测生物体温度,例如,它可以用于检测人体的体温,也可以用于检测样品的温度,如食物、饮料等,以保证样品的品质。
数字温度计还可以用于检测其他环境温度,比如空调房间、汽车内部等等,以确保环境适宜。
数字温度计详细设计
目录摘要 (3)第一章绪论.........................................................................................................................................第二章方案设计与论证. (4)2.1总体设计方案 (4)2.2系统主要模块方案论证与比较 (4)2.2.1控制模块的选用 (4)2.2.2温度测量模块选用 (5)第三章硬件设计 (6)3.1单片机主控模块 (6)3.2温度检测模块 (7)3.2.1DS18B20的引脚功能 (7)3.2.2DS18B20硬件电路设计 (8)3.3锁存模块 (8)3.4 显示模块 (9)3.5 指示灯模块 (9)第4章系统软件设计 (10)4.1系统流程图 (10)4.1.1系统主程序设计 (10)4.1.2读出温度子程序 (11)4.1.3延时子程序 (11)4.1.4 显示数据子程序 (12)4.1.5系统初始化程序 (12)4.1.6 温度转换段码子程序 (13)4.1.7计算温度子程序 (14)第五章系统测试 (16)结论及器件总结 (18)摘要本设计以AT89C51单片机为核心,以温度传感器DS18B20、边沿D触发器7474、移位寄存器74LS164和3位共阴极LED数码管为主体设计了一款简易数字式温度计。
它可以通过控制锁存键来锁存当前温度值,具有读数方便的特点。
系统采用LED数码管作为显示器,软件程序采用均采用C语言编写,便于移植与升级。
报告详细介绍了整个系统的硬件组成结构、工作原理和系统的软件程序设计。
关键词温度计;AT89C51;传感器;DS18B20第一章方案设计与论证2.1总体设计方案根据题目设计要求,本设计控制单元采用单片机AT89C51,温度传感器采用DS18B20,用3位LED数码管以串口传送数据实现温度显示。
数字温度计设计课程设计
数字温度计设计课程设计引言数字温度计是一种用于测量温度的设备,它将温度转换为数字信号来表示。
在本课程设计中,我们将探讨数字温度计的设计原理和实现方法。
通过本设计,学生将能够理解数字温度计的工作原理,掌握数字信号的转换方式,并通过实际搭建一个数字温度计的电路来锻炼实践能力。
设计目标本课程设计旨在帮助学生达到以下目标:1.理解数字温度计的基本原理和工作机制;2.掌握数字信号的转换方式;3.学会使用模拟传感器完成温度测量;4.能够使用电路和编程工具实现数字温度计。
设计步骤步骤一:理解数字温度计的原理在本步骤中,学生将学习数字温度计的基本原理和工作机制。
他们需要学习关于传感器、模拟信号和数字信号的知识。
可以使用实验示意图、图表和实际温度计来帮助学生理解。
步骤二:选择传感器和电路元件在本步骤中,学生将学习如何选择合适的传感器和电路元件来实现数字温度计。
他们需要学习传感器的种类和特性,并选择合适的传感器来测量温度。
此外,学生还需要选择合适的电路元件来转换模拟信号为数字信号。
步骤三:搭建电路在本步骤中,学生将使用所选的传感器和电路元件来搭建数字温度计的电路。
他们需要按照电路图纸的指导,正确地连接电路,并确认电路的正常工作。
步骤四:测试和校准在本步骤中,学生将测试他们搭建的数字温度计的性能和准确性。
他们可以使用已知温度源来测试数字温度计的响应和精度,并根据需要调整传感器和电路的参数。
步骤五:实现数字温度显示在本步骤中,学生将使用数字信号转换器和显示设备来实现数字温度的显示。
他们需要学习如何将数字信号转换为合适的格式,并将其显示在合适的设备上。
步骤六:编写文档和报告在本步骤中,学生需要撰写关于数字温度计设计的文档和实验报告。
他们需要描述设计的原理、电路图纸、实验步骤和测试结果,并对设计中遇到的问题和解决方法进行讨论。
实验工具和材料•Arduino Uno开发板•温度传感器•电阻、电容和电路连接线•电脑和编程软件•调试工具:万用表、示波器等总结通过本课程设计,学生将能够理解数字温度计的工作原理,掌握数字信号的转换方式,并通过实际搭建一个数字温度计的电路来锻炼实践能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字温度计摘要:温度计在实际生产和人们的生活中都有广泛应用。
该设计是数字温度计,首先是对总体方案的选择和设计;然后通过控制LM35进行温度采集;将温度的变化转为电压的变化,其次设计电压电路,将变化的电压量通过放大系统转化为所需要的电压;再通过TC7107将模拟的电压转化为数字量后直接驱动数码管LED对实时温度进行动态显示。
最后在Proteus仿真软件中构建了数字温度计仿真电路图,仿真结果表明:在温度变化时,可以通过电压的变化形式传递,最终通过3位十进制数显示出来。
关键词:温度计;电路设计;仿真目录1设计任务与要求 (1)2方案设计与论证 (1)3单元电路的设计及仿真 (2)3.1传感器 (2)3.2放大系统 (2)3.3 A/D转换器及数字显示 (4)4 总电路设计及其仿真调试过程 (6)4.1总电路设计 (6)4.2仿真结果及其分析 (7)5 结论与心得 (9)6 参考文献 (11)1 设计任务与要求温度计是工农业生产及科学研究中最常用的测量仪表。
本课题要求用中小规模集成芯片设计并制作一数字式温度计,即用数字显示被测温度。
具体要求如下:(1)测量范围0~100度。
(2)测量精度0.1度。
(3)3位LED数码管显示。
掌握线性系统的根轨迹、时域和频域分析与计算方法;(2)掌握线性系统的超前、滞后、滞后-超前、一二阶最佳参数、PID等校正方法;(3)掌握MATLAB线性系统性能分析、校正设计与检验的基本方法。
2 方案设计与论证数字温度计的原理是:通过控制传感器进行温度采集,将温度的变化转化为电压的变化;然后设计电压电路,将变化的电压通过放大系统转化为需要的电压;再通过A/D转换器将模拟的电压转换为数字量后驱动数码管对实时温度进行动态显示。
原理框图如图2-1所示:图2-1数字温度计原理框图由设计任务与要求可知道,本设计实验主要分为四个部分,即传感器、放大系统、模数转换器以及显示部分。
经过分析,传感器可以选择对温度比较敏感的器件,做好是在某参数与温度成线性关系,比如用温敏晶体管构成的集成温度传感器或热敏电阻等;放大系统可以由集成运放组成或反相比例运算放大器;A/D转换器需要选择有LED 驱动显示功能的,而可供选择的参考元件有ICL7107,ICL7106,MC14433等;显示部分用3位LED数码管显示。
方案一:用一个热敏电阻,通过热敏电阻把温度转化为电压,再得到每一度热敏电阻的电压变化值,用LM324运放做成乘法器,使电压乘以一个比例系数,使一度的变化得到一个整数变化的电压值,然后送入MC14433(A/D转换器)进行数模转换和数字显示。
方案二:用集成温度传感器把温度转化为电压,在把每一度的电压变化值通过LM324集成运放进行放大,使其放大的信号应能满足ICL7107数模转换的要求进行数字显示。
由于MC14433模数转换器的显示部分需要驱动器CD4511,基准电压又需要一个MC1403,也就是需要外接的电路和元件相对复杂和麻烦。
而31/2位双积分型A/D 转换器ICL7107是CMOS大规模集成电路芯片,其片内已经集成了模拟电路部分和数字电路部分,所以只要外接少量元件就成了模拟电路和数字电路部分,所以只要外接少量元件就可实现A/D转换和数码显示。
因此选用方案二。
设计初稿中的元器件大多是通过参考书和网上的资料定下来的,Multisim是最常用的仿真软件。
首次选用Multisim进行仿真,可是在Multisim里始终找不到需要的仿真模型,最后选用Proteus进行仿真。
到了Proteus仿真软件里,很多元器件还是没有仿真模型,只能折中选用仿真模型里有的。
比如放大电路由LM324取代了LM741, A/D 转换器由TC7107取代了ICL7107等等。
主要参考元器件有:LM35,LM324,TC7107,电阻及电容若干。
3 单元电路的设计及仿真3.1温度传感器集成温度传感器是将温敏晶体管及其辅助电路集成在同一芯片上的集成化温度传感器,这种传感器最大优点是:直接给出正比于热力学温度的理想的线性输出,另外体积小,成本低廉。
因此,它是现代半导件温度传感器的主要发展方向之一。
目前,已广泛应用于-55~150℃温度范围内的温度监测、控制和补偿的许多场合。
由于本设计要求,测温范围为0~100℃,故此集成温度传感器满足要求。
3.2放大系统放大系统是把温度传感器输出的弱信号放大,将每一摄氏度对应的电压以整数输出,可以利用集成运放LM324组成两个反相比例放大电路,由于温度传感器输出的电压与温度的线性关系为10mv /℃,即温度每升高1℃电压升高10mv ,因此可以使得电压通过反相比例运算电路放大10倍,即1℃对应电压为100mv 。
(1)反相运算器电路结构:图3-1 反相运算放大器的电路结构图如图3-1所示,该图为反相运算放大器的电路结构图。
图中的 R 1:输入电阻R f :反馈电阻,引入电压并联负反馈 R 2:平衡电阻,要求 R 2=R 1//R f(2)电压放大倍数:f ovf i iR V A V R ==- V 0和V i 成比例关系,比例系数为-R f /R i ,负号表示V 0和V i 反相比例系数的数值可以是大于、等于或小于1的任何值。
通用型低功耗集成四运放LM324,内含4个独立的高增益、频率补偿的运算放大器,既可接单电源使用(3~30v ),也可接双电源使用(±1.5~±15v ),驱动功耗低,可与TTL 逻辑电路相容。
故选用LM324进行放大系统。
参数计算:U 3:A (反相比例运算放大器)用电压放大倍数选择输入电阻和反馈电阻,选用输入电阻R 4=1k ,故反馈电阻R 3=10.03k 。
平衡电阻R 6=R 4//R 3=1.1k 。
放大后的电压为负电压,所以还需要级联一个U3:B (同比例反相器),选用输入电阻R8=10k,反馈电阻R9=10k,平衡电阻R7=R8//R9=5k,使它由负电压变为正电压。
放大系统电路,如下图所示:图3-2两个反相器构成的放大系统如图3-2所示,给放大电路一个初始电压,例:V1=0.36v时,经一个10倍的反相运算放大器放大后,电压为-3.59v,经一个同比例反相运算放大器后,电压为+3.59v。
仿真与理论存在微小误差(在可允许范围类), 故放大系统部分设计成功。
3.3 A/D转换器及数字显示TC7107是一块应用非常广泛的集成电路,它包含31/2位数字A/D转换器可直接驱动LED数码管,内部设有参考电压独立模拟开关、逻辑控制、显示驱动、自动调零功能等。
31/2位双积分型A/D转换器TC7107的引脚图和管教图以及功能简介31/2位双积分型A/D转换器TC7107是CMOS大规模集成电路芯片,其片内已经集成了模拟电路部分和数字电路部分,所以只要外接少量元件就成了模拟电路和数字电路部分,所以只要外接少量元件就可实现A/D转换。
TC7107内部电路含有模拟电路和数字电路两大部分。
TC7107的管脚图,如下所示:VBUFF 28CAZ 29VIN+31VIN-30ACOM 32VINT 27CREF+34CREF-33VREF+36VREF-35V+1V-26D12C13B14A15F16G17E18D29C210B211A212F213G225E214D315B316C324A323F317G322E318AB419POL 20GND 21OSC140OSC239OSC338TEST 37U1TC7107如图3-3所示,介绍TC7107各管脚的功能: 1端:V+ 为电源正极。
26端:V- 为电源负极。
19端:AB4,千位数笔段驱动输出端,由于31/2位的计数满量程显示为“1999”, 所以AB4输出端应接千位数显示器显示“1”字的b 和c 笔段。
20端:POL ,极性显示端(负显示),与千位数显示器的g 笔段相连接(或另行设置的负极性笔段)。
当输入信号的电压极性为负时,负号显示,如“-19.99”;当输入信号的电压极性为正时,极性负号不显示如“19.99”。
21端:POL ,液晶显示器背电极,与正负电源的公共地端相连接。
27端:VINT ,积分器输出端,外接积分电容C (一般取C=0.22μF)。
28端:VBUFF ,缓冲放大器输出端,外接积分电阻R (其值在满刻度200mV 时选用47K ,而2V 满刻度则使用470K )。
29端: CAZ ,积分器和比较器的反相输入端,接自校零电容C (如果应用在200mV 满刻度的场合是使用0.47μF ,而2V 满刻度是0.047μF 。
)。
30、31端:VIN-、VIN+,输入电压低、高端。
由于两端与高阻抗CMOS 运算放大器相连接,可以忽略输入信号的注入电流,输入信号应经过1000k电阻组成的滤波电路输入,以滤除干扰信号。
2~8端:个位数显示器的笔段驱动输出端,各笔段输出端分别与个位数显示器对应的笔段a~g相连接。
9~14、25端:十位数显示器的笔段驱动输出端,各笔段输出端分别与十位数显示器对应的笔段a~g相连接。
15~18、22~24端:百位数显示器的笔段驱动输出端,各笔段输出端分别与百位数显示器对应的笔段a~g相连接。
32端:ACOM,模拟公共电压设置端,一般与输入信号的负端,负基准电压端相接。
33、34端:CREF-、CREF+,基准电容负压、正压端,它被充电的电压在反相积分时,成为基准电压,通常取REFC=0.1μF。
35、36端:VREF-、VREF+,外接基准电压低、高位端,由电源电压分压得到。
37端:TEST,数字地设置端及测试端,经过芯片内部的500电阻与GND相连。
38、39、40端:OSC3~1,产生时钟脉冲的振荡器的引出端,外接阻容元件。
振荡器主振频率f与R、C的关系。
因为芯片TC7107采用双电源供电,能输出较大的电流,适合于驱动发光二极管(LED)数码显示器,并且TC7107芯片内部包括7段译码,可以用硬件译码的方法直接驱动发光二极管(LED)数码显示器,所以显示方式采用共阳极数码管LED显示,由于TC7107没有专门的小数点驱动信号,使用时可将共阳级数码管的公共阳极接V+,小数点接GND时点亮,接V+时熄灭。
数码显示部分由3个数码管显示数据。
4 总电路设计及其仿真调试过程4.1总电路设计根据设计任务知,本系统由传感器、放大系统、A/D转换器和数码显示四部分组成,按照要求将四部分在Proteus仿真软件上级连起来绘出总的电路原理图。
总电路原理图,如下图4-1所示:图4-1 总电路原理图特别注意:1) Proteus里的7107有点问题,30、32这两个引脚不能与电源共地。
意思是说电压输入电路自己构成回路即可。
不可添加电源地的符号。