温度显示器的设计设计
基于fpga的智能温度控制系统的设计
基于fpga的智能温度控制系统的设计随着科技的发展,智能控制系统被广泛应用于工业领域和智能家居中,其中智能温度控制系统是其中的一种。
智能温度控制系统能够根据环境温度变化自动控制加热或制冷设备,从而保证环境温度始终在设定值范围内,提高生产效率和舒适度。
本文将介绍一种基于FPGA的智能温度控制系统设计方案。
1. 系统设计该系统由传感器、FPGA、驱动器以及显示器组成。
传感器用于检测环境温度变化,FPGA用于对传感器信号进行处理,驱动器用于控制加热或制冷设备,显示器用于显示系统状态。
系统设计流程如下:1.1 传感器传感器可以选择温度传感器、热敏电阻传感器或热电偶传感器等。
本系统选用温度传感器,将传感器输出的模拟信号转化为FPGA可读的数字信号,从而实现数字信号化。
1.2 数字信号化将模拟信号数字化是实现控制系统的关键所在。
数字信号化是通过模数转换器(ADC)将模拟信号转化为数字信号的过程。
本系统将模拟信号转化为12位数字信号。
1.3 FPGA处理FPGA芯片(Field-Programmable Gate Array)是一种可编程逻辑器件,它能够快速地对数字信号进行处理。
FPGA芯片是本系统的核心处理器,它被用来对传感器信号进行处理,根据环境温度的变化决定加热还是制冷,从而保持环境温度在设定范围内。
具体的处理流程如下:(1)读取温度传感器数据。
(2)将传感器输出的模拟信号转变为数字信号。
(3)将数字信号与设定的环境温度范围进行比较,以决定是否需要进行加热或制冷。
(4)对加热或制冷设备进行控制。
1.4 驱动器设计由于加热或制冷设备的控制电源电平和FPGA的电平不一致,需要通过驱动器进行转换。
本系统使用驱动器将FPGA输出的信号转化成能够控制加热或制冷设备的继电器信号。
1.5 显示器设计本系统使用7段LED数码管作为显示器,用于显示当前环境温度以及系统状态。
系统状态包括温度过高、温度过低、正常等状态,以告知用户系统运行情况。
温度采集与显示设计程序详解
温度采集与显示设计程序详解程序流程如下:1.初始化温度传感器:连接温度传感器至控制器,并进行初始化。
这包括设置传感器接口和模式,设置精度等。
2.采集温度数据:通过温度传感器读取环境温度数据,并将其存储在变量中。
3.数据处理:对采集到的温度数据进行一定的处理,例如进行单位转换、滤波处理等。
4.数据显示:将处理后的温度数据通过显示器显示出来。
可以使用LCD液晶显示器、LED数码管、数码管等不同的显示器设备。
5.重复采集与显示:循环执行步骤2-4,以实现实时监测和显示环境温度。
实现细节如下:1. 初始化温度传感器:根据具体采用的温度传感器型号和接口类型,选择相应的初始化函数进行初始化。
例如,如果使用OneWire接口的DS18B20温度传感器,可以使用Arduino库中的OneWire库进行初始化。
2.采集温度数据:通过读取温度传感器的输出,可以获取到环境温度的原始数据。
具体的采集方法和代码取决于所采用的传感器和控制器类型。
3.数据处理:在采集到的温度数据上进行一定的处理,以满足实际需求。
例如,对于DS18B20传感器输出的12位数据,可以通过位运算进行小数点处理,从而得到实际的温度值。
4. 数据显示:根据设计需求选择相应的显示器设备,并使用相应的显示库函数将处理后的温度数据显示出来。
例如,使用LiquidCrystal库操作LCD液晶显示器进行显示。
5. 重复采集与显示:使用循环语句,如while循环,不断执行数据采集和显示的步骤,以实现实时监测和显示环境温度。
可以根据实际需求设置采集和显示的时间间隔。
总结:温度采集与显示设计主要包括温度传感器的初始化、温度数据的采集、数据的处理和显示器的选择与操作。
通过合理的程序设计和选择适合的硬件设备,可以实现实时监测和显示环境温度。
具体的实现细节和程序代码取决于具体的传感器和控制器类型,以及所采用的显示器设备。
温度测控仪设计-毕业设计
温度测控仪设计学生:XXX 指导教师:XXX容摘要:本文主要介绍了智能温度测量仪的设计,包括硬件和软件的设计。
先对该测量仪进行概括性介绍,然后介绍该测量仪在硬件设计上的主要器件:“Pt100热电阻”、AT89C51单片机和LCD显示器以及描述测量仪的总体结构原理。
在本设计中,是以铂电阻PT100作为温度传感器,采用恒流测温的方法,通过单片机进行控制,用放大器、A/D 转换器进行温度信号的采集。
总体来说,该设计是切实可行的。
关键词:温度 Pt100热电阻 AT89C51单片机 LCD显示器Design of and control instrumentAbstract: This paper describes the design of the intelligent temperature measuring instrument, including hardware and software design. Be the first general description of the measuring instrument, and then describes the hardware design of the measuring instrument's main device: "Pt100 thermal resistance", AT89C51 microcontroller and LCD display, and describe the principle of measuring the overall structure. In this design, as is the PT100 platinum resistance temperature sensor, temperature measurement using constant current method, through the microcontroller to control, amplifier, A/D converter for temperature signal acquisition. Overall, the design is feasible.Keywords:temperature Pt100 thermal resistance AT89C51 microcontroller LCD monitor.目录前言 (1)1 总体硬件方案设计 (1)1.1温度传感器的放大电路设计 (2)1.2TLC549模数转化电路设计 (4)1.3显示电路设计 (5)1.4无线发送与接收模块的选择与设计 (5)1.5键盘设计 (6)2 总体的软件程序的设计 (6)2.1温度数据采集和数据处理子程序的设计 (6)2.2温度显示、保存处理的子程序设计 (7)2.3无线发送与接受的子程序的设计 (7)2.4十组温度查询的子程序设计 (9)3 调试与结果分析 (10)3.1调试仪器及方法 (10)3.3软、硬件调试与故障原因分析 (10)4 结束语 (10)附录1:硬件原理图及PCB板 (12)附录2:软件程序代码 (13)参考文献 (34)温度测控仪的设计前言随着工业生产效率的不断提高,自动化水平与围也不断扩大,因而对温度检测技术的要求也愈来愈高,现在工业上通用的温度检测围为200 ~3000℃,而今后要求能测量超高温度与超低温度。
智能温度表设计原理
智能温度表是一种可以测量环境温度并提供智能化功能的设备。
其设计原理通常包括以下几个关键部分:
1. 温度传感器
智能温度表的核心部件是温度传感器,用于检测环境的温度。
常用的温度传感器包括热敏电阻(PTC、NTC)、热电偶和数字温度传感器等。
传感器将温度信号转换为电信号,并输出给控制系统进行处理。
2. 控制系统
智能温度表的控制系统通常由微处理器或微控制器组成,负责接收和处理来自温度传感器的信号。
控制系统根据预设的算法对温度数据进行处理,并可以实现各种功能,如温度显示、报警功能、数据存储和通信等。
3. 显示模块
智能温度表通常配备有显示模块,用于显示当前环境温度和其他相关信息。
显示模块可以采用液晶显示屏、LED显示等,以直观方式展示温度数据给用户。
4. 电源管理
智能温度表需要稳定的电源供应以正常工作。
电源管理部分通常包括电池或外部电源接口,以及相关的电源管理电路,确保设备的正常运
行和节能管理。
5. 智能功能
除了基本的温度检测和显示功能,智能温度表还可能具备一些智能化功能,如温度数据记录、远程监控、温度趋势分析、报警提示等。
这些功能通过控制系统的智能算法实现,提升了设备的实用性和便捷性。
综上所述,智能温度表的设计原理主要包括温度传感器、控制系统、显示模块、电源管理和智能功能等关键部分,通过这些组成部分的协同工作,实现了智能温度表的准确测量和智能化功能。
温度控制系统毕业设计
温度控制系统毕业设计•相关推荐温度控制系统毕业设计摘要在日常生活及工农业生产中,对温度的检测及控制时常显得极其重要。
因此,对数字显示温度计的设计有着实际意义和广泛的应用。
本文介绍一种利用单片机实现对温度只能控制及显示方案。
本毕业设计主要研究的是对高精度的数字温度计的设计,继而实现对对象的测温。
测温系数主要包括供电电源,数字温度传感器的数据采集电路,LED显示电路,蜂鸣报警电路,继电器控制,按键电路,单片机主板电路。
高精度数字温度计的测温过程,由数字温度传感器采集所测对象的温度,并将温度传输到单片机,最终由液晶显示器显示温度值。
该数字温度计测温范围在-55℃~+125℃,精度误差在±0.5℃以内,然后通过LED数码管直接显示出温度值。
数字温度计完全可代替传统的水银温度计,可以在家庭以及工业中都可以应用,实用价值很高。
关键词:单片机:ds18b20:LED显示:数字温度.AbstractIn our daily life and industrial and agricultural production, the detection and control ofthe temperature, the digital thermometer has practical significance and a wide rangeof applications .This article describes a programmer which use a microcontroller toachieve and display the right temperature by intelligent control .This programmermainly consists by temperature control sensors, MCU, LED display modules circuit.The main aim of this thesis is to design high-precision digital thermometer and thenrealize the object temperature measurement. Temperature measurement systemincludes power supply, data acquisition circuit, buzzer alarm circuit, keypad circuit,board with a microcontroller circuit is the key to the whole system. The temperatureprocess of high-precision digital thermometer, from collecting the temperature of theobject by the digital temperature sensor and the temperature transmit ted to themicrocontroller, and ultimately display temperature by the LED. The digitalthermometer requires the high degree is positive 125and the low degree is negative 55,the error is less than 0.5, LED can read the number. This digital thermometer couldreplace the traditional mercurial thermometer, can be used in family or industrial andproduction, it has a great value.Key words: MCU: DS18B20 : LED display: Digital thermometer。
单片机课程设计方案—数字温度计
1 课题任务、功能要求说明及总体方案介绍1.1 课题目的随着社会的发展,温度的测量及控制变得越来越重要。
本文采用单片机STC89S52设计了温度实时测量及控制系统。
单片机STC89S52 能够根据温度传感器DS18B20 所采集的温度在数码管上实时显示,通过控制从而把温度控制在设定的范围之内。
所有温度数据均通过4位数码管LED显示出来。
系统可以根据时钟存储相关的数据。
通过该课程的学习使我们对计算机控制系统有一个全面的了解、掌握常规控制算法的使用方法、掌握简单微型计算机应用系统软硬的设计方法,进一步锻炼同学们在微型计算机应用方面的实际工作能力。
1.2 功能要求说明设计一个具有特定功能的数字温度计。
该数字温度计上电或按键复位后能自动显示系统提示符“P.”,进入准备工作状态。
测量温度范围0℃~99℃,测量精度小数点后两位,可以通过开始和结束键控制数字温度计的工作状态。
1.3 设计课题总体方案介绍及工作原理说明1.3.1设计课题总体方案(1>根据设计要求,选择AT89C52单片机为核心器件。
(2>温度检测器件采用DS18B20数字式温度传感器。
与单片机的接口为P3.6引脚。
(3>键盘采用独立式按键,由三个按键组成,分别是:设置键<SET),加一建<+1),确认键<RET)。
(4>SET键<上下限温度设置键):当该键按下时,进入上下限温度设置功能。
通过P0.1引脚接入。
(5>+1键<加一调整键):在输入上下限温度时,该键按下一次,被调整位加一。
通过P0.2引脚接入。
(6>RET键<确认键):当该键按下时,指向下一个要调整的位。
通过P0.3引脚接入。
1.3.2 工作原理说明本课题以是80S52单片机为核心设计的一种数字温度控制系统,利用温度传感器DS18B20可以直接读取被测温度值,进行转换的特性,模拟温度值经过DS18B20处理后转换为数字值,然后送到单片机中进行数据处理,并与设置的温度报警限比较,超过限度后通过扬声器报警。
温度控制器设计
温度控制器设计一、设计任务设计一个可以驱动1kW加热负载的水温控制器,具体要求如下:1、能够测量温度,温度用数字显示。
2、测量温度范围0~100℃,测量精度为0.5℃。
3、能够设置水温控制温度,设定范围40~90℃,且连续可调。
设置温度用数字显示。
4、水温控制精度≤±2℃。
5、当超过设定的温度20℃时,产生声、光报警。
二、设计方案分析根据设计要求,该温度控制器是既可以测量温度也可以控制温度,其组成框图如图1所示。
图1 温度控制器原理框图因为要求对温度进行测量显示,所以首先采用温度传感器,将温度变化转换成相应的电信号,并通过放大、滤波后送A/D转换器变成数字信号,然后进行译码显示。
若要求温度被控制在设定值附近,则要求将实际测量温度的信号与温度的设定值(基准电压)进行比较,根据比较结果(输出状态)来驱动执行机构,实现自动地控制、调节系统的温度。
测量的温度可以与另一个设定的温度上限比较器相比较,当温度超过上限温度值时,比较器产生报警信号输出。
1、温度检测及信号处理温度检测是温控系统的最关键部分,它只接影响整个系统的测量、控制精度。
目前检测温度的传感器很多,其测量范围、应用场合等也不尽相同。
例如热电偶温度传感器目前在工业生产和科学研究中已得到了广泛的应用,它是将温度信号转化成电动势。
目前热电偶温度传感器已形成系列化和标准化,主要优点是:它属于自发电型传感器,测量温度时可以不需要外加电源;结构简单,使用方便,热电偶的电极不受大小和形状的限制;测量温度范围广,高温热电偶测温高达1800℃以上,低温热电偶可测-260℃以下,目前主要用在高温测量工业生产现场中。
热电阻温度传感器是利用电阻值随温度升高而增大这一特性来测量温度的,目前应用较为广泛的热材料是铜和铂。
在铜电阻和铂电阻中,铂电阻性能最好,非常适合测量-200~+960℃范围内的温度。
国内统一设计的工业用铂电阻常用的分度号有Pt25、Pt100等,Pt100即表示该电阻的阻值在0℃时为100Ω。
温度测量显示电路设计
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载温度测量显示电路设计地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容目录第1章系统原理框图设计1.1 设计内容以设计为主完成一个温度范围为0-50 0C的温度测量显示电路的设计与制作。
1、主要设计内容:(1)系统原理框图设计与分析(包括传感器的选择与确定);(2)系统方案设计、比较及选定(给出两种以上的方案比较);(3)系统原理图设计(包含测量电路、放大电路、A/D转换及显示电路等);(4)确定原理图中元器件参数(给出测量电路、放大电路计算公式与数据);2、运用protel软件绘出系统原理电路图(鼓励能完成印刷电路板图的绘制)。
1.2 原理框图设计设计以测量显示部分电路为主,以单片机系统为核心,对单点的温度进行实时测量检测。
并采用温度传感器DS18B20、op07作为信号放大器、ADC0809作为A/D转换部件,对于温度信号的采集具有大范围、高精度的特点。
在功能、性能、可操作性等方面都有较大的提升,具有更高的性价比。
本系统由温度传感器DS18B20、AT89C52、LED数码管显示电路、软件构成。
DS18B20输出表示摄氏温度的数字量,然后用51单片机进行数据处理、译码、显示、报警等。
系统框图如图1.2.1所示:蜂鸣器报警温度传感器DS18B20AT89C5251单片机LED数码管编码数字量温度传感器DS18B20红外遥控调节设置温限如图1.2.1 系统框图第2章方案论证及确定2.1 系统方案的确定LCD液晶显示编码ICL7107 A/D转换&译码显示模块电压AD590温度传感器温度电压同向放大器方案1:采用单片机测量并控制温度。
此方案硬件电路简单,但是需设计复杂的软件电路。
带有温度显示和液晶显示器的实时时钟方案设计书
河北联合大学综合性课程设计报告学院名称:专业名称:课设题目:带有温度显示和液晶显示器的实时时钟设计学生姓名:学号:同组人:指导教师:完成时间:设计目标:设计基于单片机的具有液晶显示器的实时时钟,能够通过液晶显示器正确显示当前时间,包括年,月,日,星期,时,分,秒。
并且能够通过按键对系统的时间进行修改设定;能够显示当前的室温。
研究内容:学习EDA软件Proteus的使用,能够利用Proteus软件画出电路图并实现仿真。
学习电子系统设计步骤,按步骤完成电子系统的概要设计、选型、详细设计,系统测试仿真。
设计带有温度显示基于单片机具有液晶显示功能的实时时钟,编写程序,并利用proteus软件进行模拟仿真。
研究方法:绘制原理图及电路图,利用软件环境编程调试。
实验步骤:1、打开Keil软件,新建一个工程文件,选择好芯片,并记得在“Options for Target 1”的Output选项中,将Create HEX Fil选项勾起来。
2、将编写的程序保存成“.C”的形式3、编译保存好的C文件,并根据提示修改程序中的错误,直到编译成功为止4、打开proteus软件,画出实验电路图5、在89C51中,载入原来已生成的HEX文档6、按下运行键,对Proteus进行软件仿真,观察运行结果原理结果及分析一、设计方案原理与设计特点分析电子钟总的设计模块:各个模块电路原理分析:1、DS1302时钟采集模块:1.1电路原理图:1.2DS1302分析:首先DS1302是DALLAS公司推出的涓流充电时钟芯片。
内含有一个实时时钟/日历和31字节静态RAM通过简单的串行接口与单片机进行通信实时时钟/日历电路提供秒分时日日期月年的信息每月的天数和闰年的天数可自动调整时钟操作。
DS1302芯片广脚介绍:X1、X2为32.768KHz晶振管脚。
GND 为地。
RST复位脚。
I/O数据输入/输出引脚。
SCLK串行时钟。
Vcc1,Vcc2电源供电管脚。
数字温度计的设计与制作实验报告
数字温度计的设计与制作实验报告数字温度计的设计与制作实验报告一、实验目的本实验旨在通过设计与制作数字温度计,深入理解温度测量原理及实现方式,锻炼电路设计与验证实验能力。
二、实验原理数字温度计是通过测量热敏电阻(PTC或NTC)的电阻值来计算温度的。
当温度升高时,热敏电阻的电阻值也会升高,反之亦然。
该实验利用了热敏电阻的这一特性,通过将热敏电阻串联到一定电路中,便可测量到其电阻值的变化,从而得到温度值。
此外,数字显示器可以根据电路中的控制信号对电阻值进行计算和显示,以数字形式直观显示温度。
三、实验器材与耗材器材:热敏电阻、AD转换芯片、单片机、数字显示器、蜂鸣器、键盘、面包板、杜邦线等。
耗材:焊锡、铜线、电池、电阻等。
四、实验步骤1.接线。
将热敏电阻串联到一个电路中,连接到AD转换芯片的AIN0输入端,并将AIN1连接到参考电压源。
2.编写单片机程序。
通过查询AD转换器的输出值,计算出热敏电阻的电阻值,并转换为温度值。
然后将温度值显示在数字显示器上,并输出报警信号到蜂鸣器。
3.测试验证。
使用温度计紧贴测试物体表面,观察数字显示器和蜂鸣器的反应,逐步校准温度计并记录数据。
五、实验结果实验结果表明,数字温度计的设计与制作成功,能够准确地测量环境温度,并可进行实时数字化显示和警报功能。
六、实验心得在本次实验中,我们对数字温度计的设计及制作有了更加深入的理解和认识。
了解电路原理、编写单片机程序、进行电路调试与验证等一系列实验操作,培养了我们的理论知识和实践能力,加强了我们对电路与信号处理的认识和理解。
通过实验,我们认识到数字温度计在生产生活中的重要性,为未来的实际工作奠定了扎实的基础。
带有温度显示和液晶显示器的实时时钟设计
sbit T_CLK = P1^6; /*实时时钟时钟线引脚*/
sbit T_IO = P3^5; /*实时时钟数据线引脚*/
sbit T_RST = P1^7; /*实时时钟复位线引脚*/
sbit E=P2^7;//1602使能引脚
sbit RW=P2^6;//1602读写引脚
3、proteus是一个非常好用的仿真软件,其具有强大的电路原理图绘制功能,且可以实现模拟电路仿真、数字电路仿真、单片机及其外围电路组成的系统仿真、键盘、LCD系统仿真等多种功能;和keil联合使用时可以检测所编写的程序的正确与否。将keil和proteus联合起来使用是实现电子设计制作的初步阶段,可避免在实际的硬件操作中因为电路原理图或向单片机烧录的程序有误而造成的难以修改的为题。
3、掌握了Proteus的使用方法,从实际操作中认识到Proteus在仿真方面的优越性,激发了自己学习Proteus的兴趣;
4、因为自己要修改程序,所以单单花费在程序分析的时间就很多,为了更好的理解程序,我把每句主要程序的后面都注释了该语句的意思,详情可以见程序清单,发现注释语义的工作量也是非常大的。写实验报告时,每个模块的流程图都是自己画的,用WORD文档画图真的很麻烦,而且不是很美观。因为时间比较仓促,流程图写的条理性不够,不过相信以后多多练习,就可以做得更好。
2、按键处理模块
2.1按键连线图
从左到右依次是:进位键,数字加,数字减,退出
Mode模式键
2.2按键扫描子程序流程图:
否否否否
是是是是是
否
否
是是
2.3加减键处理子程序流程图
否
是
否
是
采用单片机STC12C5608AD设计一台数显温度表
随着社会的进步和工业技术的发展,人们越来越重视温度因素,许多产品对温度范围要求严格,而且目前市场上普遍存在的温度检测仪器大都是单点测量,同时有温度信息传递不及时、精度不够的缺点,不利于工业控制者根据温度变化及时做出决定。
本设计是利用STC12C5608AD 实现对温度的采集。
在设计中采用了PT100热电阻温度传感器,其具有较高的精确度,可完成对温度的精准测量;在显示部分采用动态显示,对于放大倍数和上下限的设定我们采用分时显示。
关键词:STC12C5608AD单片机、PT100、LabVIEW、研华板卡PCL-818HG第一章课程设计内容与要求分析 (1)1.1 课程设计内容 (1)1.2 课程设计要求 (1)第二章智能温度表硬件设计 (2)2.1 温度检测 (2)2.2 实测温度显示 (2)2.3 温度设定 (3)2.4 报警电路 (4)第三章智能温度表软件设计 (5)3.1 工作流程 (5)3.2 功能模块 (5)3.3 资源分配 (5)3.4功能软件设计 (7)3.4.1主程序与中断服务子程序 (7)3.4.2按键检测子程序 (8)3.4.3按键键值处理子程序 (8)3.4.4 显示子程序 (9)第四章温度控制电路的LabVIEW实现 (10)4.1 LabVIEW简介 (10)4.2 研华板卡PCL—818HG (10)4.3 温度控制系统 (11)4.3 温度控制调试过程 (12)单片机课程设计总结 (13)参考文献 (14)附录 (15)第一章课程设计内容与要求分析第一章课程设计内容与要求分析1.1 课程设计内容1、采用单片机STC12C5608AD设计一台数显温度表2、采用研华板卡PCL—818HG 设计一台虚拟温度表1.2 课程设计要求1、数显温度表(应用protel画出电路原理图,应用keil完成软件编程)1)传感器:热电阻PT100;2)显示器:数码管4位(LED);3)键盘:功能键、移位键和加一键;4)范围:0-200℃;5)精度:≤1℃;6)电源:AC 220V;7)变送器:DC 0-20mA;8)报警:超上限LED闪烁;2、虚拟温度表(应用LabVIEW和PCL-818HG完成温度表前面板设计)1)输入温度信号:DC 0-4V;2)显示温度数值:00-200℃;3)采集板卡:PCL-818HG;4)报警显示:灯亮;第二章智能温度表硬件设计2.1 温度检测这部分需用PT100热敏温度传感器,PT100是铂热电阻,它的阻值会随着温度的变化而改变。
温度显示的数字时钟设计课程设计报告2260900
温度显示的数字时钟设计课程设计报告2260900“电子系统设计”课程设计报告设计课题:电子系统课程设计多功能数字时钟一、设计任务与要求设计任务:本项目拟设计基于单片机的数字时钟和数字温度计,并将时间和温度显示在液晶显示器上。
根据主要功能要求,该设计利用51单片机实现了电子时钟、温度的显示以及设置闹铃等功能。
主要功能要求:1.以24h计数方式。
2.时钟要求可以显示时间:年、月、日、时、分、秒。
3.可调整显示日期、时间,具有整点报时功能,具有闹铃设置功能。
4.显示当前屋内温度,温度显示稳定。
二、系统设计方案2.1 设计与论证按照系统的设计功能要求,本时钟温度系统的设计必须采用单片机软件系统实现,用单片机的自动控制能力配合按键控制,来控制时钟、温度的存储和查询及显示。
按照系统的设计功能要求,初步确定系统由主控单元、时钟模块、测温模块、显示模块、键盘接口模块共五个模块组成。
2.1.1 主控模块选择方案一:纯硬件电路系统,各功能采用分离的硬件电路模块实现。
用时序逻辑电路实现时钟功能,用555定时器实现闹钟的设定。
但这种实现方法可靠性差、控制精度低,灵活性小、线路复杂、安装调试不方便,而且不方便实现对系统的扩展。
方案二:AT89C51是一种带4K字节闪烁可编程可擦除只读存储器的低电压,高性能CMOS8位微处理器。
AT89C51是一种带2K字节闪烁可编程可擦除只读存储器的单片机。
单片机的可擦除只读存储器可以反复擦除100次。
由于将多功能8位CPU和闪烁存储器组合在单个芯片中。
单片机AT89S51具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要。
AT89C51单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案,相较于方案一为更优方案。
故选择此方案。
2.1.2 时钟模块选择方案一:由单片机实现时钟功能。
单片机内部具有定时器,可方便实现定时功能。
通过计算可知,使定时器每25ms产生一次中断,当产生40次中断后秒单元将加一,以此类推,从而实现时、分、秒的走时,并加以显示。
数显温度计的设计与制作
数显温度计的设计与制作一、测温探头的工作原理在附图所示电路中,电阻R1~R3、二极管VD1~VD3、三极管V1构成温度传感器电路。
其中,VD1、VD2串接作为测温探头;R1~R3、VD3、V1构成恒流源电路,给测温探头提供恒定的正向电流。
大家知道,半导体二极管的正向压降决定于正向电流的大小和温度,当正向电流一定时,正向压降随温度的升高而下降。
对于普通的硅二极管1N4148而言,具有约-21mV/℃的温度系数,当两个1N4148串接时,总的正向压降与温度的关系约为-42mV/℃。
理论和实践都已证明,在-50℃~+150℃的范围内,二极管的测温精度可达±01℃,与其他温度传感器比较,二极管温度传感器具有灵敏度高、线性好、简便的特点,而且当二极管的正向电流和温度一定的情况下,其正向压降是非常稳定的。
通过计算可以知道,恒流源提供给VD1、VD2的恒定电流约为05mA。
二极管V D3起温度补偿作用,保证恒流源能提供稳定的电流。
二、测温显示原理测量探头把待测温度转换为相应的电压后,因为要实现温度的数字显示,就必须有模拟/数字转换装置。
在附图中,IC1、IC2、IC3及其周围元件构成A/D 转换、数字显示电路。
MC14433是单片CMOS3 位双积分型A/D转换器,该A/D 转换器转换精度高,达±005%±1字;转换速率为2~25次/秒;输入阻抗大于1000MΩ;外围元件少,电路结构简单;量程为1999V和1999mV两挡;输出8421BCD代码,经译码后实现LED动态扫描显示。
MC14433的第2脚为外接基准电压Vref输入端;第3脚为被测电压Vin输入端;第1脚为模拟地,此端为高阻输入端,是被测电压和基准电压的地;第{15}脚为过量程输出标志端OR,平时OR为高电平,当|Vin|>Vref即超过量程时,OR为低电平。
被测电压V in与基准电压Vref成下列比例关系(当小数点定位于4个LED数码管的十位数时):输出读数= ×1999在附图中,IC2(译码器MC14511)把IC1(MC14433)输出的BCD码译成十进制数显示,因为MC14433以扫描方式输出数据,所以只需要用一个译码器就能驱动4只共阴极LED数码管,其中千位数的数码管(最左边一个LED数码管)只接b、c 两段。
基于AD590与51单片机的温度计系统设计
一、设计思路:该数字温度计的设计要求为:1)三位数码管显示,2)温度显示范围:-10℃~100℃。
电路由温度传感器(AD590),电压-电流转换电路,AD 转换,CPU ,显示模块组成。
AD590属于电流输出型传感器,其输出的电流经电压-电流转换电路变为模拟电压信号,通过AD 转换变为数字量。
此数字量输入CPU ,CPU 直接控制显示。
显示模块由三个LED 数码管,总线驱动器和若干阻排组成。
硬件连接如下图:【AD590】AD590的主要特性:AD590是美国模拟器件公司生产的单片集成两端感温电流传感器,是一种已经IC 化的温度感测器,它会将温度转换为电流。
其规格如下: a 、 度每增加1℃,它会增加1μA 输出电流 b 、 可测量范围-55℃至150℃ c 、 供电电压范围+4V 至+30V AD590的管脚图及元件符号如下图所示:AD590相当于一个温度控制的恒流源,输出电流大小只与温度有关,且与温度成正比。
只需一个精密电阻,就可以将电流(温度)信号转化为电压信号,总的灵敏度系数通过该电阻设定。
AD590的温度系数是1μA/K ,即温度每增加1K ,它会增加1μA 输出电流。
其输出电流是以绝对温度零度-273℃为基准,每增加1℃,它会增加1μA 输出电流,因此 -10℃到100℃时AD590输出电流为263μA 到373μA 。
ADC0809的输入电压为0-5V ,所以需要电流-电压转换电路。
电流-电压转换CPU 8051模数转换 AD0832显示模块 数码管温度传感器 AD590【电流-电压转换电路】电压-电流转换电路图中,AD590输出端输出电流,经过10K 的电阻,转换为电压值。
OP07为一射极跟随器,A=1,用于提高输入阻抗。
两个二极管用于隔离干扰。
电流-电压转换公式如下:AD590的灵敏度:1/A K μ经过10K 电阻后:1/1010/A K k mV K μ•Ω= 具体温度-电压值对应如下表摄氏温度/℃AD590电流/μA经10K Ω电压/V-10 263.2 2.632 0 273.2 2.732 10 283.2 2.832 20 293.2 2.932 30 303.2 3.032 40 313.2 3.132 50 323.2 3.232 60 333.2 3.332 100373.23.732【AD 转换电路】AD 转换电路采用模数转换器AD0832,ADC0832 为8位分辨率A/D 转换芯片,其最高分辨可达256级,芯片的模拟电压输入在0~5V 之间。
温度自动采集及显示器设计的硬件连接图和程序流程图.doc
BCD 数码管显示电路
多点温度采集主程序流程:
程序开始
系统初始化 温度数据采集
温度数据处理 送数码显示
系统初始化程序: 温度数据采集程序:
数码显示清零 移向主程序入口
程序指向 A/D0809 首地址
读数 存数 启动 A/D 转换
温度数据处理程序:
等待 A/D 转换完毕 数据处理部分
对数据进行标度变换 将百位数据送显示缓冲
将十位数据送显示缓冲
将个位数据送显示缓冲
送数码显示程序: 指向显示缓冲区地址
将所有结果输出显示
取出百位数,利用表格计 算 LED7 段码,并存结果
取出十位数,利用表格计 算 LED7 段码,并存结果
取出个位数,利用表格计 算 LED7 段码,并存结果
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温度显示器的设计设计目录1 引言 (1)1.1 课题背景 (1)1.2 课题研究的目的和意义 (1)2 温度显示器原理 (2)2.1温度显示器的设计方案 (2)2.2温度显示器的电路原理 (2)3 温度显示器的硬件设计 (3)3.1 DS18B20温度传感器的基本介绍 (3)3.1.1性能简述 (3)3.1.2 DS18B20温度传感器的存储器 (4)3.1.3 DS18B20存储器操作命令 (4)3.1.4 DS18B20的测温原理 (5)3.1.5 DS18B20使用时的注意事项 (6)3.1.6 DS18B20的外形和内部结构 (6)3.2 AT89C2051单片机的基本介绍 (7)3.2.1 性能简述 (7)3.2.2 AT89C2051的引脚介绍如图所示。
(8)3.2.3AT89C2051的振荡器特性及芯片擦除 (9)3.2.4AT89C2051与AT89C51对比 (10)3.2.56 AT89C2051内部结构 (11)4 温度显示器的软件设计 (12)5 测试 (15)5.1 测试内容 (15)5.2 测试结果 (15)结论与展望 (16)致谢 (17)参考文献 (18)附录一 (19)附录二 (20)附录三 (22)1 引言1.1 课题背景温度控制器是对温度进行控制的开关设备。
在当今的社会中,越来越多的坏境需要对温度进行控制。
随着温控器应用领域和范围的日益广泛,电子技术的发展,特别是随着大规模集成电路的产生,给人们的生活带来了根本性的变化,如果说微型计算机的的出现使现代的科学研究得到了质的的飞跃,那么可编程控制器的出现则是给现代工业控制测控领域带来了一次新的革命。
在现代社会中,温度控制不仅应用在工厂生产方面,其作用作用也体现到了各个方面。
1.2 课题研究的目的和意义目的:培养学生综合运用所学知识,结合实际独立完成课题的工作能力;对学生的知识面、运用理论结合实际去处理问题的能力、实验能力进行考核。
意义:温度控制器是使用DS18B20集成温度传感器,七段数码管做显示,AT89C2051单片机做处理控制,电路简单。
该电路最大的特点是用可以直观方便的调节所要限定的温度值,温度值是用3个7段共阳极数码管显示的,上电后会显示当前的温度值,按设定键时会闪烁显示设定温度值,这时可以按上/下调节键调整设定温度值,再次按下设定键时返回当前温度显示同时会对设定温度值进行保存,这个设定值会保存在DS18B20中,掉电后也不会丢失,下次上电时,单片机会自动读入上次的温度设定值。
2 温度显示器原理2.1温度显示器的设计方案设计的这一款温度控制器是使用DS18B20集成温度传感器,七段数码管做显示,AT89C2051单片机做处理控制,电路简单。
特点是用可以直观方便的调节所要限定的温度值,温度值是用3个7段共阳极数码管显示的,上电后会显示当前的温度值,按设定键时会闪烁显示设定温度值,这时可以按上/下调节键调整设定温度值,再次按下设定键时返回当前温度显示同时会对设定温度值进行保存,这个设定值会保存在DS18B20中,掉电后也不会丢失,下次上电时,单片机会自动读入上次的温度设定值。
长按设定键为关闭显示和温控,再次按下时功能再次打开。
2.2温度显示器的电路原理制作中DS18B20使用外接电源的供电方式,数据端用4.7K 电阻上拉,并联接到2051的11脚上。
晶振选用12M 的,使用简单的上电复位电路。
选用共阳极的数码管,用S8550作位驱动,段引脚通过470欧的电限流电阻接入2051的P1口上,如选用的数码管亮度不足可以调小限流电阻值。
笔者也使用过共阴极的数码管,在P1口用1K 电阻上拉提供电流,亮度不高,但可以节省三个位驱动IO 脚,电路更是简单。
电路中有三个按键,分别是显示开关/温度设定,温度上调,温度下调,在电路上电运行时程序初始是处于关闭状态的,要按一下S1电路开始显示和监测,如再按一下S1进入温度设定状态,设定值每秒闪烁一次,这时可以按S2或S3进行调节,再按下S1时退回显示当前温度状态并保存温度值到DS18B20。
单片机 AT89C2051 七段数码管显示 DS18B20温度传按钮输入设定温度电路原理图3 温度显示器的硬件设计3.1 DS18B20温度传感器的基本介绍DS18B20是美国DALLAS半导体公司继DS1820之后最新推出的一种改进型智能温度传感器。
与传统的热敏电阻相比,他能够直接读出被测温度并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。
可以分别在93.75 ms和750 ms内完成9位和12位的数字量,并且从DS18B20读出的信息或写入DS18B20的信息仅需要一根口线(单线接口)读写,温度变换功率来源于数据总线,总线本身也可以向所挂接的DS18B20供电,而无需额外电源。
因而使用DS18B20可使系统结构更趋简单,可靠性更高。
他在测温精度、转换时间、传输距离、分辨率等方面较DS1820有了很大的改进,给用户带来了更方便的使用和更令人满意的效果3.1.1性能简述(1)独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。
(2)测温范围-55℃~+125℃,固有测温分辨率0.5℃。
(3)支持多点组网功能,多个DS18B20可以并联在唯一的三线上,最多只能并联8个,实现多点测温,如果数量过多,会使供电电源电压过低,从而造成信号传输的不稳定。
(4)工作电源: 3~5V/DC(5)在使用中不需要任何外围元件(6)测量结果以9~12位数字量方式串行传送(7)不锈钢保护管直径Φ6(8)适用于DN15~25, DN40~DN250各种介质工业管道和狭小空间设备测温(9)标准安装螺纹M10X1, M12X1.5, G1/2”任选(10)PVC电缆直接出线或德式球型接线盒出线,便于与其它电器设备连接。
3.1.2 DS18B20温度传感器的存储器DS18B20温度传感器的内部存储器包括一个高速暂存RAM和一个非易失性的可电擦除的E2PPRAM,后者存放高温度和低温度触发器TH.T和结构寄存器。
暂存存储器包含了8个连续字节,前两个字节是测得的温度信息,第一个字节的内容是温度的低八位,第二个字节是温度的高八位。
第三个和第四个字节是TH.TL的易失性拷贝,第五个字节是结构寄存器的易失性拷贝,这三个字节的内容在每一次上电复位时被刷新。
第六七八个字节用于内部计算。
第九个字节是冗余检验字节,详见表中内容。
3.1.3 DS18B20存储器操作命令3.1.4 DS18B20的测温原理低温度系数晶振的振荡频率受温度的影响很小,用于产生固定频率的脉冲信号送给减法计数器1,高温度系数晶振随温度变化其震荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入,图中还隐含着计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲后进行计数,进而完成温度测量。
计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将-55 ℃所对应的基数分别置入减法计数器1和温度寄存器中,减法计数器1和温度寄存器被预置在 -55 ℃ 所对应的一个基数值。
减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时温度寄存器的值将加1,减法计数器1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。
斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正减法计数器的预置值,只要计数门仍未关闭就重复上述过程,直至温度寄存器值达到被测温度值,这就是DS18B20的测温原理。
1.低温度系数振荡器是一个对频率随温度变化很小的振荡器,为计数器1提供频率稳定的技术脉冲。
2.高温度系数计数器是一个对频率对温度很敏感的振荡器,为计数器2提供了一个频率随温度变化的技术脉冲。
3.DS18B20内部的低温度系数振荡器能产生稳定的频率信号;同样,高温系数振荡器则将被测温度转换成频率信号。
当计数门打开时,DS18B20进行计数,计数门打开时间高温度系数振荡器决定。
原理图如图2。
3.1.5 DS18B20使用时的注意事项根据DS18B20的通讯协议,主机控制DS18B20完成温度转换必须经过三个步骤:每一次读写之前都要对DS18B20进行复位,复位成功后发送一条ROM指令,最后发送ROM指令,这样才能对DS18B20进行预定的操作。
复位要求主CPU将数据线下拉500微秒,然后释放,DS18B20收到信号后等待16~60微秒左右,后发出60~240微秒的存在低脉冲,主CPU收到此信号表示复位成功。
DS18B20使用中注意事项,DS18B20虽然具有测温系统简单,测温精度高,连接方便,占用口线少等特点,但在实际应用中也应注意以下几方面的问题:(1)较小的硬件开销需要相对复杂的软件进行补偿,由于DS18B20与微处理器间采用串行数据传送,因此在对DS18B20进行读写编程时,必须严格的保证读写时序,否则将无法读取测温结果。
在使用PL/M,C等高级语言进行系统程序计时,对DS18B20最好采用汇编语言实现。
(2)在DS18B20的有关资料中均未提及单总线上所挂DS18B20数量问题,容易使人误认为可以挂任意多个DS18B20,在实际应用中并非如此。
当单总线上所挂DS18B20超过八个时,就需要解决微处理器的总线驱动问题,这一点在进行多点测温系统设计时要加以注意。
(3)连接DS18B20的总线电缆是有长度限制的。
试验中,当采用普通信号电缆传输长度超过50M时,读取的测温数据将发生错误。
当将总线电缆改为双绞线带屏蔽电缆时,正常通讯距离可达150M,当采用每米绞合次数更多的双绞线带屏蔽电缆时,正常通讯距离进一步加长。
这种情况主要是由总线分布电容使信号波产生畸变造成的。
因此,再用DS18B20进行长距离测温系统设计时要充分考虑总线分布电容和阻抗匹配问题。
(4)在DS18B20测温程序设计中,向DS18B20发出温度转换命令后,程序总要等待DS18B20的返回信号,程序进入死循环。
这一点在进行DS18B20硬件连接和软件设计时也要给予一定的重视。
测温电缆线建议采用屏蔽4芯双绞线,其中一对线接地线与信号线,另一组姐VCC和地线,屏蔽层在源端单点接地。
3.1.6 DS18B20的外形和内部结构DS18B20内部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。
DS18B20的外形及管脚排列如下图1:DS18B20引脚定义:(1)DQ为数字信号输入/输出端;(2)GND为电源地;(3)VDD为外接供电电源输入端(在寄生电源接线方式时接地)。