基于单片机的液晶温度显示器的设计

合集下载

单片机基于stm32的数字温度计设计

单片机基于stm32的数字温度计设计

单片机基于stm32的数字温度计设计
数字温度计是一种用于测量环境温度的设备。

在这个问题中,我们将使用基于STM32的单片机来设计一个数字温度计。

为了设计这个温度计,我们需要以下组件和步骤:
1. STM32单片机:STM32是一种基于ARM架构的单片机,它具有强大的计算能力和丰富的外设接口,适用于各种应用。

2. 温度传感器:我们需要选择一种适合的温度传感器,常用的有数字式温度传感器,如DS18B20。

3. 连接电路:将温度传感器连接到STM32单片机。

这通常需要使用一些电子元件,如电阻、电容和连接线等来建立电路连接。

4. 编程:使用适合STM32单片机的编程语言,如C语言,来编写程序。

程序将读取温度传感器的数据,并将其转换为数字值。

5. 温度显示:将温度数据显示在合适的显示设备上,如LCD显示屏或七段数码管。

可以使用STM32单片机的GPIO口控制这些显示设备。

6. 数据处理:可以对温度数据进行进一步处理,如计算平均温度、设定警报阈值等。

以上是一个基本的数字温度计设计的流程。

具体的实现细节和代码编写可能需要根据具体的硬件和软件平台进行调整。

电子信息工程专业毕业设计--基于51单片机的12864液晶显示器的设计和研究

电子信息工程专业毕业设计--基于51单片机的12864液晶显示器的设计和研究

目录设计总说明 (I)INTRODUCTION (II)1 绪论 (1)1.1课题背景及研究意义 (1)1.2课题研究的主要内容 (1)1.3国内外发展状况与存在问题 (1)2 总体方案设计与论述 (2)2.1 系统需求分析 (2)2.2 系统总体方案设计 (2)2.2.1 设计方案论证 (2)2.2.2总体结构框图 (3)3系统单元模块设计 (3)3.1系统硬件示意图 (3)3.2主控芯片(STC89C52模块)[5] (4)3.3 时钟控制模块[13] (6)3.3.1 DS1302简介 (6)3.3.2引脚及功能表 (7)3.3.3工作原理 (7)3.3.4 DS1302电路设计图[9] (8)3.4 温度控制模块 (8)3.5 12864接口电路模块 (9)3.6 按键电路模块 (9)3.7 电源电路模块 (10)3.8 印制电路板[9] (10)4系统整体调试与结果分析 (11)4.1 系统总体程序流程介绍 (11)4.2 按键程序设计 (13)4.3 12864驱动程序设计[15] (14)4.3.1 ST7920芯片介绍[14] (14)4.3.2 ST7920驱动程序设计 (17)4.4 12864应用程序设计 (20)4.4.1 文字显示程序设计 (20)4.4.2 点、线显示程序设计 (22)4.4.3 图形、图片显示程序设计 (23)4.5 菜单程序设计 (26)5设计调试及进一步研究 (28)5.1 系统测试 (28)5.1.1 软件调试 (28)5.1.2 硬件调试 (29)5.2 进一步研究的工作 (30)6总结 (30)鸣谢................................................................................................................................ 错误!未定义书签。

基于单片机的数字温度计的设计与实现毕业设计论文

基于单片机的数字温度计的设计与实现毕业设计论文

基于单片机的数字温度计的设计与实现摘要采用单片机来对他们控制不仅具有控制方便,简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大的提高产品的质量和数量。

在生产过程中,为了高效地进行生产,必须对它的主要参数,如温度、压力、流量等进行有效的控制。

传统的测温元件有热电偶和二电阻。

而热电偶和热电阻测出的一般都是电压,再转换成对应的温度,这些方法相对比较复杂,需要比较多的外部硬件支持。

我们用一种相对比较简单的方式来测量。

温度范围为-55~125 ºC,最高分辨率可达0.0625 ºC。

DS18B20可以直接读出温度值,而且采用三线制与单片机相连,减少了外部的硬件电路,具有低成本和易使用的特点。

本文介绍一种基于AT89C51单片机的一种温度测量及报警电路,该电路采用DS18B20作为温度监测元件,测量范围0℃-~+100℃,使用七级数码管LED模块显示,能设置温度报警上下限。

正文着重给出了软硬件系统的各部分电路,介绍了集成温度传感器DS18B20的原理,AT89C51单片机功能和应用,该电路设计新颖、功能强大、结构简单。

关键词:温度测量;DS18B20 ; AT89C51Design of Digital Thermomer Based on SCMABSTRACTControlled by single-chip microcomputer to control not only to them, advantages of simplicity and flexibility, and can significantly increase the temperature specifications, which can significantly increase the quality and quantity of the products. In the process of production, in order to efficiently produce, it must be the main parameters, such as temperature, pressure, flow, and other effective control. Traditional temperature measuring component thermocouple and resistance. Are generally voltage of thermocouple and thermal resistance measured, then converted to the corresponding temperature, these methods are relatively complex and requires more external hardware support. We are in a relatively simple way to measure.-55~125 ºc temperature range, maximum resolution up to 0.0625 ºc. DS18B20 can read temperature value, and wire connected to the microcontroller, reduced external hardware circuits, low cost and ease of use features.The introduction of a cost-based AT89C51 MCU a temperatur measurement circuits, the circuits used DS18B20 high-precision temperatur sensor, measuring scope 0℃-~+100℃,can set the warning limitation, the use of Seven digital tube seven segments LED that can be display the current temperature. The paper focuses on providing a software and hardware system components circuit, introduced the theory of DS18B20, the founctions and applications of AT89C51 .This circuit design innovative, powerful, can be expansionary strong.Keywords:Temperature measurement ;DS18B20 ;AT89C51目录摘要 (I)ABSTRACT (II)第一章绪论 (1)1.1 引言 (1)1.1.1 国内外现状 (1)1.1.2 课题背景及研究意义 (2)1.2 设计内容及性能指标 (2)1.3 系统概述 (3)1.3.1 系统方案论证与比较 (3)1.3.2 系统设计原理与组成 (5)第二章开发工具Proteus与Keil (6)2.1 Proteus软件 (6)2.1.1 Proteus简介 (6)2.1.2 4大功能模块 (6)2.1.3 Proteus简单应用 (8)2.2 Keil软件 (8)2.2.1 Keil软件简介 (8)2.2.2 Keil软件调试功能 (9)第三章系统硬件设计 (10)3.1 单片机的选择 (10)3.1.1 AT89C51单片机的介绍 (10)3.1.2 AT89C51单片机主要特性 (11)3.2 温度传感器的选择 (13)3.3 硬件电路设计 (17)第四章系统软件设计 (20)4.1 各模块的程序设计 (20)4.2 Protues测温仿真 (25)4.3 系统调试 (28)4.4 结果分析 (30)结论 (31)致谢 (32)参考文献 (33)附录1 全部程序清单 (34)附录2 系统总体设计图 (41)第一章绪论1.1引言1.1.1 国内外现状温度控制系统在国内各行各业的应用虽然已经十分广泛,但从国内生产的温度控制器来讲,总体发展水平仍然不高,同日本、美国、德国等先进国家相比,仍然有着较大的差距。

基于单片机的温度智能控制系统的设计与实现共3篇

基于单片机的温度智能控制系统的设计与实现共3篇

基于单片机的温度智能控制系统的设计与实现共3篇基于单片机的温度智能控制系统的设计与实现1基于单片机的温度智能控制系统的设计与实现随着人们对生活质量的需求越来越高,温度控制变得愈发重要。

在家庭、医院、实验室、生产车间等场合,温度控制都是必不可少的。

本文将介绍一种基于单片机的温度智能控制系统的设计与实现。

设计思路本文所设计的温度智能控制系统主要由单片机、温度传感器、继电器和液晶屏幕等部件组成。

其中,温度传感器负责采集温度数据,单片机负责处理温度数据,并实现温度智能控制功能。

继电器用于控制加热设备的开关,液晶屏幕用于显示当前温度和系统状态等信息。

在实现温度智能控制功能时,本设计采用了PID控制算法。

PID控制算法是一种经典的控制算法,它基于目标值和当前值之间的误差来调节控制量,从而实现对温度的精确控制。

具体来说,PID控制器包含三个部分:比例控制器(P)用于对误差进行比例调节,积分控制器(I)用于消除误差的积累,微分控制器(D)用于抑制误差的未来变化趋势。

这三个控制器的输出信号加权叠加后,作为继电器的控制信号,实现对加热设备的控制。

系统实现系统硬件设计在本设计中,我们选择了常见的AT89S52单片机作为核心控制器。

该单片机运行速度快、稳定性好,易于编程,并具有较强的扩展性。

为了方便用户调节温度参数和查看当前温度,我们还选用了4 * 20的液晶屏。

温度传感器采用LM35型温度传感器,具有高精度、线性输出特性,非常适用于本设计。

系统电路图如下所示:系统软件设计在单片机的程序设计中,我们主要涉及到以下几个部分:1. 温度采集模块为了实现温度智能控制功能,我们首先需要获取当前的温度数据。

在本设计中,我们使用了AT89S52单片机的A/D转换功能,通过读取温度传感器输出的模拟电压值,实现对温度的采集。

采集到的温度数据存储在单片机的内部存储器中,以供后续处理使用。

2. PID控制模块PID控制模块是本设计的核心模块,它实现了对温度的精确控制。

基于单片机的温度检测系统硬件设计

基于单片机的温度检测系统硬件设计

基于单片机的温度检测系统硬件设计温度是工业生产和日常生活中常见的重要参数之一。

准确的温度检测对于许多应用场景至关重要,如医疗、化工、电力、食品等行业。

随着科技的不断发展,单片机作为一种集成了CPU、内存、I/O接口等多种功能于一体的微型计算机,被广泛应用于各种温度检测系统中。

本文将介绍一种基于单片机的温度检测系统硬件设计方法。

温度检测系统的主要原理是热电偶定律。

热电偶是一种测量温度的传感器,它基于塞贝克效应,将温度变化转化为电信号。

热电偶与放大器、滤波器等电路元件一起构成温度检测电路。

放大器将微弱的电信号放大,滤波器则消除噪声,提高信号质量。

将处理后的电信号输入到单片机中进行处理和显示。

在原理图设计中,我们选用了一种常见的温度检测芯片——DT-6101。

该芯片内置热电偶放大器和A/D转换器,可直接与单片机连接。

我们还选择了滤波电容、电阻等元件来优化信号质量。

原理图设计如图1所示。

软件设计是温度检测系统的核心部分。

我们采用C语言编写程序,实现温度的实时检测和显示。

程序主要分为初始化、输入处理、算法处理和输出显示四个模块。

初始化模块:主要用于初始化单片机、DT-6101等硬件设备。

输入处理模块:从DT-6101芯片读取温度电信号,并进行预处理,如滤波、放大等。

算法处理模块:实现温度计算算法,将电信号转化为温度值。

常用的算法有线性插值法、多项式拟合法等。

输出显示模块:将计算得到的温度值显示到液晶屏或LED数码管上。

硬件调试是确保温度检测系统可靠性和稳定性的关键步骤。

在组装过程中,需注意检查元件的质量和连接的正确性。

调试时,首先对硬件进行初步调试,确保各电路模块的基本功能正常;然后对软件进行调试,检查程序运行是否正确;最后进行综合调试,确保软硬件协调工作。

通过实验,我们验证了基于单片机的温度检测系统的准确性和稳定性。

实验结果表明,系统在-50℃~50℃范围内的误差小于±5℃,满足大多数应用场景的需求。

单片机基于51单片机温度控制设计简介

单片机基于51单片机温度控制设计简介

单片机基于51单片机温度控制设计简介一、引言本文将介绍基于51单片机的温度控制设计,其中包括硬件设计和软件设计两个部分。

温度控制是工业自动化中非常重要的一部分,其应用范围非常广泛,如冷库、温室、恒温水槽等。

本文所介绍的温度控制设计可广泛应用于各种场合。

二、硬件设计1.传感器部分本设计采用DS18B20数字温度传感器,其具有精度高、抗干扰能力强等优点。

传感器的输出信号为数字信号,与51单片机通信采用单总线方式。

2.控制部分本设计采用继电器控制加热器的开关,继电器的控制信号由51单片机输出。

同时,为了保证控制精度,本设计采用PID控制算法,其中P、I、D系数均可根据实际情况进行调整。

3.显示部分本设计采用LCD1602液晶显示屏,可显示当前温度和设定温度。

4.电源部分本设计采用12V直流电源供电,其中需要注意的是,由于继电器的电流较大,因此需要采用稳压电源。

三、软件设计1.初始化在程序开始运行时,需要对各个模块进行初始化,包括DS18B20传感器、LCD1602液晶显示屏和PID控制器等。

2.采集温度程序需要不断地采集温度,通过DS18B20传感器获取当前温度值,并将其显示在LCD1602液晶显示屏上。

3.控制加热器根据当前温度和设定温度的差值,通过PID控制算法计算出控制信号,控制继电器的开关,从而控制加热器的加热功率。

4.调整PID参数为了保证控制精度,需要不断地调整PID控制算法中的P、I、D系数,以达到最优控制效果。

四、总结基于51单片机的温度控制设计,可以实现对温度的精确控制,具有应用广泛、控制精度高等优点。

本文所介绍的硬件设计和软件设计,可供读者参考和借鉴,同时也需要根据实际情况进行调整和改进。

基于单片机的数字温度计设计【文献综述】

基于单片机的数字温度计设计【文献综述】
数字温度传感器是在20世纪90年代中期问世的。它是微电子技术、计算机技术和自动测试技术的结晶。目前,国际上已开发出多种数字温度传感器系列产品。数字温度传感器内部包含温度传感器、A/D传感器、信号处理器、存储器(或寄存器)和接口电路。有的产品还带多路选择器、中央控制器(CPU)、随机存取存储器(RAM)和只读存储器(ROM)。数字温度传感器能输出温度数据及相关的温度控制量,适配各种微控制器(MCU),并且可通过软件来实现测试功能,即智能化取决于软件的开发水平。数字温度传感器包括数字温度传感器和石英温度传感器。数字温度传感器被广泛应用于工业控制、电子测温计、医疗仪器等各种温度控制系统中。用石英作为温度传感器的数字温度计可实现多种功能:用于热化疗仪中对药液的温度进行测量,能获得较好的测温效果;用于温度检测系统,测温系统可用于各行各业中。比如:可用于温室大棚的温度检测,当温度过高就产生报警信号;在轮胎生产中,进行的温度检测。
二、关键字:数字温度计、温度传感器、单片机
三、1、数字温度计的研究背景和意义
温度测量在物理实验、医疗卫生、食品生产等领域,尤其在热学试验(如:物体的比热容、汽化热、热功当量、压强温度系数等教学实验)中,有特别重要的意义。传统所使用的温度计通常都是精度为1℃和0.1℃的水银、煤油或酒精温度计。这些温度计的刻度间隔通常都很密,不容易准确分辨,读数困难,而且他们的热容量还比较大,达到热平衡所需的时间较长,因此很难读准,并且使用非常不方便。数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确等优点,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用。目前温度计的发展很快,从原始的玻璃管温度计发展到了现在的热电阻温度计、热电偶温度计、数字温度计、电子温度计等等,温度计中传感器是它的重要组成部分,它的精度、灵敏度基本决定了温度计的精度、测量范围、控制范围和用途等。传感器应用极其广泛,目前已经研制出多种新型传感器。但是,作为应用系统设计人员需要根据系统要求选用适宜的传感器,并与自己设计的系统连接起来,从而构成性能优良的监控系统。

基于单片机的数字温度计的设计

基于单片机的数字温度计的设计

目录摘要 (1)关键词 (1)Abstract (1)Keywords (1)前言 (1)1 设计简介 (1)1.1设计背景 (1)1.2设计达到的预期目的 (1)2方案论证 (1)2.1测温电路方案设计 (1)2.2显示电路方案设计 (2)2.3方案比较 (3)2.4温度计工作原理 (3)3硬件电路设计 (1)3.1系统电源电路的设计 (1)3.2主板电路 (1)3.2.1单片机 AT89S52芯片介绍 (1)3.2.2 DS18B20温度传感器简介 (5)3.3 温度显示电路 (10)3.3.1 液晶显示器各种图形的显示原理 (11)3.3.2字符型LCD1602简介 (12)4软件设计 (2)4.1 主程序流程图 (2)4.2 读出温度子程序流程图 (3)4.3 温度转换命令子程序流程图 (3)4.4 计算温度子程序流程图 (4)4.5显示数据刷新子程序流程图 (4)5 Proteus仿真调试 (1)5.1 Proteus软件介绍 (1)5.2 Proteus界面介绍 (1)5.3 Keil软件简介 (2)5.4 设计仿真过程 (4)5.4.1 仿真原理图绘制 (4)5.4.2 系统调试 (5)5.4.3开始仿真 (5)6 总结和改进方法 (1)参考文献 (1)致谢 (1)附录1 程序清单 (1)附录2 元器件清单 (8)基于单片机的数字温度计设计摘要:单片机自20世纪70年代问世以来,已广泛的应用在工业自动化、自动检测与控制系统、智能仪器仪表、机电一体化设备、汽车电子、家用电器等各方面。

本文将介绍一种基于单片机控制的数字温度计,用单片机实现水温测量。

传统的温度检测大多以热敏电阻为温度传感器,但热敏电阻的可靠性差,测量温度准确率低,而且必须经过专门的接口电路转换成数字信号才能由单片机进行处理。

本次采用DS18B20数字温度传感器来实现基于AT89S52单片机的数字温度计的设计,用LCD1602液晶显示以串口传送数据,实现温度显示,单片机能独立对温度进行检测、控制,能准确达到要求。

基于单片机控制的高精度温度仪表的设计

基于单片机控制的高精度温度仪表的设计

显 示 、 能 温 定 、 制 精 度 高等 特 点 。 括 性 控 概
4 关键芯片及技术
I gt ‘ = ■
4 1A D . / 模块









j :

本 设 计采 用 了 C RY TAL 司生 产 的 S 公
2 b t D专 用 芯片 CS5 l 。 0 iA/ 5 3 它是 一 种低 成
( ) 有 RS 2 2 2具 一 3 串行 通 信 接 I , : 可以 和 1
上位 机 进 行通 信 ;
3 仪 表的硬 件结构
本 仪表 主要 由Ph l s 8 c 4 片机 和 ii P 7 5 单 p
象 进 行精 确 的 温 度 控 制 ( 制 精 度 士0 0 控 .l ℃) 而且 能把 测量 的温 度传 送 到 计算 机上 ,

2 仪表 的功 能
本仪 表 采 用PTl O 电阻 测温 , 量 精 0 热 测 度 为0. ℃ , 仅 能 精 确 测 量 被 测 系统 的 0l 不 温 度 , 且 能 数 字 显 示温 度大 小 , 有 动 态 而 具
?~ l0 f 1 t O
: 片 t m2 } 计 謦 一 : k3 l : i2 j
0. 2%FS;
列控制参数 ;
( ) 窗 口l 位 数 码 管 动 态显 示 测 量 温 4双 0 度和设定温度 。
通 信 等 缺 点 。 对 上 述 问题 , 文 阐 述 了基 针 本
于单 片机 控 制 的智 能 高 精 度 仪 表 的 设 计 方 案 。 仪 表 不 仅 能 精 确 测量 温度 , 被 控 对 该 对

单片机的LCM1602液晶显示温度与万年历显控制

单片机的LCM1602液晶显示温度与万年历显控制

毕业设计报告(论文)报告(论文)题目:基于单片机的LCM1602液晶控制——温度与万年历显示设计作者所在系部:电子工程系作者所在专业:作者所在班级:作者姓名:作者学号:指导教师姓名:完成时间: 2011年 6 月 9 日院教务处制电子工程系毕业设计(论文)任务书指导教师:教研室主任:系主任:摘要论文的研究工作是以液晶屏显示技术为背景展开的,并且详细介绍了通过MCS-51单片机控制LCM1602液晶的显示情况,以软件形式对系统进行控制,使得系统控制更具灵活与方便。

本文在深入分析LCD显示技术的基础上,重点解析了LCM显示的单片机控制技术,以及LCD显示在各种电子显示中的优势,同时阐述了其在日常显示系统中的应用;并且以Proteus与Keil uVision4软件为基础,编写了MCS-51单片机对LCM1602显示控制的软件,绘制其原理图,并使用Proteus软件与Keil uVision4软件建立联合仿真。

论文主要论述了原理图各个模块的作用,控制软件的各个模块的编程。

关键词液晶显示技术LCM1602 MCS-51单片机Proteus Keil uVision4目录第1章绪论 (1)1.1课题背景及主要技术国内外研究概况 (1)1.2LCM1602显示控制系统简介 (2)1.3课题的建立以及本文完成的主要工作 (3)第2章开发工具软件简介 (4)2.1K EIL U V ISION4软件简介 (4)2.2P ROTEUS软件简介 (4)2.3K EIL U V ISION4与P ROTEUS软件联合仿真 (5)2.4小结 (5)第3章 LCD显示控制技术 (6)3.1LCD显示技术的发展 (6)3.2LCM1602显示控制技术及其体系结构 (7)3.2.1 LCM1602模块简介 (8)3.2.2 LCM1602模块内部结构 (9)3.2.3 LCM1602控制指令 (10)3.3小结 (12)第4章系统硬件概况 (13)4.1系统概况 (13)4.2功能模块 (13)4.2.1 MCS-51单片机最小系统模块 (14)4.2.2 温度采集模块 (14)4.2.3 蜂鸣器报警模块 (15)4.2.4 万年历调节设置模块 (16)4.2.5 LCM1602显示模块 (16)4.2.6 电源模块 (17)3.3小结 (17)第5章软件控制系统概况 (18)5.1程序流程概况 (18)5.2万年历显示控制模块 (18)5.2.1 流程图 (18)5.2.2 源程序代码 (19)5.3温度显示控制模块 (19)5.3.1 程序流程 (19)5.3.2 源程序代码 (19)5.3.3 主程序 (19)5.4小结 (20)第6章课题特点 (21)6.1LCM模块的应用 (21)6.2程序结构化与模块化设计 (21)6.3抗干扰技术 (21)第7章结论 (23)7.1调试联合仿真 (23)7.2仿真结果 (23)7.3小结 (23)致谢 (24)参考文献 (25)附录 (26)基于单片机的LCM1602液晶控制——温度与万年历显示设计第1章绪论1.1 课题背景及主要技术国内外研究概况自20世纪80年代起,显示设备经历着传统工艺的改良、新工艺的发展、成熟的优胜劣汰。

基于AT89S52单片机的数字温度计设计

基于AT89S52单片机的数字温度计设计

基于AT89S52单片机的数字温度计设计一引言在生活和生产中,经常要用到一些测温设备,但是传统的测温设备具有制作本钱高、硬件电、和软件设计复杂等缺点。

基于AT89S52单片机的数字温度计具有制作简单、本钱低、读数方便、测温*围广和测温准确等优点,应用前景广阔。

二工程要求基于AT89S52单片机的数字温度计设计具体要求如下:〔1〕温度值用LED显示。

〔2〕围为-30℃~100℃,且测量误差不得大于±0.5℃。

〔3〕本钱的体积、质量要尽可能小。

三系统设计1 框图设计根据设计要求分析,基于AT89S52单片机的数字温度计设计由AT89S52单片机控制器、电源、显示电路、温度传感器、复位电路和时钟电路组成,系统框图如图1所示。

电源给整个电路供电,显示电路显示温度值,时钟电路为AT89S52提供时钟频率。

传感器采用美国DALLAS半导体公司生产的一种智能温度传感器DS18B20,其测温*围为-55~125℃,最高分辨率可达0.0625℃,完全符合设计要求。

图一基于AT89S52单片机的数字温度计系统框图2 知识点本工程需要通过学习和查阅资料,掌握和了解如下知识:●+5V电源原理及设计。

●单片机复位电路工作原理及设计。

●单片机晶振电路工作原理及设计。

●按键电路的设计。

●数码管的特性及使用。

●DS18B20的特性及使用。

●74LS07的特性及使用。

●AT89S52单片机引脚。

●单片机C语言程序设计。

四硬件设计1 电路原理图控制器使用单片机AT89S52,测温传感器使用DS18B20,用4位共阳极LED数码管以动态扫描法实现温度显示,电路图可见仿真图所示。

2 元件清单基于AT89S52单片机的数字温度计元件清单如表1所示。

五软件设计1 程序流程图主程序的主要功能是负责温度的实时显示、读出并处理DS18B20测量的当前温度值,温度测试每1S进展一次。

这样可以在1S之内测量一次被测温度,其程序流程图如图3所示。

基于单片机的数字温度计设计

基于单片机的数字温度计设计

基于单片机的数字温度计设计
基于单片机的数字温度计设计可以包括以下几个步骤:
1. 选择合适的单片机:根据项目需求选择一款适合的单片机,常用的有8051、PIC、AVR等。

2. 温度传感器的选择:选择一款合适的温度传感器,如
DS18B20、LM35等。

这些传感器通常具有数字接口,方便与单片机通信。

3. 连接和布线:根据传感器和单片机的接口要求,进行连接和布线。

通常需要连接传感器的电源、地线和数据线。

如果需要更长的传输距离,可以考虑使用一些传感器扩展模块,如
DS18B20模块。

4. 编程:使用单片机编程语言,如C语言,编写代码来实现与传感器的通信和温度的测量。

通常需要使用单片机提供的GPIO口或者串口来与传感器进行数据交互,读取传感器输出的数字温度值,并将其转换为实际温度。

5. 显示和输出:根据项目要求,选择合适的显示设备来展示温度数值,如液晶显示屏、数码管等。

可以通过单片机的IO口来控制显示设备的输入。

同时,还可以根据需要选择合适的输出设备,如蜂鸣器、继电器等,实现温度超过或低于设定阈值时的报警或控制功能。

6. 测试和优化:完成代码编写和硬件连接后,进行测试,确保
温度计能够准确测量温度,并进行必要的优化和调试。

总结:
基于单片机的数字温度计设计主要涉及选择单片机、传感器、连线布局、编程、显示和输出设备的选择与控制,以及测试和优化。

通过以上步骤,可以实现一个简单的数字温度计。

带有温度显示和液晶显示器的实时时钟设计

带有温度显示和液晶显示器的实时时钟设计
sbit jtod=P1^4;//矩阵按键转独立按键,该脚置0
sbit T_CLK = P1^6; /*实时时钟时钟线引脚*/
sbit T_IO = P3^5; /*实时时钟数据线引脚*/
sbit T_RST = P1^7; /*实时时钟复位线引脚*/
sbit E=P2^7;//1602使能引脚
sbit RW=P2^6;//1602读写引脚
3、proteus是一个非常好用的仿真软件,其具有强大的电路原理图绘制功能,且可以实现模拟电路仿真、数字电路仿真、单片机及其外围电路组成的系统仿真、键盘、LCD系统仿真等多种功能;和keil联合使用时可以检测所编写的程序的正确与否。将keil和proteus联合起来使用是实现电子设计制作的初步阶段,可避免在实际的硬件操作中因为电路原理图或向单片机烧录的程序有误而造成的难以修改的为题。
3、掌握了Proteus的使用方法,从实际操作中认识到Proteus在仿真方面的优越性,激发了自己学习Proteus的兴趣;
4、因为自己要修改程序,所以单单花费在程序分析的时间就很多,为了更好的理解程序,我把每句主要程序的后面都注释了该语句的意思,详情可以见程序清单,发现注释语义的工作量也是非常大的。写实验报告时,每个模块的流程图都是自己画的,用WORD文档画图真的很麻烦,而且不是很美观。因为时间比较仓促,流程图写的条理性不够,不过相信以后多多练习,就可以做得更好。
2、按键处理模块
2.1按键连线图
从左到右依次是:进位键,数字加,数字减,退出
Mode模式键
2.2按键扫描子程序流程图:
否否否否
是是是是是


是是
2.3加减键处理子程序流程图



采用单片机STC12C5608AD设计一台数显温度表

采用单片机STC12C5608AD设计一台数显温度表

随着社会的进步和工业技术的发展,人们越来越重视温度因素,许多产品对温度范围要求严格,而且目前市场上普遍存在的温度检测仪器大都是单点测量,同时有温度信息传递不及时、精度不够的缺点,不利于工业控制者根据温度变化及时做出决定。

本设计是利用STC12C5608AD 实现对温度的采集。

在设计中采用了PT100热电阻温度传感器,其具有较高的精确度,可完成对温度的精准测量;在显示部分采用动态显示,对于放大倍数和上下限的设定我们采用分时显示。

关键词:STC12C5608AD单片机、PT100、LabVIEW、研华板卡PCL-818HG第一章课程设计内容与要求分析 (1)1.1 课程设计内容 (1)1.2 课程设计要求 (1)第二章智能温度表硬件设计 (2)2.1 温度检测 (2)2.2 实测温度显示 (2)2.3 温度设定 (3)2.4 报警电路 (4)第三章智能温度表软件设计 (5)3.1 工作流程 (5)3.2 功能模块 (5)3.3 资源分配 (5)3.4功能软件设计 (7)3.4.1主程序与中断服务子程序 (7)3.4.2按键检测子程序 (8)3.4.3按键键值处理子程序 (8)3.4.4 显示子程序 (9)第四章温度控制电路的LabVIEW实现 (10)4.1 LabVIEW简介 (10)4.2 研华板卡PCL—818HG (10)4.3 温度控制系统 (11)4.3 温度控制调试过程 (12)单片机课程设计总结 (13)参考文献 (14)附录 (15)第一章课程设计内容与要求分析第一章课程设计内容与要求分析1.1 课程设计内容1、采用单片机STC12C5608AD设计一台数显温度表2、采用研华板卡PCL—818HG 设计一台虚拟温度表1.2 课程设计要求1、数显温度表(应用protel画出电路原理图,应用keil完成软件编程)1)传感器:热电阻PT100;2)显示器:数码管4位(LED);3)键盘:功能键、移位键和加一键;4)范围:0-200℃;5)精度:≤1℃;6)电源:AC 220V;7)变送器:DC 0-20mA;8)报警:超上限LED闪烁;2、虚拟温度表(应用LabVIEW和PCL-818HG完成温度表前面板设计)1)输入温度信号:DC 0-4V;2)显示温度数值:00-200℃;3)采集板卡:PCL-818HG;4)报警显示:灯亮;第二章智能温度表硬件设计2.1 温度检测这部分需用PT100热敏温度传感器,PT100是铂热电阻,它的阻值会随着温度的变化而改变。

基于STC89C51单片机的智能温度控制系统设计

基于STC89C51单片机的智能温度控制系统设计

基于STC89C51单片机的智能温度控制系统设计一、本文概述随着科技的快速发展和智能化时代的到来,温度控制技术在各个领域中的应用越来越广泛,特别是在工业、农业、医疗、家居等领域,对于温度的精确控制要求日益提高。

传统的温度控制系统往往依赖于复杂的硬件设备和繁琐的操作流程,难以满足现代社会的需求。

因此,开发一种基于STC89C51单片机的智能温度控制系统,旨在通过先进的控制技术实现温度的精确、稳定和高效控制,具有重要的现实意义和应用价值。

本文将对基于STC89C51单片机的智能温度控制系统设计进行全面的探讨。

文章将介绍STC89C51单片机的性能特点及其在温度控制系统中的优势,为后续的设计提供理论基础。

接着,文章将详细阐述系统设计的总体方案,包括硬件设计和软件设计两大部分,以确保系统的稳定性和可靠性。

在硬件设计方面,文章将重点介绍温度传感器、控制器、执行器等关键部件的选型与连接;在软件设计方面,文章将详细介绍温度数据的采集、处理、控制算法的实现以及用户界面的设计。

本文还将对系统的调试与优化过程进行详细的描述,包括硬件调试、软件调试、系统测试等环节,以确保系统在实际应用中能够达到预期的性能指标。

文章将对整个设计过程进行总结,并对未来的研究方向进行展望,以期为推动智能温度控制技术的发展贡献一份力量。

本文旨在设计一种基于STC89C51单片机的智能温度控制系统,通过对其硬件和软件设计的详细介绍,以及系统调试与优化的过程分析,为相关领域的研究人员和实践者提供一种参考和借鉴。

本文也期望能够推动智能温度控制技术在实际应用中的广泛推广和应用,为现代社会的智能化发展贡献一份力量。

二、系统硬件设计系统硬件设计是基于STC89C51单片机的智能温度控制系统的核心部分,主要包括STC89C51单片机、温度传感器、显示模块、控制执行模块以及电源模块等几大部分。

单片机模块:选用STC89C51作为核心控制器,该单片机具有高性能、低功耗、易编程等优点,能够满足系统对温度数据的采集、处理和控制的需求。

基于51单片机数字温度计的设计与实现

基于51单片机数字温度计的设计与实现

基于51单片机数字温度计的设计与实现数字温度计是一种能够测量环境温度并显示数值的设备。

基于51单片机的数字温度计设计与实现是指利用51单片机作为核心,结合温度传感器和其他辅助电路,实现一个能够测量温度并通过数码管显示温度数值的系统。

本文将从硬件设计和软件实现两个方面介绍基于51单片机数字温度计的具体设计与实现过程。

一、硬件设计1. 温度传感器选取在设计数字温度计时,首先需要选取合适的温度传感器。

市面上常用的温度传感器有热敏电阻、功率型温度传感器(如PT100)、数字温度传感器(如DS18B20)等。

根据设计需求和成本考虑,我们选择使用DS18B20数字温度传感器。

2. 电路设计基于51单片机的数字温度计的电路设计主要包括单片机与温度传感器的连接、数码管显示电路和电源电路。

(1)单片机与温度传感器的连接在电路中将51单片机与DS18B20数字温度传感器相连接,可采用一线总线的方式。

通过引脚的连接,实现单片机对温度传感器的读取控制。

(2)数码管显示电路为了能够显示温度数值,我们需要设计一个数码管显示电路。

根据温度传感器测得的温度值,通过数字转换和数码管驱动,将温度数值显示在数码管上。

(3)电源电路电源电路采用稳压电源设计,保证整个系统的稳定供电。

根据实际需求选择合适的电源电压,并添加滤波电容和稳压芯片,以稳定电源输出。

3. PCB设计根据电路设计的原理图,进行PCB设计。

根据电路元件的布局和连线的走向,绘制PCB板的线路、元件和连接之间。

二、软件实现1. 单片机的编程语言选择对于基于51单片机的数字温度计的软件实现,我们可以选择汇编语言或者C语言进行编程。

汇编语言的效率高,但编写难度大;C语言的可读性好,开发效率高。

根据实际情况,我们选择使用C语言进行编程。

2. 温度传感器数据获取利用单片机的IO口与温度传感器相连,通过一线总线协议进行数据的读取。

根据温度传感器的通信规则,编写相应的代码实现数据的读取。

基于单片机温度控制系统设计

基于单片机温度控制系统设计

基于单片机的温度控制系统设计摘要:这次综合设计,主要是设计一个温度控制系统,用STC89C52单片机控制,用智能温度传感器DS18B20对温度进行采集,用LCD1602液晶显示屏将采集到的温度显示出来。

系统可以有效的将温度控制在设定的范围内。

如果实际温度超出了控制范围,则系统会有自动的提示信号,并且相应的继电器会动作。

我们的实际生活离不开对温度的控制,在很多情况下我们都要对我们所处的环境进行温度检测,然后通过一定的措施进行调节,从而达到我们自己想要的温度,使我们的生活环境更加适宜。

关键字:单片机;液晶显示屏;温度传感器;继电器;提示信号Abstract:This integrated design is the design of a temperature control system. A smart temperature sensor DS18B20 is used to collect temperature and a LCD1602 Liquid Screen is used to display the collected temperature. The system controlled by STC89C52 can effectively control the temperature within the setting limits. If the actual temperature exceeds the setting range, the system will automatically give signal, and the corresponding Relay will take related actions. It is necessary for us to control the temperature because in many situations the temperature around us is not proper for us. So we need to detect it and take some actions to adjust it to the temperature we want to make the environment around us better.Key Words:DS18B20;LCD1602;STC89C52;Relay;Signal引言目前,测控系统在工业生产中起着把关者和指导者的作用,它从生产现场到各种参数的获取,运用科学规律和系统工程的做法,综合有效地利用各种先进技术,通过自动手段和装备,使每个生产环节得到优化,进而保证生产规范化,提高产品质量,降低成本,满足需要,保证安全生产。

基于51单片机数字体温计设计

基于51单片机数字体温计设计

基于STC89C52最小系统的数字体温计设计摘要现代信息技术的三大基础是信息采集(即传感器技术)、信息传输(通信技术)和信息处理(计算机技术)。

传感器属于信息技术的前沿尖端产品,尤其是温度传感器种类日益繁多,数字温度传感器更因适用于各种微处理器接口组成的自动温度控制系统具有可以克服模拟传感器与微处理器接口时需要信号调理电路和A/D转换器的弊端等优点,被广泛应用于工业控制、电子体温计、测温仪器等各种温度控制系统中。

智能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的。

它是微电子技术、计算机技术和自动测试技术(ATE)的结晶。

它们内部都包含温度传感器、A/D转换器、信号处理器、存储器(或寄存器)和接口电路。

有的产品还带多路选择器、中央控制器(CPU)、随机存取存储器(RAM)和只读存储器(ROM)。

智能温度传感器的特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU);并且它是在硬件的基础上通过软件来实现测试功能的,其智能化程度也取决于软件的开发水平。

对某些智能温度传感器而言,单片机还可通过相应的寄存器来设定其A/D转换速率(典型产品为MAX6654),分辨力及最大转换时间(典型产品为DS1624)。

随着时代的进步和发展,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,采用单片机控制已经成为了一种潮流。

本文将介绍一种基于STC89C52单片机控制的数字体温计,配合采用DS18B20为温度采集模块,HS1602液晶显示模块显示结果,另外用MAX232模块进行电压转换进行程序的烧写,实现对体温的采集与再现。

关键词:52单片机,DSI8B20,HS1602,体温计THE DIGITAL THERMOMETERS DESIGN BASED ON ST C89C52’S MINUIMUM SYSTEMABSTRACTModern information technology is based on the three information collection (ie, sensor technology), information transfer (ICT) and information processing (computer technology). Sensor belongs to the forefront of cutting-edge information technology products, especially the increasingly diverse types of temperature sensors, digital temperature sensor is more suitable for a variety of microprocessor interface for the composition of the automatic temperature control system can overcome the analog sensors and signal conditioning required for microprocessor interfacing circuit and A / D converter defects, etc., are widely used in industrial control, electronic thermometer, thermometer, etc. of various temperature control systems. Smart temperature sensor (also known as digital temperature sensor) in the mid-1990s, came out. It is the micro-electronics technology, computer technology and automated testing techniques (ATE) of the crystal. They contain the internal temperature sensor, A / D converter, signal processor, memory (or registers) and the interface circuit. Some products are also with the multiplexer, the central controller (CPU), random access memory (RAM) and read-only memory (ROM). Smart temperature sensor is characterized by the temperature data can be exported and the related amount of temperature control, fit a variety of microcontrollers (MCU); and it is based on the hardware to achieve through software testing capabilities, and its degree depends on intelligent in the software development level. Some smart temperature sensor, the controller can also register through the appropriate set of its A / D conversion rate (typical products MAX6654), the maximum resolution and conversion time (typical product DS1624). With the progress and development, microcontroller technology has spread to our lives, work, research in various fields, has become a relatively mature technology, using SCM hasbecome a trend. This article describes a microcontroller based control of digital thermometers STC89C52, with the use of DS18B20 the temperature acquisition module, HS1602 liquid crystal display module displays the results, another module with a MAX232 voltage conversion, to achieve the temperature of the acquisition and reproduction.Keywords: 52 microcontroller; DSI8B20; HS1602; thermometer目录1引言-------------------------------------------------------------- 1 2总体设计方案------------------------------------------------------ 32.1方案论证----------------------------------------------------- 32.1.1单片机系统--------------------------------------------- 32.1.2电源模块----------------------------------------------- 32.1.3温度传感器--------------------------------------------- 32.1.4显示模块----------------------------------------------- 42.1.5确定方案----------------------------------------------- 42.2总体设计----------------------------------------------------- 43 硬件设计---------------------------------------------------------- 53.1 单片机系统-------------------------------------------------- 53.1.1单片机最小系统----------------------------------------- 73.1.2 复位电路----------------------------------------------- 83.1.3 时钟振荡电路------------------------------------------- 83.1.4电源模块----------------------------------------------- 9 3.2温度传感器模块-------------------------------------------------- 93.2.1 DS18B20原理------------------------------------------- 93.2.2 DS18B20电路连接-------------------------------------- 133.3 液晶显示模块----------------------------------------------- 133.4串口通信模块------------------------------------------------ 15 4软件设计--------------------------------------------------------- 174.1 软件流程--------------------------------------------------- 174.2 DS18B20模块程序设计--------------------------------------- 184.2.1 程序流程------------------------------- 错误!未定义书签。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

陕西理工学院课程设计基于单片机的液晶温度显示器的设计[摘要]本文主要介绍了一个基于A T89C51单片机的测温系统,详细描述了利用液晶显示器件LCD1602和传感器DS18B20开发测温系统的过程,对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,特别是数字温度传感DS18B20的数据采集过程。

[关键词]A T89C51;DS18B20 ;LCD1602Based on single chip microcomputer temperature of liquidcrystal display designAuthor:Zhou WeiTao(Garde11 class4 Major Communication, School of Physics and Telecommunication Engineering, ShaanxiUniversity of Telechnology ,shaanxi hanzhong 723000)Tutor: Liu Yafeng[Abstract]This paper mainly introduces a temperature measurement system based on A T89C51, describes in detail using LCD1602 LCD display device and sensor DS18B20 temperature measurement and control system in the development process, focusing on sensor under the single chip microcomputer hardware connection, software programming and the flow diagram of each module system are analyzed in detail, especially the digital temperature sensor DS18B20 the data collection process.[Key words] A T89C51; DS18B20; LCD1602陕西理工学院课程设计引言温度是生活及生产中最基本的物理量,它表征的是物体的冷热程度。

自然界中任何物理、化学过程都紧密地与温度相联系。

在很多生产过程中,温度的测量和控制都直接和安全生产、提高生产效率、保证产品质量、节约能源等重大技术经济指标相联系。

自18世纪工业革命以来,工业过程离不开温度控制。

温度控制广泛应用于社会生活的各个领域,如家电、汽车、材料、电力电子等。

温度控制的精度以及不同控制对象的控制方法选择都起着至关重要的作用。

随着社会的进步和工业技术的发展,温度因素在社会生活各个方面已不容忽视。

由于许多产品对温度范围要求严格,而目前市场上普遍存在的温度检测仪器大都是单点测量,同时有温度信息传递不及时、精度不够的缺点,不利于工业控制者根据温度变化及时做出决定,在这样的形式下,开发一种能够同时测量多点,并且实时性高、精度高,能够综合处理多点温度信息的测量系统就很有必要。

在单片机技术已经普及到我们生活、工作、科研、各个领域,已经成为一种比较成熟的技术条件下,我们可以基于89S51单片机,利用液晶显示器件以及DS18B20温度传感器等器件,通过温度传感器在单片机下的硬件连接,软件编程即可设计DS18B20温度传感器系统。

该系统可以方便的实现实现温度采集和显示,并可根据需要任意设定上下限报警温度,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合于我们日常生活和工、农业生产中的温度测量,也可以当作温度处理模块嵌入其它系统中,作为其他主系统的辅助扩展。

DS18B20与AT89C51结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。

1内容1.1课程设计题目基于DS18B20的温度传感器1.2课程设计目的通过基于MCS-51系列单片机AT89C51和DS18B20温度传感器检测温度,熟悉芯片的使用,温度传感器的功能,数码显示管的使用,汇编语言的设计;并且把我们这一年所学的数字和模拟电子技术、检测技术、单片机应用等知识,通过理论联系实际,从题目分析、电路设计调试、程序编制调试到传感器的选定等这一完整的实验过程,培养了学生正确的设计思想,使学生充分发挥主观能动性,去独立解决实际问题,以达到提升学生的综合能力、动手能力、文献资料查阅能力的作用,为毕业设计和以后工作打下一个良好的基础。

1.3设计任务和要求以MCS-51系列单片机为核心器件,组成一个数字温度计,采用数字温度传感器DS18B20为检测器件,进行单点温度检测,检测精度为±0.5摄氏度。

温度显示采用LCD1602显示,两位整数,一位小数。

图1.1系统总体仿真图1.4方案选择与论证根据设计任务的总体要求,本系统可以划分为以下几个基本模块,针对各个模块的功能要求,分别有以下一些不同的设计方案:1.4.1温度传感模块方案一:采用热敏电阻,热敏电阻精度、重复性、可靠性较差,对于检测1摄氏度的信号是不适用的,也不能满足测量范围。

在温度测量系统中,也常采用单片温度传感器,比如AD590,LM35等。

但这些芯片输出的都是模拟信号,必须经过A/D转换后才能送给计算机,这样就使测温系统的硬件结构较复杂。

另外,这种测温系统难以实现多点测温,也要用到复杂的算法,一定程度上也增加了软件实现的难度。

方案二:采用单总线数字温度传感器DS18B20测量温度,直接输出数字信号。

便于单片机处理及控制,节省硬件电路。

且该芯片的物理化学性很稳定,此元件线形性能好,在0—100摄氏度时,最大线形偏差小于1摄氏度。

DS18B20的最大特点之一采用了单总线的数据传输,由数字温度计DS18B20和微控制器AT89C51构成的温度装置,它直接输出温度的数字信号到微控制器。

每只DS18B20具有一个独有的不可修改的64位序列号,根据序列号可访问不同的器件。

这样一条总线上可挂接多个DS18B20传感器,实现多点温度测量,轻松的组建传感网络。

综上分析,我选用第二种方案。

图1.2 温度传感模块仿真图1.4.2显示模块方案一:采用8位段数码管,将单片机得到的数据通过数码管显示出来。

该方案简单易行,但所需的元件较多,且不容易进行操作,可读性差,一旦设定后很难再加入其他的功能,显示格式受限制,且大耗电量大,不宜用电池给系统供电。

方案二:采用液晶显示器件,液晶显示平稳、省电、美观,更容易实现题目要求,对后续的园艺通兼容性高,只需将软件作修改即可,可操作性强,也易于读数,采用RT1602两行十六个字符的显示,能同时显示其它的信息如日期、时间、星期、温度。

综上分析,我们采用了第二个方案图1.3 显示模块仿真图2系统概述2.1系统的总体设计方案采用AT89S52单片机作为控制核心对温度传感器DS18B20控制,读取温度信号并进行计算处理,并送到液晶显示器LCD1602显示。

按照系统设计功能的要求,确定系统由3个模块组成:主控制器、测温电路和显示电路。

数字温度计总体电路结构框图如图2.1下所示。

图2.1 总体电路结构框图2.2硬件电路设计2.2.1单片机控制模块该模块由AT89C51单片机组成在设计方面,AT89C51的EA接高电平,其外围电路提供能使之工作的晶振脉冲、复位按键,四个I/O分别接8路的单列IP座方便与外围设备连接。

当AT89C51芯片接到来自温度传感器的信号时,其内部程序将根据信号的类型进行处理,并且将处理的结果送到显示模块,发送控制信号控制各模块。

2.2.2温度传感器模块图2.2 DS18B202.2.2.1 DS18B20原理与分析DS18B20是美国DALLAS半导体公司继DS1820之后最新推出的一种改进型智能温度传感器。

与传统的热敏电阻相比,它能够直接读出被测温度并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。

可以分别在93.75 ms和750 ms内完成9位和12位的数字量,并且从DS18B20读出的信息或写入DS18B20的信息仅需要一根口线(单线接口)读写,温度变换功率来源于数据总线,总线本身也可以向所挂接的DS18B20供电,而无需额外电源。

因而使用DS18B20可使系统结构更趋简单,可靠性更高。

他在测温精度、转换时间、传输距离、分辨率等方面较DS1820有了很大的改进,给用户带来了更方便的使用和更令人满意的效果。

以下是DS18B20的特点:(1)独特的单线接口方式:DS18B20与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。

(2)在使用中不需要任何外围元件。

(3)可用数据线供电,电压范围:+3.0∽+5.5 V。

(4)测温范围:-55 - +125 ℃。

固有测温分辨率为0.5 ℃。

(5)通过编程可实现9-12位的数字读数方式。

(6)用户可自设定非易失性的报警上下限值。

(7)支持多点组网功能,多个DS18B20可以并联在惟一的三线上,实现多点测温。

(8)负压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作。

图2.3 DS18B20的测温原理2.2.2.2 DS18B20的测温原理DS18B20的测温原理如图2.3所示,图2.3低温度系数晶振的振荡频率受温度的影响很小,用于产生固定频率的脉冲信号送给减法计数器1,高温度系数晶振随温度变化其震荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入,图2.3还隐含着计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲后进行计数,进而完成温度测量。

计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将-55 ℃所对应的基数分别置入减法计数器1和温度寄存器中,减法计数器1和温度寄存器被预置在 -55 ℃所对应的一个基数值。

减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时温度寄存器的值将加1,减法计数器1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。

图中的斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正减法计数器的预置值,只要计数门仍未关闭就重复上述过程,直至温度寄存器值达到被测温度值,这就是DS18B20的测温原理。

另外,由于DS18B20单线通信功能是分时完成的,他有严格的时隙概念,因此读写时序很重要。

相关文档
最新文档