高精度数字表揭秘系列

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高精度数字表揭秘系列(一)

:数字万用表的工作原理发布时间:2011-09-23 15:00:12

从事HP和安捷伦基础测量仪器的市场推广工作十多年来,我遇到了众多的工程师,也无数次共同探讨测试相关的技术问题。但有意思的是,工程师们最关心最多的实际上就是一些基础的问题,毕竟绝他们的主业不是测试测量技术。因此,我最近陆续写了几篇关于时间和频率测量的文章,大家反应还不错。这也给了我写更多高质量文章的动力。

工程师们最常问的问题是关于精确的直流和交流测量的。他们经常会经历一些困惑,如测量的误差到底是多少、数字表测量显示为什么不稳定、不同的数字表测量结果为什么差别很大、交流有效值测量结果不可信等等。就此我会写一系列的文章,和大家一起讨论这些问题。在文章中,我会以安捷伦的34401A和34410A这两款高性能数字万用表为例。34401A是HP 公司在1993年的产品,至今仍然是全球销售量最大的6位半数字表,中国有近10万台的拥有量。34410A是第一款LXI标准的数字万用表。

首先介绍高精度数字万用表的工作原理。6位半的数字表有着非常高的精度和分辨率。例如,如果测量5VDC,其分辨率可以达到1uV。在读数的时候,我们希望是只有最后一位有跳动。如果在倒数第二位,甚至倒数第三位跳动,也就是6位数字显示中只有3位或4位稳定的,这时候的6位半表也就变成5位半甚至4位半了。那么是什么原因造成了测量结果不稳定呢?

如果输入的5VDC偏置是稳定的,造成很大测量不确定度的原因首先是噪声。通常情况下,噪声有两种,即串模噪声和共模噪声。

串模噪声是存在于被测件回路中的噪声,如下图所示:

串模噪声的来源是多方面的,例如电源、被测件本身、空间中电磁电磁噪声、还有50Hz 的供电线路公频噪声。对于5VDC的信号,通常会有从几毫伏到几十毫伏峰峰值的纹波加噪声。信号看上去就像下图。在50Hz 的公频噪声上夹杂着其他的高频噪声。

因此,为了得到精确的测量结果,首先要考虑到对串模噪声的抑制。以下是数字万用表的工作原理图。

被测信号从前端输入。实际上,对于绝大多数仪器来说,前端是最值钱的部分,也是衡量不同厂家仪器水平的最重要的标志。信号通过前端的调理,转换成适合ADC的信号幅度。图示中的AC RMS 是一个专用的电路,它的作用是对输入交流信号进行有效值的运算。在最新的数字表中,如34410A,这个电路已经不存在了。

与示波器不一样,高精度数字表中采用的是双积分式ADC。这种ADC的特点是分辨率极高,对噪声的抑制能力超强,适合于高分辨率、高精度的测量,但速度比较低。例如,6位半数字表采用的是22bit的ADC,8位半是28bit 的ADC. 数字表内部的工作原理如下图所示

Vi是经过前端调理后的被测电压,Vref是内部参考电源。首先是开关(红色表示)切合到Vi端,Vi对积分器中的电容进行充电。充电的时间是公频周期的整倍数,即20ms和其整倍数,目的是抑制公频噪声(如下图)。充电结束后,电容上的电压即等于Vi的平均值。这

时将开关切合到Vref上,在Vref的控制下,电容进行固定斜率的放电。同时,用内部计数器记录放电时间。Vi 就可以利用放电时间和斜率算得了。在这个过程中,电容的充电再放电的过程,就可以消除高频噪声。而对50Hz公频噪声的抑制方式如下图所示:

如果充电的时间在20ms (一个公频周期,即1PLC)或其整倍数的时候,就可以抑制公频噪声。因此,对高精度测量来说,20ms的时间是必须的。当然,如果测量时间越长,例如10PLC,当然会获得更高的噪声抑制比。但这样会影响到测量的速度,特别是在高精度数据采集或自动化测试系统中。所以,测试速度和精度实际上是一对矛盾。在实际使用过程中,要折中考虑。

不同的数字万用表在同样的测量时间内,对公频噪声的抑制比有区别的。例如传统的34401A,如果选择200ms 的测量时间,对公频抑制比是60dB. 而对于34410A 新款的产品,在40ms 的测量时间,公频抑制比就可以达到120dB。有些工程师如果从二手市场上买的一些从美国舶来的旧货,就可能有问题,因为美国是60Hz公频周期。

如果供电公频周期出现不稳定,也会降低公频噪声抑制比。如下图是34410A的公频噪声抑制比和电网频率的关系。从图中可以看出,如果公频周期偏差了1Hz,公频噪声抑制比就会下降60dB

以上重点讨论的是数字万用表结构和对串模噪声的抑制。可以看出,为了确保读数的稳定性

和可重复性,我们要考虑到降低并抑制输入的噪声,根据测量速度和精度的要求合理设置测量时间,并选择合适的数字万用表。关于共模噪声对测量的影响和抑制方法,我将在下一篇文章中讨论

高精度数字万用表揭秘系列(二):接地回路对测量精度的影响

发布时间:2011-10-03 21:53:27

有不少工程师和我谈起过弱信号电压测量的问题,例如传感器的信号。他们在测量过程中经常遇到难以忍受的巨大误差和测量不确定度,特别是现场和产线上,有时甚至影响大批产品的质量。

如果出现这种情况,你务必关注一下测试设备、被测件和测量夹具的接地状况。根据以往的经验,出现这些测量问题最多的原因,就是接地出问题了。我们来看下面这张图。

在图中,虚线框中的部分就是我们的数字万用表测量电路。Vtest是被测电压,RL 是测量线上的电阻。通常这个电阻很小。Ri是万用表的对地阻抗,这个阻抗可以大于10G欧姆. Ci是万用表与地之间的隔离电容。Vground是万用表的接地点与被测件接地点之间的地噪声电压。理想状态下,如果Vground仅是直流电压,由于万用表Ri的阻值非常高,Vground造成的电流(有时我们称之为共模电流)很小,Vtest产生的误差可以忽略不计。安捷伦的34401A 和34410A,在相对湿度小于80% 的时候,都能确保该隔离电阻的阻值不小于10G欧姆。在通常的实验室环境中,该电阻还远大于10G欧姆。因此,要降低这种DC地环干扰,尽量缩短被测件和万用表之间的地线长度,是非常好的办法,特别是将其短路。我们称之为“共地”。但在实际测量过程中,更多地环路的噪声源和测量误差是来自交流。由于数字表内部电容型器件的存在,即Ci的存在,与Ri是并联的,导致数字表对地的交流阻抗要低得多。Ci是由数字表内部变压器的线圈造成的。Ci的典型值是250pF. 因此,如果工作在50Hz公频的供电电源状态下,阻抗大约为10M欧姆,要远小于10G欧姆的直流阻抗。为了抑制这个噪声,我们通常要把数字电压表的积分时间设置在公频的整倍数。

但如果在供电电源中有其他更高频的噪声,例如马达或其它大功率继电器造成的地线上的噪声,数字万用表就很难对此进行有效的抑制。这就需要对测试系统的接地进行认真的考虑。

相关文档
最新文档