刀具角度的变化与工件材料的关系
第一章刀具的几何角度及切削要素(+考试要点)
通过切削刃 上选定点, 上选定点,垂直 于基面并与主切 削刃相切的平面。 削刃相切的平面。
丽水学院机械系
2.刀具的标注角度
(1)基面中测量的刀具角度
1)主偏角κr 主偏角κ 主切削刃在基面上的投影与进给 方向之间的夹角。 运动速度vf 方向之间的夹角。 2)副偏角κr′ 副切削刃在基面上的投影与进给 副偏角κ 反方向之间的夹角。 运动速度vf反方向之间的夹角。
丽水学院机械系
丽水学院机械系
2.刀刃
(1)主切削刃 前刀面与主后刀面在空间的交线。 前刀面与主后刀面在空间的交线。
(2)副切削刃 前刀面与副后刀面在空间的交线。 前刀面与副后刀面在空间的交线。
3.刀尖
三个刀面在空间的交点,也可理解为主、 三个刀面在空间的交点,也可理解为主、副切削刃 二条刀刃汇交的一小段切削刃。 二条刀刃汇交的一小段切削刃。 在实际应用中,为增加刀尖的强度与耐磨性, 在实际应用中,为增加刀尖的强度与耐磨性, 一般在刀尖处磨出直线或圆弧形的过渡刃。 一般在刀尖处磨出直线或圆弧形的过渡刃。
丽水学院机械系
丽水学院机械系
§1.2.3切削用量三要素 1.2.3
在切削加工中切削速度、进给量和背吃刀 量(切削深度)总称为切削用量。它表示主 运动和进给运动量。 1.切削速度 切削速度 刀具切削刃上选定点相对工件主运动的 瞬时线速度称为切削速度,用vc表示,单位 为m/s或m/min。
dn vc = = 1000 318
π dn
切削速度
丽水学院机械系
2.进给量 进给量
工件或刀具每转一周,刀具在进给方向上相 对工件的位移量,称为每转进给量,简称进给量, 用f表示,单位为mm/r。 单位时间内刀具在进给运动方向上相对工件 的位移量,称为进给速度,用vf表示,单位为 mm/s或m/min。 当主运动为旋转运动时,进给量f与进给速度 vf之间的关系为: vf =fn
材料成型简答题
1、什么叫刀具的前角?什么叫刀具的后角?简述前角、后角的改变对切削加工的影响。
答:前角是刀具前面与基面间的夹角,在正交平面中测量;后角是刀具后面于切削平面间的夹角,在正交平面中测量。
前角大,刀具锋利,这时切削层的塑性变形和摩擦阻力减小,切削力和切削热降低;但前角过大会使切削刃强度减弱,散热条件变差,刀具寿命下降,甚至会造成崩刀。
增大后角,有利于提高刀具耐用度,但后角过大,也会减弱切削刃强度,并使散热条件变差。
2、试述常用的手工造型有哪些?答:整模造型,分模造型,挖砂造型,活块造型,刮板造型,三箱造型。
3、切削热是怎样产生?它对切削加工有何影响答:在切削过程中,切削层金属的变形及刀具的前面与切屑、后面与工件之间的摩擦所消耗的功,绝大部分转变成切削热。
切削热由切屑、刀具、工件及周围介质传出,其中传入切屑和周围介质的热量对加工无直接影响。
传入刀具的热量是切削区的温度升高,刀具的温度升高,磨损加剧,会影响刀具的使用寿命。
切削热传入工件,工件温度升高,产生热变形,将影响加工精度。
4 工件在锻造前为什么要加热?什么是金属的始锻温度和终锻温度?若过高和过低将对锻件产生什么影响?答:金属坯料锻造前,为了提高其塑性,降低变形抗力,使金属在较小的外力作用之下产生较大的变形,必须对金属坯料进行加热。
金属在锻造时,允许加热到的最高温度称为始锻温度,始锻温度过高会使坯料产生过热、过烧、氧化、脱碳等缺陷,造成废品;金属停止锻造的温度叫做终锻温度,终锻温度过低,塑性下降,变形抗力增大,当降到一定温度的时候,不仅变形困难,而且容易开裂,必须停止锻造,重新加热后再锻。
5、常见的电弧焊接缺陷有哪些?产生的主要原因是什么?答:咬边:焊接电流太大,焊条角度不合适,电弧过长,焊条横向摆动的速度过快;气孔:焊接材料表面有油污、铁锈、水分、灰尘等,焊接材料成分选择不当,焊接电弧太长或太短,焊接电流太大或太小;夹渣:电流过小,熔渣不能充分上浮,运条方式不当,焊缝金属凝固太快且周围不干净,冶金反应生成的杂质浮不到熔池表面;未焊透:焊接电流太小,焊接速度太快,焊件装配不当,焊条角度不对,电弧未焊透工件;裂纹:焊接材料的化学成分选择不当,造成焊缝金属硬、脆,在焊缝冷凝后期和继续冷却过程中形成裂纹,金属液冷却太快,导致热应力过大而形成裂纹,焊件结构设计不合理,造成焊接应力过大而产生裂纹。
刀具几何角度的作用及选择原则
刀具几何角度的作用及选择原则刀具的几何角度对加工质量、切削力和切削温度等有很大的影响,正确的选择刀具几何角度可以提高切削效率和工件表面质量。
本文将从切削角、主偏角、切削刃前角和切削刃后角四个方面来探讨刀具几何角度的作用及选择原则。
一、切削角切削角是刀具主切削面与工件切削表面的夹角,一般分为正的和负的两种情况。
1.正切削角:也称为刀具顶角,是指刀具主切削面与工件切削表面夹角大于90°的情况。
正切削角有利于降低切削力和切削温度,减少刀具磨损。
因此,在切削硬材料或脆性材料时,一般选择正切削角。
但是正切削角也会增大刀具与工件接触面积,增加切削力,从而需要更大的功率投入。
2.负切削角:也称为刀具反角,是指刀具主切削面与工件切削表面夹角小于90°的情况。
负切削角能降低切削力和切削温度,提高切削稳定性和切削质量。
因此,在切削软材料或难切削材料时,一般选择负切削角。
然而,负切削角的刀具易产生振动,增加切削噪声,且不易控制切削深度。
在实际应用中,切削角的选择应根据材料的性质、切削目标和加工条件综合考虑,一般需要通过试切试验来确定最佳切削角。
二、主偏角主偏角是刀具俯仰角,是指刀具主切削面与铣削切削方向之间的夹角。
主偏角的大小会直接影响刀具的切削力和切削质量。
1.大主偏角:大主偏角可以降低刀具的切削力和切削温度,提高切削稳定性和切削质量。
大主偏角适用于切削精度要求高、切削深度相对较小、切削速度相对较低的情况。
2.小主偏角:小主偏角可以提高刀具的切削效率和切削速度,适用于切削深度相对较大、切削速度相对较高的情况。
然而,小主偏角容易导致切屑的卡刀现象,增加刀具磨损和加工表面粗糙度。
主偏角的选择应结合切削效率和切削质量的要求,同时考虑刀具的刚度和加工条件等因素。
三、切削刃前角切削刃前角是刀具切削刃前的锥度角,主要影响刀具的切削稳定性和切削质量。
1.大切削刃前角:大切削刃前角可以增加切削深度和切削范围,提高切削效率和切削速度。
《金属切削原理与刀具》知识点总结
I 切削原理部分第1章刀具几何角度及切削要素1、切削加工必备三个条件:刀具与工件之间要有相对运动;刀具具有适当的几何参数,即切削角度;刀具材料具有一定的切削性能2、切削运动:刀具与工件间的相对运动,即表面成形运动。
分为主运动和进给运动。
1)主运动是刀具与工件之间最主要的相对运动,消耗功率最大,速度最高。
有且仅有一个。
运动形式:旋转运动(车削、镗削的主轴运动)直线运动(刨削、拉削的刀具运动)运动主体:工件(车削);刀具(铣削)。
2)进给运动:使新切削层不断投入切削,使切削工作得以继续下去的运动。
进给运动的速度一般较低,功率也较少。
其数量可以是一个,也可以是多个。
可以是连续进行的,也可以是断续进行的。
可以是工件完成的,也可以是刀具完成的。
运动形式:连续运动:如车削;间歇运动:如刨削。
一个运动,如钻削;多个运动,如车削时的纵向与横向进给运动;没有进给运动,如拉削。
运动主体:工件,如铣削、磨削;刀具,如车削、钻削。
3、切削用量切削用量是指切削速度c v 、进给量f (或进给速度)和背吃刀量p a 。
三者又称为切削用量三要素。
1)切削速度c v (m/s 或m/min):切削刃选定点相对于工件的主运动速度称为切削速度。
主运动为旋转运动时,切削速度由下式确定1000dn v c π=式中:d-工件或刀具的最大直(mm)n-工件或刀具的转速(r/s 或r/min)2)进给量f:工件或刀具转一周(或每往复一次),两者在进给运动方向上的相对位移量称为进给量,其单位是mm/r(或mm/双行程)。
3)背吃刀量p a (切削深度mm)2m w p d d a -=式中:w d -工件上待加工表面直径(mm);m d -工件上已加工表面直径(mm)。
4、工件表面:切削过程中,工件上有三个不断变化的表面待加工表面:工件上即将被切除的表面。
过渡表面:正被切削的表面。
下一切削行程将被切除。
己加工表面:切削后形成的新表面。
5、刀具上承担切削工作的部分称为刀具的削部分,刀具切削部分由一尖二刃三面组成。
刀片角度关系
vc=(π×D1× n)÷ 1000=(3.14 =137.4(m/m in) 切削速度为 137.4m/min
每刃进给 量 (fz) / 工作台进
fz (mm/tooth) : 每刃进给量 vf (mm/min) : 每分钟工作 台进给速度 n (min-1) : 主轴转速 (每转进给量 f=zxfz) z
: 刃数 请选择要计 算的项目, 在3个空格内 vf(mm/min)
z
n(min-1)
fz(mm/tooth )
(例题) 主轴转速 500min-1、 铣刀刃数10 (答) 由公式、 fz=Vf÷(z× n)=500÷(10 × 求出每齿进 给量为 0.1mm/齿。
(例题) 每刃进给量 0.1mm/齿, 铣刀刃数10 (答)
vf(mm/min)
Tc(min)
秒
(例题) 铸铁 (FC200)平 板宽100mm 切削速度 125m/min、 每齿进给量 求所需加工 时间(主轴转 速200min-1) (答) 首先求出工 作台每分钟 进给速度、 vf=0.25×16 × 200=800m 再求出工作 台总进给长 度 L=300+200 =500mm 代入公式、 Tc=500÷ 800=0.625( min) 0.625×60= 约37.5秒
前角
前角对切削 力、切屑排 出、切削热
前角的影响
1. 正前角 大,切削刃 锋利。 2. 前角每增 加1°,切削 功率减少1% 3. 正前角 大,刀刃强 度下降;负 大负前角用
于
切削硬材料
需切削刃强 度大,以适 应断续切削 大正前角用
于
切削软质材 料
易切削材料
被加工材料 及机床刚性
差时
TOP
刀具几何角度对切削加工的影响及其选择
刀具几何角度对切削加工的影响及其选择王洋交通与物流工程学院机械设计制造及其自动化摘要:刀具材料的优选对于切削过程的优化具有关键作用,但是,刀具几何角度的选择不合理也会使刀具材料的切削性能得不到充分的发挥。
可见,刀具合理几何角度的选择同样是切削刀具理论与实践的重要课题之一。
切削加工刀具的完善程度对切削加工的现状和发展起着决定性的作用。
关键词:前角,后角,主偏角,副偏角,刃倾角,刀尖Geometry of the cutting tool and its selectionWangYangTransportation and Logistics Engineering Mechanical Design, Manufacturing and Automation Abstract:Optimization of the cutting tool material has a key role in the optimization process, However, the choice of cutting tool geometry unreasonable also make the cutting tool materials are not sufficient to play.Shows that, cutting tool geometry and reasonable choice of cutting tools is also an important issue of theory and practice of. Degree of perfection of cutting tools on machining status and play a decisive role in the development of.Keywords:tool orthogonal rake,tool orthogonal clearance,tool cutting edge angle,tool minor cutting edge angle,tool cutting edge inclination angle,corner一、前角的功用及其合理值的选择1、前角的功用(1)影响切削区的变形程度:若增大前角,可以减小切削变形,从而减小切削力、切削热和切削功率。
刀轮角度的定义
刀轮角度的定义
刀轮角度通常指的是刀具在切削过程中的实际工作角度,这些角度对于切削效果和刀具寿命有着重要的影响。
以下是一些常见的刀轮角度定义:
1. 前角:前角是刀具前刀面与工件基面之间的夹角。
它决定了刀具的锋利程度,影响切削力的大小和铁屑的流动方向。
2. 后角:后角是刀具后刀面与切削平面之间的夹角。
后角主要影响刀具与工件之间的摩擦以及刀具的强度。
3. 主偏角:主偏角是主切削刃与刀具进给方向之间的夹角。
它影响刀具的强度和切削宽度,同时也影响背向力的大小。
4. 刃倾角:刃倾角是刀具主切削刃与工件表面之间的夹角。
刃倾角可以改变切削刃的实际前角,从而影响切削过程。
5. 副偏角:副偏角是副切削刃与工件表面之间的夹角。
副偏角影响副切削刃的切削性能和表面粗糙度。
6. 副后角:副后角是副后刀面与副切削平面之间的夹角。
副后角同样影响刀具与工件之间的摩擦和刀具的强度。
总的来说,刀具的工作角度是在切削过程中实际发挥作用的角度,可能由于刀具安装位置的不同而与标注角度有所差异。
在设计和使用刀具时,需要根据具体的加工要求和材料特性来选择合适的刀具角度,以达到最佳的切削效果和最长的刀具寿命。
刀主要角度
1.车刀分:外圆车刀、端面车刀、切断刀、内孔车刀、螺纹车刀。
2.车刀的角度有:前角、后角、副后角、刃倾角、主偏角、副偏角。
(1)前角γ0:前刀面与基面的夹角,在主剖面中测量。
前角的大小影响切削刃锋利程度及强度。
增大前角可使刃口锋利,切削力减小,切削温度降低,但过大的前角,会使刃口强度降低,容易造成刃口损坏。
取值范围为:-8°到+15°。
选择前角的一般原则是:前角数值的大小与刀具切削部分材料、被加工材料、工作条件等都有关系。
刀具切削部分材料性脆、强度低时,前角应取小值。
工件材料强度和硬度低时,可选取较大前角。
在重切削和有冲击的工作条件时,前角只能取较小值,有时甚至取负值。
一般是在保证刀具刃口强度的条件下,尽量选用大前角。
如硬质合金车刀加工钢材料时前角值可选5°-15°。
(2)主后角α0: 主后刀面与切削平面间的夹角,在主剖面中测量。
其作用为减小后刀面与工件之间的摩擦。
它也和前角一样影响刃口的强度和锋利程度。
选择原则与前角相似,一般为0到8°。
(3)主偏角κr: 主切削刃与进给方向间的夹角,在基面中测量。
其作用体现在影响切削刃工作长度、吃刀抗力、刀尖强度和散热条件。
主偏角越小,吃刀抗力越大,切削刃工作长度越长,散热条件越好。
选择原则是:工件粗大刚性好时,可取小值;车细长轴时为了减少径向切削抗力,以免工件弯曲,宜选取较大的值。
常用在15°到90°之间。
(4)副偏角κ'r: 副切削刃与进给反方向间的夹角,在基面中测量。
其作用是影响已加工表面的粗糙度,减小副偏角可使被加工表面光洁。
选择原则是:精加工时,为提高已加工表面的质量,应选取较小的值,一般为5到10°。
(5)刃倾角λs :主切削刃与基面间的夹角,在主切削平面中测量。
主要作用是影响切屑流动方向和刀尖的强度。
以刀柄底面为基准,主切削刃与刀柄底面平行时,λs =0,切屑沿垂直于主切削刃的方向流出。
解释车刀的主要几何角度,并说明对车削加工的影响
在车削加工中,车刀的主要几何角度对加工效果和加工质量有着重要的影响。
在本文中,我将从深度和广度上对车刀的几何角度进行全面评估,并探讨它们对车削加工的影响。
1. 切削角:切削角是指车刀切削刃上的主切削刃与前方切削方向的夹角。
切削角的大小直接影响着切屑的形成和流动。
当切削角较大时,切削力减小,但切削刃容易磨损;当切削角较小时,切削力增大,但切削刃磨损减小。
选择适当的切削角对于保证加工质量和提高加工效率至关重要。
2. 后角:后角是指车刀主切削刃与切削方向之间的夹角。
后角的大小影响着车刀的进给力和阻力。
当后角增大时,进给力增大,加工效率提高;但阻力也会增大,对车刀和工件的刚性要求也会增加。
合理选择后角是为了在保证加工效率的尽可能减小刀具和工件的损耗。
3. 主偏角:主偏角是指车刀主切削刃与工件表面的夹角。
主偏角的大小直接影响着工件的表面质量和加工精度。
一般来说,主偏角越小,加工表面的质量越好,但车刀的刚度和稳定性要求也越高。
在实际应用中需要根据工件的要求和加工条件选择合适的主偏角。
4. 副偏角:副偏角是指车刀副切削刃与工件表面的夹角。
副偏角的大小影响着切削刃与工件的接触面积和切削力的大小。
合理选择副偏角可以有效减小切削力,提高车削加工的效率和质量。
车刀的几何角度对车削加工有着重要的影响,其合理选择可以有效提高加工效率和加工质量。
在实际应用中,需要根据具体的加工要求和工件材料来选择合适的几何角度,以达到最佳的加工效果。
个人观点和理解:车刀的几何角度是车削加工中的关键参数,合理选择和调整这些角度对于提高加工质量和效率至关重要。
在实际应用中,需要综合考虑工件材料、加工条件和车刀性能等因素,进行合理的选择和调整,以达到最佳的加工效果。
以上是对“解释车刀的主要几何角度,并说明对车削加工的影响”的文章撰写,希望能帮助你更深入地理解这一主题。
在车削加工中,车刀的几何角度对加工效果和加工质量有着重要的影响。
除了切削角、后角、主偏角和副偏角外,还有其他几何角度也对车削加工起着重要作用,比如前角、刀尖半径等。
刀具角度选择
后角的主要作用是减小刀具后刀面与工件之间的摩擦。后角过大会使到刃强度降低,并使散热条件变差,使刀具耐用度降低
车刀合理后角f≤0.25mm/r时,可选ao=10°~12°;在f>0.25mm/r时,取ao=5°~8°
1) 工件材料强度、硬度较高时,应取较小后角;工件材料软、粘时应取较大后角;加工脆性材料时,宜取较小后角。
1)前刀面Ay—切下的切屑沿其流出的表面。
2)主后刀面Aa—与工件上过渡表面相对的表面。
3)副后刀面A'a—与工件上已加工表面相对的的表面。
4)主切削刀S—前刀面与主后刀面的交线,它承担主要切削工作。
5)副切削刃S'—前刀面与副后刀面的交线,它协同主切削刃完成切削工作,并最终形成已加工表面。
6)刀尖—主切削刃与副切削刃连接处的那部分切削刃。
刀具角度选择
角度名称
作用
选择时应考虑的主要因素
前角yo
增大前角可以减小切屑变形和摩擦阻力,使切削力、切削功率及切削时产生的热量减小。前角过大将导致切削刃强度降低,刀头散热体积减小,致使刀具寿命降低
加工一般灰铸铁时,可选yo=5°~15°;加工铝合金时,选yo=30°~35°;用硬质合金刀具加工一般钢料时,选yo=10°~20°
2) 精加工及切削厚度较小的刀具,应采用较大的后角;粗加工、强力切削、宜取较小后角。
3) 工艺系统刚性较差时,应适当尖小后角。
4) 定尺寸刀具,如拉刀、铰刀等,为避免重磨后刀具尺寸变化过大,宜取较小的后角。
主偏角kr
主偏角减小,可使刀尖处强度增大且作用切削刃长度增加,有利于散热和减轻单位刀刃长度的负荷,提高刀具的寿命。减小主偏叫4还可使工件表面残留面积高度减小。增大主偏角,可使背向力Fp减小,进给力Ff增加,因而可降低工艺系统的变形与振动
刀具角度测量实验报告
刀具角度测量实验报告一、实验目的。
本实验旨在通过测量刀具角度,探究刀具在不同角度下的切削性能,为工程加工提供理论依据和实际指导。
二、实验原理。
刀具角度是指刀具刃口与工件表面的夹角,常用的刀具角度有刀尖倾角、主偏角、切削刃倾角等。
刀具角度的选择直接影响切削力、切削温度和切削表面质量。
三、实验仪器和材料。
1. 数显卡尺。
2. 数控铣床。
3. 钢材工件。
4. 切削刀具。
四、实验步骤。
1. 将工件夹紧在数控铣床上,调整好刀具的位置和刀具角度。
2. 使用数显卡尺测量刀具角度,记录下各个角度对应的数值。
3. 依次进行不同角度下的切削实验,记录下切削力、切削温度和切削表面质量等数据。
4. 分析实验数据,得出刀具角度对切削性能的影响规律。
五、实验结果与分析。
通过实验数据的分析,我们得出了以下结论:1. 刀具角度对切削力的影响,随着刀具角度的增大,切削力逐渐减小。
这是因为刀具角度增大可以减小切削刃厚度,降低切削力。
2. 刀具角度对切削温度的影响,刀具角度增大会降低切削温度,减小切削表面的热影响区,有利于提高切削表面质量。
3. 刀具角度对切削表面质量的影响,适当增大刀具角度可以提高切削表面质量,但角度过大会增加切削刃厚度,降低切削表面质量。
六、实验结论。
通过本实验,我们得出了以下结论:1. 刀具角度对切削性能有着显著的影响,合理选择刀具角度可以提高切削效率和切削表面质量。
2. 在实际加工中,需要根据工件材料、切削条件等因素综合考虑,选择合适的刀具角度。
七、实验总结。
本实验通过测量刀具角度,探究了刀具角度对切削性能的影响规律,为工程加工提供了重要的理论依据和实际指导。
在今后的工程实践中,我们将继续深入研究刀具角度的影响机理,不断优化切削工艺,提高加工效率和产品质量。
刀具角度的功用与选择精选文档
副偏角的大小主要根据表面粗糙度的要求选取,一般为5°~15°,粗加工时取大值,精加工时取小值。切断刀、锯片刀为保证刀头强度,只能取很小的副偏角,一般为1°~2°。
(1)根据工件材料选择前角。加工塑性材料时,特别是硬化严重的材料(如不锈钢等),为了减小切削变形和刀具磨损,应选用较大的前角;加工脆性材料时,由于产生的切屑为崩碎切屑,切削变形小,因此增大前角的意义不大,而这时刀屑间的作用力集中在切削刃附近,为保证切削刃具具有足够的强度,应采用较小的前角。
工件强度和硬度低时,切削力不大,为使切削刃锋利,可选用较大的甚至很大的前角。工件材料强度高时,应选用较小的前角;加工特别硬的工件材料(如淬火钢)时,应选用很小的前角,甚至选用负前角。因为工件的强度、硬度愈高,产生的切削力愈大,切削热愈多,为了使刃具有足够的强度和散热,防止崩刃和磨损,应选用较小的前角。
(1)根据切削厚度选择后角。合理后角大小主要取决于切削厚度(或进给量),切削厚度hD愈大,则后角应愈小;反之亦然。如进给量较大的外圆车刀后角=6°~8°,而每齿进刀量不超过mm的圆盘铣刀后角=?30°。这是因为切削厚度较大时,切削力较大,切削温度也较高,为了保证刃口强度和改善散热条件,所以应取较小的后角。切削厚度愈小,切削层上被切削刃的钝圆半径挤压而留在已加工表面上并与主后刀面挤压摩擦的这一薄层金属占切削厚度的比例就越大。若增大后角,就可减小刃口钝圆半径,使刃口锋利,便于切下薄切屑,可提高刀具耐用度和加工表面质量。
数控机床、自动机床和自动线用刀具,为保证刀具工作的稳定性,使其不易发生崩刃和破损,一般选用较小的前角。
刀具几何角度的基本定义与标注及工作角度
汇报人:XX
目录
• 刀具几何角度概述 • 刀具标注方法 • 工作角度及其影响因素 • 刀具几何角度的优化设计 • 刀具几何角度的测量与调整 • 刀具几何角度的应用实践
01
CATALOGUE
刀具几何角度概述
定义与重要性
定义
刀具几何角度是指刀具切削部分 各表面的倾斜角度和刀尖形状。
刀具几何形状
刀具的刃形、刃倾角等几何形状因素也会对 工作角度产生影响。
04
CATALOGUE
刀具几何角度的优化设计
优化设计原则与目标
原则
在满足切削性能的前提下,尽可能减小刀具的结构尺寸和重量,提高刀具的刚性和耐用度。
目标
通过优化刀具的几何角度,改善切削力、切削热和刀具磨损等状况,从而提高切削效率和加工质量。
案例三
针对难加工材料的切削,通过采 用具有大前角和大后角的刀具优 化设计,有效减少了切削刃的磨 损和破损,提高了切削稳定性和 加工精度。
05
CATALOGUE
刀具几何角度的测量与调整
测量方法与工具介绍
测量方法
通常采用投影法、坐标法、光学法等 进行测量。
测量工具
主要包括投影仪、万能角度尺、光学 分度头等。
工件表面质量
工作角度对工件表面的粗糙度、残 余应力等有直接影响。
04
影响工作角度的因素分析
刀具材料
不同材料的刀具具有不同的强度和韧性,需 要相应调整工作角度以适应其特性。
切削用量
切削速度、进给量和切削深度等切削用量参 数的变化会导致工作角度的调整。
工件材料
工件材料的硬度、韧性等物理特性对工作角 度的选择有重要影响。
刀具角度的功用与选择
(1 )根据工件材料选择前角。
加工塑tt 材料 时,特别是硬化严重的材料(如不锈钢等),为了 减小切削变形和刀具磨损,应选用较大的前角; 加工脆性材料时,由于产生的切屑为崩碎切屑, 切削变形小,因此增大前角的意义不大,而这时 刀屑间的作用力集中在切削刃附近,为保证切削 刃具具有足够的强度,应采用较小的前角。
工件强度和硬度低时,切削力不大,为使切 削刃锋利,可选用较大的甚至很大的前角。
工件 材料强度咼时,应选用较小的前角;加工 特别硬 的工件材料(如淬火钢)时,应选用很小的前角, 甚至选用负前角。
因为工件的强度、硬度愈高, 产生的切削力愈大,切削热愈多,为了使刃具有 足够的强度和散热,防止崩刃和磨损,应选用较 小的前角。
(2)根据刀具材料选择前角。
刀具材料的抗 弯强度和冲击韧性较低时应选较小的前角。
通常 硬质合金车刀的前角在・5°〜+20。
,高速钢刀具 比硬质合金刀具的合理前角约大5。
〜10。
,而陶 瓷刀具的前角一般取・5。
〜・15 (3 )根据加工性质选择前角。
粗加工时,特别 是断续切削或加工有硬皮的铸、锻件时,不仅切 削力大,切削热多,而且承受冲击载何,为保证 切削刃有足够的强度和散热面积,应适当减小前 角。
精加工时,为使切削刃锋利、减小切削变形 和获得较咼的表面质量,前角应取得较大一些。
数控机床、自动机床和自动线用刀具,为保 证刀具工作的稳定,性,使其不易发生崩刃和破 损,一般选用较小的前角。
角度功用 选择原则 减小后刀面与工件的摩擦和 后刀面的磨损,其大小对刀具耐用 度和加工表面质量都有很大影响。
后角《0刀具磨损减 少,也减小了刀具刃口的钝圆弧半 径,提咼了刃口锋利程度,易于切 下薄切屑,从而可减小表面粗糙 前角%影响切削变形和切削力的大 小、刀具耐用度和加工表面的质 量。
增大前角能使刀刃变得锋利, 使切削更为轻快,可以减小切削变 形和摩擦,从而减小切削力和切削 功率,切削热也少,力口工表面质 量咼。
车刀的主要角度及其作用
车刀的主要角度及其作用车刀的主要角度有前角(γ0)、后角(α0)、主偏角(Kr)、副偏角(Kr’)和刃倾角(λs)。
为了确定车刀的角度,要建立三个坐标平面:切削平面、基面和主剖面。
对车削而言,如果不考虑车刀安装和切削运动的影响,切削平面可以认为是铅垂面;基面是水平面;当主切削刃水平时,垂直于主切削刃所作的剖面为主剖面。
(1)前角γ0在主剖面中测量,是前刀面与基面之间的夹角。
其作用是使刀刃锋利,便于切削。
但前角不能太大,否则会削弱刀刃的强度,容易磨损甚至崩坏。
加工塑性材料时,前角可选大些,如用硬质合金车刀切削钢件可取γ0=10~20,加工脆性材料,车刀的前角γ0应比粗加工大,以利于刀刃锋利,工件的粗糙度小。
(2)后角α0在主剖面中测量,是主后面与切削平面之间的夹角。
其作用是减小车削时主后面与工件的摩擦,一般取α0=6~12°,粗车时取小值,精车时取大值。
(3)主偏角Kr在基面中测量,它是主切削刃在基面的投影与进给方向的夹角。
其作用是:1)可改变主切削刃参加切削的长度,影响刀具寿命。
2)影响径向切削力的大小。
小的主偏角可增加主切削刃参加切削的长度,因而散热较好,对延长刀具使用寿命有利。
但在加工细长轴时,工件刚度不足,小的主偏角会使刀具作用在工件上的径向力增大,易产生弯曲和振动,因此,主偏角应选大些。
车刀常用的主偏角有45°、60°、75°、90°等几种,其中45°多。
(4)副偏角Kr’在基面中测量,是副切削刃在基面上的投影与进给反方向的夹角。
其主要作用是减小副切削刃与已加工表面之间的摩擦,以改善已加工表面的精糙度。
在切削深度ap、进给量f、主偏角Kr相等的条件下,减小副偏角Kr’,可减小车削后的残留面积,从而减小表面粗糙度,一般选取Kr′=5~15°。
(5)刃倾角入λs在切削平面中测量,是主切削刃与基面的夹角。
其作用主要是控制切屑的流动方向。
收藏!刀具5个角度选择基础
前角yo作用增大前角可以减小切屑变形和摩擦阻力,使切削力、切削功率及切削时产生的热量减小。
前角过大将导致切削刃强度降低,刀头散热体积减小,致使刀具寿命降低选择时应考虑的主要因素加工一般灰铸铁时,可选yo-=5°~15°;加工铝合金时,选yo=30°~35°;用硬质合金刀具加工一般钢料时,选yo=10°~20° 1)刀具材料的抗弯强度及韧性较高时,可取较大前角。
2)工件材料的强度、硬度较低、塑性较好时,应取较大前角;加工硬脆材料应取较小前角,甚至取负前角。
3)继续切削或粗加工有硬皮的铸锻时,应取叫小前角,精加工时宜取叫大前角。
4)工艺系统刚性较差或机床功率不足时,应取较大前角。
5)成形刀具和齿轮刀具全减小齿形误差,应取小前角甚至零前角。
后角ao作用后角的主要作用是减小刀具后刀面与工件之间的摩擦。
后角过大会使到刃强度降低,并使散热条件变差,使刀具耐用度降低选择时应考虑的主要因素车刀合理后角f≤0.25mm/r时,可选ao=10°~12°;在f>0.25mm/r时,取ao=5°~8° 1)工件材料强度、硬度较高时,应取较小后角;工件材料软、粘时应取较大后角;加工脆性材料时,宜取较小后角。
2)精加工及切削厚度较小的刀具,应采用较大的后角;粗加工、强力切削、宜取较小后角。
3)工艺系统刚性较差时,应适当尖小后角。
4)定尺寸刀具,如拉刀、铰刀等,为避免重磨后刀具尺寸变化过大,宜取较小的后角。
主偏角kr作用主偏角减小,可使刀尖处强度增大且作用切削刃长度增加,有利于散热和减轻单位刀刃长度的负荷,提高刀具的寿命。
减小主偏叫4还可使工件表面残留面积高度减小。
增大主偏角,可使背向力Fp减小,进给力Ff增加,因而可降低工艺系统的变形与振动选择时应考虑的主要因素1)在工艺系统刚性允许的条件下,应采用较小的主偏角。
如系统刚性较好时(Lw/dw<6),可取kr=30°~45°;当系统刚性较差时(Lw/dw=6~12),取kr=60°~75°;车削细长轴时(Lw/dw>12),取kr90°~93°2)加工很硬的材料时,应取较小的主偏角。
刀具角度的实验报告
刀具角度的实验报告1. 引言刀具角度是切削工艺中的重要参数之一,对于加工质量和切削性能具有重要影响。
本实验旨在通过对不同刀具角度的实验研究,探索刀具角度与切削力、加工表面质量的关系,为优化刀具角度选择提供参考依据。
2. 实验材料和方法2.1 实验材料本实验使用的材料为硬度为HRC40的普通碳素钢。
2.2 实验仪器和设备1. 数控铣床:用于切削实验。
2. 力传感器:用于测量切削力。
3. 表面粗糙度仪:用于表面质量评估。
2.3 实验方法1. 实验组数:共设计5组实验,刀具角度分别为10、20、30、40和50。
2. 实验参数:切削速度为100m/min,进给量为0.2mm/刀齿,切削深度为1.5mm。
3. 实验步骤:- 选择合适的刀具,并安装在数控铣床上。
- 设置刀具角度,并固定好。
- 开始切削实验并记录切削过程中的切削力数据和加工表面粗糙度数据。
- 完成所有实验组的切削实验。
3. 实验结果与分析3.1 切削力分析经过实验测量和数据处理,得到不同刀具角度下的切削力数据,如表格1所示。
刀具角度()切削力(N)-10 8020 8530 10040 12050 130从表格中可以看出,随着刀具角度的增加,切削力也随之增加。
这是因为刀具角度的增加会导致切削刃数量的减少,从而使每个刃的切削深度增加,因此切削力也会增加。
但是当刀具角度超过一定范围时,由于切削刃的减少,其作用面积减小,切削力不会继续增加,甚至可能出现切削力下降的情况。
3.2 加工表面质量分析经过实验测量和数据处理,得到不同刀具角度下的加工表面粗糙度数据,如表格2所示。
刀具角度()加工表面粗糙度(μm)10 2.520 3.230 4.040 5.550 7.0从表格中可以看出,随着刀具角度的增加,加工表面粗糙度也逐渐增加。
这是由于刀具角度的增加会导致切削深度增加,从而使加工表面的波纹测量数值增加。
但是当刀具角度过大时,由于切削力的增加和刀具尖角过大,可能会导致过切、撕裂等加工缺陷,从而使加工表面质量下降。
刀具角度对加工的影响
角度名称含义作用应用与选择说明前角γ0 在正交平面Po内,前刀面与基面的之间夹角 1.使刀刃锋利,便于切削加工和切屑流动2.影响刀具的强度1.粗加工:小值精加工:大值2.加工塑性材料或强度、硬度较低:大值加工脆性材料或强度、硬度较高:小值3刀具材料韧性好,如高速钢:大值刀具材料脆性大,如硬质合金:小值前角越大,刀具越锋利,但强度降低,易磨损和崩刃。
前角一般为5°~20°。
后角α0 在正交平面Po内,主后刀面与切削平面之间夹角 1.影响主后刀面与工件之间的摩擦2.影响刀具的强度与前角的选择相同后角越大,车削时刀具与工件之间的摩擦越小,但强度降低,易磨损和崩刃。
后角一般为6°~12°。
主偏角Kr 在基面Pr内,主切削刃与进给运动方向在其上的投影之间夹角 1.影响切削加工条件和刀具的寿命2.影响径向力的大小,如图2-10(b)所示Fp径=cos KrFD切水(切削力在水平面内的分力) 1.粗加工:小值精加工:大值2.刚性差,易变形,如细长轴(90°):大值刚性好,不易变形:小值1. 主偏角越小,切削加工条件越好,刀具的寿命越长2.车刀常用的主偏角有45°、60°、75°90°,其中75°和90°最常用副偏角Krˊ 在基面Pr内,副切削刃与进给运动反方向在其上的投影之间夹角 1.主要影响加工表面的粗糙度,如图2-10(c)所示2.影响副切削刃与已加工表面之间的摩擦和刀具的强度 1.粗加工:大值(与副偏角选择相反)精加工:小值1. 副偏角越小,残留面积和振动越小,加工表面的粗糙度越低,表面质量越高。
但过小会增加刀具与工件的摩擦,另外,刀具的强度降低2.副偏角一般为5°~15°刃倾角λs 切削平面Ps内,主切削刃在其上的投影与基面之间夹角 1.主要控制切屑的流动方向2.影响刀尖的强度 1.粗加工:λs<0精加工:λs≥0(防止切屑划伤工件) 1. λs<0时,刀尖处于主切削刃的最低点,刀尖强度高,切屑流向已加工表面;λs>0时,刀尖处于主切削刃的最高点,刀尖强度低,切屑流向待加工表面2. λs一般为-5°~+5°。
刀具形状对加工表面质量的影响
刀具形状对加工表面质量的影响概述:在机械加工领域中,刀具的形状对加工表面质量起着关键作用。
通过合理选择和设计刀具形状,可以达到提高加工效率和加工质量的目标。
本文将从角度、刃口形状和刀具材料等方面探讨刀具形状对加工表面质量的影响。
一、角度对加工表面质量的影响1. 切削角度:切削角度是指刀具切入工件的角度。
合适的切削角度可以实现更好的切削效果,提高加工速度和表面质量。
过大或过小的切削角度都会对加工表面质量产生负面影响。
太大的切削角度容易导致切削力集中、磨损加快,进而降低加工质量。
太小的切削角度则易产生振动和过度磨损,加工表面粗糙度增加。
2. 主偏角:主偏角是指刀具主刃面与工件表面垂直线间的夹角。
主偏角的选择与切削材料有关,对于不同的工件材料,需要根据其硬度和切削性能进行合理选择。
主偏角过大会使得切削力增大,热量集中导致刀具过早磨损,同时还会产生较大的加工表面粗糙度。
主偏角过小则会导致接触面积减小,切削性能不佳,加工表面产生明显的划伤和切迹。
二、刃口形状对加工表面质量的影响1. 刃口倒角:刃口倒角是指刀具刃口边缘的加工角度或弧度。
合理的刃口倒角可以减小切削力和摩擦阻力,改善刀具与工件的接触情况,降低表面加工粗糙度。
刃口倒角的大小与具体加工要求和切削材料有关,一般来说,较小的刃口倒角适合加工硬度较高的材料,而较大的刃口倒角适合加工软性材料。
2. 刃口角度:刃口角度是指刀具刃口下沿与工件表面之间的夹角。
较小的刃口角度可以减小切削力和热量集中,提高刀具的刚度和加工质量;较大的刃口角度则易产生切削震动和加工表面粗糙度增加。
因此,在选择刀具时需要根据具体材料和加工要求来选择合适的刃口角度。
三、刀具材料对加工表面质量的影响刀具材料的选择对切削性能和加工表面质量影响显著。
常见的刀具材料包括硬质合金、高速钢和陶瓷材料等。
1. 硬质合金:硬质合金具有高硬度、耐磨性强的特点,适用于加工硬度较高的材料。
然而,硬质合金的切削力大,热膨胀系数较高,容易产生切削振动和表面粗糙度增加等问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
刀具角度的变化与工件材料的关系1、加工灰铸铁材料时刀具角度的选择加工灰铸铁材料时,有利于切削加工的条件是:硬度低(一般为HB=170〜241范围内)、抗拉强度低、塑性小,因此切屑变形和切削抗力小。
不利于切削加工的条件是:铸件表面有带型砂的硬皮和氧化层,局部的白口铁,铸造过程中砂眼气孔缩松等缺陷,这些对刀具的耐用度是很有害的。
根据铸件表面的缺陷,必须增加刀具切削部分的强度,前角应选得小些(前角选择范围 1 0°〜0°之间)。
又因为灰铸铁切削时呈碎状切屑,切削抗力全集中在切削刃上,刀尖区域内散热性差,为了增加散热面积,应选择较小的主偏角(选择范围75°〜45°之间)。
在不影响刀具强度条件下,应适当加大后角(选择范围6°〜12°之间),以减少后面的磨损。
2、加工不锈钢(1Cr18Ni9Ti )材料时刀具角度的选择由于不锈钢材料又粘又硬,切削时不利因素较多,困难较大。
根据不锈钢又粘又硬的特点:首先选择合理的刀具材料:YG8 YW1 YW2由于不锈钢材料的塑性大,因此切屑变形大,切削力也大,为了便于加工,应选择较大的前角(选择范围 1 5° 〜30°之间)。
为了增加刀具强度,加前角负倒棱。
为了减少切削刀具后面与工件间的摩擦,又不影响刀具强度,后角应选在8°〜 1 0°范围内。
不锈钢冷硬性强,塑性变形大,故应选择较大的主偏角(选择范围90°〜75°之间),可根据加工余量选择,加工余量大时,主偏角小些,加工余量小时,主偏角大些。
不锈钢材料粘结磨损比较严重,应增加刀头部分的表面光洁度。
选用合适的润滑冷却液,防止刀瘤的产生,减少刀具磨损,延长使用寿命。
先进刀具举例——不锈钢( 1Cr18Ni9Ti )外圆粗车刀〔刀具特点〕(1)由卷屑槽形成的前角r=20 °〜25°,因前角较大,功率消耗较少。
(2)刀刃带有2°〜3°、宽为0.2〜0.3的棱边,增强了刀刃,适于大余量加工。
(3)刀刃低于刀面0.15 〜0.25。
使切屑向前卷曲时碰在主后面上,自动断屑。
(4)由于卷屑槽较大,故不太耐冲击,所以仅适于加工余量较均匀的不锈钢。
(5)加工表面光洁度可达▽ 4。
〔使用条件〕(1)适用于C620或C630车床。
(2)切削用量:切削速度v =50〜100米/ 分,切削深度t =2〜10 毫米,走刀量s =0.2〜0.3 毫米。
(3)加工直径①50〜①120毫米。
〔注意事项〕(1) 卷屑槽宽度3〜5毫米,随切削深度的大小选定,随t 增大而增大。
(2) 入=0°〜8°加工零件余量不匀时,入宜采用大值,余量均匀时选用小值。
( 3) 只有刀刃比刀前面低时,方能断屑。
( 4) 由于不锈钢切削力较大,故刀具不能离刀架太长,否则会发颤。
( 5) 为增加刀具寿命,减少粘刀现象,最好刃磨后进行研磨。
3、加工铸造黄铜材料时刀具角度的选择黄铜材料加工特点是:强度硬度低,塑性小,切削抗力很小,看来这是有利于加工的条件,但是如果思想上疏忽,也会引出坏的结果。
由于黄铜材料强度低、硬度低、塑性小,材料表面硬而光滑加上内部组织粗松,在切削过程中,当选用较大的前角,切削刃锋利时,容易产生“扎刀”现象。
因此,刀具前角应选得小些(选择范围10°〜3°之间)。
黄铜材料的导热性较好,热量大部分由切屑和工件传递出去,所以刀具主偏角可选择大些(选择范围60°〜90°之间)。
4、加工铝合金材料时刀具角度的选择加工铝合金材料时,有利的条件比较多:①它的强度硬度低,因此切削力很少,又因其塑性小,延伸率低。
因此可以选择较大的前角(选择范围20°〜30°)。
②导热性能好,可降低切削温度。
主偏角可选择较大些(选择范围60°〜90°)。
虽然加工铝合金材料有利条件较多,但决不能忽略它的不利条件。
下面就来分析铝合金加工的不利条件及刀具角度的变化:(1)在切削刃处有局部高压高温区域又加上铝合金熔点低(659C),因此容易产生刀瘤,使光洁度降低。
为了防止刀瘤产生应加大刀具的前角。
刀具前面、后面的表面光洁度亦应高些(一般在^ 8以上)。
在加工时,加合适的润滑冷却液(如肥皂水和柴油)。
(2)铝合金中含有硅(Si),而硅的化合物是硬度很高的质点,会加剧刀具的磨损,为了减少磨损,应选择较大的后角(选择范围8°〜12°之间)。
5、加工淬火钢材料时刀具角度的选择加工淬火钢最突出的特点是:硬度高,脆性较大。
根据淬火钢材料的加工特点,如何选择合理刀具角度进行加工呢?由于淬火钢硬度很高,切削抗力很大,切削热也大,刀具磨损和崩坏现象比较多。
为了改变这种不利状况,应增加刀具的强度。
采取下列方法:(1)应选择适合于加工淬火钢的刀具材料:YT30、YW1、YW2。
(2)应选用负前角(选择范围-5°〜-12°)或正值刃倾角(5°〜10°)。
为了增加刀具散热面积,应减小刀具主偏角(选择范围60°〜20°)。
先进刀具举例——淬火钢车刀刀具特点〕(1)刀片材料为YT30硬质合金。
2) 主、副切削刃均采用负前角,主、副前面相交处为一个凸峰,形成较大的刃倾角,刀尖强度比一般刀具大得多。
(3) 刀尖圆弧半径(R=1〜2毫米)比一般刀具大,刀尖散热性好,耐磨,提高了刀具寿命。
使用条件〕(1) 粗车外圆:v ~ 30米/分,s =0.1 〜0.2 毫米/转,t =0.7 〜1 毫米。
(2) 粗车内孔:v〜25米/分,s =0.1 〜0.2 毫米/转,t =0.5 〜0.8 毫米。
(3) 精车外圆:v〜27米/分,s =0.08 〜0.1 毫米/转,t =0.03 〜0.5 毫米。
(4) 精车内孔:v〜22米/分,s =0.08 〜0.1 毫米/转,t =0.03 〜0.5 毫米。
〔应用范围〕适用于在普通车床上加工硬度HRC62I勺淬火钢工件。
〔使用效果〕外圆加工表面光洁度可达▽ 7〜▽ 8,内孔加工表面光洁度可达▽ 6〜V 7。
〔注意事项〕(1)要求工件淬火后各处硬度均匀,否则工件表面凹凸不平。
(2)加工时可能产生尖叫声,尤其在加工内孔时可能出现这种情况。
建议用钢板尺压住刀杆,以减小或消失噪音。
二刀具角度勺变化与加工情况勺关系通过以上分析,可以看出根据工件材料,合理选择刀具角度是很重要勺。
但是,在加工过程中, 加工情况是千变万化勺, 如:粗加工、精加工、加工细长零件、孔勺精加工(包括薄壁孔和深孔)等等,这些也都会影响刀具角度勺变化。
下面分别就几种加工情况,来研究刀具角度变化勺规律。
1、工件粗加工时刀具角度勺选择工件粗加工时,毛坯加工余量大,表面粗糙,有氧化层,当工件几何图形不规则时,断续切削,冲击性很大,因此,切削力大,切屑变形也大,使刀尖区域内温度很高而且变化大,使刀具加剧磨损,寿命降低。
为了适应粗加工特点:(1)选择适合于粗加工勺刀具材料:YG8、YT5、。
(2)增加刀具切削部分勺强度,可采用以下两种方法之一。
①加大前角加负倒棱,取正值刃倾角(选择范围:前角15°〜25°之间,加负倒棱, 刃倾角是3°〜8°之间)。
②减小前角和后角(选择范围:前角10°〜0°之间,后角8°〜6°)。
粗加工先进刀具举例——大型75°综合车刀〔刀具特点〕(1)刀片材料为YT5硬质合金,刀杆为45号钢。
(2)采用75°主偏角,轴类加工时可减小径向力,避免振动;并且加宽主切削刃,从而减小切削刃单位长度上勺负荷,刀尖角大,散热快,可提高刀具勺使用寿命。
(3)前角为15°〜18°,可减小负荷。
(4)采用正刃倾角,弥补了法向前角大而引起刀刃强度差勺缺陷。
根据经验,前角增加2°后,将刃倾角同时增加3°,刀刃强度不会降低。
刃倾角勺大小视工件表面情况而定,一般为5°〜10°。
5)采用直线型过渡刀刃(一般在4 毫米以下),并在过渡刀刃与主切削刃、修光刀刃连接外研磨成小圆角、延长刀具寿命。
45 °过渡刀刃与圆弧刀刃比较,平均主偏角大,切削变形均匀,径向力与动力消耗都较少,刀具寿命提高。
6)修光刀刃f = s + (0.3 〜0.5)毫米,保证了工件光洁度,使振动减少至最低限度。
7)断屑槽较浅,刀片磨损小,强度高;断屑槽采用65°斜角,使断屑规则而有方向;弧面为R30〜40,向刀架与尾座45°夹角的方向排屑。
8)刃口倒棱随走刀量增加而适当增加,一般以不大于0.5s 为宜。
9)后角较小,刀头强度较高。
〔使用条件〕加工大型中碳钢铸件及锻件时:( 1 )机床功率N = 40 千瓦以上:v =70米/分,s =1.25〜1.5毫米/转,t =33毫米。
2)机床功率N = 25 千瓦:v =50米/分,s =3.15 毫米/转,t =11 毫米。
〔应用范围〕适合于强力切削或大走刀切削加工大型中碳钢铸件及锻件。
〔使用效果〕提高切削效率 5 倍以上。
〔注意事项〕(1)装刀要牢靠,刀具不宜伸出过长,一般伸出长度为刀杆高度的 1.5 倍,但也不宜过短,否则会影响排屑。
(2)对刀时刀尖应高于工件中心,高出量以等于被加工直径的1/100 为宜,但不得超过 4 毫米。
(3)机床动力要大。
如发现机床负荷小,则在退刀时,应先停止走刀,然后再退刀,以保护刀尖。
发现闷车现象,应先关闭马达电门,防止车头倒回;抽刀时,应先旋转后面的压板螺钉,然后再旋转前面的螺丝,将刀具轻轻抽出。
(4)工件顶尖孔尽量大些,而且须与顶尖接触良好。
2、工件精加工时刀具角度的选择工件精加工的特点:要求得到较高的精度和光洁度,加工余量小。
不同质的矛盾,只有用不同质的方法才能解决。
针对精加工的不同特点,刀具材料和刀具角度应作如下选择:(1)选择适合于精加工的刀具材料:YG3、YA6、YT15、YT30。
(2)由于精加工余量小,因而切屑变形和切削抗力小,所以刀具磨损很小,又因选取较小的走刀量,所以:① 可选择较大的前角和后角。
② 增大刀尖圆弧半径或增加修光刀刃。
精加工先进刀具举例——高速精车工〔刀具特点〕(1)在一般90°外圆车刀上,开出倾斜45°、宽4〜5毫米的斜槽,切削轻快而且刃磨简单。
(2)斜槽与基面夹角为12°左右;后角6°〜8°;副后角为双重角度分别为5°、8°;副偏角8°。