冰箱温度控制系统设计

合集下载

实验六 电冰箱控制系统

实验六  电冰箱控制系统

实验六电冰箱控制系统一、实验目的熟悉电冰箱的控制系统,能进行简单维护维修。

二、实验原理(一)控制电路中常用的元器件电冰箱电气控制系统的主要作用,是根据使用要求,自动控制电冰箱的起动、运行和停止,调节制冷剂的流量,并对电冰箱及其电气设备实行自动保护,以防止发生事故。

电冰箱的控制电路是根据电冰箱的性能指标来确定。

但其电气控制系统还是大同小异的,一般由动力、起动和保护装置、温度控制装置、化霜控制装置、加热与防冻装置,以及箱内风扇、照明等部分组成。

常用压力式温度控制器见下图。

1. 温度控制器:温度控制器简称温控器,是电冰箱、房间空调器等制冷设备调温、控温的装置。

它的主要作用是:(1)通过调节温度控制器旋钮,可以改变所需要的控制温度。

(2)可根据电冰箱内或空调房间内的温度要求,对制冷压缩机进行开、停的自动控制,使电冰箱内或房间内的温度保持在控制范围内。

温度控制器的种类很多,常用的温感压力式温度控制器。

温感压力式温度控制器主要用于人工化霜的普通“直冷式”单、双门电冰箱,或用于全自动化霜的“间冷式”双门电冰箱对冷冻室的温度进行控制。

温度控制器主要由感温元件、毛细管、感压腔和一组微动开关等机构组成。

感温元件也叫温压转换部件,是一个密闭的腔体,由感温管感温剂和感压腔三部分组成。

感压腔内充入的感温剂一般是氯甲烷或是R12。

它的作用是将蒸发器表面的温度变化转换为压力变化,从而引起快跳触点的动作。

2. 起动继电器:(1)重锤式起动继电器:重锤式起动继电器的结构主要包括电流线圈、重力衔铁、弹簧、动触点、T形架、绝缘壳体等;(2) PTC起动继电器:PTC是正温度系数的热敏电源电阻英文的缩写。

PTC起动继电器的工作原理:电冰箱在室温下起动时,PTC元件的电阻很小(约20Ω),而在较短的时间(0.1~0.2s)内通过基本恒定的电流,呈导通状态,之后随着其元件本身的发热温度升高,其阻值迅速增大,此时,PTC处于“断开”状态。

3. 过载保护器:过电流和过热保护器称为过载保护器,是压缩机电动机的安全保护装置。

车载冰箱温度控制系统

车载冰箱温度控制系统

课程大作业设计报告(2019-- 2020年度第2学期)课程名称:控制装置与仪表B题目:车载冰箱温度控制系统设计与仿真院系:控制与计算机工程学院班级:自动化1704学号:120171070716学生姓名:郭云泉指导教师:张文彪设计周数:2周成绩:日期:2020年5月19日一、设计要求1.根据以下控制装置的组成设计一个车载冰箱温度控制系统(半导体制热和制冷),并说明变送器、控制器和执行器的选型以及相应装置的特点,同时阐述整个系统的控制流程。

图1 控制装置的组成2.假设车载冰箱温度控制系统被控对象的传递函数为()1seG ss-=+,控制系统的采样周期T为0.5s,基于Matlab软件编写控制算法,实现以上系统对阶跃式温度设定的仿真,完成控制器的参数整定,并分析控制参数对系统性能的影响。

二、设计正文1.车载冰箱温度控制系统硬件设计及控制流程描述1.1 温度控制系统总体设计架构整个温控系统由Arduino单片机、LCD显示电路、供用户设置预期温度的按键、电源、驱动电路、温度变送装置、半导体制冷片、保温箱体、变压器组成。

总体设计框架如图2所示:图2各个部分的相应功能:Arduino单片机:整个温控系统的控制器。

按键:调整预期温度。

LCD显示电路:显示预期温度和实时温度。

温度变送装置:检测箱体内的温度并转化为数字量送给单片机。

驱动电路:将单片机输出的不同占空比的数字PWM脉冲信号转化为模拟的电压,并进行功率放大,驱动半导体制冷片输出不同的功率。

半导体制冷片:对箱体内进行制冷。

变压器:将汽车电瓶的12V电压转换为5V电压对温控系统供电,其中LCD显示电路、按键电路、温度变送装置均由单片机供电。

电源:汽车电瓶1.2 控制器的选择此温控系统通过控制器输出不同占空比的PWM,并经驱动电路放大后来控制制冷片功率,从而实现温度调节。

因此,控制器需要有能输出不同占空比PWM的IO接口。

且此温控系统实现的功能比较简单,对控制器运算能力要求比较低,因此选用了Ardiuno Uno单片机作为控制器。

基于单片机的智能冰箱温度控制器的设计

基于单片机的智能冰箱温度控制器的设计

基于单片机的智能冰箱温度控制器的设计智能冰箱温度控制器是一种基于单片机的温度控制系统,通过对温度传感器数据的采集和处理,可以实现对冰箱内部温度的精确控制。

本文将介绍该智能冰箱温度控制器的设计原理、硬件组成和软件实现。

设计原理:智能冰箱温度控制器的设计原理是通过感知冰箱内部温度并根据设定的温度值自动控制制冷或加热设备的工作,以维持冰箱内部温度在设定范围内。

其主要实现步骤如下:1.温度传感器采集:使用温度传感器(如DS18B20)对冰箱内部温度进行采集,将温度值转换为数字量。

2.温度数据处理:通过单片机对温度传感器采集的数据进行处理,可以实现多种功能,如温度变化的实时监测、故障检测及报警等。

3.温度控制算法:根据采集到的温度值和设定的温度范围,决定是否打开制冷或加热装置。

在制冷过程中,当温度低于设定范围时,打开制冷装置,使温度升高;当温度高于设定范围时,关闭制冷装置。

加热过程与此类似。

4.控制输出:通过单片机的IO口控制制冷或加热装置的开关,实现对温度的控制。

硬件组成:智能冰箱温度控制器的硬件组成主要包括单片机、温度传感器、继电器、显示屏和按键等。

1.单片机:选择适合的单片机(如STC89C52)作为主控芯片,负责采集并处理温度数据,控制制冷或加热装置的开关。

2.温度传感器:选择精度高、性能稳定的温度传感器(如DS18B20),能够准确地采集冰箱内部温度。

3.继电器:通过继电器,单片机可以控制制冷或加热装置的开关。

继电器的选型要考虑到其负载电流和电压的要求。

4.显示屏和按键:为了方便用户操作和监控系统状态,可以添加液晶显示屏和按键。

显示屏用于显示当前温度和设置的目标温度,按键用于设定目标温度。

软件实现:智能冰箱温度控制器的软件实现主要包括温度数据采集和处理、温度控制算法的实现以及用户界面的设计。

1.温度数据采集和处理:通过单片机的ADC接口读取温度传感器采集到的模拟量,并转换为数字量。

然后,通过算法将数字量转换为实际温度值,并保存在变量中供后续使用。

基于单片机的电冰箱温控器设计-任务书

基于单片机的电冰箱温控器设计-任务书
二、毕业论文(设计)的主要内容
通过液晶显示所设定的温度,温度能随意调节,能自动控制电冰箱工作,使其通过制冷达到所设定的温度。
三、毕业论文(设计)的要求(包括技术要求、工作要求)
1、必须熟悉温度控制器的原理,冰箱的制冷原理
2、采用单片机控制
3、用LCD显示。
4、要求熟练掌握Protel DXP,能够独立完成电路的设计和制作。
[3]张齐等,单片机应用系统设计技术——基本C语言编程[M],电子工业出版社,2004.8
[4]沙占友等,单片机外围电路设计[M],电子工业出版社,2003.1,16(7):P176-192。
五、毕业论文(设计)进度安排
阶段
工作内容
起止时间
备注
1
熟悉MCS-51单片机的原理及编程、必须熟悉温度控制器的原理,冰箱的制冷原理,撰写开题报告
本科毕业论文任务书
毕业设计题目
基于单片机的电冰箱温控器的设计
题目类型
工程设计
题目来源
生产实际题
毕业设计时间
2009年11月至2010年4月
一、选题的目的及意义
传统的电冰箱的冷藏室温控器旋钮一般有7个数字,这些数字并不代表冰箱内具体的温度值,而是表示所控制的温度档位。数字越小,箱内的温度越高。通常由人工来调节,随着技术的发展,目前有些冰箱采用了电脑智能温控及LCD(或LED)箱门外温度显示。使用者只需根据食物的种类不同设定不同的温度即可,以达到最大的保鲜程序。
5、熟练掌握一种单片机编程语言(汇编语言或C语言),能够根据具体要求写出程序。
四、主要参考资料(不少于10篇)
[1]周兴华,单片机智能化产品---C语言设计实例详解[M],北京航空航天大学出版社,2006.7,P168-194。

毕业设计-电冰箱的制冷控制系统

毕业设计-电冰箱的制冷控制系统

前言众所周知,电冰箱是现代家庭中必不可少的家用电器。

而目前我国市场销售的冰箱大多采用传统的机械式温控,其控制精度差,功能单一,控制方式简单难以满足冰箱发展的要求。

随着经济的发展和人民生活水平的进一步提高,人们对多功能的发展要求越来越高。

由于单片机性能好,控制功能强,工作可靠,成本低等优点,现在已经在家电产品中得到了广泛的应用。

面临国内电冰箱发展的现状,在技术上还与其他发达国家有一定的差距,我们在原有的基础上对电冰箱进行了一定的改进,使其适应当代个性时尚、节能环保、智能高端、精确温控的发展方式,使人们体验闻所未闻的个性化感受,快捷与原汁原味不再是梦想。

新一代产品在控制上还增加了人工智能,使家电性能更优异,使用更方便可靠。

本次设计基于大量的市场调查和理论研究。

首先,我对传统电冰箱控制系统进行了分析。

调查了10多个品牌的电冰箱的控制系统,研究了他们制冷的优缺点,吸收了一些比较好的设计思想。

其后,我又查阅了大量的资料文献,其中最多的是国内外最新发表的关于制冷方面的论文,丰富了我们的理论依据。

然后,根据我拥有的材料用单片机实现电冰箱控制系统的硬件设计,最后在硬件设计的基础上实现了其软件设计。

第1章电冰箱系统概述1.1 单片机概述自从1971年微型计算机问世以来,随着大规模集成电路技术的进一步发展,导致微型计算机正向两个方向发展:一是高速度、高性能、大容量的高档微型计算机及其系列化,向大、中型计算机挑战;另一个是稳定可靠、小而廉、能适应各种领域需要的单片机。

单片机是指把中央处理器、随机存储器、只读存储器、定时器/计数器以及I/O 接口电路等主要部件集成在一块半导体芯片上的微型计算机。

虽然单片机只是一个芯片,但从组成和功能上看,它已经具有了微型计算机系统的含义,从某种意义上来说,一块单片机就是一台微型计算机。

自从1975年美国德可萨斯公司推出世界上第一个4位单片机TMS-1000型以来,单片机技术不断发展,目前已成为微型计算机技术的一个独特分支,广泛应用于工业控制、仪器仪表智能化、家用电子产品等各个控制领域。

3电冰箱系统设计

3电冰箱系统设计

3电冰箱系统设计电冰箱是现代生活中常见的家用电器之一,其设计需要考虑到制冷功能、储藏空间、能源效率以及用户友好性等因素。

下面是一个关于电冰箱系统设计的范文,共计1200字。

一、设计目标在设计电冰箱系统时,我们的目标是提供一个高效、节能、安全并且用户友好的产品。

我们希望通过优化制冷系统和增加储藏空间等方式,提高电冰箱的性能,并减少能源消耗。

二、制冷系统设计1.制冷剂选择:我们选择了环保型制冷剂,如R-600a或R-134a,以减少对大气层的污染。

2.制冷循环:我们采用了压缩机制冷循环系统。

制冷循环由压缩机、换热器、膨胀阀和蒸发器组成。

制冷剂在压缩机中被压缩成高压气体,然后通过换热器和膨胀阀,在蒸发器中蒸发,从而带走室内的热量。

3.优化换热器设计:为了提高制冷效率,我们采用了高效的换热器设计。

换热器通过增大换热面积和优化换热器内部管路设计,提高了热量传递效率。

4.温度控制系统:为了保持恒定的温度,我们采用了电子控制系统,通过传感器监测室内温度,并自动调节制冷器的运行时间和速度。

三、储藏空间设计1.多功能储藏空间:电冰箱内部被划分为多个储藏空间,包括主室、冷冻室和可调节的储藏室。

主室用于存放食物和饮料,冷冻室用于冷冻食物,可调节的储藏室可以根据需要进行调整。

2.智能储藏空间管理:我们的电冰箱配备了智能储藏空间管理系统,可以根据食物的类型和储存需求,自动调节储藏室的温度和湿度,以延长食物的保鲜期。

3.储藏空间优化:为了最大程度地提高储藏空间的利用率,我们在设计中考虑到了不同尺寸和形状的食物容器,增加了可折叠和可调节的储物架以及门上的储物盒等功能。

四、能源效率设计1.高效制冷器:我们的电冰箱采用了高效的制冷器设计,以提高制冷效率,减少能源消耗。

2.省电模式:我们的电冰箱配备了省电模式按钮,用户可以根据需要选择开启或关闭省电模式。

省电模式可以减少制冷器的功率,以降低能源消耗。

五、用户友好性设计1.信息显示屏:我们的电冰箱配备了信息显示屏,可以显示温度、湿度、制冷器运行状态等信息,方便用户了解和控制电冰箱的工作状态。

家用电冰箱温度控制系统工作原理

家用电冰箱温度控制系统工作原理

家用电冰箱温度控制系统工作原理家用电冰箱是现代家庭中常见的电器之一。

它的主要功能是为家庭提供冷藏和冷冻食物的储存空间。

为了保持食物的新鲜和安全,电冰箱内部的温度需要得到控制和调节。

家用电冰箱的温度控制系统是一个自动化系统,由几个关键组件组成,包括传感器、控制器和执行器。

这些组件相互配合,以确保冰箱内部的温度始终保持在设定的合适范围内。

电冰箱内部安装有一个温度传感器。

传感器的作用是感知冰箱内部的温度,并将此信息传递给控制器。

传感器通常是基于热敏电阻原理工作的,当温度发生变化时,它的电阻值也会随之变化。

传感器将电阻值的变化转化为电信号,然后传送给控制器。

控制器是温度控制系统的核心部件。

它接收传感器传递过来的温度信号,并与预设的温度设定值进行比较。

如果温度超过了设定值,控制器会发出指令,启动制冷系统以降低温度。

如果温度低于设定值,控制器则会停止制冷系统的工作,以保持温度在合适的范围内。

执行器是控制器的输出部件,它负责执行控制器发出的指令。

在家用电冰箱中,执行器通常是压缩机。

当控制器发出制冷指令时,执行器会启动压缩机,使其开始工作。

压缩机的作用是通过压缩制冷剂使其温度升高,并通过排热的方式将热量释放到外部环境中,从而降低冰箱内部的温度。

除了传感器、控制器和执行器,家用电冰箱的温度控制系统还包括其他辅助组件,如电源供应和显示屏。

电源供应为整个系统提供电能,确保其正常运行。

显示屏通常位于冰箱的控制面板上,用于显示当前的温度和设定值,方便用户掌握冰箱的工作状态。

在家用电冰箱的温度控制系统中,传感器、控制器和执行器之间通过电路连接起来,形成一个闭环反馈控制系统。

传感器感知温度,控制器根据温度信号作出决策,并通过执行器来实现控制目标。

这样的系统能够实时监测和调节冰箱内部的温度,保持食物的新鲜和安全。

需要注意的是,家用电冰箱的温度控制系统并不是绝对精确的。

由于传感器的误差、控制器的响应时间以及执行器的性能等因素,冰箱内部的温度可能会存在一定的波动。

基于51单片机的温度控制系统设计

基于51单片机的温度控制系统设计

基于51单片机的温度控制系统设计引言:随着科技的不断发展,温度控制系统在现代生活中应用广泛,例如空调、冰箱、温室等。

本文基于51单片机设计一个简单的温度控制系统,用于控制温度在一些合适的范围内。

一、系统功能设计本系统主要包括以下功能:1.温度采集:通过温度传感器实时采集环境温度数据;2.温度显示:将采集到的温度数据显示在液晶屏上,方便用户查看;3.温度控制:当环境温度超过设定的范围时,系统将自动启动风扇或制冷装置来降低温度;4.温度报警:当环境温度超过设定范围时,系统将通过报警器发出警报。

二、系统硬件设计1.51单片机2.LM35温度传感器:用于采集环境温度数据;3.ADC0804模数转换芯片:将LM35传感器输出的模拟电压转换为数字信号;4.LCD1602液晶屏:用于显示温度数据和系统状态;5. Buzzer报警器:用于发出警报;6.风扇或制冷装置:用于降低温度。

三、系统软件设计1.初始化:设置各个硬件模块的工作模式和初始化参数;2.温度采集:通过ADC0804芯片将LM35传感器输出的模拟信号转换为数字信号;3.温度显示:将采集到的数字信号转换为温度值,并通过LCD1602液晶屏显示;4.温度控制:根据设定的温度上下限值,判断当前温度是否超过范围,若超过则启动风扇或制冷装置进行温度控制;5. 温度报警:当温度超过设定范围时,通过Buzzer报警器发出声音警报;6.系统循环:以上功能通过循环执行,实现实时监控和控制。

四、系统流程图软件设计流程如下所示:```开始初始化系统循环执行以下步骤:采集温度数据显示温度数据温度控制判断温度报警判断结束```五、系统总结本文基于51单片机设计了一个简单的温度控制系统,通过温度采集、显示、控制和报警功能,实现了温度的实时监控和控制。

该系统可以广泛应用于家庭、办公室、温室等环境的温度控制,提高生活质量和工作效率。

六、系统展望本系统可以进行进一步的优化和扩展,例如添加温度传感器的校准功能,提高温度采集的精度;增加温度曲线图显示功能,方便用户了解温度变化趋势;引入无线通信模块,使用户可以通过手机或电脑远程监控和控制温度等。

冰箱温度智能控制系统的设计本科学位论文

冰箱温度智能控制系统的设计本科学位论文

冰箱温度智能控制系统的设计目录第一章概论..................................... 错误!未定义书签。

一.电冰箱的系统组成 (2)二.工作原理: (3)三.本系统采用单片机控制的电冰箱主要功能及要求 (4)第二章硬件部分 (4)一.系统结构图 (4)二.微处理器(单片机) (5)三.温度传感器 (8)四.电压检测装置 (8)五.功能按键 (9)六.压缩机,风机、电磁阀控制 (9)七.故障报警电路 (9)第三章软件部分 (10)一、主程序:MAIN (10)二、初始化子程序:INTI1 ......................... 错误!未定义书签。

三、键盘扫描子程序:KEY ......................... 错误!未定义书签。

四.打开压缩机子程序:OPEN (13)五.关闭压缩机:CLOSE (15)六.定时器0中断程序:用于压缩机延时............ 错误!未定义书签。

七.延时子程序.................................. 错误!未定义书签。

第四章分析与结论.................................. 错误!未定义书签。

电冰箱温度测控系统设计目前市场销售的双门直冷式电冰箱,含有冷冻室和冷藏室,冷冻室通常用于冷冻的温度为-6~-18℃;冷藏室用于在相对冷冻室较高的温度下存放食品,要求有一定的保鲜作用,不能冻伤食品,室温一般为0~10℃.传统的电冰箱温度一般是由冷藏室控制,冷藏室、冷冻室的不同温度是通过调节蒸发器在两室的面积大小来实现的,温度调节完全依靠压缩机的开停来控制.但是冰箱内的温度受诸多因素的影响,如放入冰箱物品初始温度的高低、存放品的散热特性及热容量、物品在冰箱的充满率、环境温度的高低、开门的频繁程度等.因此对这种受控参数及随机因素很多的温度控制,既难以建立一个标准的数学模型,也无法用传统的PID调节来实现.一台品质优良的电冰箱应该具有较高的温度控制精度,同时又有最优的节能效果,而为了达到这一设计要求采用模糊控制技术无疑是最佳的选择.一.电冰箱的系统组成液体由液态变为气态时,会吸收很多热量,简称为“液体汽化吸热”,电冰箱就是利用了液体汽化的过程中需要吸热的原理来制冷的。

电冰箱自动控制课程设计

电冰箱自动控制课程设计

电冰箱自动控制课程设计一、课程目标知识目标:1. 理解电冰箱的基本工作原理和自动控制系统的组成;2. 掌握电冰箱压缩机、蒸发器、冷凝器等主要部件的作用及其相互关系;3. 了解并掌握温度传感器、继电器等自动控制元件的工作原理和应用。

技能目标:1. 能够运用所学知识分析电冰箱自动控制系统的电路图;2. 学会使用万用表等工具进行电冰箱自动控制系统的检测与调试;3. 能够通过编程实现电冰箱温度的自动控制。

情感态度价值观目标:1. 培养学生对家电维修及自动化技术的兴趣,提高学习积极性;2. 增强学生的动手实践能力,培养团队协作精神和问题解决能力;3. 培养学生节能环保意识,理解家电自动化对生活品质的提升。

本课程针对高年级学生,结合电冰箱自动控制系统的实际应用,注重理论联系实际。

课程设计以学生为主体,充分考虑学生的认知特点和兴趣,通过实践操作、小组讨论等形式,使学生在掌握知识的同时,提高技能和情感态度价值观。

课程目标具体、可衡量,为后续教学设计和评估提供明确依据。

二、教学内容1. 电冰箱工作原理及结构介绍:讲解电冰箱的基本工作原理,介绍压缩机、蒸发器、冷凝器等主要部件的作用及相互关系,对应教材第3章。

2. 自动控制系统组成:分析电冰箱自动控制系统的组成,包括温度传感器、继电器、微控制器等,对应教材第4章。

3. 温度传感器原理与应用:详细讲解温度传感器的原理,以及其在电冰箱自动控制系统中的应用,对应教材第5章。

4. 编程与自动控制:介绍编程基础知识,以电冰箱温度控制为例,指导学生进行程序编写和调试,对应教材第6章。

5. 实践操作与检测:教授学生使用万用表等工具进行电冰箱自动控制系统的检测与调试,对应教材第7章。

6. 电冰箱自动控制系统案例分析:分析实际电冰箱自动控制系统的案例,提高学生分析问题和解决问题的能力,对应教材第8章。

教学内容按照教学大纲进行安排,注重科学性和系统性。

在教学过程中,教师需结合课程目标和学生的实际情况,合理安排教学进度,确保学生能够逐步掌握所学知识,并能够将理论应用于实践。

冰箱电气系统设计和维修

冰箱电气系统设计和维修
冰箱电气控制系统
陈星
• 产品控制类型分类简介 • 经典冰箱控制系统构成 • 冰箱控制电路板经典功能单元电路
结束
冰箱控制系统分类
压缩式制冷方式(家用电冰箱)
•按冰箱制冷系统区别(控制系统构成及控制措施不同): ——直冷冰箱 ——无霜冰箱(风冷及风直冷冰箱) •按控制手段区别: ——机械温控 ——电子温控(电子电路进行控制,没有软件) ——电脑温控(单片机程序控制,软硬件控制)
显示电路板
1
7
1
7
1+ -
主控制板 1
JST XHP-7
JST VHR-10N
N 电源
L
压缩机 电磁阀 照明灯
双循环直冷 电脑温控 电气布局示意图
• 单片机程序控制 • 热敏电阻感温 • 双稳态电磁阀
• 多循环冰箱系统
双循环风直冷、电脑温控冰箱
干簧管+磁铁 (冷冻室门开关) 风扇电机控制 冷冻室加热除霜 (F蒸发器感温头 及加热器控制)
冰箱控制电路板经典功能单元——
控制电路原理图例
科龙BCD-199WAK风直冷电冰箱旳控制电路原理图
过压保护 冰箱控制电路板经典功能单元——
• 当电源电压过高,峰值 超出560V时压敏电阻 阻值突降接近短路,保 险管F1熔断,电路板 断电使板上旳主要元器 件不被损坏
• 过压保护电路动作后, 从显示及功能上体现出 冰箱整个控制系统断电, 停止工作。经过观察保 险管就能够得到判断
2.56
温度 (℃

5
电阻值 (kΩ)
5.06
25
2
37 1.21
电压 (V)
2.25 1.22 0.82
冰箱控制电路板经典功能单元——继电器负载驱动电路

电冰箱控制系统设计

电冰箱控制系统设计

第一章设计任务与要求根据蒸发器的温度控制制冷压缩机的启、停,使电冰箱内的温度保持在设定温度范围内。

当蒸发器温度升至3~5℃时启动压缩机制冷;当温度低于-10~-20℃时停止制冷,关断压缩机。

电冰箱采用单片机控制的主要功能及要求:①设定3个测温点,测温范围 -26~+26℃,精度±2 ℃②利用功能键分别控制冷冻室温度设定、冷藏室温度设定、速冻温度设定等;③利用数码管显示冷冻室温、冷藏室温,压缩机起、停和速冻、报警状态;④制冷压缩机停机后自动延时3min后方能再次启动;⑤具有自动除霜功能,当霜厚达到3mm时自动除霜;⑥冷藏室稳定超过18 ℃时声光报警,提醒用户采取应急措施;⑦开门超过2min将声光报警,提醒用户关门;⑧连续速冻时间设定范围1~8小时。

⑨工作电压180~240V,当欠压或过压时,禁止启动压缩机并用指示灯显示。

第二章硬件设计直冷式电冰箱的控制原理是根据蒸发器的温度控制制冷压缩机的启动与停止,使冰箱内的温度保持在设定的温度范围内。

当蒸发器温度高至3~5℃时,启动压缩机制冷,当温度低于-10~-20℃时,停止制冷。

本电冰箱控制系统要完成冷冻室及冷藏室的温度检测和动态显示的功能,霜厚检测及除霜的功能,开门报警功能,温度设置功能,以及电源过欠压保护功能。

控制系统硬件结构如图所示,主要由电源电路,温度传感器,功能按键,MCS8051单片机,ADC0809转换器,时钟电路,键盘电路,显示电路,复位电路,测霜、除霜装置和故障报警装置等。

系统总体设计硬件方框图4.1 M CS-51单片机简介单片微型计算机简称单片机,是典型的嵌入式微处理器,最早被用于工业领域。

单片机由芯片内仅有CPU 的专门处理器发展而来。

早期的单片机都是8位或4位的。

其中最成功的是INTEL 的8031,因为简单可靠而性能不错获得了很大的好评。

此后在8031上发展出了MCS51系列单片机系统。

基于这一系统的单片机系统直到现在还在广泛使用。

电冰箱的控制系统

电冰箱的控制系统

第四章电冰箱的机械控制系统电冰箱以电为能源,靠电动机来驱动压缩机,一般还要配上启动继电器才能工作。

为了避免由于种种原因引起的超负荷现象造成电机烧毁,都装有过载保护器。

此外,为了控制箱内温度,还要用机械式温度控制器,有时它还兼有控制化霜功能。

电冰箱的控制系统依据系统中所采用温控器的不同分为“机械温控系统”和“电子温控系统”。

本章主要介绍机械温控原理及机械式温度控制器。

第一节常见机械温控系统一.机械温控系统组成常见机械式冰箱温控系统:图4-1 冰箱电气原理图表4-1 机械式电冰箱温控系统部件二.机械式温控器1.温控器的类型与作用温度控制器(简称温控器),是一种能自动控制器具的温度,使其保持在两个特定值之间,并且可以由使用者设定的装置。

广泛应用于各种家用电器中,以下为列表:表4-2 常用温控器类型本教材中温控器均为冰箱用温控器的技术参数、要求等,主要介绍温感压力式温度控制器,以下简称“温控器”。

温控器属于温度控制系统中的一个主要的部件,其主要作用是控制压缩机压缩机开、停时间,以保持电冰箱内的温度在确定的范围内。

常见的温度控制器有温感压力式、热敏电阻式和风门温度调节器等。

2.温感压力式温度控制器由感温组件、温度设定主体组件、执行开闭的微动开关或自动风门等三部分组成。

是通过密闭的内充感温工质的温包和毛细管,把被控温度的变化转变为密闭空间压力或容积的变化,以达到温度设定值时,通过弹性元件和快速瞬动机构,自动开闭触点或风门,以达到自动控制温度。

表4-3 温感压力式温度控制器分类及用途常用术语:接通点(ON)温控器触点闭路时的温度;断开点(OFF)温控器触点开路时的温度;调节范围温控器的调节机构给定的最大和最小接通点或断开点之间的温差;差动值(DIFF)调节机构整定于某一温度位置时的接通点和断开点之间的温度差;感温部件把控制对象的温度变换为充入工质(气体或液体)压力的部分;毛细管把感温部分的压力变化传递到波纹管或膜盒的细管。

直冷式电冰箱温度控制系统设计

直冷式电冰箱温度控制系统设计

直冷式电冰箱温度控制系统设计1. 引言直冷式电冰箱是现代家庭中常见的家电之一,其温度控制系统的设计对于保持食品的新鲜度和品质至关重要。

本文旨在研究直冷式电冰箱温度控制系统的设计原理、关键技术和优化方案,以提高其性能和效能。

2. 直冷式电冰箱温度控制原理直冷式电冰箱通过压缩机、蒸发器、减压阀等组件实现制热和降温的过程。

其温度控制原理是通过压缩机的启停来调节蒸发器中的制热量,从而实现对冰箱内部温度的调节。

3. 直冷式电冰箱温度控制系统组成直冷式电冰箱温度控制系统主要由传感器、微处理器、执行器等组成。

传感器负责检测环境中的温度变化,微处理器根据传感器反馈信息来判断是否需要启停压缩机,并通过执行器来实现相应操作。

4. 温度传感技术在直流风扇中应用为了提高直流风扇的性能和效能,本文提出了一种基于温度传感技术的优化方案。

通过在直流风扇中添加温度传感器,可以实时监测风扇的工作温度,并根据实际情况调节风扇的转速,以提高冷却效果和节能效果。

5. 温度控制系统优化方案为了提高直冷式电冰箱温度控制系统的性能和效能,本文提出了一种基于模糊控制的优化方案。

通过建立模糊控制器,可以根据环境中的温度变化来调节压缩机启停和风扇转速,以实现更精确、更稳定的温度控制。

6. 温度控制系统测试与分析为了验证优化方案的有效性,本文进行了一系列实验测试。

通过对不同环境条件下直冷式电冰箱温度变化进行监测和分析,结果表明优化方案在提高温度控制精确性和稳定性方面具有显著效果。

7. 结论本文对直冷式电冰箱温度控制系统进行了深入研究,并提出了基于模糊控制和温度传感技术的优化方案。

通过实验测试和分析,证明了优化方案的有效性和可行性。

未来,可以进一步探索其他温度控制技术的应用,以进一步提高直冷式电冰箱的性能和效能。

单片机电冰箱控制系统硬件设计

单片机电冰箱控制系统硬件设计

单片机电冰箱控制系统硬件设计首先是电源系统,电冰箱需要稳定的电源来运行。

一般情况下,电冰箱使用交流电作为主要电源。

因此,我们需要一个适配器将交流电转换为直流电,并提供适当的电流和电压供电。

此外,还需要考虑过压、过流和短路等保护电路,以保证电冰箱的安全运行。

其次是温度传感器,用于检测电冰箱内部的温度。

温度传感器可以选择热电偶、热电阻或半导体传感器等。

在硬件设计中,需要将温度传感器与单片机进行连接,并编写相应的程序来读取传感器的数据。

通过监测温度传感器的数据,可以实时调节电冰箱的制冷功率,以保持恒定的温度。

接下来是湿度传感器,用于检测电冰箱内部的湿度。

湿度传感器可以选择电容式、电阻式或电解式等。

在硬件设计中,也需要将湿度传感器与单片机进行连接,并编写相应的程序来读取传感器的数据。

通过监测湿度传感器的数据,可以实时调节电冰箱的湿度,以保持适宜的湿度环境。

继电器是用来控制电冰箱的制冷系统和通风系统的主要部件。

继电器可以将单片机的控制信号转换为高功率的电源控制信号。

在硬件设计中,需要将继电器与单片机进行连接,并编写相应的程序来控制继电器的通断状态。

通过控制继电器的状态,可以实现电冰箱的制冷和通风功能。

最后是通信模块,用于实现电冰箱与其他设备或远程服务器之间的通信。

通信模块可以选择无线模块或有线模块,如蓝牙、Wi-Fi、以太网等。

在硬件设计中,需要将通信模块与单片机进行连接,并编写相应的程序来实现数据的传输和接收。

通过通信模块,可以实现电冰箱的远程控制和监控。

总结起来,单片机电冰箱控制系统的硬件设计需要考虑电源系统、温度传感器、湿度传感器、继电器和通信模块等方面。

通过合理设计这些硬件组件的连接和编写相应的程序,可以实现电冰箱的温度、湿度和功率等功能的控制。

电冰箱控制系统

电冰箱控制系统

电冰箱的控制系统电冰箱是靠压缩机压缩成液态的工作物质汽化时吸热来达到致冷目的的。

电冰箱有一套电路控制系统,用来控制和保护压缩机正常工作,以维持电冰箱恒温。

电路控制系统一般由温度控制器(简称温控器)、起动继电器、热保护器等构成。

图5-14为普通单门电冰箱的控制系统电路。

从图上可以看出,温控器、热保护器、起动继电器等均跟压缩机电路串联,只有照明灯和压缩机并联。

箱内的照明灯用按钮式开关来控制。

关门时,冰箱门把开关上的按钮推开,使照明灯电路断开;开门时,开关上的按钮自动弹出,接通电路,箱内灯亮,便于人们取、放食品。

冰箱的工作温度是通过温控器控制压缩机的开、停来维持的。

图5-15是温度控制器工作原理图。

感温包内充有感温剂气体,一般采用氯甲烷Cl)。

当压缩机停止工作后,蒸发器表面温度逐渐上升,感温包和膜盒(CH3中的感温剂气体的温度也随着上升,压强增大,膜片向外伸胀,推动活动触点“3”与固定触点“4”闭合,于是电路接通,压缩机开始工作,继续制冷,冰箱内温室下降。

当冰箱内温度降低到一定程度,感温包和膜盒内气体压强降低到某个值时,由于弹簧的弹力,使活动触点3和固定触点4断开,切断电源,压缩机停止工作,制冷停止。

如此反复,使箱内温度保持在调定的范围内。

热保护器主要由双金属片和电热丝组成。

图5-16为热保护器工作原理图。

热保护器装在压缩机外壳表面。

当电视超载不能运转时,电流增大,电热丝温度升高,使附近的双金属片受热变形,触点跳开,切断电路。

当压缩机机壳温度过高时,也将使双金属片受热变形,切断电路,从而保护压缩机不致烧毁。

冰箱的工作原理紧缩式电冰箱是电机紧缩式电冰箱的简称,它是一种常见的冷凝器。

它主要有以下三个组成部份:箱体、制冷系统与控制系统。

而其中最关键的是制冷系统。

制冷系统主要由四大件组成:紧缩机、冷凝器、膨胀阀和蒸发器,按照控制或是利用需要中间可以选择安装压力控制器、温度控制器、干燥过滤器等辅助器件,但四大件是必不可少的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

冰箱温度控制系统设计
作者:杨增广, 温建平
作者单位:杨增广(广东科龙电器股份有限公司), 温建平(厦门华联电子有限公司)
1.吕佩举一种基于单片机的变频电冰箱控制系统[期刊论文]-家电科技2004(8)
2.周丽.薛红人工智能、模糊控制电冰箱[期刊论文]-北京工商大学学报(自然科学版)2001,19(4)
3.刘爱琴.梁为民.朱宗胜一种电冰箱自动控制系统的设计[期刊论文]-电子工程师2001,27(8)
4.张顺.祝龙记.周香诊.ZHANG SHUN.ZHU LONGJI.ZHOU XINGZHEN基于ARM电冰箱模糊控制系统的仿真与设计[期刊论文]-微计算机信息2007,23(2)
本文链接:/Conference_58952.aspx。

相关文档
最新文档