数据结构与算法源代码
数据结构上机实验源代码
数据结构上机实验源代码栈的应用十进制数转换为八进制数,逆序输出所输入的数实验代码://stack.h,头文件class stack{public:stack();bool empty()const;bool full()const;error_code gettop(elementtype &x)const;error_code push(const elementtype x);error_code pop();private:int count;elementtype data[maxlen];};stack::stack(){count=0;}bool stack::empty()const{return count==0;}bool stack::full()const{return count==maxlen;}error_code stack::gettop(elementtype &x)const{if(empty())return underflow;else{x=data[count-1];return success;}}error_code stack::push(const elementtype x){if(full())return overflow;data[count]=x;count++;return success;}error_code stack::pop(){if(empty())return underflow;count--;return success;}//主程序#include<iostream.h>enum error_code{overflow,underflow,success};typedef int elementtype;const int maxlen=20;#include"stack.h"void read_write() //逆序输出所输入的数{stack s;int i;int n,x;cout<<"please input num int n:";cin>>n;for(i=1;i<=n;i++){cout<<"please input a num:";cin>>x;s.push(x);}while(!s.empty()){s.gettop(x);cout<<x<<" ";s.pop();}cout<<endl;}void Dec_to_Ocx(int n) //十进制转换为八进制{stack s1;int mod,x;while(n!=0){mod=n%8;s1.push(mod);n=n/8;}cout<<"the ocx of the dec is:";while(!s1.empty()){s1.gettop(x);cout<<x;s1.pop();}cout<<endl;}void main(){int n;// read_write();cout<<"please input a dec:";cin>>n;Dec_to_Ocx(n);}队列的应用打印n行杨辉三角实验代码://queue.hclass queue{public:queue(){count=0;front=rear=0;}bool empty(){return count==0;}bool full(){return count==maxlen-1;}error_code get_front(elementtype &x){if(empty())return underflow;x=data[(front+1)%maxlen];return success;}error_code append(const elementtype x){if(full())return overflow;rear=(rear+1)%maxlen;data[rear]=x;count++;return success;}error_code serve(){if(empty())return underflow;front=(front+1)%maxlen;count--;return success;}private:int count;int front;int rear;int data[maxlen];};//主程序#include<iostream.h>enum error_code{overflow,underflow,success};typedef int elementtype;const int maxlen=20;#include"queue.h"void out_number(int n) //打印前n行的杨辉三角{int s1,s2;int i;int j;int k;queue q;for(i=1;i<=(n-1)*2;i++)cout<<" ";cout<<"1 "<<endl;q.append(1);for(i=2;i<=n;i++){s1=0;for(k=1;k<=(n-i)*2;k++)cout<<" ";for(j=1;j<=i-1;j++){q.get_front(s2);q.serve();cout<<s1+s2<<" ";q.append(s1+s2);s1=s2;}cout<<"1 "<<endl;q.append(1);}}void main(){int n;cout<<"please input n:";cin>>n;out_number(n);}单链表实验实验目的:实验目的(1)理解线性表的链式存储结构。
源代码--数据结构与算法(Python版)chap10 排序
交换类
(2)快速排序 快速排序采用分而治之(Divide and Conquer)
的策略将问题分解成若干个较小的子问题,采用 相同的方法一一解决后,再将子问题的结果整合 成最终答案。快速排序的每一轮处理其实就是将 这一的基准数定位,直到所有的数都排序完成 为止。
21
快速排序的基本步骤:
1. 选定一个基准值(通常可选第一个元素); 2. 将比基准值小的数值移到基准值左边,形
14
• 交换类
交换类排序的基本思想是:通过交换无序序列 中的记录得到其中关键字最小或最大的记录,并将 其加入到有序子序列中,最终形成有序序列。交换 类排序可分为冒泡排序和快速排序等。
15
交换类
(1)冒泡排序 两两比较待排序记录的关键字,发现两
个记录的次序相反时即进行交换,直到没有 反序的记录为止。因为元素会经由交换慢慢 浮到序列顶端,故称之为冒泡排序。
3. 最后对这个组进行插入排序。步长的选法 一般为 d1 约为 n/2,d2 为 d1 /2, d3 为 d2/2 ,…, di = 1。
11
【例】给定序列(11,9,84,32,92,26,58,91,35, 27,46,28,75,29,37,12 ),步长设为d1 =5、d2 =3、 d3 =1,希尔排序过程如下:
for i in range(1,len(alist)):
#外循环n-1
for j in range(i,0,-1):
#内循环
if alist[j]<alist[j-1]:
alist[j],alist[j-1]=alist[j-1],alist[j] #交换
li=[59,12,77,64,72,69,46,89,31,9] print('before: ',li) insert_sort(li) print('after: ',li)
数据结构与算法分析:C语言描述(原书第2版简体中文版!!!)PDF+源代码+习题答案
数据结构与算法分析:C语⾔描述(原书第2版简体中⽂版!!!)PDF+源代码+习题答案转⾃:/Linux/2014-04/99735.htm数据结构与算法分析:C语⾔描述(原书第2版中⽂版!!!) PDF+源代码+习题答案数据结构与算法分析:C语⾔描述(原书第2版)是《data structures and algorithm analysis in c》⼀书第2版的简体中译本。
原书曾被评为20世纪顶尖的30部计算机著作之⼀,作者mark allen weiss在数据结构和算法分析⽅⾯卓有建树,他的数据结构和算法分析的著作尤其畅销,并受到⼴泛好评.已被世界500余所⼤学⽤作教材。
在本书中,作者更加精炼并强化了他对算法和数据结构⽅⾯创新的处理⽅法。
通过c程序的实现,着重阐述了抽象数据类型的概念,并对算法的效率、性能和运⾏时间进⾏了分析。
数据结构与算法分析:C语⾔描述(原书第2版) PDF下载:百度⽹盘免费下载地址:(本⼈是从这⾥下载的,感谢原博主)全书特点如下: ●专⽤⼀章来讨论算法设计技巧,包括贪婪算法、分治算法、动态规划、随机化算法以及回溯算法 ●介绍了当前流⾏的论题和新的数据结构,如斐波那契堆、斜堆、⼆项队列、跳跃表和伸展树 ●安排⼀章专门讨论摊还分析,考查书中介绍的⼀些⾼级数据结构 ●新开辟⼀章讨论⾼级数据结构以及它们的实现,其中包括红⿊树、⾃顶向下伸展树。
treap树、k-d树、配对堆以及其他相关内容 ●合并了堆排序平均情况分析的⼀些新结果⽬录出版者的话专家指导委员会译者序前⾔第1章引论第2章算法分析第3章表、栈和队列第4章树第5章散列第6章优先队列(堆)第7章排序第8章不相交集ADT第9章图论算法第10章算法设计技巧第11章摊还分析第12章⾼级数据结构及其实现索引。
数据结构与算法实验源代码
数据结构与算法实验源代码数据结构与算法实验源代码1.实验目的本实验旨在通过实践,加深对数据结构与算法的理解与应用能力,掌握数据结构和算法的基本概念与原理,并能够运用所学知识解决实际问题。
2.实验材料●一台已安装好编译器的计算机●数据结构与算法实验源代码文件3.实验环境配置在实验开始之前,必须确保计算机上已安装好以下环境:●编译器(可以是C++、Java等)●数据结构与算法实验源代码文件4.实验内容及步骤4.1 实验一:线性表4.1.1 实验目的通过实现线性表的相关操作,加深对线性表及其操作的理解,并能够灵活应用。
4.1.2 实验步骤1.实现线性表的初始化函数2.实现线性表的插入操作3.实现线性表的删除操作4.实现线性表的查找操作5.实现线性表的排序操作6.实现线性表的输出操作7.编写测试代码,对线性表进行测试4.1.3 实验结果与分析进行若干测试用例,验证线性表的正确性,并分析算法的时间复杂度与空间复杂度。
4.2 实验二:栈与队列4.2.1 实验目的通过实现栈与队列的相关操作,加深对栈与队列的理解,并掌握栈与队列的应用场景。
4.2.2 实验步骤1.实现栈的初始化函数2.实现栈的入栈操作3.实现栈的出栈操作4.实现栈的查看栈顶元素操作5.实现队列的初始化函数6.实现队列的入队操作7.实现队列的出队操作8.实现队列的查看队首元素操作4.2.3 实验结果与分析进行若干测试用例,验证栈与队列的正确性,并分析算法的时间复杂度与空间复杂度。
(继续添加实验内容及步骤,具体根据实验项目和教学要求进行详细分析)5.实验附件本文档所涉及的实验源代码文件作为附件随文档提供。
6.法律名词及注释6.1 版权:著作权法所规定的权利,保护作品的完整性和原创性。
6.2 开源:指软件可以被任何人免费使用、分发和修改的一种软件授权模式。
(继续添加法律名词及注释)。
数据结构课程设计源代码(完整版)
算法与数据结构课程设计报告设计题目:专业班级学生学号指导教师2014年第1学期第一部分:需求分析1、系统名称:航空客运订票系统航空客运订票的业务活动包括:查询航线、客票预定和办理退票等。
要求在TC或VC环境下设计一个航空客运订票系统,以使上述业务可以借助计算机来完成。
2、要求:(1)每条航线所涉及的信息有:终点站名、航班号、飞机号、飞行日期(星期几)、乘员定额、余票量、已经订票的客户名单(包括姓名、订票量)以及等候替补的客户名单(包括姓名、所需票量)。
(2)作为模拟系统,全部数据可以只存放在内存中。
(3)通过此系统可以实现如下功能:①录入功能:可以录入航班情况②查询功能:根据客户提供的终点站名进行查询,可以输出以下信息:航班号、飞机号、星期几飞行和余票量等。
也可以根据航班号,查询飞机某个航线的情况。
③订票功能:根据客户提出的要求(姓名、终点站名、订票数量)查询该航班的余票量情况。
如尚有足够的余票,则为客户办理订票手续;若已满员或余票量少于订票数量,则需要重新询问客户要求,如需要,可登记排队候补。
④退票功能:根据客户提供的情况(姓名、日期、航班号),为客户办理退票手续,然后查询该航班是否有人排队候补,若有人排队,则为排在第一位的客户办理订票手续。
第二部分:系统设计图样一:设计说明1:添加航班:整个航班的信息保存在一个结构体flight中,采用结构体数组,每一个航班信息包含航班号、起飞时间、起飞城市、降落时间、降落城市、余票数量。
航班信息通过lulu()函数进行添加。
添加的信息保存在航班flight结构体数组中。
2:查询航班:查询板块分为两个部分,按姓名查找和按站名查找。
按姓名查找:通过所输入的姓名和已定客户的姓名相匹配,匹配成功则查找成功。
按站名查找:通过所输入的起始站名和终点站名进行匹配,匹配成功则查找成功。
3:订票功能:根据用户的姓名和航班号进行订票,如果所查找的航班号的余票满足用户需要的票数,则订票成功,该信息保存在Customer中,才用结构体数组,包含已定客户的姓名、客户ID、订的票数、起飞时间、起飞城市、降落时间、降落城市、航班号。
数据结构三元组c语言源代码
数据结构三元组c语言源代码数据结构三元组C语言源代码在计算机科学领域,数据结构是一种组织和存储数据的方式,它可以让我们更高效地管理和处理数据。
在数据结构中,三元组是一种常用的结构,它由三个元素组成,分别对应于一个事物的不同方面。
在C 语言中,我们可以使用结构体来实现三元组。
首先,我们需要定义一个结构体来表示三元组。
在下面的代码中,我们定义了一个名为`triple`的结构体,它有三个成员变量分别为`a`,`b`和`c`。
```ctypedef struct {int a;double b;char c;} triple;```这个结构体中,`a`表示整型变量,`b`表示双精度浮点型变量,`c`表示字符型变量。
我们可以根据需要更改这些类型,以便适应特定的数据需求。
接下来,我们可以使用三元组结构体来创建存储数据的具体实例。
在下面的代码片段中,我们定义了一个名为`example`的三元组,它的第一,二,三个元素分别为1、3.14和'A'。
```ctriple example = { 1, 3.14, 'A' };```我们还可以定义一个函数来根据用户提供的数据创建一个新的三元组实例。
在下面的代码片段中,我们创建了一个名为`create_triple`的函数,并定义一个名为`new_triple`的三元组变量,它的元素根据用户输入而定。
```ctriple create_triple() {triple new_triple;printf("请输入一个整数:");scanf("%d", &new_triple.a);printf("请输入一个双精度浮点数:");scanf("%lf", &new_triple.b);printf("请输入一个字符:");scanf(" %c", &new_triple.c);return new_triple;}```最后,我们可以在程序中使用定义好的结构体和函数来处理我们的数据。
《数据结构》的全部代码实现C语言
/* c1.h (程序名) */#include<string.h>#include<ctype.h>#include<malloc.h> /* malloc()等*/#include<limits.h> /* INT_MAX等*/#include<stdio.h> /* EOF(=^Z或F6),NULL */#include<stdlib.h> /* atoi() */#include<io.h> /* eof() */#include<math.h> /* floor(),ceil(),abs() */#include<process.h> /* exit() *//* 函数结果状态代码*/#define TRUE 1#define FALSE 0#define OK 1#define ERROR 0#define INFEASIBLE -1/* #define OVERFLOW -2 因为在math.h中已定义OVERFLOW的值为3,故去掉此行*/ typedef int Status; /* Status是函数的类型,其值是函数结果状态代码,如OK等*/ typedef int Boolean; /* Boolean是布尔类型,其值是TRUE或FALSE *//* algo2-1.c 实现算法2.1的程序*/#include"c1.h"typedef int ElemType;#include"c2-1.h"/*c2-1.h 线性表的动态分配顺序存储结构*/#define LIST_INIT_SIZE 10 /* 线性表存储空间的初始分配量*/#define LISTINCREMENT 2/* 线性表存储空间的分配增量*/typedef struct{ElemType*elem; /* 存储空间基址*/int length; /* 当前长度*/int listsize; /* 当前分配的存储容量(以sizeof(ElemType)为单位) */}SqList;#include"bo2-1.c"/* bo2-1.c 顺序表示的线性表(存储结构由c2-1.h定义)的基本操作(12个) */ Status InitList(SqList*L) /* 算法2.3 */{ /* 操作结果:构造一个空的顺序线性表*/(*L).elem=(ElemType*)malloc(LIST_INIT_SIZE*sizeof(ElemType));if(!(*L).elem)exit(OVERFLOW); /* 存储分配失败*/(*L).length=0; /* 空表长度为0 */(*L).listsize=LIST_INIT_SIZE; /* 初始存储容量*/return OK;}Status DestroyList(SqList*L){ /* 初始条件:顺序线性表L已存在。
Python数据结构与算法实战案例案例
Python数据结构与算法实战案例案例Python是一门功能强大且广泛应用的编程语言,拥有许多内置的数据结构与算法。
在本文中,我们将介绍几个Python数据结构和算法的实战案例,以帮助读者更好地理解和应用它们。
一、列表(List)的案例列表是Python中最常用的数据结构之一。
它可以存储一系列元素,并且可以随时修改。
下面是一个使用列表的案例,实现对学生成绩排序的功能。
```pythonscores = [85, 90, 78, 92, 88]# 使用sorted()函数对学生成绩进行排序sorted_scores = sorted(scores)# 输出排序后的学生成绩print(sorted_scores)```二、字典(Dictionary)的案例字典是另一个常用的Python数据结构,它可以存储键-值对。
下面是一个使用字典的案例,实现对学生信息的管理。
```pythonstudents = {'Tom': 16, 'Jerry': 15, 'Mike': 17, 'Alice': 16}# 遍历字典并输出学生姓名和年龄for name, age in students.items():print(f"{name}的年龄是{age}岁。
")```三、集合(Set)的案例集合是一种无序且不重复的Python数据结构。
它通常用于去重或者判断元素是否存在。
下面是一个使用集合的案例,实现对一组数字的去重。
```pythonnumbers = [1, 2, 3, 2, 4, 5, 3, 4]# 使用集合去重unique_numbers = set(numbers)# 输出去重后的数字print(unique_numbers)```四、递归(Recursion)的案例递归是一种常用的算法技巧,它将问题分解为更小的子问题来解决。
数据结构与算法实验源代码
数据结构与算法实验源代码数据结构与算法实验源代码一、实验目的本实验旨在通过编写数据结构与算法的实验源代码,加深对数据结构与算法的理解,并提高编程能力。
二、实验环境本实验使用以下环境进行开发和测试:- 操作系统:Windows 10- 开发工具:IDEA(集成开发环境)- 编程语言:Java三、实验内容本实验包括以下章节:3.1 链表在本章节中,我们将实现链表数据结构,并实现基本的链表操作,包括插入节点、删除节点、查找节点等。
3.2 栈和队列在本章节中,我们将实现栈和队列数据结构,并实现栈和队列的基本操作,包括入栈、出栈、入队、出队等。
3.3 树在本章节中,我们将实现二叉树数据结构,并实现二叉树的基本操作,包括遍历树、搜索节点等。
3.4 图在本章节中,我们将实现图数据结构,并实现图的基本操作,包括广度优先搜索、深度优先搜索等。
3.5 排序算法在本章节中,我们将实现各种排序算法,包括冒泡排序、插入排序、选择排序、快速排序、归并排序等。
3.6 搜索算法在本章节中,我们将实现各种搜索算法,包括线性搜索、二分搜索、广度优先搜索、深度优先搜索等。
四、附件本文档附带实验源代码,包括实现数据结构和算法的Java源文件。
五、法律名词及注释5.1 数据结构(Data Structure):是指数据对象中数据元素之间的关系。
包括线性结构、树形结构、图形结构等。
5.2 算法(Algorithm):是指解决问题的一系列步骤或操作。
算法应满足正确性、可读性、健壮性、高效性等特点。
5.3 链表(Linked List):是一种常见的数据结构,由一系列节点组成,每个节点包含一个数据元素和一个指向下一个节点的指针。
5.4 栈(Stack):是一种遵循后进先出(LIFO)原则的有序集合,用于存储和获取数据。
5.5 队列(Queue):是一种遵循先进先出(FIFO)原则的有序集合,用于存储和获取数据。
5.6 树(Tree):是由节点组成的层级结构,其中一种节点作为根节点,其他节点按照父子关系连接。
数据结构源代码(清华大学+严蔚敏)
void Union(List &La, List Lb) { // 算法2.1// 将所有在线性表Lb中但不在La中的数据元素插入到La中int La_len,Lb_len,i;ElemType e;La_len = ListLength(La); // 求线性表的长度Lb_len = ListLength(Lb);for (i=1; i<=Lb_len; i++) {GetElem(Lb, i, e); // 取Lb中第i个数据元素赋给e if (!LocateElem(La, e, equal)) // La中不存在和e相同的数据元素ListInsert(La, ++La_len, e); // 插入}} // unionvoid MergeList(List La, List Lb, List &Lc) { // 算法2.2// 已知线性表La和Lb中的元素按值非递减排列。
// 归并La和Lb得到新的线性表Lc,Lc的元素也按值非递减排列。
int La_len, Lb_len;ElemType ai, bj;int i=1, j=1, k=0;InitList(Lc);La_len = ListLength(La);Lb_len = ListLength(Lb);while ((i <= La_len) && (j <= Lb_len)) { // La和Lb均非空GetElem(La, i, ai);GetElem(Lb, j, bj);if (ai <= bj) {ListInsert(Lc, ++k, ai);++i;} else {ListInsert(Lc, ++k, bj);++j;}}while (i <= La_len) {GetElem(La, i++, ai); ListInsert(Lc, ++k, ai);}while (j <= Lb_len) {GetElem(Lb, j++, bj); ListInsert(Lc, ++k, bj);}} // MergeListStatus InitList_Sq(SqList &L) { // 算法2.3// 构造一个空的线性表L。
数据结构源代码(全)
/*顺序表的操作#include<iostream>#include<stdlib.h>using namespace std; Release 13.12 rev 9501 (2013/12/25 19:25:45) gcc 4.7.1 Windows/unicode - 32 bit#define MAX_SIZE 100 typedef struct{int *emel;int lenth;}Sq;void init(Sq &l);void create(Sq &l);void trval(Sq &l);void find_value(Sq &l); void find_position(Sq &l); void insert(Sq &l);void dele(Sq &l);int main(){S q l;i nit(l);c reate(l);t rval(l);f ind_value(l);f ind_position(l);i nsert(l);t rval(l);d ele(l);t rval(l);r eturn 0;}void init(Sq &l){l.emel =new int[MAX_SIZE];i f(l.emel ==NULL){c out<<"\t申请空间失败!"<<endl;e xit(1);}l.lenth=0;cout<<"\t成功申请空间!该顺序表的长度目前为:"<<l.lenth<<endl;}void create(Sq &l){c out<<"\t请输入你想输入元素的个数:";i nt x;c in>>x;if((x<1)&&(x>MAX_SIZE)){c out<<"\t你说输入的数不在范围里"<<endl;r eturn;}int i;for(i=0;i<x;i++){c in>>l.emel[i];}l.lenth=x;cout<<"\t成功赋值!"<<endl;}void trval(Sq &l){i nt i;c out<<"l(";f or(i=0;i<l.lenth;i++){cout<<l.emel[i]<<" "; }c out<<")"<<" 该顺序表现在的长度为:"<<l.lenth<<endl;}void find_value(Sq &l) {i nt x,t=0;c out<<"\t请输入你要查找的值:";c in>>x;i nt i;f or(i=0;i<l.lenth;i++){if(l.emel[i]==x){t=1;c out<<"\t成功找到该元素,它是顺序表的第"<<i+1<<"个元素!"<<endl;}}i f(t==0){cout<<"\t无该元素!"<<endl;}}void find_position(Sq &l) {i nt x;c out<<"\t请输入你要查找的位置:";c in>>x;i nt i;i f((x<1)||(x>l.lenth)){cout<<"\t输入的值不在范围内!"<<endl;return;}f or(i=1;i<=l.lenth;i++){if(i==x){c out<<"\t成功找到该元素,该值是"<<l.emel[i-1]<<endl;}}}void insert(Sq &l){int i,x,y;cout<<"\t请输入你要插入的位置";cin>>x;cout<<"\t请输入你要插入的值";cin>>y;if((x<1)||(x>l.lenth)) {cout<<"\t输入的值不在范围内!"<<endl;return;}if(x==l.lenth){l.emel[l.lenth]=y;l.lenth=l.lenth+1;return;}for(i=l.lenth;i>=x;i--) {l.emel[i]=l.emel[i-1]; }l.emel[x-1]=y;l.lenth=l.lenth+1;}void dele(Sq &l){int i,x;cout<<"\t请输入你要删除位置:";cin>>x;if((x<1)||(x>l.lenth))cout<<"\t输入的值不在范围内!"<<endl;return;}for(i=x-1;i<=l.lenth;i++) {l.emel[i]=l.emel[i+1];l.lenth=l.lenth-1;}成功申请空间!该顺序表的长度目前为:0请输入你想输入元素的个数:385成功赋值!l(8 5 2 ) 该顺序表现在的长度为:3请输入你要查找的值:5成功找到该元素,它是顺序表的第2个元素!请输入你要查找的位置:3成功找到该元素,该值是2请输入你要插入的位置3请输入你要插入的值10l(8 5 2 10 ) 该顺序表现在的长度为:4请输入你要删除位置:3l(8 5 10 ) 该顺序表现在的长度为:3--------------------------------Process exited with return value 0Press any key tocontinue . . .*//*#include<stdio.h> #include<stdlib.h> typedef struct Link {int num;struct Link *next;}L;L* creat(L* head){head=(L*)malloc(sizeof(L));if(head==NULL){printf("头节点申请失败!\n");exit(-1);}head->next=NULL; return head;}void insert(L* head) {int x,i;printf("请输入你想输入数据的个数:");scanf("%d",&x);L *p,*q;p=head;for(i=0;i<x;i++){q=(L *)malloc(sizeof(L));if(q==NULL){printf("新点申请失败!\n");exit(-1);}printf("请输入值:"); scanf("%d",&q->num);q->next=NULL; p->next=q;p=q;}}void print(L* head) {L *p;p=head->next;while(p!=NULL){printf("值为:%d\n",p->num);p=p->next;}}int main(){L *head;head=creat(head);printf("成功创建头节点!!!\n");insert(head);printf("成功输入数据!!!\n");print(head); return 0;}*//*线性表的操作#include<stdio.h> #include<stdlib.h> typedef struct Link{int num;struct Link *next; }L;L* creat(L* head) {head=(L*)malloc(sizeof(L));if(head==NULL){printf("头节点申请失败!\n");exit(-1);}head->next=NULL; return head;}void init(L* head){int x,i;printf("请输入你想输入数据的个数:");scanf("%d",&x);L *p,*q;p=head;for(i=0;i<x;i++){q=(L *)malloc(sizeof(L)); if(q==NULL){printf("新点申请失败!\n");exit(-1);}printf("请输入值:"); scanf("%d",&q->num); q->next=p->next;p->next=q;}}int print(L* head) {L *p;int lenth=0;p=head->next; printf("\t\tL("); while(p!=NULL) {lenth++;printf("%d ",p->num); p=p->next;}printf(")\n");return lenth;}int insert(L *head,int lenth){printf("\t\t请输入你要插入的元素的位置:");int in;scanf("%d",&in);if(in<1 || in>lenth){printf("\t\t输入值不在范围内!");}L *p,*q;p=head->next;q=(L *)malloc(sizeof(L)); if(q==NULL){printf("新点申请失败!\n");}printf("\t\t请为新节点输入值:");scanf("%d",&q->num); int i=0;while(p!=NULL){i++;if(i==in-1){q->next=p->next; p->next=q;}p=p->next;}lenth++;return lenth;}int dele(L *head,int lenth) {printf("\t\t请输入你要删除的元素的位置:");int out;scanf("%d",&out);if(out<1 || out>lenth) {printf("\t\t输入值不在范围内!");return -1;}L *p,*q;p=head->next; q=head;int i=0;while(p!=NULL) {i++;if(i==out) {q->next=p->next; }q=p;p=p->next;}lenth--;return lenth;}void find(L *head,int lenth) {printf("\t\t请输入你要查找的元素的位置:");int finder;scanf("%d",&finder);if(finder<1 || finder>lenth){。
数据结构源代码(全)
/*顺序表的操作#include<iostream>#include<stdlib.h>using namespace std;Release 13.12 rev 9501 (2013/12/25 19:25:45) gcc 4.7.1 Windows/unicode - 32 bit #define MAX_SIZE 100typedef struct{int *emel;int lenth;}Sq;void init(Sq &l);void create(Sq &l);void trval(Sq &l);void find_value(Sq &l);void find_position(Sq &l);void insert(Sq &l);void dele(Sq &l);int main(){Sq l;init(l);create(l);trval(l);find_value(l);find_position(l);insert(l);trval(l);dele(l);trval(l);return 0;}void init(Sq &l){l.emel =new int[MAX_SIZE];if(l.emel ==NULL){cout<<"\t申请空间失败!"<<endl;exit(1);}l.lenth=0;cout<<"\t成功申请空间!该顺序表的长度目前为:"<<l.lenth<<endl; }void create(Sq &l){cout<<"\t请输入你想输入元素的个数:";int x;cin>>x;if((x<1)&&(x>MAX_SIZE)){cout<<"\t你说输入的数不在范围里"<<endl;return;}int i;for(i=0;i<x;i++){cin>>l.emel[i];}l.lenth=x;cout<<"\t成功赋值!"<<endl;}void trval(Sq &l){int i;cout<<"l(";for(i=0;i<l.lenth;i++){cout<<l.emel[i]<<" ";}cout<<")"<<" 该顺序表现在的长度为:"<<l.lenth<<endl;}void find_value(Sq &l){int x,t=0;cout<<"\t请输入你要查找的值:";cin>>x;int i;for(i=0;i<l.lenth;i++){if(l.emel[i]==x){t=1;cout<<"\t成功找到该元素,它是顺序表的第"<<i+1<<"个元素!"<<endl;}}if(t==0){cout<<"\t无该元素!"<<endl;}}void find_position(Sq &l){int x;cout<<"\t请输入你要查找的位置:";cin>>x;int i;if((x<1)||(x>l.lenth)){cout<<"\t输入的值不在范围内!"<<endl;return;}for(i=1;i<=l.lenth;i++){if(i==x){cout<<"\t成功找到该元素,该值是"<<l.emel[i-1]<<endl;}}}void insert(Sq &l){int i,x,y;cout<<"\t请输入你要插入的位置";cin>>x;cout<<"\t请输入你要插入的值";cin>>y;if((x<1)||(x>l.lenth)){cout<<"\t输入的值不在范围内!"<<endl;return;}if(x==l.lenth){l.emel[l.lenth]=y;l.lenth=l.lenth+1;return;}for(i=l.lenth;i>=x;i--){l.emel[i]=l.emel[i-1];}l.emel[x-1]=y;l.lenth=l.lenth+1;}void dele(Sq &l){int i,x;cout<<"\t请输入你要删除位置:";cin>>x;if((x<1)||(x>l.lenth)){cout<<"\t输入的值不在范围内!"<<endl;return;}for(i=x-1;i<=l.lenth;i++){l.emel[i]=l.emel[i+1];}l.lenth=l.lenth-1;}成功申请空间!该顺序表的长度目前为:0请输入你想输入元素的个数:3852成功赋值!l(8 5 2 ) 该顺序表现在的长度为:3请输入你要查找的值:5成功找到该元素,它是顺序表的第2个元素!请输入你要查找的位置:3成功找到该元素,该值是2请输入你要插入的位置3请输入你要插入的值10l(8 5 2 10 ) 该顺序表现在的长度为:4请输入你要删除位置:3l(8 5 10 ) 该顺序表现在的长度为:3--------------------------------Process exited with return value 0Press any key to continue . . .*//*#include<stdio.h>#include<stdlib.h>typedef struct Link{int num;struct Link *next;}L;L* creat(L* head){head=(L *)malloc(sizeof(L));if(head==NULL){printf("头节点申请失败!\n");exit(-1);}head->next=NULL;return head;}void insert(L* head){int x,i;printf("请输入你想输入数据的个数:");scanf("%d",&x);L *p,*q;p=head;for(i=0;i<x;i++){q=(L *)malloc(sizeof(L));if(q==NULL){printf("新点申请失败!\n");exit(-1);}printf("请输入值:");scanf("%d",&q->num);q->next=NULL;p->next=q;p=q;}}void print(L* head){L *p;p=head->next;while(p!=NULL){printf("值为:%d\n",p->num);p=p->next;}}int main(){L *head;head=creat(head);printf("成功创建头节点!!!\n");insert(head);printf("成功输入数据!!!\n");print(head);return 0;}*//*线性表的操作#include<stdio.h>#include<stdlib.h>typedef struct Link{int num;struct Link *next;}L;L* creat(L* head){head=(L *)malloc(sizeof(L));if(head==NULL){printf("头节点申请失败!\n");exit(-1);}head->next=NULL;return head;}void init(L* head){int x,i;printf("请输入你想输入数据的个数:");scanf("%d",&x);L *p,*q;p=head;for(i=0;i<x;i++){q=(L *)malloc(sizeof(L));if(q==NULL){printf("新点申请失败!\n");exit(-1);}printf("请输入值:");scanf("%d",&q->num);q->next=p->next;p->next=q;}}int print(L* head){L *p;int lenth=0;p=head->next;printf("\t\tL(");while(p!=NULL){lenth++;printf("%d ",p->num);p=p->next;}printf(")\n");return lenth;}int insert(L *head,int lenth){printf("\t\t请输入你要插入的元素的位置:");int in;scanf("%d",&in);if(in<1 || in>lenth){printf("\t\t输入值不在范围内!");return -1;}L *p,*q;p=head->next;q=(L *)malloc(sizeof(L));if(q==NULL){printf("新点申请失败!\n");return -1;}printf("\t\t请为新节点输入值:");scanf("%d",&q->num);int i=0;while(p!=NULL){i++;if(i==in-1){q->next=p->next;p->next=q;}p=p->next;}lenth++;return lenth;}int dele(L *head,int lenth){printf("\t\t请输入你要删除的元素的位置:");int out;scanf("%d",&out);if(out<1 || out>lenth){printf("\t\t输入值不在范围内!");return -1;}L *p,*q;p=head->next;q=head;int i=0;while(p!=NULL){i++;if(i==out){q->next=p->next;}q=p;p=p->next;}lenth--;return lenth;}void find(L *head,int lenth){printf("\t\t请输入你要查找的元素的位置:");int finder;scanf("%d",&finder);if(finder<1 || finder>lenth){printf("\t\t输入值不在范围内!");return ;}L *p;p=head->next;int i=0;while(p!=NULL){i++;if(i==finder){printf("\t\t你要找的该位置所对应的值为:%d\n",p->num);}p=p->next;}}int main(){L *head;head=creat(head);printf("成功创建头节点!!!\n");init(head);printf("成功输入数据!!!\n");int len;len=print(head);printf("\t\t该线性表的长度为:%d\n",len);len=insert(head,len);len=print(head);printf("\t\t插入后线性表的长度为:%d\n",len);len=dele(head,len);len=print(head);printf("\t\t删除后该线性表的长度为:%d\n",len);find(head,len);return 0;}*//*顺序表的合并#include<iostream>using namespace std;struct LA{int *pa;int lenth;};struct LB{int *pb;int lenth;};struct LC{int *pc;int lenth;};void mergelist(LA la,LB lb,LC &lc);int main(){int x,y;LA la;LB lb;cout<<"\t\t请给线性表LA和LB指定长度:";cin>>x>>y;la.pa =new int(sizeof(int)*x);lb.pb =new int(sizeof(int)*y);int i;for(i=0;i<x;i++){cout<<"请输入表LA的值:";cin>>la.pa[i];}cout<<endl;la.lenth=x;for(i=0;i<y;i++){cout<<"请输入表LB的值:";cin>>lb.pb[i];}lb.lenth=y;cout<<"LA(";for(i=0;i<x;i++){cout<<la.pa[i]<<" ";}cout<<")"<<endl;cout<<"LB(";for(i=0;i<y;i++){cout<<lb.pb[i]<<" ";}cout<<")"<<endl;LC lc;mergelist(la,lb,lc);return 0;}void mergelist(LA la,LB lb,LC &lc){lc.lenth=la.lenth+lb.lenth;lc.pc=new int(sizeof(int)*lc.lenth);int *pa=la.pa,*pb=lb.pb,*pc=lc.pc;int *pa_last=la.pa+la.lenth-1;int *pb_last=lb.pb+lb.lenth-1;while(pa<=pa_last && pb<=pb_last){if(*pa <= *pb){*pc++=*pa++;}else{*pc++=*pb++;}}while(pa<=pa_last){*pc++=*pa++;}while(pb<=pb_last){*pc++=*pb++;}cout<<"LC(";int i=0;for(i=0;i<lc.lenth;i++){cout<<lc.pc[i]<<" ";}cout<<")"<<endl;}*///栈/*#include<iostream>using namespace std;#include<stdlib.h>#define MAXSIZE 100typedef struct{int *base;int *top;int stacksize;}Sqstack;int Initstack(Sqstack &s);void Push(Sqstack &s,int e);void StackTraverse(Sqstack &s);void Gettop(Sqstack &s);void Pop(Sqstack &s);int main(){Sqstack s;Initstack(s);cout<<"\t\t初始化栈成功!"<<endl;Push(s,2);cout<<"\t\t2入栈成功!"<<endl;Push(s,4);cout<<"\t\t4入栈成功!"<<endl;Push(s,6);cout<<"\t\t6入栈成功!"<<endl;Push(s,8);cout<<"\t\t8入栈成功!"<<endl;cout<<"\n由栈底至栈顶的元素为:";StackTraverse(s);Gettop(s);Pop(s);Gettop(s);return 0;}int Initstack(Sqstack &s){s.base=new int[MAXSIZE];if(s.base==NULL){exit(1);}s.top=s.base;s.stacksize=MAXSIZE;}void Push(Sqstack &s,int e){if(s.top-s.base==s.stacksize){exit(1);}*s.top++=e;}void StackTraverse(Sqstack &s){int *p=s.base,i=0;while(p<s.top){i++;cout<<*p++<<" ";}cout<<"\t\t栈的长度是"<<i<<endl;}void Gettop(Sqstack &s){if(s.base==s.top){exit(1);}cout<<"栈顶元素是:"<<*(s.top-1)<<endl; }void Pop(Sqstack &s){if(s.top==s.base){exit(1);}cout<<"出栈的第一个元素是:";cout<<*--s.top<<" "<<endl;}*///队列例题:/*#include<iostream>#include<stdlib.h>using namespace std;#define MAXQSIZE 100typedef struct{int *base;int front;int rear;}SqQueue;int InitQueue(SqQueue &q);int EnQueue(SqQueue &q,int x);int DeQueue(SqQueue &q);int main(){SqQueue q;InitQueue(q);EnQueue(q,1);EnQueue(q,3);EnQueue(q,5);EnQueue(q,7);DeQueue(q);DeQueue(q);DeQueue(q);DeQueue(q);return 0;}int InitQueue(SqQueue &q){q.base=new int[MAXQSIZE];if(q.base==NULL){exit(1);}q.front=0;q.rear=0;return 0;}int EnQueue(SqQueue &q,int x){if((q.rear+1)%MAXQSIZE==q.front){exit(0);}q.base[q.rear]=x;q.rear=(q.rear+1)%MAXQSIZE;return 0;}int DeQueue(SqQueue &q){if(q.front==q.rear){exit(0);}int x=q.base[q.front];q.front=(q.front+1)%MAXQSIZE;cout<<x<<endl;}*//*#include<iostream>#include<stdlib.h>using namespace std;typedef struct Qnode{int date;struct Qnode *next;}Qnode,*Queueptr;typedef struct{Queueptr front; //队头指针Queueptr rear; //队尾指针}LinkQueue;int InitQueue(LinkQueue &Q);void EnQueue(LinkQueue &Q,int e);void TrvalQueue(LinkQueue Q);void DeQueue(LinkQueue &Q);int main(){LinkQueue Q;InitQueue(Q);EnQueue(Q,1);cout<<"\t元素1入队成功!"<<endl;EnQueue(Q,3);cout<<"\t元素3入队成功!"<<endl;EnQueue(Q,5);cout<<"\t元素5入队成功!"<<endl;EnQueue(Q,7);cout<<"\t元素7入队成功!"<<endl;cout<<"\t队列的元素分别是:"<<endl;TrvalQueue(Q);cout<<"\t第一个出队的元素是:"<<endl;DeQueue(Q);cout<<"\n\t第一个元素出队完成之后队列中从队头至队尾的元素为:";TrvalQueue(Q);return 0;}int InitQueue(LinkQueue &Q){Q.rear=new Qnode;Q.front=Q.rear;if(Q.front==NULL){exit(0);}Q.front->next=NULL;return 0;}void EnQueue(LinkQueue &Q,int e){Qnode *p=new Qnode;if(!p){exit(1);}p->date=e;p->next=NULL;Q.rear->next=p; //连接Q.rear=p; //修改队尾指针}void TrvalQueue(LinkQueue Q){Qnode *p=Q.front->next;//队头元素while(Q.front!=Q.rear){cout <<p->date<<" ";Q.front=p;p=p->next;}cout<<endl;}void DeQueue(LinkQueue &Q){if(Q.front==Q.rear){return;}Qnode *p=Q.front->next;cout<<"\t"<<p->date<<endl;Q.front->next=p->next;if(Q.rear==p){Q.rear=Q.front;delete p;}}*//*//表达式求值#include<iostream>#include<stdlib.h>#include<stdio.h>using namespace std;#define MAXSIZE 100typedef struct{char *base;char *top;char num;}OPND; //数据栈typedef struct{char *base;char *top;char c;}OPTR; //符号栈int Initstack(OPND &op_n,OPTR &op_t);void Pushstack(OPND &op_n,char ch);void Pushstack(OPTR &op_t,char ch);char Popstack(OPND &op_n,char ch);char Popstack(OPTR &op_t,char ch);char Gettop(OPTR op_t);char Gettop(OPND op_n);int In(char ch);char Precede(char x,char y);char operate(char z,char x,char y);int main(){OPND op_n;OPTR op_t;Initstack(op_n,op_t);Pushstack(op_t,'#');char ch;char p;cin>>ch;while(ch!='#' || Gettop(op_t)!='#'){if(!In(ch)){Pushstack(op_n,ch);cin>>ch;}else{switch( Precede(Gettop(op_t),ch) ){case '<':Pushstack(op_t,ch);cin>>ch;break;case '>':char x,y,z;x=Popstack(op_t,x);y=Popstack(op_n,y);z=Popstack(op_n,z);Pushstack(op_n,operate(z,x,y));break;case '=':p=Popstack(op_t,p);cin>>ch;break;}}}cout<<"\t表达式结果是:"<<Gettop(op_n)<<endl;return 0;}int Initstack(OPND &op_n,OPTR &op_t){op_n.base=new char[MAXSIZE];op_t.base=new char[MAXSIZE];if((op_n.base==NULL) || (op_t.base==NULL)){exit(1);}op_n.top=op_n.base;op_t.top=op_t.base;op_n.num=MAXSIZE;op_t.c=MAXSIZE;return 0;}void Pushstack(OPND &op_n,char ch){if(op_n.top-op_n.base==op_n.num){return;}*op_n.top++=ch;cout<<ch<<" 入数字栈"<<endl;}void Pushstack(OPTR &op_t,char ch){if(op_t.top-op_t.base==op_t.c){return;}*op_t.top++=ch;cout<<ch<<" 入操作符"<<endl;}char Popstack(OPND &op_n,char ch)if(op_n.top==op_n.base){exit(1);}ch=*--op_n.top;cout<<ch<<" 出数字栈"<<endl;return ch;}char Popstack(OPTR &op_t,char ch){if(op_t.top==op_t.base){exit(1);}ch=*--op_t.top;cout<<ch<<" 出字符栈"<<endl;return ch;}char Gettop(OPTR op_t){char x;if(op_t.top==op_t.base){exit(1);}x=*(op_t.top-1);cout<<"得到操作符栈顶"<<x<<endl;return x;}char Gettop(OPND op_n){char x;if(op_n.top==op_n.base){exit(1);}x=*(op_n.top-1);cout<<"得到操作数栈顶"<<x<<endl;return x;}int In(char ch)if(ch=='+'||ch=='-'||ch=='*'||ch=='/'||ch=='('||ch==')'||ch=='#') {return 1;}else{return 0;}}char Precede(char x,char y){if(x=='+' || x=='-'){if(y=='+' || y=='-' || y==')' || y=='#'){return '>';}else{return '<';}}if(x=='*'||x=='/'){if(y=='('){return '<';}else{return '>';}}if(x=='('){if(y==')'){return '=';}else if(y=='+'||y=='-'||y=='*'||y=='/'||y=='('){return '<';}}if(x==')'){if(y!='('){return '>';}}if(x=='#'){if(y=='#'){return '=';}else if(y!=')'){return '<';}}}char operate(char z,char x,char y) {if(x=='+'){return (z-'0') + (y-'0')+48;}if(x=='-'){return (z-'0') - (y-'0')+48;}if(x=='*'){return (z-'0')* (y-'0')+48;}if(x=='/'){return (z-'0')/ (y-'0')+48;}}*//*#include<iostream>using namespace std;int main(){char a[10];char *b[10];char **c[10];return 0;}*//*#include<iostream>using namespace std;char f(char x,char y){return (x-'0') * (y-'0')+48;}int main(){char a='3',b='5';char p=f(a,b);cout<<p<<endl;return 0;}*///数列出队/*#include<iostream>#include<stdlib.h>using namespace std;typedef struct Qnode{int num;struct Qnode *next;}Qnode,*Queueptr;typedef struct{Queueptr front;Queueptr rear;}LinkQueue;int InitQueue(LinkQueue &Q);void EnQueue(LinkQueue &Q,int x); int DeQueue(LinkQueue &Q,int p); int main(){LinkQueue Q;InitQueue(Q);int x,i,y,num=0,e;cout<<"请输入总人数:";cin>>x;for(i=1;i<=x;i++){EnQueue(Q,i);}cout<<"请输入第几个数淘汰:";cin>>y;{for(i=0;i<y;i++){if(i!=y-1){e=DeQueue(Q,e);EnQueue(Q,e);}else{DeQueue(Q,e);num++;}}if(num==x-1){break;}}e=DeQueue(Q,e);cout<<"最后剩下的是:"<<e<<endl;return 0;}int InitQueue(LinkQueue &Q){Q.front=new Qnode;Q.rear=Q.front;if(Q.front==NULL){exit(1);}Q.front->next=NULL;}void EnQueue(LinkQueue &Q,int x){Qnode *p=new Qnode;if(!p){exit(1);}p->num=x;p->next=NULL;Q.rear->next=p;}int DeQueue(LinkQueue &Q,int e) {Qnode *p;if(Q.rear==Q.front){exit(0);}p=Q.front->next;e=p->num;Q.front->next=p->next;if(Q.rear==p){Q.front=Q.rear;}delete p;return e;}*//*二叉树#include<iostream>#include<stdlib.h>using namespace std;typedef struct BiTNode{char date;struct BiTNode *lchild,*rchild; }BiTNode,*BiTree;void CreateBiTree(BiTree &T);int Depth(BiTree T);int NodeCount(BiTree T);int LeavesNodeCount(BiTree T);int PreOrderTraverse(BiTree T);int InOrderTraverse(BiTree T);int PostOrderTraverse(BiTree T); int main(){BiTree T;CreateBiTree(T);cout<<"二叉树的深度为:"<<Depth(T)<<endl;cout<<"二叉树中结点个数为:"<<NodeCount(T)<<endl;cout<<"二叉树中叶子结点个数为:"<<LeavesNodeCount(T)<<endl;cout<<"先序遍历:";PreOrderTraverse(T);cout<<"\n中序遍历:";InOrderTraverse(T);cout<<"\n后序遍历:";PostOrderTraverse(T);cout<<endl;return 0;}void CreateBiTree(BiTree &T){cout<<"请为该节点赋值:";char ch;cin>>ch;if(ch=='#'){T=NULL;}else{T =new BiTNode;T->date=ch;CreateBiTree(T->lchild);CreateBiTree(T->rchild);}}int Depth(BiTree T){int m,n;if(T==NULL){return 0;}else{m=Depth(T->lchild);n=Depth(T->rchild);if(m>n){return m+1;}else{return n+1;}}}int NodeCount(BiTree T){if(T==NULL){return 0;}else{return NodeCount(T->lchild)+NodeCount(T->rchild)+1;}}int LeavesNodeCount(BiTree T){if(T==NULL){return 0;}else if(T->lchild==NULL && T->rchild==NULL){return 1;}else{return LeavesNodeCount(T->lchild)+LeavesNodeCount(T->rchild);}}int PreOrderTraverse(BiTree T){if(T!=NULL){cout<<T->date;PreOrderTraverse(T->lchild);PreOrderTraverse(T->rchild);}}int InOrderTraverse(BiTree T){if(T!=NULL){InOrderTraverse(T->lchild);cout<<T->date;InOrderTraverse(T->rchild);}}int PostOrderTraverse(BiTree T){if(T!=NULL){PostOrderTraverse(T->lchild);PostOrderTraverse(T->rchild);cout<<T->date;}}请为该节点赋值:-请为该节点赋值:+请为该节点赋值:a请为该节点赋值:#请为该节点赋值:#请为该节点赋值:*请为该节点赋值:b请为该节点赋值:#请为该节点赋值:#请为该节点赋值:-请为该节点赋值:c请为该节点赋值:#请为该节点赋值:#请为该节点赋值:d请为该节点赋值:#请为该节点赋值:#请为该节点赋值:/请为该节点赋值:e请为该节点赋值:#请为该节点赋值:#请为该节点赋值:f请为该节点赋值:#请为该节点赋值:#二叉树的深度为:5二叉树中结点个数为:11二叉树中叶子结点个数为:6先序遍历:-+a*b-cd/ef中序遍历:a+b*c-d-e/f后序遍历:abcd-*+ef/-Process returned 0 (0x0) execution time : 76.214 s Press any key to continue.*//*#include<iostream>#include<stdlib.h>#include<string.h>using namespace std;typedef struct{int weiget;int parent,lchild,rchild;}HTNode,*HuffmanTree;typedef char** HuffmanCode;void creat(HuffmanTree &HT,int n);void Select(HuffmanTree HT,int k,int &min1,int &min2); void creatcode(HuffmanTree HT,HuffmanCode &HC,int n); int min(HuffmanTree HT,int k);int main(){int n;cout<<"请输入叶子节点的个数:";cin>>n;HuffmanTree HT;creat(HT,n);HuffmanCode HC;creatcode(HT,HC,n);return 0;}void creat(HuffmanTree &HT,int n){if(n<1){exit(1);}int m=2*n-1,i;HT=new HTNode[m+1];for( i=1;i<=m;i++){HT[i].parent=0;HT[i].lchild=0;HT[i].rchild=0;}for(i=1;i<=n;i++){cout<<"请输入权值:";cin>>HT[i].weiget;}int s1,s2;for(i=n+1;i<=m;i++) //通过n-1次选择来合并创建{Select(HT,i-1,s1,s2);HT[s1].parent=i; //赋值,作为删除的标记HT[s2].parent=i;cout<<"s1:"<<s1<<" s2:"<<s2<<endl;HT[i].lchild=s1; //生成新节点HT[i].rchild=s2;HT[i].weiget=HT[s1].weiget+HT[s2].weiget;}}void Select(HuffmanTree HT,int k,int &min1,int &min2){min1=min(HT,k);min2=min(HT,k);}int min(HuffmanTree HT,int k){int i=0;int min;//存放weight最小且parent为-1的元素的序号int min_wei;//存放权值while(HT[i].parent!=0){i++;}min_wei=HT[i].weiget;min=i;for(;i<=k;i++){if(HT[i].weiget<min_wei && HT[i].parent==0){min_wei=HT[i].weiget;min=i;}}HT[min].parent=1;return min;}void creatcode(HuffmanTree HT,HuffmanCode &HC,int n){HC =new char *[n+1];char *cd=new char[n];cd[n-1]='\0';int i,start;//start指向最后,即编码结束符的位置int current,father;for(i=1;i<=n;i++){start=n-1;current=i;father=HT[i].parent;while(father!=0){--start;if(HT[father].lchild==current){cd[start]='0';}else{cd[start]='1';}current=father;father=HT[father].parent;}HC[i]=new char[n-start];strcpy(HC[i],&cd[start]);cout<<HT[i].weiget<<"对应的编码是:"<<HC[i]<<endl;}delete cd;}请输入叶子节点的个数:5请输入权值:1请输入权值:2请输入权值:3请输入权值:4请输入权值:5s1:1 s2:2s1:3 s2:6s1:4 s2:5s1:7 s2:81对应的编码是:0102对应的编码是:0113对应的编码是:004对应的编码是:105对应的编码是:11Process returned 0 (0x0) execution time : 4.003 s Press any key to continue.*///折半查找#include<iostream>#include<stdio.h>using namespace std;#define ENDFLAG 10000typedef int KeyType;typedef char* InfoType;typedef struct{KeyType key;InfoType otherinfo;}ElemType;typedef struct{ElemType *R;int length;}SSTable;void CreateSTable(SSTable &ST,int n){int i;ST.R=new ElemType[n+1];for(i=1;i<=n;i++){cout<<"请输入"<<i<<"个测试数据:";cin>>ST.R[i].key;}ST.length=n;}int Search_Bin1(SSTable ST,KeyType key){int low,high,mid;low=1;high=ST.length;while(low<=high){mid=(low+high)/2;if(key==ST.R[mid].key){return mid;}else if(key<ST.R[mid].key){high=mid-1;}else{low=mid+1;}}return 0;}int Search_Bin2(SSTable ST,int low,int high,KeyType key) {int mid;if(low>high){return 0;}mid=(low+high)/2;printf("%d+++++",key==ST.R[mid].key);if(key==ST.R[mid].key){return mid;}else if(key<ST.R[mid].key){return Search_Bin2(ST,low,mid-1,key);}else{return Search_Bin2(ST,mid+1,high,key);}}int main(){int n;KeyType key;SSTable ST;cout<<"请输入静态查找表长:";cin>>n;CreateSTable(ST,n);cout<<"请输入待查记录的关键字:";cin>>key;cout<<"Search_Bin1算法计算的位置为:"<<Search_Bin1(ST,key)<<endl;cout<<"Search_Bin2算法计算的位置为:"<<Search_Bin2(ST,1,ST.length,key)<<endl;return 0;}/*请输入静态查找表长:5请输入1个测试数据:1请输入2个测试数据:2请输入3个测试数据:3请输入4个测试数据:4请输入5个测试数据:5请输入待查记录的关键字:3Search_Bin1算法计算的位置为:3Search_Bin2算法计算的位置为:3Process returned 0 (0x0) execution time : 8.620 sPress any key to continue.*//*#include<iostream>using namespace std;typedef struct{int key;}ElemType;typedef struct BSTNode{ElemType date;struct BSTNode *lchild,*rchild;}BSTNode,*BSTree;void Create(BSTree &T);void Insert(BSTree &T,ElemType e);int InOrderTraverse(BSTree T);int main(){BSTree T;Create(T);InOrderTraverse(T);cout<<"\n中序遍历:";return 0;}void Create(BSTree &T){T=NULL;ElemType e;cout<<"请为节点赋值:(0为结束条件)";cin>>e.key;while(e.key!=0){Insert(T,e);cout<<"请为节点赋值:(0为结束条件)";cin>>e.key;}}void Insert(BSTree &T,ElemType e){if(!T){BSTree S;S=new BSTNode;S->date=e;S->lchild=NULL;S->rchild=NULL;T=S;}else if(e.key<T->date.key){Insert(T->lchild,e);}else{Insert(T->rchild,e);}}int InOrderTraverse(BSTree T){if(T!=NULL){InOrderTraverse(T->lchild);cout<<T->date.key<<" ";InOrderTraverse(T->rchild);}return 0;}请为节点赋值:(0为结束条件)12请为节点赋值:(0为结束条件)7请为节点赋值:(0为结束条件)17请为节点赋值:(0为结束条件)11请为节点赋值:(0为结束条件)16请为节点赋值:(0为结束条件)2请为节点赋值:(0为结束条件)13请为节点赋值:(0为结束条件)9请为节点赋值:(0为结束条件)21请为节点赋值:(0为结束条件)4请为节点赋值:(0为结束条件)02 4 7 9 11 12 13 16 17 21中序遍历:Process returned 0 (0x0) execution time : 23.808 s Press any key to continue.*/。
几种常见的算法源代码C语言版
几种常见的算法源代码C语言版以下是几种常见的算法的C语言版源代码:1.冒泡排序算法:```#include <stdio.h>void bubbleSort(int arr[], int n)int i, j, temp;for (i = 0; i < n-1; i++)for (j = 0; j < n-i-1; j++)if (arr[j] > arr[j+1])temp = arr[j];arr[j] = arr[j+1];arr[j+1] = temp;}}}int maiint arr[] = {64, 34, 25, 12, 22, 11, 90};int n = sizeof(arr)/sizeof(arr[0]);bubbleSort(arr, n);printf("Sorted array: \n");for (int i=0; i < n; i++)printf("%d ", arr[i]);return 0;```2.选择排序算法:```#include <stdio.h>void selectionSort(int arr[], int n)int i, j, minIndex, temp;for (i = 0; i < n-1; i++)minIndex = i;for (j = i+1; j < n; j++)if (arr[j] < arr[minIndex])minIndex = j;}}temp = arr[minIndex];arr[minIndex] = arr[i];arr[i] = temp;}int maiint arr[] = {64, 25, 12, 22, 11};int n = sizeof(arr)/sizeof(arr[0]);selectionSort(arr, n);printf("Sorted array: \n");for (int i=0; i < n; i++)printf("%d ", arr[i]);return 0;```3.插入排序算法:```#include <stdio.h>void insertionSort(int arr[], int n)int i, j, temp;for (i = 1; i < n; i++)temp = arr[i];j=i-1;while (j >= 0 && arr[j] > temp)arr[j+1] = arr[j];j=j-1;}arr[j+1] = temp;}int maiint arr[] = {12, 11, 13, 5, 6};int n = sizeof(arr)/sizeof(arr[0]);insertionSort(arr, n);printf("Sorted array: \n");for (int i=0; i < n; i++)printf("%d ", arr[i]);return 0;```4.快速排序算法:```#include <stdio.h>void swap(int* a, int* b)int t = *a;*a=*b;*b=t;int partition(int arr[], int low, int high) int pivot = arr[high];int i = (low - 1);for (int j = low; j <= high- 1; j++)if (arr[j] < pivot)i++;swap(&arr[i], &arr[j]);}}swap(&arr[i + 1], &arr[high]);return (i + 1);void quickSort(int arr[], int low, int high) if (low < high)int pi = partition(arr, low, high); quickSort(arr, low, pi - 1);quickSort(arr, pi + 1, high);}int maiint arr[] = {10, 7, 8, 9, 1, 5};int n = sizeof(arr)/sizeof(arr[0]); quickSort(arr, 0, n-1);printf("Sorted array: \n");for (int i=0; i < n; i++)printf("%d ", arr[i]);return 0;```。
源代码--数据结构与算法(Python版)chap8 图
最短路径
最短路径是指两个顶点(源点到终 点)之间经过的边上权值之和最少 的路径。
下面介绍两种计算最短路径算法:
迪杰斯特拉(Djikstra)算法
佛洛伊德(Floyd)算法。
23
最短路径
1. 迪杰斯特拉(Djikstra)算法 迪杰斯特拉算法并非一下子求出起始点到结束点的 最短路径,而是一步步求出它们之间顶点的最短路 径,即基于已经求出的最短路径,逐步求得更远顶 点的最短路径,最终达到目的。通过Dijkstra计算图 G中的最短路径时,需要引进两个集合S和U。其中 ,集合S用于存放已求出最短路径的顶点(以及相 应的最短路径长度),集合U用于存放还未求出最 短路径的顶点(以及该顶点到起点的距离)。
u = q.popleft() print(u," ",end="") for w in G[u]:
if w not in visited: q.append(w) visited.add(w)
print('广度深度优先bfs') bfs(G, 0)
16
最小生成树
构造连通图的最小代价生成树称为 最小生成树。 最小生成树实现算法:
11
递归深度优先
from collections import deque def dfs(G, v, visited=set()):
print(v," ",end="") visited.add(v) # 用来存放已经访问过的顶点 # G[v] 是这个顶点的相邻的顶点 for u in G[v]:
24
最短路径
迪杰斯特拉算法具体步骤包括:
步骤1:初始时,S只包含起点s;U包含除s外的其他顶点,且U中顶点 的距离为"起点s到该顶点的距离,若s和v不相邻,则距离为∞。 步骤2:从U中选出距离最短的顶点k,并将顶点k加入到S中;同时,从 U中移除顶点k。 步骤3:更新U中各个顶点到起点s的距离。之所以更新U中顶点的距离 ,是由于上一步中确定了k是求出最短路径的顶点,从而借助中间定点后 的距离可能小于两顶点的直接距离,即 (s,k)+(k,v)可能小于(s,v)。 步骤4: 重复步骤步骤2和步骤3,直到遍历完所有顶点。
数据结构完整代码
(线性表顺序存储)#include"string.h"#include"ctype.h"#include"stdio.h"#include"stdlib.h"#include"io.h"#include"math.h"#include"time.h"#define OK1#define ERROR0#define TRUE1#define FALSE0#define MAXSIZE20/*存储空间初始分配量*/ typedef int Status;/*Status是函数的类型,其值是函数结果状态代码,如OK等*/typedef int ElemType;/*ElemType类型根据实际情况而定,这里假设为int*/Status visit(ElemType c){printf("%d",c);return OK;}typedef struct{ElemType data[MAXSIZE];/*数组,存储数据元素*/int length;/*线性表当前长度*/}SqList;/*初始化顺序线性表*/Status InitList(SqList*L){L->length=0;return OK;}/*初始条件:顺序线性表L已存在。
操作结果:若L为空表,则返回TRUE,否则返回FALSE*/Status ListEmpty(SqList L){if(L.length==0)return TRUE;elsereturn FALSE;}/*初始条件:顺序线性表L已存在。
操作结果:将L重置为空表*/Status ClearList(SqList*L){L->length=0;return OK;}/*初始条件:顺序线性表L已存在。
操作结果:返回L 中数据元素个数*/int ListLength(SqList L){return L.length;}/*初始条件:顺序线性表L已存在,1≤i≤ListLength(L)*/ /*操作结果:用e返回L中第i个数据元素的值,注意i 是指位置,第1个位置的数组是从0开始*/Status GetElem(SqList L,int i,ElemType*e){if(L.length==0||i<1||i>L.length)return ERROR;*e=L.data[i-1];return OK;}/*初始条件:顺序线性表L已存在*//*操作结果:返回L中第1个与e满足关系的数据元素的位序。
数据结构实验与实训教程源代码
i
第一部分 预备知识
预备知识
例 1.1 #include <stdio.h> int sumabc(int a, int b, int c) /* 求三个整数之和*/ { int s; a=b+c; s=a+b+c; return s; } void displayLine(void) { printf(”----------------------\n“); } void main( ) { int x,y, z ,sabc; x=y=z=8; display(); /* 画一条线 */ printf(“\n sum=%d”,sumabc(x,y,z)); /* 在输出语句中直接调用函数 sumabc( ) */ printf(“\n %6d%6d%6d”,x,y,z); display();/* 画一条线 */ x=2; y=4; z=6; sabc =sumabc(x, y, z); /* 在赋值语句中调用函数 sumabc( ) */ printf(“\n “ sum=%d”, sabc); printf(“\n %6d%6d%6d”,x,y,z); display();/* 画一条线 */ } 例 1.2 int sumabc(int *a, int b, int c) { int s; *a=b+c; s=*a+b+c;
2
}//while(1) }//main
3
第二部分 基础实验
实验 1 线性表的基本操作
四、参考程序
程序 1:题 1 线性表基本操作函数 #include<stdio.h> #include<stdlib.h> #include<alloc.h> struct LinearList /*定义线性表结构*/ { int *list; /* 存线性表元素 */ int size; /* 存线性表长度 */ int MaxSize; /* 存 list 数组元素个数 */ }; typedef struct LinearList LIST; void InitList( LIST *L, int ms ) /* 初始化线性表 */ { if( (L->list = 1 ) == NULL ) { printf( "内存申请错误!\n" ); exit( 1 ); } 2 L->MaxSize = ms; } int InsertList( LIST *L, int /* item:记录值 rc:插入位置 { int i; if( 3 ) return -1; if( rc < 0 ) item, int rc ) */备知识实验
栈和队列 严蔚敏 数据结构(C语言版)书上 源代码、算法、例题、实例(二)清华大学
Rar! CHAP03\ALGO0301.CPP void conversion (int Num) { // 算法 3.1 // 对于输入的任意一个非负十进制整数,打印输出与其等值的八进制数 ElemType e; SqStack S; InitStack(S); // 构造空栈 while (Num) { Push(S, Num % 8); Num = Num/8; } while (!StackEmpty(S)) { Pop(S,e); printf ("%d", e); } printf("\n"); } // conversion
return Find; }
int ReturnOpOrd(char op,char* TestOp) { int i; for(i=0; i< OPSETSIZE; i++) { if (op == TestOp[i]) return i; } return 0; } char precede(char Aop, char Bop) { return Prior[ReturnOpOrd(Aop,OPSET)][ReturnOpOrd(Bop,OPSET)]; }
CHAP03\ALGO0305.CPP int Count=0; void move(char x, int n, char z); void hanoi (int n, char x, char y, char z) { // 算法 3.5 // 将塔座 x 上按直径由小到大且至上而下编号为 1 至 n 的 n 个圆盘按规则搬到 // 塔座 z 上,y 可用作辅助塔座。 // 搬动操作 move (x, n, z) 可定义为: // (c 是初值为 0 的全局变量,对搬动计数) // printf("%i. Move disk %i from %c to %c\n", ++c, n, x, z); if (n==1) move(x, 1, z); //将编号为1的圆盘从 x 移到 z else { hanoi(n-1,x,z,y); move(x, n, z); //将编号为 n 的圆盘从 x 移到 z hanoi(n-1, y, x, z); //将 y 上编号为1至 n-1 的圆盘移到 z,x 作辅助塔 } } void move(char x, int n, char z) { printf(" %2i. Move disk %i from %c to %c\n",++Count,n,x,z); }
算法与数据结构实验一元多项式求和
《算法与数据结构》实验报告姓名:***班级:计科01学号:**********实验题目:链表的应用实验内容:一元多项式求和把任意给定的两个一元多项式P(x),Q(x)输入计算机,计算它们的和并输出计算结果。
设计分析:一元多项式可以用单链表表示,结点结构图示如下:Array一元多项式链表的结点结构一元多项式算法伪代码如下:源程序代码:#include"StdAfx.h"#include<stdlib.h>typedef struct LNode{int x,z;struct LNode *next;}LinkList;void OutLinkList(LinkList *L);void PutLinkList(LinkList *&L,int n);LinkList *AddLinkList(LinkList *a,LinkList *b);void OutXLinkList(LinkList *L);void OutZLinkList(LinkList *L);void main(){int n,m;LinkList *a,*b,*c;printf("\t\t\t本À?程¨¬序¨°可¨¦以°?完ª¨º成¨¦两¢?个?一°?元a多¨¤项?式º?的Ì?加¨®法¤¡§运?算?。
¡ê\n");printf("请?输º?入¨?一°?元a多¨¤项?式º?a的Ì?项?数ºym:êo");scanf("%d",&m);printf("请?按ã¡ä照?从䨮低̨ª次ä?到Ì?高?次ä?的Ì?顺3序¨°依°¨¤此ä?输º?入¨?一°?元a多¨¤项?式º?a的Ì?系¦Ì数ºy和¨ª指?数ºy:êo\n");PutLinkList(a,m);printf("a=");OutLinkList(a);printf("请?输º?入¨?一°?元a多¨¤项?式º?b的Ì?项?数ºyn:êo");scanf("%d",&n);printf("请?按ã¡ä照?从䨮低̨ª次ä?到Ì?高?次ä?的Ì?顺3序¨°依°¨¤此ä?输º?入¨?一°?元a多¨¤项?式º?b的Ì?系¦Ì数ºy和¨ª指?数ºy:êo\n");PutLinkList(b,n);printf("b=");OutLinkList(b);c=AddLinkList(a,b);printf("两¢?个?多¨¤项?式º?的Ì?和¨ª为a:êo\na+b=");OutLinkList(c);}void PutLinkList(LinkList *&L,int n){LinkList *s,*r;L=(LinkList *)malloc(sizeof(LinkList));r=L;for(int i=0;i<n;i++){s=(LinkList *)malloc(sizeof(LinkList));printf("请?输º?入¨?第̨²%d项?的Ì?系¦Ì数ºy:êo",i+1);scanf("%d",&s->x);printf("请?输º?入¨?第̨²%d项?的Ì?指?数ºy:êo",i+1);scanf("%d",&s->z);r->next=s;r=s;}r->next=NULL;}void OutLinkList(LinkList *L) {char FuHao;LinkList *p=L->next;FuHao=p->x>0? '+':'-';if(FuHao=='-'){printf("%c",FuHao);if(p->x==-1)printf("1");}OutXLinkList(p);OutZLinkList(p);p=p->next;while(p!=NULL){FuHao=p->x>0? '+':'-';printf("%c",FuHao);OutXLinkList(p);OutZLinkList(p);p=p->next;}printf("\n");}void OutXLinkList(LinkList *L) {int xi=L->x>0? L->x:-L->x;if(L->x==1||L->x==-1);elseprintf("%d",xi);}void OutZLinkList(LinkList *L) {if(L->z==0);else if(L->z==1||L->z==-1){if(L->z<0){if(L->x==1||L->x==-1)printf("1");printf("/");}printf("X");}else{if(L->z<0)printf("/");int zhi=L->z>0? L->z:-L->z;printf("X^%d",zhi);}}LinkList *AddLinkList(LinkList *a,LinkList *b){a=a->next;b=b->next;LinkList *c,*d,*s;c=(LinkList *)malloc(sizeof(LinkList));d=c;while(a!=NULL&&b!=NULL){if(a->z<b->z){s=(LinkList *)malloc(sizeof(LinkList));s->x=b->x;s->z=b->z;d->next=s;d=s;b=b->next;}else if(a->z>b->z){s=(LinkList *)malloc(sizeof(LinkList));s->x=a->x;s->z=a->z;d->next=s;d=s;a=a->next;}else{s=(LinkList *)malloc(sizeof(LinkList));s->x=a->x+b->x;s->z=a->z;if(s->x==0);else{d->next=s;d=s;}a=a->next;b=b->next;}}if(a!=NULL)d->next=a;else if(b!=NULL)d->next=b;elsed->next=NULL;return c;}测试用例:当a=3x^8-x^5+2x^3+7x^2+5x,b=5x^5+3x^4-7x^2-3x^(-3)时,运行结果如下:试验总结:通过本次试验,学会了链表的应用,加深了对链表的理解,知道了链表是把线性表中的元素按照链式储存方式到计算机中的一片连续的储存空间中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程说明:数据结构一共四天课程,day01~~~day04.CSD DataStructure DAY011.基于顺序表的堆栈2.基于链式表的堆栈1 基于顺序表的堆栈栈是一种特殊的线性表,是限定在线性表表尾进行插入删除操作的线性表。
由栈的概念衍生出几个子概念,它们是:1)栈顶,即允许进行插入、删除操作的一端,又称为表尾,用栈顶指针()来指示栈顶元素。
2)栈底,即固定端,又称为表头3)空栈,即栈当中没有数据元素。
顺序栈是采用顺序存储结构的栈,即使用一组连续的存储单元(一般使用数组)来模拟栈,依次存放栈中的数据元素。
1.1 方案顺序栈的基本操作包括:1) 初始化操作,在初始化操作中将建立一个空栈。
2) 判断栈空,判断栈中的数据元素个数是否为0。
3) 入栈,在栈中加入一个数据元素。
4) 出栈,在栈中删除一个数据元素。
5) 取栈顶元素,将栈顶元素取出,但并不在栈中删除该元素。
1.2 步骤实现此案例需要按照如下步骤进行。
步骤一:定义栈在C语言中:1)定义一个一维数组来表示栈的顺序存储空间。
2)定义一个变量来指出栈顶的位置。
3)这两方面的信息共同描述一个栈,可将它们用结构体封装在一起。
代码如下:1.#define LISTSIZE 102.typedef int DataType;3.struct Stack {4.DataType data[LISTSIZE];5.int;//除了记录大小还可以记录栈顶位置6.};上述代码中,以下代码:1.#define LISTSIZE 100是用一个宏常量来定义顺序表的容量,这样定义的好处是当需要修改顺序表的容量的时候,只需要修改该宏常量即可。
上述代码中,以下代码:1.typedef int DataType;是将数据类型int起了一个别名叫做DataType,并在后面的程序中只使用DataType,而不使用int。
这样做的好处是当堆栈中的数据类型发生变化时,只需要修改此句中的int 为要改变的数据类型,即可将程序中所有数据变量的数据类型变成指定的类型。
步骤二:初始化操作在主程序中,定义栈结构体的变量。
在初始化函数中将该变量中的栈顶指针初始化为0,表示为空栈。
代码如下:1.void init(struct Stack *stack)2.{3.stack->=0;4.}5.int main(int argc,const char* argv[])6.{7.struct Stack stack;8.init(&stack);9.}步骤三:判断栈空判断栈空实际上是判断栈顶指针是否为0,因为当栈顶指针为0时,代表栈中没有数据元素。
代码如下:1.bool empty(struct Stack* stack){2.return stack->==0;3.}步骤四:入栈入栈是在栈中加入一个数据元素,在入栈时,首先需要判断栈是否为满,如果栈满了,则就不能在向其中添加元素了,判断栈是否满的操作只有在顺序存储结构才会出现,因为采用顺序存储结构的栈是要事先定义栈的容量的。
然后将数据元素放入栈中,并使栈顶指针加1,指向下一个位置。
代码如下:1.void push(struct Stack* stack, DataType d){2.if(stack->== LISTSIZE)3.return;4.stack->data[stack->++]= d;5.}上述代码中,以下代码:1.if(stack->== LISTSIZE)是判断栈是否满,判断栈顶指针是否与栈的容量相等,如果是,则表示栈已经满了。
步骤五:出栈出栈操作实际上是将栈中的栈顶元素删除,在出栈时,首先判断栈是否为空,如果栈为空则代表栈中已经没有数据元素了,此时是不可能进行出栈操作的。
然后,将栈顶指针减1。
代码如下:1.void pop(struct Stack* stack){2.if(empty(stack))3.return;4.stack->--;5.}步骤六:取栈顶元素取栈顶元素操作实际上是仅返回栈顶元素,而栈顶指针并不变动。
在取栈顶元素时,首先也要判断栈是否为空,因为空栈同样是不可能有数据元素的。
代码如下:1.DataType Data(struct Stack* stack){2.return stack->data[stack->-1];3.}1.3 完整代码本案例的完整代码如下所示:1.#include <stdio.h>2.#include <stdbool.h>3.4.#define LISTSIZE 105.6.push(&stack,30);7.push(&stack,60);8.push(&stack,80);9.10.while(!empty(&stack)){11.printf("%d ",Data(&stack));12.pop(&stack);13.}14.printf("\n");15.16.return0;17.}2 基于链式表的堆栈2.1 问题链栈是采用链式存储结构的栈,即使用一组不要求连续的存储空间来模拟栈。
每个栈元素为一个节点,每个节点中包含两个域,一个是数据域,用于存储栈元素的数据;另一个是指针域,用于存储下一个栈元素的地址。
2.2 方案链栈的基本操作包括:1) 初始化操作,在初始化操作中将栈顶指针置空。
2) 判断栈空,判断栈顶指针是否为空。
3) 入栈,在栈中加入一个数据元素。
4) 出栈,在栈中删除一个数据元素。
5) 取栈顶元素,将栈顶元素取出,但并不在栈中删除该元素。
2.3 步骤实现此案例需要按照如下步骤进行。
步骤一:定义栈元素节点在C语言中:1)定义一个变量来表示栈元素的数据。
2)定义一个指针来指向下一个栈元素的位置。
3)这两方面的信息共同描述一个栈元素节点,可将它们用结构体封装在一起。
代码如下:1.typedef int DataType;2.struct Stack {3.DataType data;4.struct Stack *next;5.};上述代码中,以下代码:1.struct Stack *next;是定义了一个指向下一个栈元素的指针,由于下一个栈元素的数据类型与当前栈元素的数据类型相同,所以指针的数据类型就是栈节点的指针数据类型。
步骤二:初始化操作在主程序中,定义栈顶指针。
在初始化函数中将栈顶指针初始化为NULL,表示为空栈。
代码如下:1.void init(struct Stack**)2.{3.*= NULL;4.}5.int main()6.{7.struct Stack *;8.init(&);9.return0;10.}上述代码中,以下代码:1.void init(struct Stack**)定义了初始化函数的函数头,该函数有一个形参,是栈元素结构体指针的指针。
之所以使用指针的指针,是因为栈顶指针在函数执行过程中会被置空,而这种变化需要带回主函数。
步骤三:判断栈空判断栈空操作实际上就是判断栈顶指针是否为空。
代码如下所示:1.bool empty(struct Stack*)2.{3.return== NULL;4.}步骤四:入栈入栈操作实际上就是在栈中加入一个数据元素,对于链栈,入栈操作本质上就是在栈中加入一个结点。
代码如下所示:1.void push(struct Stack**, DataType d)2.{3.struct Stack *newNode =(struct Stack*)malloc(sizeof(struct Stack));4.newNode->data = d;5.newNode->next =*;6.*= newNode;7.}上述代码中,以下代码:1.void push(struct Stack**, DataType d)定义了入栈函数的函数头,该函数有两个形参,第一个是栈结构的指针的指针,在这里使用指针的指针,还是因为需要将栈顶指针的变化带回主函数。
第二个形参是需要入栈的数据。
上述代码中,以下代码:1.struct Stack *newNode =(struct Stack*)malloc(sizeof(struct Stack));是构造一个新的栈元素节点。
上述代码中,以下代码:1.newNode->data = d;是将需要入栈的元素放入新的栈元素节点中。
上述代码中,以下代码:1.newNode->next =*;是将新创建的栈元素节点加入到栈中原栈顶元素的前面,成为新的栈顶元素。
上述代码中,以下代码:1.*= newNode;是栈顶指针指向新创建的栈顶元素。
正是由于这行代码,使栈顶指针发生了变化,而这种变化需要带回到主程序,所以函数的第一个形参必须是指针的指针。
步骤五:出栈出栈操作实际上就是从栈中删除栈顶位置的元素,对于链栈,出栈操作本质上就是在栈中删除一个结点。
代码如下所示:1.void pop(struct Stack**)2.{3.if(empty(*))4.return;5.struct Stack *tempNode =*;6.*=(*)->next;7.free(tempNode);8.}上述代码中,以下代码:1.if(empty(*))2.return;是判断链栈是否为空,如果栈为空是不能从栈中删除元素的。
上述代码中,以下代码:1.struct Stack *tempNode =*;2.*=(*)->next;3.free(tempNode);首先用一个临时指针保存原栈顶指针指向的栈元素地址,即出栈元素的地址,然后将栈顶指针指向下一个元素,这样栈中就减少了一个元素。
最后释放临时指针指向的元素,即释放出栈元素所占的存储空间。
步骤六:取栈顶元素取栈顶元素实际上就是将栈顶元素的值返回,对于链栈,本质上是将栈顶节点的数据返回。
注意,在取栈顶元素时,首先要判断栈是否为空,空栈是没有数据元素的。
代码如下:1.void Data(struct Stack*, DataType* data)2.{3.if(empty())4.return;5.*data =->data;6.}2.4 完整代码本案例的完整代码如下所示:1.#include <stdio.h>2.#include <stdlib.h>3.#include <stdbool.h>4.5.typedef int DataType;6.struct Stack {7.DataType data;8.struct Stack *next;9.};10.11.void init(struct Stack**)12.{13.*= NULL;14.}15.16.bool empty(struct Stack*)17.{18.return== NULL;19.}20.21.void push(struct Stack**, DataType d)22.{23.struct Stack *newNode =(struct Stack*)malloc(sizeof(struct Stack));24.newNode->data = d;25.newNode->next =*;26.*= newNode;27.}28.29.void pop(struct Stack**)30.{31.if(empty(*))32.return;33.struct Stack *tempNode =*;34.*=(*)->next;35.free(tempNode);36.}37.38.void Data(struct Stack*, DataType* data)39.{40.if(empty())41.return;42.*data =->data;43.}44.45.46.int main()47.{48.struct Stack *;49.init(&);50.push(&,30);51.push(&,60);52.push(&,80);53.54.while(!empty()){55.int data;56.Data(,&data);57.printf("%d ", data);58.pop(&);59.}60.printf("\n");61.62.return0;63.}作业:1 1. 逆波兰法求解四则运算表达式在计算机中,表达式的处理是很重要的一项工作。