各种数据结构定义的C语言描述
C语言中都有哪些常见的数据结构你都知道几个?
C语⾔中都有哪些常见的数据结构你都知道⼏个?上次在⾯试时被⾯试官问到学了哪些数据结构,那时简单答了栈、队列/(ㄒoㄒ)/~~其它就都想不起来了,今天有空整理了⼀下⼏种常见的数据结构,原来我们学过的数据结构有这么多~⾸先,先来回顾下C语⾔中常见的基本数据类型吧O(∩_∩)OC语⾔的基本数据类型有:整型int,浮点型float,字符型char等等添加描述那么,究竟什么是数据结构呢?数据结构是计算机存储、组织数据的⽅式。
数据结构是指相互之间存在⼀种或多种特定关系的数据元素的集合⼤部分数据结构的实现都需要借助C语⾔中的指针和结构体类型下⾯,进⼊今天的重点啦O(∩_∩)O⼏种常见的数据结构(1)线性数据结构:元素之间⼀般存在元素之间存在⼀对⼀关系,是最常⽤的⼀类数据结构,典型的有:数组、栈、队列和线性表(2)树形结构:结点间具有层次关系,每⼀层的⼀个结点能且只能和上⼀层的⼀个结点相关,但同时可以和下⼀层的多个结点相关,称为“⼀对多”关系,常见类型有:树、堆(3)图形结构:在图形结构中,允许多个结点之间相关,称为“多对多”关系下⾯分别对这⼏种数据结构做⼀个简单介绍:1、线性数据结构:典型的有:数组、栈、队列和线性表(1)数组和链表a、数组:存放着⼀组相同类型的数据,需要预先指定数组的长度,有⼀维数组、⼆维数组、多维数组等b、链表:链表是C语⾔中⼀种应⽤⼴泛的结构,它采⽤动态分配内存的形式实现,⽤⼀组任意的存储单元存放数据元素链表的,⼀般为每个元素增设指针域,⽤来指向后继元素c、数组和链表的区别:从逻辑结构来看:数组必须事先定义固定的长度,不能适应数据动态地增减的情况;链表动态地进⾏存储分配,可以适应数据动态地增减的情况,且可以⽅便地插⼊、删除数据项(数组中插⼊、删除数据项时,需要移动其它数据项)从内存存储来看:(静态)数组从栈中分配空间(⽤NEW创建的在堆中), 对于程序员⽅便快速,但是⾃由度⼩;链表从堆中分配空间, ⾃由度⼤但是申请管理⽐较⿇烦从访问⽅式来看:数组在内存中是连续存储的,因此,可以利⽤下标索引进⾏随机访问;链表是链式存储结构,在访问元素的时候只能通过线性的⽅式由前到后顺序访问,所以访问效率⽐数组要低(2)栈、队列和线性表:可采⽤顺序存储和链式存储的⽅法进⾏存储顺序存储:借助数据元素在存储空间中的相对位置来表⽰元素之间的逻辑关系链式存储:借助表⽰数据元素存储地址的指针表⽰元素之间的逻辑关系a、栈:只允许在序列末端进⾏操作,栈的操作只能在栈顶进⾏,⼀般栈⼜被称为后进先出或先进后出的线性结构顺序栈:采⽤顺序存储结构的栈称为顺序栈,即需要⽤⼀⽚地址连续的空间来存储栈的元素,顺序栈的类型定义如下:添加描述链栈:采⽤链式存储结构的栈称为链栈:添加描述b、队列:只允许在序列两端进⾏操作,⼀般队列也被称为先进先出的线性结构循环队列:采⽤顺序存储结构的队列,需要按队列可能的最⼤长度分配存储空空,其类型定义如下:添加描述 链队列:采⽤链式存储结构的队列称为链队列,⼀般需要设置头尾指针只是链表的头尾结点:添加描述c、线性表:允许在序列任意位置进⾏操作,线性表的操作位置不受限制,线性表的操作⼗分灵活,常⽤操作包括在任意位置插⼊和删除,以及查询和修改任意位置的元素顺序表:采⽤顺序存储结构表⽰的线性表称为顺序表,⽤⼀组地址连续的存储单元⼀次存放线性表的数据元素,即以存储位置相邻表⽰位序相继的两个元素之间的前驱和后继关系,为了避免移动元素,⼀般在顺序表的接⼝定义中只考虑在表尾插⼊和删除元素,如此实现的顺序表也可称为栈表:添加描述线性表:⼀般包括单链表、双向链表、循环链表和双向循环链表单链表:添加描述 双向链表:添加描述线性表两种存储结构的⽐较:顺序表: 优点:在顺序表中,逻辑中相邻的两个元素在物理位置上也相邻,查找⽐较⽅便,存取任⼀元素的时间复杂度都为O(1) 缺点:不适合在任意位置插⼊、删除元素,因为需要移动元素,平均时间复杂度为O(n)链表: 优点:在链接的任意位置插⼊或删除元素只需修改相应指针,不需要移动元素;按需动态分配,不需要按最⼤需求预先分配⼀块连续空空 缺点:查找不⽅便,查找某⼀元素需要从头指针出发沿指针域查找,因此平均时间复杂度为O(n)2、树形结构:结点间具有层次关系,每⼀层的⼀个结点能且只能和上⼀层的⼀个结点相关,但同时可以和下⼀层的多个结点相关,称为“⼀对多”关系,常见类型有:树、堆(1)⼆叉树:⼆叉树是⼀种递归数据结构,是含有n(n>=0)个结点的有限集合,⼆叉树具有以下特点:⼆叉树可以是空树;⼆叉树的每个结点都恰好有两棵⼦树,其中⼀个或两个可能为空;⼆叉树中每个结点的左、右⼦树的位置不能颠倒,若改变两者的位置,就成为另⼀棵⼆叉树(2)完全⼆叉树:从根起,⾃上⽽下,⾃左⽽右,给满⼆叉树的每个结点从1到n连续编号,如果每个结点都与深度为k的满⼆叉树中编号从1⾄n的结点⼀⼀对应,则称为完全⼆叉树a、采⽤顺序存储结构:⽤⼀维数组存储完全⼆叉树,结点的编号对于与结点的下标(如根为1,则根的左孩⼦为2*i=2*1=2,右孩⼦为2*i+1=2*1+1=2)添加描述b、采⽤链式存储结构:⼆叉链表:添加描述三叉链表:它的结点⽐⼆叉链表多⼀个指针域parent,⽤于执⾏结点的双亲,便于查找双亲结点添加描述两种存储结构⽐较:对于完全⼆叉树,采⽤顺序存储结构既能节省空间,⼜可利⽤数组元素的下标值确定结点在⼆叉树中的位置及结点之间的关系,但采⽤顺序存储结构存储⼀般⼆叉树容易造成空间浪费,链式结构可以克服这个缺点(3)⼆叉查找树:⼆叉查找树⼜称⼆叉排序树,或者是⼀课空⼆叉树,或者是具有如下特征的⼆叉树:a、若它的左⼦树不空,则左⼦树上所有结点的值均⼩于根结点的值b、若它的右⼦树不空,则右⼦树上所有结点的值均⼤于根结点的值c、它的左、右⼦树也分别是⼆叉查找树(4)平衡⼆叉树:平衡⼆叉查找树简称平衡⼆叉树,平衡⼆叉树或者是棵空树,或者是具有下列性质的⼆叉查找树:它的左⼦树和右⼦树都是平衡⼆叉树,且左⼦树和右⼦树的⾼度之差的绝对值不超过1添加描述平衡⼆叉树的失衡及调整主要可归纳为下列四种情况:LL型、RR型、LR型、RL型(5)树:树是含有n(n>=0)个结点的有限集合,在任意⼀棵⾮空树种: a、有且仅有⼀个特定的称为根的结点b、当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1,T2,...,Tm,其中每⼀个集合本⾝⼜是⼀棵树,并且T1,T2,...,Tm称为根的⼦树(6)堆:堆是具有以下特性的完全⼆叉树,其所有⾮叶⼦结点均不⼤于(或不⼩于)其左右孩⼦结点。
数据结构——用C语言描述(第3版)教学课件第3章 栈和队列
if(S->top==-1) /*栈为空*/
return(FALSE);
else
{*x = S->elem[S->top];
return(TRUE);
}
返回主目录}[注意]:在实现GetTop操作时,也可将参数说明SeqStack *S 改为SeqStack S,也就是将传地址改为传值方式。传 值比传地址容易理解,但传地址比传值更节省时间、 空间。
返回主目录
算法:
void BracketMatch(char *str) {Stack S; int i; char ch; InitStack(&S); For(i=0; str[i]!='\0'; i++) {switch(str[i])
{case '(': case '[': case '{':
3.1.3 栈的应用举例
1. 括号匹配问题
思想:在检验算法中设置一个栈,若读入的是左括号, 则直接入栈,等待相匹配的同类右括号;若读入的是 右括号,且与当前栈顶的左括号同类型,则二者匹配, 将栈顶的左括号出栈,否则属于不合法的情况。另外, 如果输入序列已读尽,而栈中仍有等待匹配的左括号, 或者读入了一个右括号,而栈中已无等待匹配的左括 号,均属不合法的情况。当输入序列和栈同时变为空 时,说明所有括号完全匹配。
return(TRUE);
}
返回主目录
【思考题】
如果将可利用的空闲结点空间组织成链栈来管理,则申 请一个新结点(类似C语言中的malloc函数)相当于链 栈的什么操作?归还一个无用结点(类似C语言中的 free函数)相当于链栈的什么操作?试分别写出从链栈 中申请一个新结点和归还一个空闲结点的算法。
数据结构与算法 c语言描述
数据结构与算法 c语言描述
数据结构与算法是程序员必备技能,而C语言作为一种常用的编程语言,广泛应用于数据结构与算法的分析与设计。
本文介绍了如何利用C语言来描述数据结构与算法。
首先,我们来看看C语言中的数据结构与算法。
C语言中的数据结构包括链表、栈、队列、树、图等等。
这些数据结构都有自己的特点和作用,它们可以帮助我们分析和构建复杂的程序结构。
C语言中的算法包括排序算法、图算法、查找算法、动态规划算法等等,它们可以使程序运行更快,更加高效。
其次,让我们来看看C语言中如何描述数据结构和算法。
要描述数据结构,首先要了解C语言中的数据类型,并确定数据结构中的元素类型,然后就可以用C语言中的结构体,结合各种操作符来编写数据结构。
算法的描述需要用C语言实现,即把算法步骤一一对应地代入到C语言中,以实现算法的功能。
这样就可以完成算法的编写,并检验算法的正确性,从而提高程序的运行效率。
最后,通过C语言编写的数据结构与算法,可以实现程序的高效运行。
因此,掌握C语言中的数据结构与算法,对程序员来说是非常重要的。
通过深入学习C语言,我们可以在编写程序时,以更高效、更智能的方式处理复杂的数据结构与算法。
- 1 -。
数据结构C语言描述PPT课件
李四 男 20 上海 6001 75 80 90 80
王五 男 19 长沙 6002 85 80 75 90
………… … … …… …
一个数据元素
一个初等数据项
一个组合数据项
整张表就是一个数据对象,其中每个学生的情况是其 中的一个数据元素。
第5页/共34页
2.1.2 数据结构
• 从数学意义上讲,数据结构是指数据的组织形式,由数据对象及该对象中数 据元素之间的关系组成。数据结构可描述为一个二元组 • Data-Structure=(D,R) 其中:D是数据对象,为数据元素的有限集;R是该对象中数据元素之间关 系的有限集。
• 面向对象的程序设计:将软件看成由数据对象组成 的集合,这些对象是应用问题所涉及的物理实体的 数据模型,它们之间的相互作用构成了一个软件系 统。
• 面向对象的软件设计方法优于传统的软件设计方法, 因为面向对象的软件设计方法采用了抽象数据类型
第15页/共34页
2.3.2 数据类型
• 数据类型 (data type) 是一组性质相同的值的集合以及定义在这个集合上的一组 操作的总称。
float Perimeter(void) const ;
};
Rectangle :: Rectangle(float l , float w ) : length(l) , width(w) {}
float Rectangle :: Area(void) const {return length * width ; }
• 这种意义上的数据结构称为数据的逻辑结构。除此之外,要将数据放在计算 机内进行处理,还将涉及数据的存储结构。
第6页/共34页
2.1.2 数据结构
• 涉及到计算机的数据结构概念,至今尚未有一个公 认的标准定义,但一般认为应包括以下三个方面:
数据结构c语言循环队列定义
数据结构c语言循环队列定义1. 引言在程序设计中,经常需要使用队列这种数据结构。
队列是一种先进先出(First In First Out, FIF)的数据结构,类似于排队买票或取快餐的过程,先到先服务。
相比于其他数据结构,队列的操作比较简单,也容易理解和实现。
本文将介绍一种常见的队列类型——循环队列,并使用c语言实现。
2. 循环队列的定义循环队列是一种特殊的队列类型,它在数组的基础上实现。
其实现方式是将数组的首尾相连,形成一个环状。
这样在操作队列时,当往队列中添加元素时,如果队列尾指针到达数组末尾,则在数组头部继续添加元素。
当从队列中删除元素时,如果队列头指针到达数组末尾,则在数组头部继续删除元素。
这样循环下去,队列就具有了循环的特性,即循环队列。
3. 循环队列c语言实现由于循环队列是在数组的基础上实现的,因此我们定义一个数组来存储队列元素,再定义队列头和队列尾指针来指向队列中的首尾元素。
具体c语言实现如下:```define MAXSIZE 100 // 队列最大容量typedef int ElemType; // 元素类型定义typedef struct {ElemType data[MAXSIZE]; // 存储元素的数组int front; // 队列头指针int rear; // 队列尾指针} CircleQueue;// 初始化循环队列void InitQueue(CircleQueue *q) {q->front = q->rear = 0; // 头尾指针初始化为0 }// 判断循环队列是否为空bool IsEmpty(CircleQueue *q) {return q->front == q->rear;}// 判断循环队列是否为满bool IsFull(CircleQueue *q) {return (q->rear + 1) % MAXSIZE == q->front;}// 入队操作bool EnQueue(CircleQueue *q, ElemType e) {// 队列已满,无法添加元素if (IsFull(q)) {return false;}q->data[q->rear] = e; // 将元素添加到队列尾部q->rear = (q->rear + 1) % MAXSIZE; // 队列尾指针后移一位return true;}// 出队操作bool DeQueue(CircleQueue *q, ElemType *e) {// 队列为空,无法删除元素if (IsEmpty(q)) {return false;}*e = q->data[q->front]; // 将队列头部元素取出q->front = (q->front + 1) % MAXSIZE; // 队列头指针后移一位return true;}```以上是循环队列的c语言实现,可以通过以上函数对循环队列进行初始化、判断队列是否为空或是否为满,入队和出队操作。
数据结构与算法 c语言
数据结构与算法 c语言(一)数据结构数据结构是指程序中使用的数据存储和组织的方式,是存储和组织数据以便于进行有效访问和操作的形式。
它们描述如何组织、索引、检索和存储数据,可以以图形、列表、树或任何其他形式来实现。
根据它的功能,数据结构可以分为三类:存储结构,查找结构和排序结构。
1.存储结构:存储结构定义数据的存储形式,结构的类型有线性结构、非线性结构和特殊结构。
a)线性结构:线性结构是最常用的存储结构,常见的线性结构有数组、线性表和栈。
b)非线性结构:非线性结构是存储数据的不规则结构,常用的非线性结构有森林、图、哈希表和布局。
c)特殊结构:特殊结构是一种特殊的数据结构,代表着不同的操作对象。
例如,编译器存储着源程序的语法树,在设计数据库时,系统存储着索引树以及索引文件。
2.查找结构:查找结构包括线性查找和二分查找,前者将数据成员与关键字一一比较,后者使用二叉树技术,在减少比较次数的同时,使得查找效率大大提高。
3.排序结构:排序结构按照一定的规则对存储在某个存储结构中的数据进行排序,用于快速查找数据。
常用的排序算法有插入排序、合并排序、快速排序等。
总之,数据结构可以视为数据的容器,使用不同的数据结构可以解决不同的问题,提高系统的效率。
(二)算法算法是一种排列和组合的解决问题的过程。
它使用一组定义明确的步骤,按照该步骤来执行,最终解决问题。
一般来说,算法分为三种类型:贪心算法、动态规划和分治法。
1.贪心算法:贪心算法通过采用试探性选择来求解问题,它从不考虑过去的结果,而是假设采用当前最好的结果,从而得到最优解。
如择优法、多项式时间的算法都属于贪心算法。
2.动态规划:动态规划是求解决策过程最优化的数学术语,它结合搜索技术,用最优方式选择最佳决策。
常见的动态规划算法应用有最小路径求解,最优工作调度等。
3.分治法:分治法是算法设计中比较常用的思想,它的思想很简单,就是将问题分解成多个子问题,分别解决,最后合并解决结果,得到整体的问题的最优解。
数据结构(C语言版)
比较
Prim算法适用于稠密图, Kruskal算法适用于稀疏图;
两者时间复杂度相近,但 Kruskal算法需额外处理并查
集数据结构。
最短路径算法设计思想及实现方法比较
1 2
Dijkstra算法
从源点出发,每次找到距离源点最近的顶点并更 新距离值,直至所有顶点距离确定。适用于不含 负权边的图。
Floyd算法
特殊二叉树
满二叉树、完全二叉树等。
二叉树的遍历与线索化
二叉树的遍历
前序遍历、中序遍历、后序遍历和层 次遍历是二叉树的四种基本遍历方法 。
线索化二叉树
为了方便查找二叉树节点的前驱和后 继,可以对二叉树进行线索化处理, 即在节点的空指针域中存放指向前驱 或后继的指针。
树和森林的遍历与转换
树的遍历
01
串的顺序存储结构
01
02
03
串的顺序存储结构是用 一组地址连续的存储单 元来存储串中的字符序
列的。
按照预定义的大小,为 每个定义的串变量分配 一个固定长度的存储区 ,一般是用定长数组来
定义。
串值的存储:将实际串 长度值保存在数组的0下 标位置,串的字符序列 依次存放在从1开始的数
组元素中。
串的链式存储结构
03
比较
DFS空间复杂度较低,适用于递 归实现;BFS可找到最短路径, 适用于非递归实现。
最小生成树算法设计思想及实现方法比较
Prim算法
从某一顶点开始,每次选择当 前生成树与外界最近的边加入 生成树中,直至所有顶点加入
。
Kruskal算法
按边权值从小到大排序,依次 选择边加入生成树中,保证不
形成环路。
数据结构(C语言版)
数据结构与算法 c语言描述
数据结构与算法 c语言描述随着科学技术的发展和社会经济的迅猛发展,数据结构和算法问题变得越来越重要。
“数据结构与算法 C言描述”将介绍数据结构和算法以及它们之间的关系,重点介绍如何使用 C言来描述算法和实现数据结构,以及实时和复杂的算法的实现技巧。
数据结构是指将数据组织起来的一种方式,它用来描述所讨论的数据的结构。
常见的数据结构有数组,链表,树,图,哈希表,优先队列和字典等。
每种数据结构都有自己的优点和特点,可以根据需要调整结构或者调整算法。
算法是一种解决特定问题的计算步骤。
它们被设计用来帮助解决复杂问题,减少时间复杂度,降低空间复杂度,增强计算机系统的性能和效率。
常见的算法有快速排序,归并排序,折半搜索,深度优先搜索,广度优先搜索,最短路径算法,最小生成树算法和动态规划算法等。
C言是一种结构化编程语言,它可以用来描述数据结构和算法。
它可以编写结构体,枚举,函数,类和其他基本类型,以及以 C 作为基础语言的一系列更高级语言如 C++,C#,Objective-C Java。
C 言可以更容易地描述数据结构和算法的实现,它还支持许多不同的实现方法,比如指针和记忆。
《数据结构与算法 C言描述》中将介绍基本的数据结构和算法,如排序,查找,图,哈希表,树,栈和队列等。
书中还将介绍常见的C言编程技巧和模式,以及如何将它们应用于实现复杂的数据结构和算法。
包括在算法中使用栈,队列,二叉树,图和 hash等数据结构以及适用于它们的操作算法。
书中还将介绍逻辑控制,函数,指针,内存管理,链表,树,图,算法的优化和面向对象的编程技巧等内容。
本书的目的是帮助读者掌握数据结构和算法的基本概念,理解如何在 C言中实现,并学会如何优化算法,减少复杂性和提高计算机系统的性能。
另外,本书还将介绍如何将算法应用于真实世界的问题,如何应对和处理计算机系统的可扩展性和可维护性,以及如何将算法应用于复杂的实时应用程序。
本书将通过实际的示例,详细描述如何使用 C言实现数据结构和算法,从而提供给读者一个完整的理解和实现的框架。
C语言结构体的定义和使用方法
C语言结构体的定义和使用方法结构体是C语言中一种自定义的数据类型,它可以将不同类型的变量组合在一起,形成一个新的复合数据类型。
结构体的定义和使用方法在C语言中非常重要,下面将详细介绍。
一、结构体的定义在C语言中,我们可以通过关键字struct来定义结构体。
结构体的定义通常包含在函数外部,以便在整个程序中都可以使用。
下面是一个简单的结构体定义的示例:```struct Student {char name[20];int age;float score;};```在上面的示例中,我们定义了一个名为Student的结构体,它包含了三个成员变量:name、age和score。
name是一个字符数组,age是一个整数,score是一个浮点数。
二、结构体的使用定义结构体之后,我们可以通过以下两种方式来使用结构体:1. 声明结构体变量我们可以通过声明结构体变量的方式来使用结构体。
下面是一个示例:```struct Student stu1;```在上面的示例中,我们声明了一个名为stu1的结构体变量,它的类型是Student。
2. 访问结构体成员我们可以使用点运算符来访问结构体的成员变量。
下面是一个示例:```strcpy(, "Tom");stu1.age = 18;stu1.score = 95.5;```在上面的示例中,我们使用strcpy函数将字符串"Tom"复制给了stu1的name 成员变量,使用赋值运算符将整数18赋给了stu1的age成员变量,使用赋值运算符将浮点数95.5赋给了stu1的score成员变量。
三、结构体的初始化我们可以在声明结构体变量的同时对其进行初始化。
下面是一个示例:```struct Student stu2 = {"Jerry", 20, 90.0};```在上面的示例中,我们声明了一个名为stu2的结构体变量,并对其进行了初始化。
数据结构C语言
数据结构(C语言)数据组织(数据、数据元素、数据项)的三个层次:数据可由若干个数据元素构成,而数据元素又可以由一个或若干个数据项组成。
四种基本的数据结构:集合、线性结构、树形结构、图状结构。
顺序存储的特点是在内存中开辟一组连续的空间来存放数据,数据元素之间的逻辑关系通过元素在内存中存放的相对位置来确定。
链式存储的特点是通过指针反映数据元素之间的逻辑关系。
数据类型:原子类型、结构类型。
线性表定义:线性表是n个数据元素的有限序列。
线性表的顺序存储结构:表中相邻的元素a和b所对应的存储地址A和B 也是相邻的。
(也就是数据都是按照表中情况进行连续存储的情况)线性表的链式存储结构:该线性表中的数据元素可以用任意的存储单元来存储。
表中的各个相邻的数据(元素)是通过一个指针地址来进行链接的,以找到下一个数据(元素)在哪。
其形式一般为:数据地址线性表的顺序和链式存储结构的比较:在线性表的长度变化比较大,预先难以确定的情况下,最好采用动态链表作为存储结构。
当线性表的长度变化不大时,采用顺序存储结构比较节省存储空间。
在顺序表结构的线性表上主要进行查找、读取而很少做插入和删除的操作。
链式结构的线性表中比较适应做插入和删除的操作。
一元多项式的加减法运算可先将一元多项式进行了改变存储之后再进行运算比较适宜,将一元多项式转换为用在内存中的前一项表示阶数,后一项表示对应该阶数的系数。
然后利用这种形式进行加减运算。
栈和队列栈是限定在表的同一端进行插入或删除操作的线性表,即进栈、出栈。
(特殊的线性表)栈的顺序存储结构:利用一组地址连续的存储单元依次从栈底到栈顶存放数据元素,栈底位置固定不变,可将栈底设在向量低下标的一端。
栈的链式存储结构:用单链表作为存储结构的栈称为链栈,链表的最后一个结点表示栈底,第一个结点表示栈顶。
队列也是一种特殊的线性表。
它所有的插入操作均限定在表的一端进行,而所有的删除操作则限定在表的另一端进行。
允许删除元素的一端称为队头,允许插入元素的一端称为队尾,删除元素称为出队,插入元素称为进队。
数据结构(C语言)分享笔记:数据结构的逻辑层次、存储层次
数据结构(C语⾔)分享笔记:数据结构的逻辑层次、存储层次 数据结构,⼀个简单的定义:相互之间存在⼀种或多种特定关系的数据元素的集合。
即:数据结构 = 元素集合 + 元素间关系的集合。
在讨论数据结构时,可以基于两个不同的层次:1.逻辑层次 2.存储层次 ( 很多专业书中也写为:逻辑结构、存储结构。
但为了避免概念间的混淆,我认为 “层次” 这⼀表述⽅式更贴切 ) 。
逻辑层次,是指对描述对象的单纯的数学抽象。
例如:⼀个科研⼩组由1名导师、2名研究⽣和6名本科⽣构成,导师指导2名研究⽣,每个研究⽣分别指导3名本科⽣。
将这个⼩组视为⼀个数据结构,则从逻辑层次来看,这个数据结构是⼀个简单的树形结构。
存储层次,是指数据结构在计算机存储器中的映射,即通过特定的存储⽅法来反映数据结构中的逻辑关系。
[2] “程序员更常⽤到的” 数据结构的概念 我们在实际情况中很少能直接涉及到数据结构的存储层次:数据结构在存储器中的物理位置——这种很底层的技术。
我们更多地是基于⾼级语⾔来讨论数据结构的,如C语⾔。
⽐如:我们⽤C语⾔中的⼀维数组来描述存储层次中的顺序存储结构,⽤C语⾔中的指针来描述存储层次中的链式存储结构。
在这种情况下,我们可以把C语⾔抽象地看作⼀个执⾏C指令和C数据类型的虚拟处理器,则我们讨论的存储层次实际上是基于虚拟处理器的层次。
⽽这个层次才是和我们接触最多的。
[3] 学习数据结构时的注意点 “数据结构” 这门课程虽然常与计算机,程序设计等联系在⼀起,但其实它是⼀门独⽴的课程,是⼀门理论性很强的课程。
在学习的时候,经常要⽤到逻辑的、抽象的思维⽅式。
同时也要多通过写程序来练习,这样才能避免纸上谈兵,提⾼⾃⼰的编程⽔平。
c语言数据结构及算法
C语言是一种广泛应用于编程和软件开发的编程语言,它提供了一系列的数据结构和算法库,使得开发者能够在C语言中使用这些数据结构和算法来解决各种问题。
以下是C语言中常用的数据结构和算法:数据结构:1. 数组(Array):一组相同类型的元素按顺序排列而成的数据结构。
2. 链表(Linked List):元素通过指针连接而成的数据结构,可分为单向链表、双向链表和循环链表等。
3. 栈(Stack):具有后进先出(LIFO)特性的数据结构,可用于实现函数调用、表达式求值等。
4. 队列(Queue):具有先进先出(FIFO)特性的数据结构,可用于实现任务调度、缓冲区管理等。
5. 树(Tree):一种非线性的数据结构,包括二叉树、二叉搜索树、堆、A VL树等。
6. 图(Graph):由节点和边组成的数据结构,可用于表示网络、关系图等。
7. 哈希表(Hash Table):基于哈希函数实现的数据结构,可用于高效地查找、插入和删除元素。
算法:1. 排序算法:如冒泡排序、插入排序、选择排序、快速排序、归并排序等。
2. 查找算法:如线性查找、二分查找、哈希查找等。
3. 图算法:如深度优先搜索(DFS)、广度优先搜索(BFS)、最短路径算法(Dijkstra、Floyd-Warshall)、最小生成树算法(Prim、Kruskal)等。
4. 字符串匹配算法:如暴力匹配、KMP算法、Boyer-Moore 算法等。
5. 动态规划算法:如背包问题、最长公共子序列、最短编辑距离等。
6. 贪心算法:如最小生成树问题、背包问题等。
7. 回溯算法:如八皇后问题、0-1背包问题等。
这只是C语言中常用的一部分数据结构和算法,实际上还有更多的数据结构和算法可以在C语言中实现。
开发者可以根据具体需求选择适合的数据结构和算法来解决问题。
同时,C语言也支持自定义数据结构和算法的实现,开发者可以根据需要进行扩展和优化。
数据结构(C语言版)
数据结构(C语言版) 数据结构(C语言版)1.简介1.1 什么是数据结构1.2 数据结构的作用1.3 数据结构的分类1.4 C语言中的数据结构2.线性表2.1 数组2.2 链表2.2.1 单链表2.2.2 双链表2.2.3 循环链表3.栈与队列3.1 栈3.1.1 栈的定义3.1.2 栈的基本操作3.2 队列3.2.1 队列的定义3.2.2 队列的基本操作4.树4.1 二叉树4.1.1 二叉树的定义4.1.2 二叉树的遍历4.2 AVL树4.3 B树5.图5.1 图的定义5.2 图的存储方式5.2.1 邻接矩阵5.2.2 邻接表5.3 图的遍历算法5.3.1 深度优先搜索(DFS)5.3.2 广度优先搜索(BFS)6.散列表(哈希表)6.1 散列函数6.2 散列表的冲突解决6.2.1 开放寻址法6.2.2 链地质法7.排序算法7.1 冒泡排序7.2 插入排序7.3 选择排序7.4 快速排序7.5 归并排序7.6 堆排序7.7 计数排序7.8 桶排序7.9 基数排序8.算法分析8.1 时间复杂度8.2 空间复杂度8.3 最好、最坏和平均情况分析8.4 大O表示法附件:________无法律名词及注释:________●数据结构:________指数据元素之间的关系,以及对数据元素的操作方法的一种组织形式。
●C语言:________一种通用的编程语言,用于系统软件和应用软件的开发。
●线性表:________由n个具有相同特性的数据元素组成的有限序列。
●栈:________一种特殊的线性表,只能在表的一端插入和删除数据,遵循后进先出(LIFO)的原则。
●队列:________一种特殊的线性表,只能在表的一端插入数据,在另一端删除数据,遵循先进先出(FIFO)的原则。
●树:________由n(n>=0)个有限节点组成的集合,其中有一个称为根节点,除根节点外,每个节点都有且仅有一个父节点。
●图:________由顶点的有穷集合和边的集合组成,通常用G(V, E)表示,其中V表示顶点的有穷非空集合,E表示边的有穷集合。
数据结构C语言版讲义
第一章绪论第一节什么是数据结构?估猜以下软件的共性:学生信息管理、图书信息管理、人事档案管理。
数学模型:用符号、表达式组成的数学结构,其表达的内容与所研究对象的行为、特性基本一致。
信息模型:信息处理领域中的数学模型。
数据结构:在程序设计领域,研究操作对象及其之间的关系和操作。
忽略数据的具体含义,研究信息模型的结构特性、处理方法。
第二节概念、术语一、有关数据结构的概念数据:对客观事物的符号表示。
例:生活中还有什么信息没有被数字化?身份证,汽车牌号,电话号码,条形代码……数据元素:数据的基本单位。
相当于"记录"。
一个数据元素由若干个数据项组成,相当于"域"。
数据对象:性质相同的数据元素的集合。
数据结构:相互之间存在特定关系的数据集合。
四种结构形式:集合、线性、树形、图(网)状形式定义:(D,S,P)D:数据元素的集合(数据对象)S:D上关系的有限集P:D上的基本操作集逻辑结构:关系S描述的是数据元素之间的逻辑关系。
存储结构:数据结构在计算机中的存储形式。
顺序映象、非顺序映象、索引存储、哈希存储逻辑结构与存储结构的关系:逻辑结构:描述、理解问题,面向问题。
存储结构:便于机器运算,面向机器。
程序设计中的基本问题:逻辑结构如何转换为存储结构?二、有关数据类型的概念数据类型:值的集合和定义在该值集上的一组操作的总称。
包括:原子类型、结构类型。
抽象数据类型(ADT):一个数学模型及该模型上的一组操作。
核心:是逻辑特性,而非具体表示、实现。
课程任务:学习ADT、实践ADT。
如:线性表类型、栈类型、队列类型、数组类型、广义表类型、树类型、图类型、查找表类型……实践指导:为了代码的复用性,采用模块结构。
如:C中的头文件、C++中的类第三节 ADT的表示与实现本教材中,算法书写习惯的约定。
数据元素类型ElemType:int,float,char, char[] ……引用参数 &算法:void add(int a,int b,int &c) { c=a+b; }程序:void add(int a,int b,int *p_c){ *p_c=a+b; }第四节算法的描述及分析一、有关算法的概念算法:特定问题求解步骤的一种描述。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
#include<stdio.h>
#include<stdlib.h>
//2.2.1顺序表的C语言描述
#define MAXSIZE 100
typedef struct{
int data[MAXSIZE];
int last;
}Sequenlist;
//2.3.2单链表的C语言描述(注意循环链表) typedef int datatype;
typedef struct node{
datatype data;
struct node *next;
}linklist;
linklist *head;
//2.3.5双链表的C语言描述
typedef struct dnode{
datatype data;
struct dnode *prior,*next;
}dlinklist;
//3.2.1顺序栈的C语言描述
typedef struct{
datatype data[MAXSIZE];
int top;
}seqstack;
//3.3链式栈的C语言描述
typedef struct snode{
datatype data;
struct snode *next;
}linkstack;
//4.2.1顺序队列的C语言描述(注意4.2.3循环队列的定义和基本操作)
typedef struct{
datatype data[MAXSIZE];
int front;
int rear;
}seqqueue;
//4.3.1链队列的C语言描述
typedef struct qnode{
datatype data;
struct qnode *next;
}qnode_linklist;
typedef struct {
qnode_linklist *front ,*rear; }linkqueue;
//5.2.1串的顺序存储的C语言定义(注意建立串时候的fflush(stdin);)
char sstr[MAXSIZE];
typedef struct{
datatype data[MAXSIZE];
int len;
}sstring;
//5.2.2链串的类型描述
typedef struct linknode{
char data;
struct linknode *next;
}linkstring;
//5.2.3堆串的描述
typedef struct{
char *ch;
int length;
}hstring;
//7.3.2二叉链表结点的C语言描述
#define MAX_SIZE 100
typedef struct btnode{
datatype data;
struct btnode *lchild,*rchild;
}btnode;
//三叉链表结点的C语言描述
typedef struct btnode_3{
datatype data;
struct btonde_3 *lchild,*rchild,*parent; }btnode_3;
//线索二叉树的C语言描述
typedef struct bithrnode{
datatype data;
struct bithrnode *lchild,*rchild;
int ltag,rtag;
}bithrnode;
//7.7.1树的存储结构1、双亲表示法(顺序存储结构)
typedef struct tnode{
datatype data;
int parent;
}ptnode;
typedef struct{
ptnode node[MAX_SIZE];
int num;
}ptree;
//7.7.1树的存储结构2孩子表示法
typedef struct listnode{
int childno;
struct listnode *next;
}ctnode;
typedef struct{
datatype data;
ctnode *firstchild;
}hnode;
typedef struct{
hnode nodes[MAX_SIZE];
int root;
int num;
}clinklist;
//7.7.1树的存储结构3.孩子兄弟表示法(二叉树表示法)
typedef struct csnode{
datatype data;
struct csnode *firstchild,*nextchild;
}csnode;
//8.2.1图的邻接矩阵
typedef char elemtype;
typedef struct{
elemtype vex[MAXSIZE];
int edge[MAXSIZE][MAXSIZE];
int e;
int n;
}adjgraph;
//8.2.2图的邻接表节点及其类型定义如下:typedef struct graph_linknode{
int adjvex;
char info;
struct linknode *firstarc;
}graph_linknode;
typedef struct vexnode{
char data;
graph_linknode *firstarc;
}vexnode;
typedef struct{
vexnode adjlist[MAXSIZE];
int n,e;
}algraph;
//9.1排序的数据结构定义#define sort_maxsize 10 typedef int keytype; typedef struct{
keytype key;
}recordtype;
recordtype r[sort_maxsize]; int main(){
return 0;
}。