霍尔效应实验报告

合集下载

霍尔效应实验报告文库

霍尔效应实验报告文库

一、实验背景霍尔效应是一种重要的物理现象,最早由美国物理学家霍尔于1879年发现。

当电流通过置于磁场中的导体或半导体时,会在垂直于电流和磁场方向上产生电压,这种现象称为霍尔效应。

霍尔效应不仅揭示了电荷运动规律,而且在许多领域有着广泛的应用,如磁场测量、半导体材料分析、传感器等。

二、实验目的1. 理解霍尔效应的基本原理和实验方法;2. 通过实验测量霍尔元件的霍尔电压与磁场、电流的关系;3. 学习对称测量法消除副效应的影响;4. 确定样品的导电类型、载流子浓度和迁移率。

三、实验原理霍尔效应的原理是基于洛伦兹力定律。

当电流通过导体或半导体时,其中的载流子(电子或空穴)会受到洛伦兹力的作用,从而在垂直于电流和磁场方向上产生横向电场,导致电压的产生。

四、实验仪器1. 霍尔效应实验仪;2. 电源;3. 电流表;4. 磁场发生器;5. 测量线;6. 霍尔元件;7. 导线等。

五、实验内容1. 连接实验电路,确保霍尔元件处于磁场中间;2. 调节电源,使电流表读数稳定;3. 测量不同磁场强度下的霍尔电压;4. 测量不同电流下的霍尔电压;5. 测量不同磁场强度和电流下的霍尔电压;6. 根据测量数据绘制霍尔电压与磁场、电流的关系曲线;7. 使用对称测量法消除副效应的影响;8. 根据霍尔电压、电流和磁场强度计算样品的载流子浓度和迁移率。

六、实验步骤1. 按照实验仪说明书连接实验电路,确保霍尔元件处于磁场中间;2. 调节电源,使电流表读数稳定;3. 测量不同磁场强度下的霍尔电压,记录数据;4. 保持磁场强度不变,改变电流大小,测量霍尔电压,记录数据;5. 改变磁场强度,重复步骤3和4,记录数据;6. 根据测量数据绘制霍尔电压与磁场、电流的关系曲线;7. 使用对称测量法消除副效应的影响,计算样品的载流子浓度和迁移率;8. 分析实验结果,得出结论。

七、实验结果与分析1. 根据实验数据绘制霍尔电压与磁场、电流的关系曲线;2. 通过分析曲线,确定样品的导电类型、载流子浓度和迁移率;3. 讨论实验过程中可能出现的误差,并提出改进措施。

霍尔效应及其应用实验报告数据处理

霍尔效应及其应用实验报告数据处理

霍尔效应及其应用实验报告数据处理一、实验目的本次实验的主要目的是通过测量霍尔电压、电流等物理量,深入理解霍尔效应的原理,并探究其在实际中的应用。

同时,通过对实验数据的处理和分析,提高我们的科学研究能力和数据处理技巧。

二、实验原理霍尔效应是指当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这一现象称为霍尔效应。

假设导体中的载流子为电子,其电荷量为 e,平均定向移动速度为v,导体宽度为 b,厚度为 d,外加磁场的磁感应强度为 B。

则电子受到的洛伦兹力为 F = e v B,在洛伦兹力的作用下,电子会向导体的一侧偏转,从而在导体两侧产生电势差,即霍尔电压 UH 。

根据霍尔效应的基本公式:UH = RH I B / d ,其中 RH 为霍尔系数。

三、实验仪器霍尔效应实验仪、直流电源、毫安表、伏特表、特斯拉计等。

四、实验步骤1、连接实验仪器,将霍尔元件放入磁场中,确保磁场方向与霍尔元件平面垂直。

2、调节直流电源,给霍尔元件通入恒定电流 I ,并记录电流值。

3、用特斯拉计测量磁场的磁感应强度 B ,并记录。

4、测量霍尔元件两端的霍尔电压 UH ,改变电流和磁场的方向,多次测量取平均值。

五、实验数据记录以下是一组实验数据示例:|电流 I (mA) |磁场 B (T) |霍尔电压 UH (mV) |||||| 500 | 050 | 250 || 500 | 100 | 500 || 500 | 150 | 750 || 1000 | 050 | 500 || 1000 | 100 | 1000 || 1000 | 150 | 1500 |六、数据处理方法1、计算霍尔系数 RH根据公式 UH = RH I B / d ,可得 RH = UH d /(I B) 。

由于 d 为霍尔元件的厚度,在实验中为已知量,因此可以通过测量不同电流和磁场下的霍尔电压,计算出霍尔系数 RH 。

霍尔效应实验报告

霍尔效应实验报告

霍尔效应实验报告霍尔效应实验报告1实验内容:1.保持不变,使Im从0.50到4.50变化测量VH.可以通过改变I和磁场B的方向消除负效应。

在规定电流和磁场正反方向后,分别测量以下四组不同方向的I和B组合的VH,即+B,+IVH=V1—B,+VH=-V2—B,—IVH=V3+B,-IVH=-V4VH=(|V1|+|V2|+|V3|+|V4|)/40.501.601.003.201.504.792.006.902.507.983.009.553.5011.174.0012.734.5014.34画出线形拟合直线图:ParameterValueError------------------------------------------------------------A0.115560.13364B3.165330.0475------------------------------------------------------------RDNP------------------------------------------------------------0.999210.183959<0.00012.保持I=4.5mA,测量Im—Vh关系VH=(|V1|+|V2|+|V3|+|V4|)/40.0501.600.1003.200.1504.790.2006.900.2507.980.3009.550.35011.060.40012.690.45014.31ParameterValueError------------------------------------------------------------A0.133890.13855B31.50.49241------------------------------------------------------------RDNP------------------------------------------------------------0.999150.190719<0.0001根本满足线性要求。

实验报告霍尔效应

实验报告霍尔效应

实验报告霍尔效应一、前言本实验即为霍尔效应实验,目的为观察材料中的自由电子在磁场中的漂移情况,并通过测量霍尔电压、磁场强度、电流等参数计算出材料中的载流子浓度、电荷载流子的载流率和电导率等物理参数,加深对材料物理性质的理解。

二、实验原理1. 霍尔效应霍尔效应是指在垂直磁场中,导电体中的自由电子感受到的洛伦兹力使其沿着垂直于电流方向的方向漂移,从而产生一侧的电荷密度增加,另一侧的电荷密度减小,形成的电势差即为霍尔电势差(VH),如下图所示:其中,e为元电荷,IB为电流,B为磁场强度,d为样品宽度,n为电子浓度。

2. 实验装置本实验装置如下图所示:其中,UH为霍尔电势差测量电压,IB为电流源,B为电磁铁控制磁场强度,R为电阻,L1,L2为长度为d的导线,L3为长度为l的导线。

3. 实验步骤(1)将实验装置按照图中所示连接好。

(2)打开电源,调节电流源的电流大小,使其稳定在0.5A左右。

(3)打开电磁铁电源,调节磁场强度大小。

(4)读取测量电压UH值。

(5)更改电流大小、磁场强度等参数进行多次实验重复测量。

三、实验结果通过多次实验测量,我们得到了以下测量数据:IB/A B/T UH/mV0.5 0 00.5 0.1 60.5 0.2 120.5 0.3 180.5 0.4 240.5 0.5 30四、实验分析1. 计算样品电子浓度根据式子:UH=IBBd/ne,可以计算得出样品中电子浓度n,如下表所示:2. 计算材料电导率IB/A B/T UH/mV R/Ω J/A.m^-2 E/V.m^-1 σ/(S.m^-1)0.5 0 0.22 1.18 4.24E+5 0.64 3.59E+50.5 0.1 6.22 1.18 4.24E+5 0.64 3.59E+50.5 0.2 12.22 1.18 4.24E+5 0.64 3.59E+50.5 0.3 18.22 1.18 4.24E+5 0.64 3.59E+50.5 0.4 24.22 1.18 4.24E+5 0.64 3.59E+50.5 0.5 30.22 1.18 4.24E+5 0.64 3.59E+53. 计算电子的载流率通过本实验可以得到如下结论:1. 随着磁场强度的增加,霍尔电势差也随之增加。

霍耳效应实验报告原理

霍耳效应实验报告原理

一、实验背景霍尔效应是电磁学中的一个重要现象,由美国物理学家霍尔于1879年首次发现。

当电流垂直于磁场通过一个导体或半导体时,会在导体或半导体的垂直方向上产生一个电压,这个电压称为霍尔电压。

霍尔效应的研究不仅对基础物理学具有重要意义,而且在工程应用中也具有广泛的应用价值。

二、实验目的1. 理解霍尔效应的产生原理和基本规律。

2. 掌握霍尔效应实验的原理和方法。

3. 学习使用霍尔效应原理测量磁场的强度和方向。

4. 分析霍尔元件的特性,如霍尔系数、载流子浓度等。

三、实验原理1. 霍尔效应基本原理霍尔效应的产生可以用洛伦兹力来解释。

当电流通过半导体薄片时,载流子(电子或空穴)在电场作用下定向移动,形成电流。

当薄片置于垂直于电流方向的磁场中时,载流子会受到洛伦兹力的作用,导致其运动方向发生偏转。

由于载流子的偏转,薄片两侧会产生电荷积累,形成电势差,即霍尔电压。

2. 霍尔电压的计算根据洛伦兹力公式和电流密度公式,霍尔电压 \( U_H \) 可以表示为:\[ U_H = R_H \cdot I \cdot B \]其中:- \( R_H \) 为霍尔系数,与材料的性质有关;- \( I \) 为工作电流;- \( B \) 为磁感应强度。

3. 霍尔元件的特性霍尔元件是利用霍尔效应原理制成的传感器,具有以下特性:- 霍尔系数:霍尔系数是表征材料霍尔效应强度的一个重要参数,与材料的电子迁移率、载流子浓度和电荷量有关。

- 载流子浓度:载流子浓度越高,霍尔效应越明显。

- 温度依赖性:霍尔系数和载流子浓度都会受到温度的影响。

四、实验方法1. 实验装置霍尔效应实验装置主要包括霍尔元件、电源、电流表、电压表、磁铁等。

2. 实验步骤(1)将霍尔元件固定在实验装置上,确保其工作面与磁场方向垂直。

(2)调节电源,使霍尔元件中通过一定的工作电流。

(3)将磁铁置于霍尔元件附近,调整磁铁的位置和方向,使霍尔元件受到不同的磁场。

(4)测量霍尔元件的霍尔电压,记录数据。

大霍尔效应实验报告

大霍尔效应实验报告

大霍尔效应实验报告一、实验目的本实验旨在研究大霍尔效应,通过测量霍尔电压、电流、磁场强度等物理量,深入理解霍尔效应的原理和应用,掌握相关实验技能和数据处理方法。

二、实验原理霍尔效应是指当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这一现象称为霍尔效应。

霍尔电压$V_H$ 与通过导体的电流$I$、外加磁场的磁感应强度$B$ 以及导体的厚度$d$ 等因素有关,其关系式为:$V_H =\frac{RHIB}{d}$其中,$R_H$ 为霍尔系数,它与导体的材料性质有关。

在本实验中,我们通过给霍尔元件通以电流,并在其周围施加磁场,测量产生的霍尔电压,从而计算出霍尔系数等相关物理量。

三、实验仪器1、霍尔效应实验仪:包括磁场发生装置、霍尔元件、电流源、电压表等。

2、特斯拉计:用于测量磁场强度。

四、实验步骤1、连接实验仪器将霍尔元件插入实验仪的插槽中,确保接触良好。

按照电路图连接电流源、电压表和磁场发生装置。

2、测量霍尔电压与电流的关系设定磁场强度为一定值。

逐渐改变电流大小,测量不同电流下的霍尔电压,并记录数据。

3、测量霍尔电压与磁场强度的关系设定电流为一定值。

逐渐改变磁场强度,测量不同磁场强度下的霍尔电压,并记录数据。

4、测量不同方向磁场下的霍尔电压改变磁场方向,测量相应的霍尔电压。

5、重复测量对每个测量步骤进行多次测量,以减小误差。

五、实验数据记录与处理1、霍尔电压与电流的关系|电流(mA)|霍尔电压(mV)||||| 100 | 250 || 200 | 500 || 300 | 750 || 400 | 1000 || 500 | 1250 |根据数据绘制霍尔电压与电流的关系曲线,可以发现霍尔电压与电流呈线性关系。

2、霍尔电压与磁场强度的关系|磁场强度(T)|霍尔电压(mV)||||| 010 | 200 || 020 | 400 || 030 | 600 || 040 | 800 || 050 | 1000 |绘制霍尔电压与磁场强度的关系曲线,同样呈现线性关系。

霍尔效应实验报告优秀4篇

霍尔效应实验报告优秀4篇

霍尔效应实验报告优秀4篇实验四霍尔效应篇一实验原理1.液晶光开关的工作原理液晶的种类很多,仅以常用的TN(扭曲向列)型液晶为例,说明其工作原理。

TN型光开关的结构:在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。

棍的长度在十几埃(1埃=10-10米),直径为4~6埃,液晶层厚度一般为5-8微米。

玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。

上下电极之间的那些液晶分子因范德瓦尔斯力的作用,趋向于平行排列。

然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。

理论和实验都证明,上述均匀扭曲排列起来的结构具有光波导的性质,即偏振光从上电极表面透过扭曲排列起来的液晶传播到下电极表面时,偏振方向会旋转90度。

取两张偏振片贴在玻璃的两面,P1的透光轴与上电极的定向方向相同,P2的透光轴与下电极的定向方向相同,于是P1和P2的透光轴相互正交。

在未加驱动电压的情况下,来自光源的'自然光经过偏振片P1后只剩下平行于透光轴的线偏振光,该线偏振光到达输出面时,其偏振面旋转了90°。

这时光的偏振面与P2的透光轴平行,因而有光通过。

在施加足够电压情况下(一般为1~2伏),在静电场的作用下,除了基片附近的液晶分子被基片“锚定”以外,其他液晶分子趋于平行于电场方向排列。

于是原来的扭曲结构被破坏,成了均匀结构。

从P1透射出来的偏振光的偏振方向在液晶中传播时不再旋转,保持原来的偏振方向到达下电极。

这时光的偏振方向与P2正交,因而光被关断。

由于上述光开关在没有电场的情况下让光透过,加上电场的时候光被关断,因此叫做常通型光开关,又叫做常白模式。

霍尔效应实验报告

霍尔效应实验报告

一、实验目的1. 了解霍尔效应的产生原理及现象。

2. 掌握霍尔元件的基本结构和工作原理。

3. 通过实验测量霍尔系数、电导率等参数,判断半导体材料的导电类型。

4. 学习使用对称测量法消除副效应产生的系统误差。

5. 利用霍尔效应测量磁感应强度及磁场分布。

二、实验原理霍尔效应是当电流垂直于磁场通过导体时,在导体两侧会产生垂直于电流和磁场的电压差。

这种现象称为霍尔效应。

根据霍尔效应,可以推导出霍尔电压、霍尔系数、电导率等参数之间的关系。

三、实验仪器与材料1. 霍尔效应实验仪2. 直流电源3. 数字多用表4. 磁场发生器5. 半导体样品四、实验步骤1. 霍尔效应现象观察:将霍尔元件置于磁场中,调节电流和磁场方向,观察霍尔电压的变化。

2. 测量霍尔电压:使用数字多用表测量霍尔电压,记录数据。

3. 测量电流和磁场:使用数字多用表测量通过霍尔元件的电流和磁场强度,记录数据。

4. 计算霍尔系数和电导率:根据实验数据,计算霍尔系数和电导率。

5. 消除副效应:使用对称测量法消除副效应产生的系统误差。

6. 测量磁感应强度及磁场分布:利用霍尔效应测量磁感应强度及磁场分布。

五、实验结果与分析1. 霍尔效应现象观察:实验观察到,当电流和磁场垂直时,霍尔电压最大;当电流和磁场平行时,霍尔电压为零。

2. 测量霍尔电压:实验测得霍尔电压随电流和磁场强度的变化关系,符合霍尔效应的规律。

3. 计算霍尔系数和电导率:根据实验数据,计算出霍尔系数和电导率,与理论值基本一致。

4. 消除副效应:使用对称测量法消除副效应产生的系统误差,实验结果更加准确。

5. 测量磁感应强度及磁场分布:利用霍尔效应测量磁感应强度及磁场分布,结果与理论值基本一致。

六、实验结论1. 通过实验,我们了解了霍尔效应的产生原理及现象。

2. 掌握了霍尔元件的基本结构和工作原理。

3. 通过实验测量,我们验证了霍尔效应的基本规律,并计算出霍尔系数和电导率。

4. 使用对称测量法消除了副效应产生的系统误差,实验结果更加准确。

霍尔效应实验报告步骤(3篇)

霍尔效应实验报告步骤(3篇)

第1篇一、实验目的1. 理解霍尔效应的基本原理。

2. 学习使用霍尔效应实验仪测量磁场。

3. 掌握霍尔效应实验的数据记录和处理方法。

4. 通过实验确定材料的导电类型和载流子浓度。

二、实验原理霍尔效应是当电流通过一个导体或半导体时,若导体或半导体处于垂直于电流方向的磁场中,则会在导体或半导体的侧面产生电压,这个电压称为霍尔电压。

霍尔电压的大小与磁感应强度、电流强度以及导体或半导体的厚度有关。

三、实验仪器1. 霍尔效应实验仪2. 直流稳流电源3. 毫伏电压表4. 霍尔元件5. 导线6. 螺线管7. 磁铁四、实验步骤1. 仪器连接与调整- 将霍尔元件放置在实验仪的样品支架上,确保霍尔元件处于隙缝的中间位置。

- 按照实验仪的接线图连接电路,包括直流稳流电源、霍尔元件、螺线管和毫伏电压表。

- 调节稳流电源,使霍尔元件的工作电流保持在安全范围内(一般不超过10mA)。

- 使用调零旋钮调整毫伏电压表,确保在零磁场下电压读数为零。

2. 测量不等位电压- 在零磁场下,测量霍尔元件的不等位电压,记录数据。

3. 测量霍尔电流与霍尔电压的关系- 保持励磁电流不变,逐渐调节霍尔电流,从1.00mA开始,每隔1.0mA改变一次,记录每次霍尔电流对应的霍尔电压值。

- 改变霍尔电流的方向,重复上述步骤,记录数据。

4. 测量励磁电流与霍尔电压的关系- 保持霍尔电流不变,逐渐调节励磁电流,从100.0mA开始,每隔100.0mA改变一次,记录每次励磁电流对应的霍尔电压值。

- 改变励磁电流的方向,重复上述步骤,记录数据。

5. 绘制曲线- 根据实验数据,绘制霍尔电流与霍尔电压的关系曲线和励磁电流与霍尔电压的关系曲线。

6. 数据处理与分析- 根据霍尔效应的原理,计算霍尔系数和载流子浓度。

- 分析实验结果,确定材料的导电类型。

五、注意事项1. 操作过程中,注意安全,避免触电和电火花。

2. 霍尔元件的工作电流不应超过10mA,以保护元件。

3. 在调节电流和磁场时,注意观察毫伏电压表的读数变化,避免超出量程。

霍尔效应实验报告[共8篇]

霍尔效应实验报告[共8篇]

篇一:霍尔效应实验报告大学本(专)科实验报告课程名称:姓名:学院:系:专业:年级:学号:指导教师:成绩:年月日(实验报告目录)实验名称一、实验目的和要求二、实验原理三、主要实验仪器四、实验内容及实验数据记录五、实验数据处理与分析六、质疑、建议霍尔效应实验一.实验目的和要求:1、了解霍尔效应原理及测量霍尔元件有关参数.2、测绘霍尔元件的vh?is,vh?im曲线了解霍尔电势差vh与霍尔元件控制(工作)电流is、励磁电流im之间的关系。

3、学习利用霍尔效应测量磁感应强度b及磁场分布。

4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。

5、学习用“对称交换测量法”消除负效应产生的系统误差。

二.实验原理:1、霍尔效应霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。

当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。

如右图(1)所示,磁场b位于z的正向,与之垂直的半导体薄片上沿x正向通以电流is(称为控制电流或工作电流),假设载流子为电子(n型半导体材料),它沿着与电流is相反的x负向运动。

由于洛伦兹力fl的作用,电子即向图中虚线箭头所指的位于y轴负方向的b侧偏转,并使b侧形成电子积累,而相对的a侧形成正电荷积累。

与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力fe的作用。

随着电荷积累量的增加,fe增大,当两力大小相等(方向相反)时,fl=-fe,则电子积累便达到动态平衡。

这时在a、b两端面之间建立的电场称为霍尔电场eh,相应的电势差称为霍尔电压vh。

设电子按均一速度向图示的x负方向运动,在磁场b作用下,所受洛伦兹力为fl=-eb式中e为电子电量,为电子漂移平均速度,b为磁感应强度。

同时,电场作用于电子的力为 fe??eeh??evh/l 式中eh为霍尔电场强度,vh为霍尔电压,l为霍尔元件宽度当达到动态平衡时,fl??fe ?vh/l (1)设霍尔元件宽度为l,厚度为d,载流子浓度为n,则霍尔元件的控制(工作)电流为 is?ne (2)由(1),(2)两式可得 vh?ehl?ib1isb?rhs (3)nedd即霍尔电压vh(a、b间电压)与is、b的乘积成正比,与霍尔元件的厚度成反比,比例系数rh?1称为霍尔系数,它是反映材料霍尔效应强弱的重要参数,根据材料的电导ne率σ=neμ的关系,还可以得到:rh??/???? (4)式中?为材料的电阻率、μ为载流子的迁移率,即单位电场下载流子的运动速度,一般电子迁移率大于空穴迁移率,因此制作霍尔元件时大多采用n型半导体材料。

霍尔效应的研究实验报告

霍尔效应的研究实验报告

霍尔效应的研究实验报告一、实验目的1、了解霍尔效应的基本原理。

2、掌握用霍尔效应测量磁场的方法。

3、学会使用霍尔效应实验仪测量霍尔电压、霍尔电流等物理量。

二、实验原理当电流 I 沿垂直于磁场 B 的方向通过半导体薄片时,在薄片的垂直于电流和磁场方向的两侧 a、b 之间会产生一个电位差 UH,这一现象称为霍尔效应。

霍尔电压 UH 的大小与电流 I、磁感应强度 B 以及薄片的厚度 d 有关,它们之间的关系为:UH = KHIB (1)其中 KH 称为霍尔元件的灵敏度,它是一个与材料性质和几何尺寸有关的常数。

假设霍尔元件为一个矩形,其长为 l,宽为 w,厚度为 d,则霍尔元件的灵敏度 KH 可以表示为:KH = 1 /(ned) (2)其中 n 为载流子浓度,e 为电子电荷量。

由(1)式可知,如果已知霍尔元件的灵敏度 KH,通过测量霍尔电压 UH 和电流 I,就可以计算出磁感应强度 B。

三、实验仪器霍尔效应实验仪、直流电源、毫安表、伏特表、特斯拉计、霍尔元件等。

四、实验步骤1、连接实验仪器按照实验电路图连接好霍尔效应实验仪、直流电源、毫安表、伏特表等仪器。

确保连接正确无误,避免短路或断路。

2、调节磁场打开特斯拉计,调节磁场强度到所需的值。

在调节过程中,注意观察磁场强度的变化,确保其稳定在设定值附近。

3、测量霍尔电压接通直流电源,调节电流 I 到一定值。

然后,使用伏特表测量霍尔元件两侧的霍尔电压 UH。

改变电流 I 的方向和磁场 B 的方向,分别测量相应的霍尔电压,并记录数据。

4、改变电流和磁场分别改变电流 I 和磁场 B 的大小,重复步骤 3,测量多组数据。

5、数据处理根据测量得到的数据,计算出不同电流和磁场条件下的霍尔电压UH,并利用公式(1)计算出相应的磁感应强度 B。

绘制 B I 曲线,分析实验结果。

五、实验数据记录与处理|电流 I(mA)|磁场 B(T)|霍尔电压 UH(mV)(+I,+B)|霍尔电压 UH(mV)(I,+B)|霍尔电压 UH(mV)(+I,B)|霍尔电压 UH(mV)(I,B)|平均霍尔电压 UH (mV)|||||||||| 100 | 010 | 250 |-248 |-252 | 250 | 250 || 100 | 020 | 502 |-498 |-500 | 500 | 500 || 100 | 030 | 750 |-745 |-752 | 750 | 750 || 200 | 010 | 500 |-495 |-505 | 500 | 500 || 200 | 020 | 1000 |-990 |-1010 | 1000 | 1000 || 200 | 030 | 1500 |-1485 |-1515 | 1500 | 1500 |根据实验数据,计算出不同条件下的平均霍尔电压 UH,并利用公式 UH = KHIB 计算出相应的磁感应强度 B。

霍尔效应实验报告(共8篇)

霍尔效应实验报告(共8篇)

霍尔效应实验报告(共8篇)篇一:霍尔效应实验报告大学本(专)科实验报告课程名称:姓名:学院:系:专业:年级:学号:指导教师:成绩:年月日(实验报告目录)实验名称一、实验目的和要求二、实验原理三、主要实验仪器四、实验内容及实验数据记录五、实验数据处理与分析六、质疑、建议霍尔效应实验一.实验目的和要求:1、了解霍尔效应原理及测量霍尔元件有关参数.2、测绘霍尔元件的vhis,vhim曲线了解霍尔电势差vh与霍尔元件控制(工作)电流is、励磁电流im之间的关系。

3、学习利用霍尔效应测量磁感应强度b及磁场分布。

4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。

5、学习用“对称交换测量法”消除负效应产生的系统误差。

二.实验原理:1、霍尔效应霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。

当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。

如右图(1)所示,磁场b位于z的正向,与之垂直的半导体薄片上沿x正向通以电流is(称为控制电流或工作电流),假设载流子为电子(n型半导体材料),它沿着与电流is相反的x负向运动。

由于洛伦兹力fl的作用,电子即向图中虚线箭头所指的位于y轴负方向的b侧偏转,并使b侧形成电子积累,而相对的a侧形成正电荷积累。

与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力fe的作用。

随着电荷积累量的增加,fe增大,当两力大小相等(方向相反)时,fl=-fe,则电子积累便达到动态平衡。

这时在a、b两端面之间建立的电场称为霍尔电场eh,相应的电势差称为霍尔电压vh。

设电子按均一速度向图示的x负方向运动,在磁场b作用下,所受洛伦兹力为fl=-eb式中e为电子电量,为电子漂移平均速度,b为磁感应强度。

同时,电场作用于电子的力为feeehevh/l 式中eh为霍尔电场强度,vh为霍尔电压,l为霍尔元件宽度当达到动态平衡时,flfe vh/l (1)设霍尔元件宽度为l,厚度为d,载流子浓度为n,则霍尔元件的控制(工作)电流为isne (2)由(1),(2)两式可得 vhehl ib1isbrhs (3)nedd即霍尔电压vh(a、b间电压)与is、b的乘积成正比,与霍尔元件的厚度成反比,比例系数rh1称为霍尔系数,它是反映材料霍尔效应强弱的重要参数,根据材料的电导ne率σ=neμ的关系,还可以得到:rh/ (4)式中为材料的电阻率、μ为载流子的迁移率,即单位电场下载流子的运动速度,一般电子迁移率大于空穴迁移率,因此制作霍尔元件时大多采用n型半导体材料。

大学霍尔效应实验报告

大学霍尔效应实验报告

实验名称:霍尔效应实验实验日期: 2023年11月1日实验地点:物理实验室实验者: [姓名]指导教师: [教师姓名]一、实验目的1. 理解霍尔效应的基本原理和现象。

2. 掌握霍尔效应实验的原理和方法。

3. 通过实验测量霍尔元件的霍尔电压与霍尔元件工作电流、励磁电流之间的关系。

4. 学习利用霍尔效应测量磁感应强度及磁场分布。

5. 判断霍尔元件载流子的类型,并计算其浓度和迁移率。

二、实验原理霍尔效应是指当电流垂直于磁场通过导体时,在导体的垂直方向上产生电动势的现象。

这一现象是由美国物理学家霍尔在1879年发现的。

根据霍尔效应,当载流子在磁场中受到洛伦兹力的作用时,会发生偏转,从而在垂直于电流和磁场的方向上产生电动势。

霍尔电压(VH)与电流(I)和磁感应强度(B)之间的关系可以用以下公式表示:\[ VH = k \cdot I \cdot B \]其中,k是霍尔系数,它取决于材料的性质。

三、实验仪器1. 霍尔效应实验仪2. 电流表3. 电压表4. 励磁电源5. 磁场发生器6. 样品支架四、实验内容及步骤1. 仪器调整:按照实验仪器的说明书进行仪器调整,确保霍尔元件位于磁场中间,并且连接好所有电路。

2. 测量霍尔电压:闭合开关,调节励磁电源,使磁场达到预定的强度。

然后调节霍尔元件的工作电流,记录不同电流下的霍尔电压。

3. 测量霍尔电压与电流的关系:在不同的励磁电流下,重复步骤2,记录不同电流下的霍尔电压。

4. 测量霍尔电压与励磁电流的关系:在不同的工作电流下,改变励磁电流,记录不同励磁电流下的霍尔电压。

5. 数据处理:根据实验数据,绘制霍尔电压与工作电流、励磁电流的关系曲线。

6. 计算霍尔系数:根据实验数据,计算霍尔系数k。

7. 判断载流子类型:根据霍尔电压的符号,判断霍尔元件载流子的类型。

8. 计算载流子浓度和迁移率:根据霍尔系数和实验数据,计算载流子浓度和迁移率。

五、实验结果与分析1. 霍尔电压与工作电流的关系:实验结果表明,霍尔电压与工作电流成正比。

霍尔效应实验报告(共8篇)

霍尔效应实验报告(共8篇)

篇一:霍尔效应实验报告大学本(专)科实验报告课程名称:姓名:学院:系:专业:年级:学号:指导教师:成绩:年月日(实验报告目录)实验名称一、实验目的和要求二、实验原理三、主要实验仪器四、实验内容及实验数据记录五、实验数据处理与分析六、质疑、建议霍尔效应实验一.实验目的和要求:1、了解霍尔效应原理及测量霍尔元件有关参数.2、测绘霍尔元件的vhis,vhim曲线了解霍尔电势差vh与霍尔元件控制(工作)电流is、励磁电流im之间的关系。

3、学习利用霍尔效应测量磁感应强度b及磁场分布。

4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。

5、学习用“对称交换测量法”消除负效应产生的系统误差。

二.实验原理:1、霍尔效应霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。

当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。

如右图(1)所示,磁场b位于z的正向,与之垂直的半导体薄片上沿x正向通以电流is(称为控制电流或工作电流),假设载流子为电子(n型半导体材料),它沿着与电流is相反的x负向运动。

由于洛伦兹力fl的作用,电子即向图中虚线箭头所指的位于y轴负方向的b侧偏转,并使b侧形成电子积累,而相对的a侧形成正电荷积累。

与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力fe的作用。

随着电荷积累量的增加,fe增大,当两力大小相等(方向相反)时,fl=-fe,则电子积累便达到动态平衡。

这时在a、b两端面之间建立的电场称为霍尔电场eh,相应的电势差称为霍尔电压vh。

设电子按均一速度向图示的x负方向运动,在磁场b作用下,所受洛伦兹力为fl=-eb式中e为电子电量,为电子漂移平均速度,b为磁感应强度。

同时,电场作用于电子的力为 feeehevh/l 式中eh为霍尔电场强度,vh为霍尔电压,l为霍尔元件宽度当达到动态平衡时,flfe vh/l (1)设霍尔元件宽度为l,厚度为d,载流子浓度为n,则霍尔元件的控制(工作)电流为isne (2)由(1),(2)两式可得 vhehlib1isbrhs (3)nedd即霍尔电压vh(a、b间电压)与is、b的乘积成正比,与霍尔元件的厚度成反比,比例系数rh1称为霍尔系数,它是反映材料霍尔效应强弱的重要参数,根据材料的电导ne率σ=neμ的关系,还可以得到:rh/ (4)式中为材料的电阻率、μ为载流子的迁移率,即单位电场下载流子的运动速度,一般电子迁移率大于空穴迁移率,因此制作霍尔元件时大多采用n型半导体材料。

霍尔效应实验报告(共8篇).doc

霍尔效应实验报告(共8篇).doc

霍尔效应实验报告(共8篇).doc
实验名称:霍尔效应实验
实验目的:通过测量半导体中霍尔电压和霍尔电流,了解半导体中的电子输运性质。

实验器材:霍尔电流源、霍尔电压计、半导体样品、直流电源、数字万用表等。

实验原理:当一个导电材料中存在磁场时,载流子将在该磁场下发生偏转,从而导致材料的横向电场。

这种结果被称为霍尔效应。

V_H = KBIB/Tne
其中V_H为霍尔电压,B为外磁场强度,I为霍尔电流,n为携带载流子的数量密度。

实验步骤:
1. 将半导体样品制成薄片,并对其进样操作。

2. 通过在泳道中流动电流,产生磁场,测量霍尔电压和磁场。

3. 通过改变霍尔电流来改变携带量子的数量密度。

4. 通过改变温度来研究电子输运性质。

实验数据:
实验中测得的数据如下表所示:
B(T) | I(mA) | V_H(mV) | n(cm^-3)
0.002 | 3 | 3.5 | 2.2*10^12
0.004 | 5 | 7.0 | 2.5*10^12
0.006 | 7 | 10.5 | 2.8*10^12
0.008 | 9 | 14.0 | 3.5*10^12
0.01 | 10 | 17.5 | 4.0*10^12
实验结果:
通过上述数据,我们可以绘制出霍尔电压与磁场的曲线,通过分析该曲线,可以获得半导体的部分参数,如携带载流子的数量密度、迁移率和磁场的线性范围。

除了以上的结论,该实验还可以用于检测半导体的杂质和掺杂浓度等质量因素,并可用于研究半导体中的输运行为(例如迁移率),以便确定相应观察特性的重要性及其与材料的性质之间的关联性。

霍尔效应测磁场实验报告(共7篇)

霍尔效应测磁场实验报告(共7篇)

篇一:霍尔元件测磁场实验报告用霍尔元件测磁场前言:霍耳效应是德国物理学家霍耳(a.h.hall 1855—1938)于1879年在他的导师罗兰指导下发现的。

由于这种效应对一般的材料来讲很不明显,因而长期未得到实际应用。

六十年代以来,随着半导体工艺和材料的发展,这一效应才在科学实验和工程技术中得到了广泛应用。

利用半导体材料制成的霍耳元件,特别是测量元件,广泛应用于工业自动化和电子技术等方面。

由于霍耳元件的面积可以做得很小,所以可用它测量某点或缝隙中的磁场。

此外,还可以利用这一效应来测量半导体中的载流子浓度及判别半导体的类型等。

近年来霍耳效应得到了重要发展,冯﹒克利青在极强磁场和极低温度下观察到了量子霍耳效应,它的应用大大提高了有关基本常数测量的准确性。

在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍耳器件,会有更广阔的应用前景。

了解这一富有实用性的实验,对今后的工作将大有益处。

教学目的:1. 了解霍尔效应产生的机理,掌握测试霍尔器件的工作特性。

2. 掌握用霍尔元件测量磁场的原理和方法。

3. 学习用霍尔器件测绘长直螺线管的轴向磁场分布。

教学重难点: 1. 霍尔效应2. 霍尔片载流子类型判定。

实验原理如右图所示,把一长方形半导体薄片放入磁场中,其平面与磁场垂直,薄片的四个侧面分别引出两对电极(m、n和p、s),径电极m、n 通以直流电流ih,则在p、s极所在侧面产生电势差,这一现象称为霍尔效应。

这电势差叫做霍尔电势差,这样的小薄片就是霍尔片。

图片已关闭显示,点此查看假设霍尔片是由n型半导体材料制成的,其载流子为电子,在电极m、n上通过的电流由m极进入,n极出来(如图),则片中载流子(电子)的运动方向与电流is的方向相反为v,运动的载流子在磁场b中要受到洛仑兹力fb的作用,fb=ev×b,电子在fb的作用下,在由n→m运动的过程中,同时要向s极所在的侧面偏转(即向下方偏转),结果使下侧面积聚电子而带负电,相应的上侧面积(p极所在侧面)带正电,在上下两侧面之间就形成电势差vh,即霍尔电势差。

霍尔效应实验报告(附带实验结论)

霍尔效应实验报告(附带实验结论)

《霍尔效应》参考实验报告附带结论实验目的1.了解霍尔效应实验原理。

2.测量霍尔电流与霍尔电压之间的关系。

3.测量励磁电流与霍尔电压之间的关系。

4.学会用“对称测量法”消除负效应的影响。

实验仪器霍尔效应实验仪。

实验步骤1.正确连接电路,调节霍尔元件处于隙缝的中间位置。

2.测量不等位电势。

令励磁电流I=0mA,霍尔电流H I=1.00mA,M2.00mA,…,10.00mA,测量霍尔元件的不等位电势随霍尔电流的对应关系。

2.测量霍尔电流I与霍尔电压H U的关系。

令励磁电流M I=400mA,调节H霍尔电流I=1.00mA,2.00mA,…,10.00mA(每隔1.0mA改变一次),H分别改变励磁电流和霍尔电流的方向,记录对应的霍尔电压。

3.测量励磁电流I与霍尔电压H U的关系。

令霍尔电流H I=8.00mA,调M节励磁电流I=100.0mA,200.0mA,…,1000.0mA(每隔100.0mA改M变一次),分别改变励磁电流和霍尔电流的方向,记录对应的霍尔电压。

实验数据记录及处理(2)测量霍尔电流和霍尔电压的关系(M I =400mA)(3)测量励磁电流和霍尔电压的关系(H I =8.00mA)实验结论1、当励磁电流M I=0时,霍尔电压不为0,且随着霍尔电流的增加而增加,通过作图发现二者满足线性关系。

说明在霍尔元件内存在一不等位电压,这是由于测量霍尔电压的两条接线没有在同一个等势面上造成的。

2、当励磁电流保持恒定,改变霍尔电流时,测量得到的霍尔电压随霍尔电流的增加而增加,通过作图发现二者之间满足线性关系。

3、当霍尔电压保持恒定,改变励磁电流时,测量得到的霍尔电压随励磁电流的增加而增加,通过作图发现二者之间也满足线性关系。

注意事项:1.不要带电接线,中间改变电路时,一定要先关闭电源,再连接电路。

2.实验完成后要整理实验仪器,先关闭电源,再将电线拆下,捋好后放在实验仪器的右侧。

3.仪器开机前应将I、H I调节旋钮逆时针方向旋到底,使其输出电M流趋于最小,然后再开机。

霍尔效应实验报告

霍尔效应实验报告

霍尔效应实验报告一、实验目的1、了解霍尔效应的基本原理。

2、学会用“对称测量法”消除副效应的影响。

3、测量霍尔元件的霍尔系数和电导率。

二、实验原理1、霍尔效应当电流 I 沿 X 方向通过导体时,如果在 Z 方向加上磁场 B,那么在Y 方向上会产生电动势,这种现象称为霍尔效应。

产生的电动势称为霍尔电动势,用 UH 表示。

霍尔电动势的大小与电流I、磁场B 以及导体在磁场中的位置有关,其关系式为:UH = KH·I·B ,其中 KH 为霍尔系数。

2、副效应及其消除方法在实际测量中,会存在一些副效应,影响霍尔电动势的测量结果。

主要的副效应有:(1)爱廷豪森效应:由于载流子的速度不同,导致在不同的速度下能量不同,从而产生温差电动势。

(2)能斯特效应:由于电流和磁场的作用,在电极两端产生横向温差电动势。

(3)里纪勒杜克效应:由于热扩散电流的磁场作用,产生附加的温差电动势。

为了消除这些副效应的影响,通常采用“对称测量法”。

即分别测量电流和磁场正向、反向时的霍尔电动势,然后取平均值。

三、实验仪器霍尔效应实验仪、特斯拉计、直流电源、数字电压表等。

四、实验步骤1、连接电路按照实验仪器的说明书,将霍尔效应实验仪、特斯拉计、直流电源和数字电压表正确连接。

2、调节仪器(1)将特斯拉计调零。

(2)调节直流电源,使其输出合适的电流。

3、测量霍尔电动势(1)保持电流 I 不变,改变磁场 B 的大小,测量不同磁场下的霍尔电动势 UH 。

(2)改变电流 I 的方向,重复上述测量。

(3)保持磁场 B 不变,改变电流 I 的大小,测量不同电流下的霍尔电动势 UH 。

4、记录数据将测量得到的数据记录在表格中。

五、实验数据记录与处理1、数据记录表格|磁场 B(T)|电流 I(mA)| UH1(mV)| UH2(mV)| UH3(mV)| UH4(mV)| UH(mV)|||||||||| B1 | I1 ||||||| B1 | I1 ||||||| B1 | I1 ||||||| B1 | I1 ||||||| B2 | I2 ||||||| B2 | I2 ||||||| B2 | I2 ||||||| B2 | I2 ||||||2、数据处理(1)根据对称测量法,计算霍尔电动势的平均值:UH =(UH1 UH2 + UH3 UH4)/ 4 。

霍尔效应测磁场实验报告(共7篇)

霍尔效应测磁场实验报告(共7篇)

篇一:霍尔元件测磁场实验报告用霍尔元件测磁场前言:霍耳效应是德国物理学家霍耳(a.h.hall 1855—1938)于1879年在他的导师罗兰指导下发现的。

由于这种效应对一般的材料来讲很不明显,因而长期未得到实际应用。

六十年代以来,随着半导体工艺和材料的发展,这一效应才在科学实验和工程技术中得到了广泛应用。

利用半导体材料制成的霍耳元件,特别是测量元件,广泛应用于工业自动化和电子技术等方面。

由于霍耳元件的面积可以做得很小,所以可用它测量某点或缝隙中的磁场。

此外,还可以利用这一效应来测量半导体中的载流子浓度及判别半导体的类型等。

近年来霍耳效应得到了重要发展,冯﹒克利青在极强磁场和极低温度下观察到了量子霍耳效应,它的应用大大提高了有关基本常数测量的准确性。

在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍耳器件,会有更广阔的应用前景。

了解这一富有实用性的实验,对今后的工作将大有益处。

教学目的:1. 了解霍尔效应产生的机理,掌握测试霍尔器件的工作特性。

2. 掌握用霍尔元件测量磁场的原理和方法。

3. 学习用霍尔器件测绘长直螺线管的轴向磁场分布。

教学重难点: 1. 霍尔效应2. 霍尔片载流子类型判定。

实验原理如右图所示,把一长方形半导体薄片放入磁场中,其平面与磁场垂直,薄片的四个侧面分别引出两对电极(m、n和p、s),径电极m、n 通以直流电流ih,则在p、s极所在侧面产生电势差,这一现象称为霍尔效应。

这电势差叫做霍尔电势差,这样的小薄片就是霍尔片。

图片已关闭显示,点此查看假设霍尔片是由n型半导体材料制成的,其载流子为电子,在电极m、n上通过的电流由m极进入,n极出来(如图),则片中载流子(电子)的运动方向与电流is的方向相反为v,运动的载流子在磁场b中要受到洛仑兹力fb的作用,fb=ev×b,电子在fb的作用下,在由n→m运动的过程中,同时要向s极所在的侧面偏转(即向下方偏转),结果使下侧面积聚电子而带负电,相应的上侧面积(p极所在侧面)带正电,在上下两侧面之间就形成电势差vh,即霍尔电势差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南昌大学物理实验报告课程名称:普通物理实验(2)实验名称:霍尔效应学院:专业班级:学生姓名:学号:实验地点:座位号:实验时间:一、 实验目的: 1、了解霍尔效应法测磁感应强度S I 的原理和方法;2、学会用霍尔元件测量通电螺线管轴向磁场分布的基本方法;二、 实验仪器:霍尔元件测螺线管轴向磁场装置、多量程电流表2只、电势差计、滑动变阻器、双路直流稳压电源、双刀双掷开关、连接导线15根。

三、 实验原理:1、霍尔效应霍尔效应本质上是运动的带电粒子在磁场中受洛仑磁力作用而引起的偏转。

当带电粒子(电子或空穴)被约束在固体材料中,这种偏转导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横加电场,即霍尔电场H E .如果H E <0,则说明载流子为电子,则为n 型试样;如果H E >0,则说明载流子为空穴,即为p 型试样。

显然霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场力e H E 与洛仑磁力B v e 相等,样品两侧电荷的积累就达到动态平衡,故有:e H E =-B v e其中E H 为霍尔电场,v 是载流子在电流方向上的平均速度。

若试样的宽度为b ,厚度为d ,载流子浓度为n ,则 bd v ne I由上面两式可得:dB I R d BI ne b E V S H S H H ===1 (3)即霍尔电压H V (上下两端之间的电压)与B I S 乘积成正比与试样厚度d 成反比。

比列系数neR H 1=称为霍尔系数,它是反应材料霍尔效应强弱的重要参量。

只要测出H V 以及知道S I 、B 和d 可按下式计算H R :410⨯=BI dV R S H H 2、霍尔系数H R 与其他参量间的关系根据H R 可进一步确定以下参量:(1)由H R 的符号(或霍尔电压的正负)判断样品的导电类型。

判别方法是电压为负,H R 为负,样品属于n 型;反之则为p 型。

(2)由H R 求载流子浓度n.即eR n H 1= 这个关系式是假定所有载流子都具有相同的漂移速度得到的。

(3)结合电导率的测量,求载流子的迁移率μ与载流子浓度n 以及迁移率μ之间有如下关系μσne = 即μ=σH R ,测出σ值即可求μ。

3、霍尔效应与材料性能的关系由上述可知,要得到大的霍尔电压,关键是选择霍尔系数大(即迁移率高、电阻率也较高)的材料。

因μρ=H R ,金属导体μ和ρ都很低;而不良导体ρ虽高,但μ极小,所以这两种材料的霍尔系数都很小,不能用来制造霍尔器件。

半导体μ高,ρ适中,是制造霍尔元件较为理想的材料,由于电子的迁移率比空穴迁移率大,所以霍尔元件多采用n 型材料,其次霍尔电压的大小与材料的厚度成反比,因此薄膜型的霍尔元件的输出电压较片状要高得多。

就霍尔器件而言,其厚度是一定的,所以实用上采用nedK H 1=来表示器件的灵敏度,H K 称为霍尔灵敏度,单位为()T mA mV∙.4、伴随霍尔效应出现的几个副效应及消除办法在研究固体导电的过程中,继霍尔效应之后又相继发现了爱廷豪森效应、能斯特效应、理吉勒杜克效应,这些都属于热磁效应。

现在介绍如下: (1)爱廷豪森效应电压爱廷豪森发现,由于载流子速度不同,在磁场的作用下所受的洛仑磁力不相等,快速载流子受力大而能量高,慢速载流子受力小而能量低,因而导致霍尔元件的一端较为另一端温度高而形成一个温度梯度场,从而出现一个温差电压。

此效应产生的电压的大小与电流I 、磁感应强度B 的大小成正比,方向与H V 一致。

因此在实验中无法消去,但电压值一般较小,由它带来的误差约为5%左右。

(2)能斯特效应电压由于电流输入输出两引线端焊点处的电阻不可能完全相等,因此通电后会产生不同的势效应,使x 方向产生温度梯度。

电子将从热端扩散到冷端,扩散电子在磁场中的作用下在横向形成电场,从而产生电压。

电压的正负与磁场B 有关,与电流I 无关。

(3)里纪-勒杜克效应电压由能斯特效应引起的扩散电流中的载流子速度不一样,类似于爱廷豪森效应,也将在y 方向产生温度梯度场,导致产生一附加电压,电压的正负与磁感应强度B 有关,与电流I 无关。

(4)不等势电势差不等势电势差是由于霍尔元件的材料本身不均匀,以及电压输出端引线在制作时不可能绝对对称焊接在霍尔片的两侧所引起的。

这时即使不加磁场也存在这种效应。

若元件制作不好,有可能有着相同的数量级,因此不等势电势差是影响霍尔电压的一种最大的副效应。

电压的正负只与电流有关,与磁感应强度B 无关。

因为在产生霍尔效应的同时伴随着各种副效应,导致实验测得的两极间的电压并不等于真实的霍尔电压H V 值,而是包括各种副效应所引起的附加电压,因此必须设法消除。

根据副效应产生的机理可知,采用电流和磁场换向的对称测量法,基本上能把副效应的影响从测量结果中消除。

即在规定了电流和磁场正反向后,分别测量由下列四组不同方向的S I 和B 组合的A A V /(/A ,A 两侧的电势差)即SS S S I B I B I B I B -+--+-++,,,,4321////V V V V V V V V A A A A A A A A ====然后求4321V V V V 、、、代数平均值,得:44321V V V V V H -+-=通过上述的测量方法,虽然还不能消除所有的副效应,但引入的误差不大,可以忽略不计。

四、 实验内容:1、掌握仪器性能,连接测试仪与实验仪之间的各组连线(1)开、关机前,测试仪的“S I 调节”和“M I 调节”旋钮均置零位(即逆时针旋转到底);(2)按课本装置图连接测试仪和实验仪之间各组连线。

注意:(1)样品各电机引线与对应的双刀开关之间的连线已经制造好了,不能再动。

(2)严禁将测试仪的励磁电流的输出接口误接到实验仪的其他输入输出端口,否则一旦通电,霍尔样品会被立即损毁。

本实验样品的尺寸为:d=0.5mm,b=4.0mm,l=3.0mm 。

本实验霍尔片已处于空隙中间,不能随意改变y 轴方向的高度,以免霍尔片与磁极间摩擦而受损。

(3)接通电源,预热数分钟,电流表显示“.000”(当按下“测量选择”键时)或“0.00”(放开“测量选择”键时)。

(4)置“测量选择”与S I 档,电压表所示的值即虽“S I 调节”旋钮顺时针转动而增大,其变化范围为0-10mA 时电压表H V 所示读数为“不等势”电压值,它随S I 增大而增大,S I 换向,H V 极性改号。

取S I =2mA.(5)置“测量选择”与M I 挡(按键),顺时针转动“M I 调节”旋钮,电流表变化范围为0-1A 此时H V 值随M I 增大而增大,M I 换向,H V 极性改号。

至此,应将“M I 调节”旋钮置零位(即逆时针旋转到底)。

(6)放开测量选择键,再测S I ,调节S I ≈2mA,然后将“H V ,σV 输出”切换开关拨向σV 一侧,测量σV 电压;S I 换向,σV 也改号。

说明霍尔样品的各电极工作正常,可进行测量。

将“H V ,σV 输出”切换开关恢复H V 一侧。

2、测绘H V -S I 曲线将测试仪的“功能转换”置H V ,S I 和M I 换向开关掷向上方,表明S I 和M I 均为正值。

反之则为负。

保持M I =0.600A ,改变S I 的值,S I 取值范围为1.00-4.00mA.将实验测量值记录表格。

3、测绘H V -M I 曲线保持S I =3.00mA,改变M I 的值,M I 取值范围为0.300-0.800A.将测量数据记入表格。

4、测量σV 值将“H V ,σV 输出”拨向σV 侧,“功能转换”置σV .在零磁场下(M I =0),取SI =2.00mA,测量σV 。

5、确定样品导电类型将实验仪三组双刀开关掷向上方,取S I =2.00mA ,M I =0.600A.测量A A V /大小及极性,由此判断样品导电类型。

6、求样品的H R 、n 、σ和μ值7、测单边水平方向磁场分布(S I =2.00mA ,M I =0.600A )五、 实验数据及数据分析处理:(1)数据记录参数表。

表1:绘制 实验曲线数据记录表(表2:绘制实验曲线数据记录表((2)画出曲线和曲线。

(3)记下样品的相关参量、、值,根据在零磁场下,使测得的(即)值计算电导率。

其中已知:、、测得则(4)确定样品的导电类型(p型还是n型)。

由霍尔电压的正负判断为n型(5)从测试仪电磁铁的线包上查出B的大小与的关系,并求(,)、n和值。

B的大小与的关系为.,时得(6)测单边水平方向磁场分布(测试条件,),测量点不得少于8点(不等步长),以磁心中间为相对零点位置,作图,另半边作图时对称补足。

-5.98 -5.99 -6.00 -5.93 -5.15 -4.36 -3.50 -2.80欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。

相关文档
最新文档