变温霍尔效应实验报告

合集下载

变温霍尔效应实验报告

变温霍尔效应实验报告

变温霍尔效应实验报告引言变温霍尔效应是指在磁场作用下,当导体中有电流通过时,导体的一侧会产生电势差。

这种现象被称为霍尔效应,而当温度也发生变化时,导体中的电阻会发生相应的变化,从而产生变温霍尔效应。

本实验旨在探究变温霍尔效应的基本原理,并通过实验测量和计算,验证其存在和影响因素。

实验步骤1. 准备实验所需材料和设备•霍尔效应测量装置•变温装置•直流电源•电流表•电压表•磁场源2. 搭建实验电路将直流电源、电流表和电压表依次连接,并接入霍尔效应测量装置。

根据实验要求设置合适的电流大小和电压测量范围。

3. 定义实验参数确定实验中需要测量的参数,包括导体的电流、电压以及磁场的大小和方向。

4. 设置变温装置根据实验要求,设置合适的温度范围,并将变温装置与实验电路连接。

5. 测量电流和电压通过直流电源进行电流的调节,并使用电压表分别测量导体两端的电压。

6. 改变温度通过调节变温装置的温度,改变导体的温度,并观察电流和电压的变化。

7. 测量霍尔电压在实验过程中,使用霍尔效应测量装置测量导体侧面产生的霍尔电压。

8. 记录实验数据根据实验步骤和测量结果,记录实验数据,并绘制相应的实验曲线。

结果与讨论通过实验观察和测量,我们可以得到导体在不同温度和磁场下的电流、电压和霍尔电压的变化关系。

根据实验数据,我们可以进一步分析和讨论变温霍尔效应的影响因素和规律。

在实验中,温度的变化会导致导体的电阻发生变化,从而影响电流和电压的测量结果。

此外,磁场的大小和方向也会对霍尔电压的测量产生影响。

通过分析实验数据,我们可以得到不同温度和磁场条件下的霍尔电压的变化趋势,并进一步探究变温霍尔效应的特性和应用。

结论通过本实验,我们验证了变温霍尔效应的存在,并探究了其影响因素和规律。

实验结果表明,导体的温度和磁场对霍尔电压产生明显的影响,可以通过实验数据和计算分析得到相应的变化趋势和数值关系。

变温霍尔效应在实际应用中具有重要意义,可以用于温度测量、磁场测量和物质性质研究等领域。

变温霍尔效应实验报告

变温霍尔效应实验报告

变温霍尔效应实验报告变温霍尔效应实验报告引言变温霍尔效应是一种基于霍尔效应的实验现象,通过在材料中施加不同的温度梯度,可以观察到电流产生的变化。

本实验旨在探究变温霍尔效应的原理和应用,并通过实验验证相关理论。

实验目的1. 理解霍尔效应和变温霍尔效应的基本原理;2. 掌握变温霍尔效应实验的操作方法;3. 分析实验数据,验证变温霍尔效应的存在。

实验原理霍尔效应是指当电流通过一块导电材料时,垂直于电流方向施加磁场,会在材料的一侧产生电势差。

这一现象可以用以下公式描述:VH = B * I * RH其中,VH为霍尔电压,B为磁感应强度,I为电流,RH为霍尔系数。

变温霍尔效应则是在霍尔效应的基础上,通过改变材料的温度,观察霍尔电压的变化。

根据热电效应的原理,当材料的温度发生变化时,电子和空穴的浓度会发生变化,从而影响霍尔电压的大小。

实验装置1. 变温霍尔效应实验装置;2. 电源;3. 磁铁。

实验步骤1. 将变温霍尔效应实验装置连接好,并接入电源;2. 调节磁铁的位置和磁场强度,使其垂直于电流方向;3. 设置不同的温度梯度,记录相应的霍尔电压值;4. 根据实验数据,绘制出霍尔电压与温度梯度的关系曲线。

实验结果与分析根据实验数据,我们得到了一组霍尔电压与温度梯度的关系曲线。

从曲线可以看出,在不同的温度梯度下,霍尔电压呈现出不同的变化趋势。

当温度梯度增大时,霍尔电压也随之增大,呈现出线性关系。

这与变温霍尔效应的理论预测相符。

通过分析实验数据,我们可以得出以下结论:1. 变温霍尔效应存在,通过改变温度梯度可以调节霍尔电压的大小;2. 温度梯度与霍尔电压呈线性关系,即温度梯度越大,霍尔电压越大。

实验应用变温霍尔效应在实际应用中具有广泛的潜力。

例如,在热电转换器件中,可以利用变温霍尔效应实现能量的转换和传输。

此外,变温霍尔效应还可以应用于热敏电阻、温度传感器等领域。

结论通过本次实验,我们深入了解了变温霍尔效应的原理和应用。

SLL变温霍尔效应

SLL变温霍尔效应

变温霍尔效应实验日期:2013/10/18指导老师:何琛娟【摘要】本实验我们研究了样品(锑化铟)的霍尔系数随温度的变化情况。

在实验中,我们利用液氮作为冷源控制温度。

在磁场强度与电流强度恒定,不同温度条件下测样品的霍尔电压以计算变温情况下的霍尔系数,画出温度80—300k 范围内样品的1ln H R T-和H R T -曲线。

并通过曲线来研究禁带宽度、载流子浓度、迁移率等特征参数。

关键词:液氮 控温 载流子 霍尔效应 副效应 一、 引言对通电的导体或半导体施加一与电流方向相垂直的磁场,则在垂直于电流和磁场方向上有一横向电位差出现,这个现象于1879年被物理学家霍尔发现,故称为“霍尔效应”。

霍尔系数与电导率的测量是分析半导体纯度以及杂质种类的一种有力手段,也可用于研究半导体材料电输运特征,至今仍是研究半导体性质的重要实验方法。

本实验中利用霍尔效应,采用范德堡测试方法,测量锑化铟的霍尔系数及电导率随温度的变化。

可以确定一些特征参数——禁带宽度、杂质电离能,电导率,载流子浓度,材料纯度及迁移率,从而讨论导电类型,导电机理和散射机理。

二、 原理1. 半导体内的载流子根据半导体导电理论,半导体内载流子的产生有两种不同的机制:本证激发和杂质电离。

1) 本证激发在一定温度下,由于原子的热运动,价键中的电子能够获得足够的能量,摆脱共价键的束缚成为自由电子。

这时在原来的共价键上就留下了一个电子空位,邻键上的电子随时可以跳过来填充这个空位,从而使空位转移到邻键上去,因此空位也是可以移动的,这种空位被称为空穴。

半导体有两种载流子,即电子和空穴。

从能带来看,填充价带的电子摆脱共价键的束缚形成一对电子和空穴的过程就是一个电子从价带到导带的量子跃迁过程。

其结果是使导带中增加一个电子,而在价带中出现一个空能级。

处于导带中的电子就是导电的电子,而原来填满的价带中的空能级就是导电的空穴,空穴导电的过程其实是多个价带中电子参与导电的过程。

霍尔效应实验报告(共8篇)

霍尔效应实验报告(共8篇)

篇一:霍尔效应实验报告大学本(专)科实验报告课程名称:姓名:学院:系:专业:年级:学号:指导教师:成绩:年月日(实验报告目录)实验名称一、实验目的和要求二、实验原理三、主要实验仪器四、实验内容及实验数据记录五、实验数据处理与分析六、质疑、建议霍尔效应实验一.实验目的和要求:1、了解霍尔效应原理及测量霍尔元件有关参数.2、测绘霍尔元件的vh?is,vh?im曲线了解霍尔电势差vh与霍尔元件控制(工作)电流is、励磁电流im之间的关系。

3、学习利用霍尔效应测量磁感应强度b及磁场分布。

4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。

5、学习用“对称交换测量法”消除负效应产生的系统误差。

二.实验原理:1、霍尔效应霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。

当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。

如右图(1)所示,磁场b位于z的正向,与之垂直的半导体薄片上沿x正向通以电流is(称为控制电流或工作电流),假设载流子为电子(n型半导体材料),它沿着与电流is相反的x负向运动。

由于洛伦兹力fl的作用,电子即向图中虚线箭头所指的位于y轴负方向的b侧偏转,并使b侧形成电子积累,而相对的a侧形成正电荷积累。

与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力fe的作用。

随着电荷积累量的增加,fe增大,当两力大小相等(方向相反)时,fl=-fe,则电子积累便达到动态平衡。

这时在a、b两端面之间建立的电场称为霍尔电场eh,相应的电势差称为霍尔电压vh。

设电子按均一速度向图示的x负方向运动,在磁场b作用下,所受洛伦兹力为fl=-eb式中e为电子电量,为电子漂移平均速度,b为磁感应强度。

同时,电场作用于电子的力为 fe??eeh??evh/l 式中eh为霍尔电场强度,vh为霍尔电压,l为霍尔元件宽度当达到动态平衡时,fl??fe ?vh/l (1)设霍尔元件宽度为l,厚度为d,载流子浓度为n,则霍尔元件的控制(工作)电流为 is?ne (2)由(1),(2)两式可得 vh?ehl?ib1isbrhs (3)nedd即霍尔电压vh(a、b间电压)与is、b的乘积成正比,与霍尔元件的厚度成反比,比例系数rh?1称为霍尔系数,它是反映材料霍尔效应强弱的重要参数,根据材料的电导ne率σ=neμ的关系,还可以得到:rh??/ (4)式中?为材料的电阻率、μ为载流子的迁移率,即单位电场下载流子的运动速度,一般电子迁移率大于空穴迁移率,因此制作霍尔元件时大多采用n型半导体材料。

变温霍尔效应调研报告

变温霍尔效应调研报告

学号:PB07203143姓名:王一飞院(系):物理系变温霍尔效应调研报告1、霍尔测量控温系统的构成可换向永磁磁铁、变温恒温器、控温仪、电输运性质测试仪、连接电缆和装在恒温器内冷指上的霍尔探头、样品组成。

变温恒温器可换向永磁铁控温仪CVM-200表2、PID工作原理在实验中,通常需要把某些物理量(如温度、压力、流量、液位等)维持在指定的数值上。

当这些物理量偏离所希望的给定值时,即产生偏差。

PID控制仪根据测量信号与给定值的偏差进行比例(P)、积分(I)、微分(D)运算,从而输出某个适当的控制信号给执行机构,促使测量值恢复到给定值,达到自动控制的效果。

PID控制参数及输出组态N S S符号名称内容取值范围地址P比例带0.1~5.050Hi积分时间0000~100051Hd微分时间0000~100052HCP控制周期0.2~6秒53HSen手、自动输出方式选择时可手动输出54Hd-r正反作用选择为反,为正55HoUtL控制输出下限0.0~100.056HoUtH控制输出上限0.0~100.057H d-r —PID控制正、反作用选择选择pos表示正作用:温度高于设定值时才有电功率输出;选择neg表示反作用:温度偏低时才输出加热功率。

OutL —输出限幅下限设定(对漏热大的系统提供维持加热功率)Outh —输出限幅上限设定(限制最大输出)Sen —手动/自动控制输出选择。

当该参数设置为时,不能手动输出;当该参数设置为时,允许手动控制输出。

比例运算是指输出控制量与偏差的比例关系。

仪表比例参数 P 设定值越大,控制的灵敏度越低,设定值越小,控制的灵敏度越高,例如仪表的比例参数 P设定为4%,表示测量值偏离给定值4%时,输出控制量变化100%。

积分运算的目的是消除静差。

只要偏差存在,积分作用将控制量向使偏差消除的方向移动。

积分时间是表示积分作用强度的单位。

仪表设定的积分时间越短,积分作用越强。

例如仪表的积分时间设定为240秒时,表示对固定的偏差,积分作用的输出量达到和比例作用相同的输出量需要240秒。

变温霍尔效应

变温霍尔效应
考虑载流子迁移率μ = v /E时,应采用速度的统计平均结果vH
稳态时,y 方向的电场力与罗伦兹力相抵消,故有
对p型半导体,当温度处在较低的杂质电离区时
在温度逐渐升高的过程中,电子由价带激发到导带的过程加剧,出现两种载流子导电机制。
温度进一步升高,更多的电子从价带激发到导带,使,故有。随后RH将会达到其极值RHM。
3、范得堡法测量电阻率和霍耳效应
原理图如右图,在样品侧边制作四个电极,依次在一对相邻
的电极用来通入电流,另一对电极之间测量电位差。
电阻率
由于两霍尔电极位置不对称引起的,叫失排电压。
设B、D电极之间电压Vo,在 B、C电极间电压Vm,在理想范德堡样品中。电流线分布在磁场前后是不变的,因而加磁场后等位面的改变使B、D间电压改变(Vm-Vo)完全是由于霍尔效应引起的,即电压改变量就是霍尔电压VH。
当在本征激发的高温区,由曲线 的斜率可求出禁带宽度Eg
2、电导率和迁移率
半导体中同时有两种载流子导电时,在过渡区及本征激发区电导率可写为:
[p型半导体]
设ps为杂质全部电离产生的空穴饱和浓度,p =ps+ n

3、霍尔效应及其测量
如右图,霍尔系数
在考虑霍尔效用时,由于载流子沿y方向发生偏转,
造成在x方向定向运动的速度出现统计分布。
②由于载流子漂移速度有一定的分布范围,当它们在磁场作用下发生偏转时,速度快的高能粒子最早在y方向形成积累,于是在y方向两霍尔电极之间出现温度差,产生温差电压VE。这就叫艾廷豪森效应。不难看出,VE的极性总是与VH一致,与B和I方向有关。
③在沿x方向给样品加电流时,两个端电极与样品的接触电阻不同,产生的焦耳热不同,将造成沿电流方向的温差,有温度梯度就会有载流子的热扩散流。在横向磁场作用下,同样也要发生偏转,积累,产生附加的霍尔电压VN。这种效应叫能斯脱效应。VN的极性只随磁场方向改变。

变温霍尔效应 实验报告

变温霍尔效应 实验报告

变温霍尔效应实验报告【实验原理】1. 霍尔效应和霍尔系数霍耳效应原理设一块半导体的x 方向上有均匀的电流IX 流过,在z 方向上加有磁场Bz ,则在这块半导体的y 方向上出现一横向电势差H U ,这种现象被称为“霍尔效应”,H U 称为“霍尔电压”,所对应的横向电场H E 称为“霍尔电场”。

实验指出,霍尔电场强度EH 的大小与流经样品的电流密度Jx 和磁感应强度Bz 的乘积 成正比Z x H H B J R E ⋅⋅=式中比例系数H R 称为“霍尔系数”。

对于电子、空穴混合导电的情况,在计算H R 时应同时考虑两种载流子在磁场下偏转的效果。

对于球形等能面的半导体材料,可以证明:22222)'()'()()(nb p q nb p A n p q n p A R n p n H p+-=+-=μμμμ式中b’=μn /μp , μn 、 μp 为电子和空穴的迁移率。

从霍尔系数的表达式可以看出:由H R 的符号(也即H U 的符号)可以判断载流子的类型,正为p 型,负为n 型(注意,所谓正、负是指在xyz 坐标系中相对于y 轴方向而言,见图一。

I、B的正方向分别为x 轴、z 轴的正方向,则霍尔电场方向为y 轴方向。

当霍尔电场方向的指向与y 正向相同时,则UH 为正。

);H R 的大小可确定载流子的浓度;还可以结合测得的电导率σ算出如下定义的霍尔迁移率H μσμ⋅=H H RH μ的量纲与载流子的迁移率相同,通常为cm2/V·s(厘米2/伏秒),它的大小与载流子的电导迁移率有密切的关系。

霍尔系数H R 可以在实验中测量出来,若采用国际单位制,可得H H x zU bR I B =(m3/C) 但在半导体学科中习惯采用实用单位制(其中,b:厘米,Bz :高斯Gs ),则H H x zU bR I B ⋅=⋅×108 (cm3/C)2. 霍尔系数与温度的关系H R 与载流子浓度之间有反比关系,当温度不变时,载流子浓度不变,H R 不变,而当温度改变时,载流子浓度发生,H R 也随之变化。

变温霍尔效应实验报告

变温霍尔效应实验报告

变温霍尔效应摘要本实验利用范德堡法测量变温霍尔效应从85K到290K的温度范围内测量了碲镉汞单晶霍耳电压随温度变化的23组有效数据。

而后对数据进行了处理分析,做出In|Rh|-1/T图找出了不同温度范围的图像变化特点,与理论图现象比较,分析结果从而研究了碲镉汞的结构特性和导电机制关键词霍耳效应半导体一、引言低温条件下,物质中原子、分子的热运动减弱,特别是接近绝对零度时,物质处在能量的基态或低激发态,物质的电学、磁学等物理性质会发生很大变化,而霍耳效应就是其中的一种。

对通电导体或半导体施加一个与电流方向相垂直的磁场,则在垂直于电流和磁场方向上有一横向电位差出现,此即为霍耳效应。

而在不同温度下,霍耳效应具有不同的特点,霍耳系数随着温度的变化而变化。

在20世纪的前半个世纪,霍尔系数及电阻率的测量一直推动着固体导电理论的发展,特别是在半导体纯度以及杂质种类的一种有力手段,也可用于研究半导体材料电输运特征,是半导体材料研制工作中必不可少的一种常备测试方法。

二、实验原理1、半导体内载流子半导体内载流子的产生有两种不同的机制,本征激发和杂质电离。

本征激发:半导体有两种载流子,即电子和空穴。

本征激发情况下有电子和空穴浓度相等,n=p。

共同浓度n i本征载流子浓度。

由经典玻尔兹曼统计可得:杂质电离:绝大部分的半导体材料都含有一定量的杂质,它们在常温下的导电性能,主要由杂质决定。

根据杂质的不同可以分为P型半导体和N型半导体。

2、载流子的电导率在一般电场情况下,半导体导电也服从欧姆定律,电流密度与电场成正比:j = σE从理论可知,电导率σ与导电类型和载流子浓度有关,当混合导电时:σ=nqμn+pqμp μn μp分别为电子和空穴的迁移率。

载流子浓度随温度的变化可分为三个温区来讨论。

以p 型半导体为例:a)当温度较低时(几十k),只有很少受主电离,空穴浓度远小于受主浓度,产生的空穴浓度:2exp()2iAEP NKT=-<<(1)式中NV 为价带的有效能级密度,NA 为受主杂质浓度。

霍尔效应实验报告(附带实验结论)(总3页)

霍尔效应实验报告(附带实验结论)(总3页)

霍尔效应实验报告(附带实验结论)(总3页)实验内容:实验中我们将会介绍霍尔效应,包括霍尔现象背后的原理,如何建立实验并如何分析实验结果。

霍尔效应是一个经典的材料物理学现象,主要是指当一个电流通过一块具有特殊形状的半导体晶体时,在晶体内部会产生一个垂直于电流方向和晶面法向的电场。

这个电场会导致从侧面进入材料的一个外部磁场中电荷载流子弯曲轨迹,从而引起电荷载流子的偏转和最终的偏差。

霍尔效应实验是通过使用霍尔元件来测量材料中电子的电荷密度、电阻率以及磁感应强度等物理量。

通过使用一个差分放大器来隔离高电阻元件所测量的低电压信号,实现误差最小化。

实验原理:霍尔现象是指当一个电流通过材料时,电荷载流子会遭受到一个垂直于电流方向和晶面法向的洛伦兹力。

这个力是由外磁场和载流子的运动速度所决定。

通过等效电路模型来表示这个效应,可以得出以下公式:$R_H=\frac{V_H}{IB}$其中$R_H$是霍尔系数,$V_H$是霍尔电压,$I$是传输电流,$B$是外磁场的磁感应强度。

实验步骤:1、使用霍尔元件进行实验测量。

首先我们将要求对外磁场变量进行变动。

我们将会使用自制的霍尔元件来测量材料的电阻率和磁感应强度。

此外我们还需要在实验中加入一个电压测量电路和一个高阻放大器,以便测量霍尔电压。

2、调整电路和实验装置,确保高电阻元件测得的信号能够被放大器隔离并接收到计算机来进行数据采集和分析。

3、进行霍尔效应实验并测量霍尔电压。

当电流通过材料时,霍尔电压会在样品上产生。

我们会使用磁感应计来测量磁场的强度,并利用霍尔元件来测量霍尔电压。

为了确保测量精度和可靠性,我们需要在实验期间不断进行复位校准。

实验结果:我们执行了多次霍尔效应实验,每次实验中都测得了数据。

我们将测得的数据进行了计算,并绘制了以下的实验曲线。

经过分析实验结果,我们得出以下重要结论:1、随着磁感应强度的增加,电流的方向和样品中霍尔电压的值都会发生变化。

2、我们在实验中发现,霍尔元件的特性随着温度和磁场强度的变化而变化。

实验一--变温霍尔效应实验报告

实验一--变温霍尔效应实验报告

变温霍尔效应对通电的导体或半导体施加一与电流方向垂直的磁场,则在垂直于电流和磁场方向上有一横向电位差出现,这个现象于1879年为物理学家霍尔所发现,故称为霍尔效应。

在20世纪的前半个世纪,霍尔系数及电阻率的测量一直推动着固体导电理论的发展,特别是在半导体纯度以及杂质种类的一种有力手段,也可用于研究半导体材料电输运特征,至今仍然是半导体材料研制工作中必不可少的一种常备测试手法。

在本实验中,采用范德堡测试方法,测量样品霍尔系数随温度的变化。

1.实验原理1.1霍尔效应霍尔效应是一种电流磁效应,如图1所示:图1霍耳效应示意图当样品通以电流I,并加一磁场垂直于电流,则在样品的两侧产生一个霍尔电位差:H H IBU Rd,H U 与样品厚度d 成反比,与磁感应强度B 和电流I 成正比。

比例系数H R 叫做霍尔系数。

霍尔电位差是洛伦兹力和电场力对载流子共同作用产生的结果。

1.2一种载流子导电的霍尔系数P 型半导体:1HH pR pq μμ⎛⎫= ⎪ ⎪⎝⎭, N 型半导体:1H H n R pq μμ⎛⎫=- ⎪⎝⎭, 式中n 和p 分别表示电子和空穴的浓度,q 为电子电荷,n μ和p μ分别是电子和空穴的电导迁移率,H μ为霍尔迁移率,H H R μσ=(σ为电导率)。

1.3两种载流子导电的霍尔系数假设载流子服从经典的统计规律,在球形等能面上,只考虑晶体散射及弱磁场(410Bμ,μ为迁移率,单位为)2cmV S ,B 的单位为T )的条件下,对于电子和空穴混合导电的半导体,可以证明:()2238H p nb R p nb π-=+(1)其中n p b μμ=。

2.1实验方法本实验采用范德堡法测量单晶样品的霍耳系数,其作用是尽可能地消除各种副效应。

考虑各种副效应,每一次测量的电压是霍耳电压与各种副效应附加电压的叠加,即1H E N RL H U U E E E E=++++∆实其中,H U 实表示实际的霍耳电压,E E 、N E 和RL E 分别表示爱廷豪森效应、能斯特效应、和里纪-勒杜克效应产生的附加电位差,E ∆表示四个电极偏离正交对称分布产生的附加电位差。

变温稳霍尔效应

变温稳霍尔效应

学生姓名:李淑万 学号: 5502211037 专业班级:应用物理111 班级编号: S008试验时间:14:00 第 15 周 星期 2 座位号: 教师编号: 成绩:变温霍尔效应实验报告一、实验目的1、了解霍尔效应的产生原理及副效应的产生原理和消除方法。

2、测量不同温度下材料的霍尔系数、电导率和霍尔迁移率。

3、观察载流子类型、变温下载流子类型转变,测量载流子密度、载流子类型转变的临界温度。

二、实验原理1、霍耳效应霍耳效应是一种电流磁效应(如图4)。

当样品通以电流I ,并加一磁场垂直于电流,则在样品的两侧产生一个霍耳电势差:(7)H V 与样品厚度d 成反比,与磁感应强度B 和电流I成正比。

比例系数H R 叫做霍耳系数 。

当电流通过样品(假设为p 型)时,垂直磁场对运动电荷产生一个洛伦兹力,使电荷产生横向的偏转。

偏转的载流子停在边界积累起来,产生一个横向电场E ,直到电场对载流子的作用力F = qE 与磁 图4 霍尔效应示意图 场作用的洛伦兹力相抵消为止,即(8)这时电荷在样品中流动时将不再偏转,霍耳电势场就是由这个电场建立起来的。

如果样品是n 型,则横向电场与前者相反,所以n 型样品的霍耳系数有不同的符号,据此可以判断材料的导电类型。

2、p 型半导体的变温霍耳系数以p 型为例分四个温度范围讨论T1R H之间关系,并根据曲线斜率求学生姓名:李淑万 学号: 5502211037 专业班级:应用物理111 班级编号: S008试验时间:14:00 第 15 周 星期 2 座位号: 教师编号: 成绩:出禁带宽度g E , 杂质电离能i E ,曲线如图5,图中表示的是绝对值,此曲线包括以下四个部分:1、杂质电离饱和区,所有的杂质都已经电离,载流子浓度保持不变。

P 型半导体中p >> n ,于是式(16)就简化为式(13)。

在这段区域内,R H >0。

3、温度逐渐升高时,价带上的电子开始激发到导带,由于电子迁移率大于空穴迁移率,b >1,当温度升高到使p=nb 2时,H R = 0,如果取对数,就出现图5 中 图5 p 型半导体和n 型半导体的Ln|R H |-1/T 曲线 标有“2”的一段。

变温霍尔效应

变温霍尔效应

图 5. 仪器示意图
操作前确定一个磁场正方向,正反电流测量一次, 下一次测量时旋转上半部分180°转换磁场方向找到 电压最大处进行测量。
4. 实验内容
4.1 室温霍尔系数的测量 在灌注液氮前,确定一个磁场正方向,在室温
下完成一整个霍尔系数测量过程
4.2 变温霍尔系数的测量 灌 注 液 氮 待 容 器 冷 透 后 补 满 液 氮 在 温 度 为80-
5.3 禁带宽度
我 们 可 以 取 图6中d段 的 数 据 点 作 为 本 征 激 发
进 行 时 的 数 据 来 估 算 禁 带 宽 度, 此 处 温 度 范 围 大
约为223.54K-300K。 易知本征激发时载流子的浓
度p
=
n,做Ln(npT
−3)

(
1 T
)曲线拟合,根据其斜
率来计算禁带宽度,拟合得其曲线为:
(b − 1)2
RHM = −RHS 4b
(11)
其中RH S 是杂质电离饱和区的霍尔系数,由上式我 们可以估算出b。 (4)当温度进一步上升高时,本征激发大规模进行, 载流子浓度远远大于受主杂质浓度,霍尔系数回归 到单一载流子的霍尔系数关系式,此时霍尔系数与 电子浓度成反比,随温度上升霍尔系数降低。

6.
Ln|RH | −
1 曲线图
T
数后就是趋于−∞。
(3)c部分为RH 达到极值此处温度大致为213.54K可
计算RH M ≈ 0.0579m3/C此时p = n + NA,根据公
式(11)我们估算出b
=
µn µp

23.417。
(4)d时开始大规模本征激发,载流子浓度与杂质几
乎无关,此时RH

半导体物理实验——变温霍尔效应测试

半导体物理实验——变温霍尔效应测试

变温霍尔效应测量半导体电学特性霍尔效应的测量是研究半导体性质的重要实验方法。

利用霍尔系数和电导率的联合测量,可以用来确定半导体的导电类型和载流子浓度。

通过测量霍尔系数与电导率随温度的变化,可以确定半导体的禁带宽度、杂质电离能及迁移率的温度系数等基本参数。

本实验通过对霍尔样品在弱场条件下进行变温霍尔系数和电导率的测量,来确定半导体材料的各种性质。

【实验目的】1.了解半导体中霍尔效应的产生机制。

2.通过实验数据测量和处理,判别半导体的导电类型,计算室温下样品的霍尔系数、电导率、迁移率和载流子浓度。

3.掌握变温条件下霍尔系数和电阻率的测量方法,了解两者随温度的变化规律。

【实验仪器】本实验采用CVM200变温霍尔效应测试系统来完成,本仪器系统由可换向永磁体、CME12H变温恒温器、TC202控温仪、CVM-200霍尔效应仪等组成。

本系统自带有两块样品,样一是美国Lakeshore公司HGT-2100高灵敏度霍尔片,厚度为0.18mm,最大工作电流≤10 mA,室温下的灵敏度为55-140 mV/kG; 样二为锑化铟,厚度为1.11mm,最大电流为60mA,其在低温下是典型的P型半导体,而在室温下又是典型的N型半导体,相应的测试磁场并不高,但霍尔电压高,降低了对系统仪表灵敏度、磁铁磁场的要求。

【实验原理】1.霍尔效应和霍尔系数ZYX图1 霍尔效应示意图霍尔效应是一种电流磁效应(如图1)。

当半导体样品通以电流Is ,并加一垂直于电流的磁场B ,则在样品两侧产生一横向电势差U H ,这种现象称为“霍尔效应”,U H 称为霍尔电压,d B I R H S H U =(1)则: IsB d U H H R =(2) R H 叫做霍尔系数,d 为样品厚度。

对于P 型半导体样品, qp H R 1= (3)式中q 为空穴电荷电量,p 为半导体载流子空穴浓度。

对于n 型半导体样品,qn H R 1-= (4)式中为n 电子电荷电量。

变温霍耳效应 实验报告模板

变温霍耳效应 实验报告模板

变温霍耳效应实验 实验报告模板【实验目的】1.了解半导体中霍耳效应的产生原理,副效应的产生和消除; 2.测变温下的霍耳系数;3.了解利用霍耳效应测量材料的电输运性质的原理和实验方法;4.验证碲化铟半导体样品P 型导电到n 型导电的转变,观察记录转变温度。

【实验原理】(15)简明叙述,突出重点【实验内容】(15)简明叙述,突出重点1.查看样品:按下热开关,打开卡箍,即可取出样品,查看完后,放回样品;2.对恒温其抽真空;3.按照接线图接好线;4.检查确定接线正确后开机设定恒温器温度;5.在室温下测量:在磁场正反向、电流正方向的情况下分别测量并记录下H V ;将样品移出磁场之外,在电流正反向的情况下分别测量并记录细下M V 、N V 。

6.向杜瓦瓶里加灌液氮;7.在磁场正反向、电流正反向的情况下分别测量并记录下H V ;8.将样品移出磁场之外,在电流正反向的情况下分别测量并记录下M V 、N V 。

9.改变设定温度,等到样品温度稳定后,重复步骤7,从液氨温度到室温温度之间选定若干个实验点,测量并记录下数据。

【数据处理】(70)1.计算室温以及低温各温度下样品的ρ、R H 和μH在室温下(T=21oC ),I S = mA ,B=0.457T ,d=1.1mm(1) 求R H()432141V V V V V H +++== mV不确定度: ΔA = ΔB = ΔH = |V H |= ± mVIB dV R HH =移除磁场(2)求 ρ M1M2N1N21V (V V V V )4σ=+++=()2121..2ln 4)(2ln 2N N M M op mn on mp V V V VIf dR R f d+++=+=ππρ=(2) 霍耳系数R H 电阻率与ρ的关系μ=ρ||H R =2.T R H 1~,T H 1~μ和T 1~σ关系曲线。

3. 对实验曲线进行分析,特别注意转变点。

变温霍尔效应实验报告

变温霍尔效应实验报告

变温霍尔效应摘要:本实验利用德堡法测量变温霍尔效应,在80K-300K的温度围测量了碲镉汞单晶霍尔电压随温度变化,而后对数据进展了分析,做出图,找出了不同温度围的图像变化特点,分析结果从而研究了碲镉汞的构造特点和导电机制。

关键词:霍尔效应半导体载流子霍尔系数一、引言对通电的导体或半导体施加一与电流方向垂直的磁场,那么在垂直于电流和磁场方向上有益横向电位差出现,这个现象于1897年为物理学家霍尔所发现,故称为霍尔效应。

霍尔系数及电导率的测量时分析半导体纯度以及杂质种类的一种有力手段,也可用于研究半导体材料电运输特征,至今仍是半导体材料研制工作中必不可少的一种常备测试方法。

本实验采用德堡测试方法,测量样品的霍尔系数及电导率随温度的变化。

可以确定一些主要特性参数——禁带宽度、杂质电力能、导电率、载流子浓度、材料的纯度及迁移率。

二、实验原理1.半导体的载流子1.1本征激发在一定的温度下,由于原子的热运动,半导体产生两种载流子,即电子和空穴。

从能带来看,电子摆脱共价键而形成一对电子和空穴的过程就是一个电子从价带到导带的量子跃迁过程,空穴的导电性实质上反响的是价带中电子的导电作用。

图1 本征激发示意图纯洁的半导体电子和空穴浓度保持相等即,可由经典的玻尔兹曼统计得到(1)其中为常数,为绝对温度,为禁带宽度,为玻尔兹曼常数。

作曲线,用最小二乘法可求出禁带宽度(2)1.2杂质电离当半导体中掺杂有Ⅲ族元素,它们外层仅有三个价电子,就会产生一个空穴。

从能带来看,就是价带中的电子激发到禁带中的杂质能级上,在价带中留下空穴参与导电,这过程称为杂质电离,产生空穴所需的能量为杂质的电力能,相应的能级称为受主能级。

这种杂质称为受主杂质,所形成的半导体称为P型半导体。

而掺有Ⅴ族元素的半导体那么为N型半导体。

图2 〔a〕受主杂质电离提供空穴导电〔b〕施主杂质电离提供电子导电2.载流子的电导率一般电场下半导体导电也服从欧姆定律,电流密度与电场成正比:(3)由于半导体中可以同时有电子和空穴,电导率与导电类型和载流子浓度有关,当混合导电时(4)其中n、p分别代表电子和空穴的浓度,q为电子电荷,分别为电子和空穴的迁移率。

变温霍尔效应实验报告

变温霍尔效应实验报告

变温霍尔效应【摘要】本实验采用范德堡测试方法,利用液氮对样品(锑化铟)的温度进行控制,测量了不同温度下样品的霍尔电压,画出了在80-300K温度范围内样品的和曲线,分析并得出了变温下样品霍尔系数的变化规律,估算出了电子迁移率与空穴迁移率的比值。

同时对变温霍尔测量中出现的负效应的影响进行了分析。

关键词:变温霍尔效应霍尔系数霍尔电压禁带宽度载流子浓度迁移率一、引言1879年,霍尔(E.H.Hall)在研究通有电流的导体在磁场中受力的情况时,发现在垂直于磁场和电流的方向上产生了电动势,这个电磁效应称为“霍尔效应”。

在半导体材料中,霍尔效应比在金属中大几个数量级,引起人们对它的深入研究。

霍尔效应的研究在半导体理论的发展中起了重要的推动作用,直到现在,霍尔效应的测量仍是研究半导体性质的重要实验方法。

利用霍尔效应,可以确定半导体的导电类型和载流子浓度,利用霍尔系数和电导率的联合测量,可以用来研究半导体的导电机制(本征激发和杂质电离)和散射机构(晶格散射和杂质散射),进一步确定半导体的迁移率、禁带宽度、杂质电离能等基本参数。

测量霍尔系数随温度的变化,可以确定半导体的禁带宽度、杂质电离能及迁移率的温度特性。

根据霍尔效应原理制成的霍尔器件,可用于磁场和功率测量,也可制成开关元件,在自动控制和信息处理等方面有着广泛的应用。

本实验中采用范德堡测试方法测量样品(锑化铟)的霍尔系数随温度的变化情况,估算电子迁移率和空穴迁移率的比值。

二、实验原理(一)半导体的能带结构和载流子1.能带结构:没有人工掺杂的半导体称为本征半导体,本征半导体中的原子按照晶格有规则的排列,产生周期性势场。

在这一周期势场的作用下,电子的能级展宽成准连续的能带。

束缚在原子周围化学键上的电子能量较低,它们所形成的能级构成价带;脱离原子束缚后在晶体中自由运动的电子能量较高,构成导带,导带和价带之间存在的能带隙称为禁带。

2.半导体内的载流子:半导体内载流子的产生有两种不同的机制:本征激发和杂质电离。

变温霍尔效应实验报告

变温霍尔效应实验报告

变温霍尔效应实验报告一、实验目的1、了解霍尔效应的基本原理。

2、掌握变温霍尔效应的测量方法。

3、研究半导体材料的电学性质随温度的变化规律。

二、实验原理霍尔效应是指当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差的现象。

对于半导体材料,其载流子浓度会随温度发生变化,从而导致霍尔系数也随温度改变。

在一定温度范围内,霍尔系数与温度之间存在一定的函数关系。

根据霍尔效应,霍尔电压$V_H$ 与电流$I$、磁感应强度$B$ 以及霍尔片的厚度$d$ 之间的关系为:$V_H = R_H\frac{IB}{d}$其中,$R_H$ 为霍尔系数。

三、实验仪器1、变温霍尔效应实验仪2、电磁铁3、控温仪4、数字电压表5、直流电源四、实验步骤1、样品安装将半导体样品安装在样品架上,并确保与电极接触良好。

2、仪器连接按照实验电路图,将实验仪器正确连接。

3、调节磁场打开电磁铁电源,逐渐增加磁场强度,直至达到设定值。

4、测量室温下的霍尔电压在室温下,给样品通以恒定电流,测量不同磁场强度下的霍尔电压。

5、变温测量启动控温仪,逐渐升高或降低样品温度,在每个设定温度点稳定一段时间后,测量相应的霍尔电压。

6、数据记录记录不同温度和磁场下的霍尔电压数据。

五、实验数据与处理以下是测量得到的部分实验数据:|温度(K)|磁场强度(T)|霍尔电压(mV)||||||300|05|12||300|10|24||350|05|09||350|10|18|根据实验数据,计算出不同温度下的霍尔系数。

以温度为横坐标,霍尔系数为纵坐标,绘制出霍尔系数随温度的变化曲线。

通过对曲线的分析,可以得出半导体材料的电学性质随温度的变化规律。

例如,在低温区,霍尔系数可能呈现较大的正值,表明主要载流子为空穴;在高温区,霍尔系数可能逐渐减小并变为负值,说明主要载流子转变为电子。

六、实验结果与讨论1、实验结果表明,随着温度的升高,半导体材料的霍尔系数发生了显著变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变温霍尔效应摘要:本实验利用范德堡法测量变温霍尔效应,在80K-300K的温度范围内测量了碲镉汞单晶霍尔电压随温度变化,而后对数据进行了分析,做出ln|R H|−1/T图,找出了不同温度范围的图像变化特点,分析结果从而研究了碲镉汞的结构特点和导电机制。

关键词:霍尔效应半导体载流子霍尔系数一、引言对通电的导体或半导体施加一与电流方向垂直的磁场,则在垂直于电流和磁场方向上有益横向电位差出现,这个现象于1897年为物理学家霍尔所发现,故称为霍尔效应。

霍尔系数及电导率的测量时分析半导体纯度以及杂质种类的一种有力手段,也可用于研究半导体材料电运输特征,至今仍是半导体材料研制工作中必不可少的一种常备测试方法。

本实验采用范德堡测试方法,测量样品的霍尔系数及电导率随温度的变化。

可以确定一些主要特性参数——禁带宽度、杂质电力能、导电率、载流子浓度、材料的纯度及迁移率。

二、实验原理1.半导体内的载流子1.1本征激发在一定的温度下,由于原子的热运动,半导体产生两种载流子,即电子和空穴。

从能带来看,电子摆脱共价键而形成一对电子和空穴的过程就是一个电子从价带到导带的量子跃迁过程,空穴的导电性实质上反应的是价带中电子的导电作用。

图1 本征激发示意图纯净的半导体电子和空穴浓度保持相等即n=p,可由经典的玻尔兹曼统计得到n i=n=p=K′T32exp⁡(−E g)(1)2kT其中K ′为常数,T 为绝对温度,E g 为禁带宽度,k 为玻尔兹曼常数。

作ln npT −3−1/T 曲线,用最小二乘法可求出禁带宽度E g =k∆ln (npT −3)∆(1T)(2)1.2杂质电离当半导体中掺杂有Ⅲ族元素,它们外层仅有三个价电子,就会产生一个空穴。

从能带来看,就是价带中的电子激发到禁带中的杂质能级上,在价带中留下空穴参与导电,这过程称为杂质电离,产生空穴所需的能量为杂质的电力能,相应的能级称为受主能级。

这种杂质称为受主杂质,所形成的半导体称为P 型半导体。

而掺有Ⅴ族元素的半导体则为N 型半导体。

图2 (a )受主杂质电离提供空穴导电(b )施主杂质电离提供电子导电2.载流子的电导率一般电场下半导体导电也服从欧姆定律,电流密度与电场成正比:J =σE (3)由于半导体中可以同时有电子和空穴,电导率与导电类型和载流子浓度有关,当混合导电时σ=nqμn +pqμp (4)其中n 、p 分别代表电子和空穴的浓度,q 为电子电荷,μn 和μp 分别为电子和空穴的迁移率。

半导体电导率随温度变化的规律可分为三个区域。

图3 半导体电导率和温度关系●杂质部分电力的低温区(B点右侧)这一区域迁移率在低温下主要取决于杂质散射,它也随温度升高而增加。

●杂质电离饱和的温度区(A、B之间)杂质已全部电离,但本征激发不明显,载流子浓度基本不随温度改变,这时晶格散射起主要作用,导致电导率随温度的升高而下降。

●产生本征激发的高温区(A点左侧)3.霍尔效应3.1霍尔效应图4 霍尔效应示意图霍尔效应是一种电流磁效应,当样品通以电流I,并加一磁场垂直与电流,则在样品的两侧产生一个霍尔电位差:U H=R H IBd(5)U H与样品的厚度d成反比,与磁感应强度B和电流I成反比。

比例系数R H叫做霍尔系数。

P型半导体和N型半导体的霍尔系数符号不同,因此可以用来判断半导体的类型。

3.2一种载流子的霍尔系数P型半导体:R H=(μHμP )1pq,(6)N型半导体:R H=−(μHμn )1nq,(7)式中n和p分别表示电子和空穴的浓度,q为电子电荷,μP和μn分别为空穴和电子的导电迁移率,μH为霍尔迁移率,μH=R Hσ(σ为导电率)。

两种载流子的霍尔系数假设载流子服从经典的统计规律,在球形等能面上,只考虑晶体散射及弱磁场的条件下(μ×B≪104,μ为迁移率,单位为cm2/(V·S),B的单位为T )的条件下,对电子和空穴混合导电的半导体,可以证明R H=3π8p−nb2(p+nb2),其中b=μnμp。

3.3 P型半导体的变温霍尔系数P型半导体与N型半导体的霍尔系数随时间变化曲线对比图5 P型半导体与N型半导体ln|R H|−1/T图4.范德堡法测量任意形状薄片的电阻率及霍尔系数。

霍尔系数由下式给出|R|=dB |∆U PN|I(8)式中B为垂直于样品的磁感应强度值。

∆U PN代表加磁场后P、N之间电位差的变化。

5.实验中的副效应及其消除方法除了爱廷豪森效应以为,采用范德堡法测量霍尔电压时,可以通过磁场换向及电流换向的方法消除能斯特效应和里纪-勒杜克效应。

三、实验内容1.实验仪器VTHM-1型变温霍尔效应仪是由DCT-U85电磁铁及恒流电源,SV-12变温恒温器,TCK-100控温仪,CVM-2000电输运性质测试仪,连接电缆,装在恒温器内冷指上的碲镉汞单晶样品。

图6 VTHM-1型变温霍尔效应仪2.实验方法本实验采用范德堡法测量单晶样品的霍尔系数,作用是尽可能地消除各种副效应。

考虑各种副效应每次测量的电压时霍尔电压与各种副效应附加电压的叠加,即U H1=UH实+E E+E N+E RL+∆E(9)其中UH实表示实际的霍尔电压,E E、E N和E RL分别代表爱廷豪森效应、能斯特效应、和里纪-勒杜克效应产生的附加电位差,∆E表示四个电极偏离正交对称分布产生的附加电位差。

设改变电流方向后测得电压为U H2,再改变磁场方向后的测得电压为U H3,再改变电流方向后的测得电压为U H4,则有U H2=−UH实−E E+E N+E RL−∆E(10)U H3=UH实+E E−E N−E RL−∆E(11)U H4=−UH实−E E−E N−E RL+∆E(12)所以有UH实+E E=14(U H1−U H2+U H3−U H4)(13)霍尔系数可以由R H=U H tIB(14)式中U H的单位为V,t是样品厚度,单位为m,I是样品电流,单位为A,B是磁感应强度,单位为T;霍尔系数R H的单位是m3/C。

3.实验步骤测量室温下的霍尔效应对仪器抽真空,加液氮冷却后将温度设在80K,待温度稳定后,从80K到300K温度取点间隔为5-10K,如果发现在某一区域的测量数值变化很快,缩小测量间隔至2K。

四、实验结果分析讨论样品电流I=±10.00mA,样品:碲镉汞,样品厚度:0.94mm,磁场强度0.512T利用实验数据及公式R H=U H tIB(15)UH实+E E=14(U H1−U H2+U H3−U H4)(16)得出以下实验表格表1 实验数据记录表注:由于E E没办法消除,因此|U H|=|U H实+E E|。

绘制ln|R H|−1/T图像图7 P型半导体霍尔系数随温度变化关系图该曲线包含四个部分:第一部分为T=82.83K-165K,这是杂质电离的饱和去,所有的杂质都已经电离,载流子的浓度保持不变,在p型半导体中p≫n,这段区域内有R H>0,本实验中测量得到的杂质电离饱和区的霍尔系数为R HS=0.001417m3/C。

根据公式n i=10191.6R H(m−3),单一载流子(空穴)浓度约为p=4.41×1021(m−3)第二部分为T=165K-187K,这时随着温度逐渐升高,价带上的电子激发到导带,由于电子迁移率大于空穴迁移率,即b>1,当温度升高到P=nb2时,有R H=0,如果取对数就会出现图中凹陷下去的奇点。

第三部分为T=187K-218K,当温度再升高,更多的电子从价带激发到导带,P<nb2使得R H<0,随后R H会达到一个极值R HM。

此时,价带的空穴数p=n+N A,N A为受主杂质提供的空穴数,实验上测得R HM=0.007497m3/C。

利用R HM和R HS的关系,即R HM=−R HS(b−1)4b 2,求得b=19.11。

第四部分为T=218K-300K,当温度继续升高时,达到本征激发范围内,载流子浓度远远超过受主的浓度,霍尔系数与导带中电子浓度成反比,因此,随着温度的上升,曲线基本上按指数下降。

五、结论和建议1.实验结论本实验通过控温的方式测量了碲镉汞单晶样品的霍尔系数随温度的变化,得到了实验上ln|R H|−1曲线与理论所给曲线温和,结合图像对半导体的导电特征进行了分析,得出了杂T质电离饱和区平均载流子浓度为p=4.41×1021(m−3)。

且得到霍尔系数最大值R HM= 0.007497m3/C,饱和区平均霍尔系数为R HS=0.001417m3/C,从而计算得到电子迁移率和空穴迁移率比值的估算值b=19.11>1,即电子的迁移率大于空穴的迁移率。

2.误差分析●爱廷豪森效应引起的误差不可消除。

●调节温度过程中,由于温度波动性太大,读取某一温度值时刻的电压存在误差。

●转动磁铁改变方向时存在微小误差。

●仪器本身精度有限会引起误差。

3.实验建议●湿手时不能触碰过冷的表面,防止皮肤冻粘在深冷表面。

●注入液氮时,先注入一部分液氮,待容器冷透后再将液氮补满。

●实验时要注意室内通风。

●实验完毕后,一定要拧松、提起中心杆,防止热膨胀胀坏恒温器。

六、参考文献[1] 熊俊.近代物理实验[M].北京.北京师范大学出版社.2007年8月。

相关文档
最新文档