镇江市中考数学试题

合集下载

最新江苏省镇江市中考数学测试试题附解析

最新江苏省镇江市中考数学测试试题附解析

江苏省镇江市中考数学测试试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.由6个大小相同的小正方体组合而成的立方体图形如图所示,则关于它的三视图说法正确的是( )A .主视图的面积最大B .左视图的面积最大C .俯视图的面积最大D .三个视图的面积一样大2.如图,⊙O 是△ABC 的内切圆,切点分别是D 、E 、F ,已知∠A = 100°,∠C = 30°,则∠DFE 的度数是( )A .55°B .60°C .65°D .70°3.⊙O 的半径为6,⊙O 的一条弦AB 长为33 ,以3为半径的同心圆与AB 的位置关系是( )A .相离B .相切C .相交D .无法确定4.按如下方法,将△ABC 的三边缩小的原来的21,如图,任取一点O ,连AO 、BO 、CO ,并取它们的中点D 、E 、F ,得△DEF ,则下列说法正确的个数是( )①△ABC 与△DEF 是位似图形 ②△ABC 与△DEF 是相似图形③△ABC 与△DEF 的周长比为1:2 ④△ABC 与△DEF 的面积比为4:1A .1B .2C .3D .4 5.将方程()n m x x x =-=--22032化为的形式,指出n m ,分别是( )A .31和B .31和-C .41和D .41和-6.以下四组木棒中,可以做成一个直角三角形的是( )A .7 cm ,12 cm,15 cmB .8cm ,12cm ,15cmC .12 cm ,15 cm ,17 cmD .8 cm ,15 cm,17 cm 7.如图,直线a,b 被直线c 所截的内错角有( )A .一对B .两对C .三对D .四对8.下列各式中,运算结果为22412xy x y -+的是( )A .22(1)xy -+B .22(1)xy --C .222(1)x y -+D .222(1)x y -- 9.下列成语所描述的事件是必然发生的是( )A . 水中捞月B . 拔苗助长C . 守株待免D . 瓮中捉鳖 10.已知(x -3)(x 2+mx+n )的乘积项中不含x 2和x 项,则m ,n 的值分别为( )A .m=3,n=9B .m=3,n=6C .m=-3,n=-9D .m=-3,n=911.已知:关于y x ,的方程组y x ,a y x a y x -⎩⎨⎧-=++-=+则3242的值为 ( ) A .-1 B .1-a C .0 D .112.如图,四边形EFGH 是四边形ABCD 平移后得到的,则下列结论中正确的个数是( ) ①平移的距离是线段AE 的长度;②平移的方向是点C 到点F ;③线段CF 与线段DG 是对应边;④平移的距离是线段DG 的长度.A .1个B .2个C .3个D .4个13.将如图所示的两个三角形适当平移,可组成平行四边形的个数为 ( )A .1个B .2个C .3个D .4个14.李大伯承包一个果园,种植了l00棵樱桃树,今年已进入收获期.收获时,从中任选并采摘了l0棵树的樱桃,分别称得每棵树所产樱桃的质量如下表: 序号1 2 3 4 5 6 7 8 9 10 质量(kg ) 14 21 27 17 18 20 19 23 19 22l5元.用所学的统计知识估计今年此果园樱桃的总产量与按批发价格销售樱桃所得的总收人分别为( )A .200 kg ,3000元B .1900 kg ,28500元C .2000 kg ,30000元D .1850 kg ,27750元二、填空题15.如图所示,准备了三张大小相同的纸片,其中两张纸片上各画一个半径相等的半圆,另一张纸片上画一个正方形.将这三张纸片放在一个盒子里摇匀,随机地抽取两张纸片,若可以拼成一个圆形(取出的两张纸片都画有半圆形)则甲方赢;若可以拼成一个蘑菇形(取出的一张纸片画有半圆、一张画有正方形)则乙方赢.你认为这个游戏对双方是公平的吗?若不公平,有利于谁?____________________________.16.用如图所示的两个转盘“配紫色”,则能配成紫色的概率是 .17.已知,AB 和DE 是直立在地面上的两根立柱.AB =5m ,某一时刻AB 在阳光下的投影为3m ,同时测量出DE 在阳光下的投影长为6m ,则DE = m .18.如图,AB 是⊙O 的直径,C 、D 是⊙O 上两点,•∠D=•130•°,则∠BAC•的度数为_____.19.在⊙O 中,弦 AB ∥CD ,AB=24,CD=10,弦 AB 的弦心距为 5,则 AB 和 CD 之间的距离是 .20.已知直角三角形的两条边长分别是方程214480x x -+=的两个根,则此三角形的第三边是_______ .21.二元一次方程327x y +=的正整数解是 . 三、解答题22.如图,Rt ΔABC 中,∠ACB=90°,AC=4,BA=5,点P 是AC 上的动点(P 不与A 、C 重合)设PC=x ,点P 到AB 的距离为y .(1)求y 与x 的函数关系式;(2)试讨论以P 为圆心,半径为x 的圆与AB 所在直线的位置关系,并指出相应的x 的取值范围.23.如图①所示表示一个高大的正三棱柱纪念碑,图②所示的是它的俯视图,小昕站在地 面上观察该纪念碑.(1)当他在什么区域活动时,他只能看到一个侧面?(2)当他在什么区域活动时,他同时看到两个侧面?(3)他能同时看到三个侧面吗?24.已知AD 是△ABC 的高,CD=6,AD=BD=2,求∠BAC 的度数.25.如图,已知直角三角形ABC 中,∠C= 90°,AC=1,BC=2.(1)试建立直角坐标系,写出 A .B 、C 三点的坐标;(2)以A 为位似中心,将△ABC 放大 2 倍,并写出放大后三个顶点的坐标.26.如图,已知等腰梯形ABCD 中,AD ∥BC ,AB=DC ,AC 与BD 相交于点O .请在图中找出一对全等的三角形,并加以证明.D B A O C27.写出下列假命题的一个反例:(1)有两个角是锐角的三角形是锐角三角形.(2)相等的角是对顶角.28.如图,已知:四边形ABCD和点0,求作四边形ABCD关于点0的对称图A′B′C′D′.29.如图①,在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)说明△ADC≌△CEB;(2)说明AD+BE=DE;(3)当直线MN绕点C旋转到图②的位置时,试问DE,AD,BE具有怎样的等量关系?请写出这个等量关系,并加以说明.30.已知 a,b,c 是△ABC 的三边长,请确定代数式222222+--的值的正负.a b c a b()4【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.C3.A4.C5.C6.D7.B8.A9.D10.A11.D12.B13.C14.C二、填空题15.不公平,有利于乙16.1617.1018.40°19.7 或 1720.1021.12x y =⎧⎨=⎩三、解答题22.解:(1)过P 作PQ ⊥AB 于Q ,则PQ=y ,∵∠A=∠A ,∠ACB=∠AQP=90°,∴Rt ΔAQP ≌ΔRt ΔACB , ∴PQ ∶BC=AP ∶AB ,依题意可得:BC=3,AP=4-x∴ 435yx-= ,化简得:312(04)55y x x =-+<<.(2)令x ≤y ,得:31255x x ≤-+,解得:32x ≤.∴当302x <<时,圆P 与AB 所在直线相离;32x =时,圆P 与AB 所在直线相切; 342x <<时,圆P 与AB 所在直线相交. 23.(1)如图,当他在 A 区域内活动时,他同时看到一个侧面;(2)当他在 B 区域内活动时,他只能看到两个侧面;(3)他不可能同时看到三个侧面.24.当AD 在BC 边上时,∠BAC=105°,当AD 在CB 延长线上时,∠BAC=15°. 25.(1)如解图中所示,A(0, 1) ,B(2 ,o) ,C(0,0)(2)A ′(0, 1) ,B ′(4,-1) ,C ′(0, -1)26.解:△ABC ≌△DCB .证明:∵在等腰梯形ABCD 中,AD ∥BC ,AB=DC ,∴∠ABC=∠DCB . 在∆ABC 与∆DCB 中AB DC ABC DCB BC CB =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DCB .(注:答案不唯一)27.(1)如直角三角形有两个锐角;(2)两直线平行,同位角相等(不唯一)28.略29.略30.是负值。

2023年江苏省镇江市中考数学试卷附解析

2023年江苏省镇江市中考数学试卷附解析

2023年江苏省镇江市中考数学试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知⊙O 的半径为r ,圆心O 到直线l 的距离为d .若直线l 与⊙O 有交点,则下列结论正确的是( )A .d =rB .d ≤rC .d ≥rD .d <r2.中央电视台“幸福52”栏目中“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张笑脸,若某人前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是( )A .14B .15C .16D .320 3. 文具盒中有 3 枝圆珠笔,2 枝铅笔, 1 枝钢笔,任取一枝,则是圆珠笔的概率是( ) A .12 B .16C .13D .234.若A (1,413y -),B (2,45y -),C (3,41y )为二次函数245y x x =+-的图象上的三点,则1,y 2,y 3y 的大小关系是( )A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<5. 由函数y =5x 2的图像先向左平移1个单位,再向上平移2个单位得到的抛物线是( )A . y=5(x -1)2+2B .y =(x -1)2+2C .y =5(x -1)2+2D .y =5(x +1)2-26. 某厂一月份的总产量为 500 吨,三月份的总产量达到 720 吨,若设平均每月的增长率是 x ,则可以列方程( )A .2500(1)720x +=B .500(12)720x +=C .2500(1)720x +=D .2720(1+)500x = 7.关于x 的不等式31x m +<的正整数解是 1、2、3,则整数m 的最大值是( ) A .10 B . 11 C .12 D .138.若a<b ,有下列不等式:①a m b m +<+;②a m b m -<-;③ma mb >;④a b m m >(0m <).其中恒成立的不等式的个数为( )A .1B .2C .3D . 49.下列各图中,正确画出△ABC 的AC 边上的高的是( )A .B .C .D . 10.化简(-2x )3·y 4÷12x 3y 2的结果是( ) A .61y 2 B .-61y 2 C .-32y 2 D .-32xy 2 11.若242(1)36x m x -++是完全平方式,则m 的值是( )A .11B .13±C .11±D .-13 或 1112.算式(-3. 14)×47+ (-3. 14)×53 是由下列哪一个算式用分配律变形得到的?( )A .(-3.14)×(47+53)B .( -3.14)×( -47-53)C .(-3.1)×( (47-53)D .3.14×(-47+53)13.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1-1、图1-2.图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1-1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是3219,423.x y x y ⎧⎨⎩+=+=,类似地,图1-2所示的算筹图我们可以表述为( )A .2114327x y x y ⎧⎨⎩+=+= B .2114322x y x y ⎧⎨⎩+=+= C .3219423x y x y ⎧⎨⎩+=+= D .264327x y x y ⎧⎨⎩+=+=二、填空题14.如图,△ABC 中,AB =AC ,∠A = 36°,BD 平分∠ABC 交AC 于 D ,点D 是AC 的黄金分割点 (AD>CD),AC=6,则CD= .15.如果一个三角形的外心是这个三角形的两条中线的交点,那么这个三角形形状是 .16.已知函数2m -21y x m =+-是关于x 的反比例函数,则m= .17. 在如图所示的方格纸中,已知△DEF 是由△ABC 经相似变换所得的像,则△DEF 的每条边都扩大到原来的 倍.18.将方程3x-y=5写成用含x 的代数式表示y ,则y= .19.如图所示,在△ABC 中,∠B=35°,∠C=60°,AE 是∠BAC 的平分线,AD ⊥BC 于D ,则∠DAE 的度数为 .20.如图,直线AB 、CD 、EF 交于点O ,且∠EOD=90°,若∠COA=28°,则∠AOF 、∠BOC 和∠EOA 的度数分别是 、 、 .三、解答题21.如图,在山顶有座移动通信发射塔BE ,高为30米.为了测量山高AB,在地面引一基线ADC,测得∠BDA=60°,∠C=45°,DC=40米,求山高AB.(不求近似值)22. 方程1(1)(3)10m m x m x +++--=.(1)m 取何值时,方程是一元二次方程?并求出此方程的解.(2)m 取何值时,方程是一元一次方程?23.,若二次根式26x -+有意义,化简|4||7|x x ---.24.如图所示的直角坐标系中,四边形ABCD 的各个顶点的坐标分别是A(0,O),B(3,6),C(14,8),D(16,0),确定这个四边形的面积.25. (1)计算:22(105)5x y xy xy -÷; (2)因式分解:3228m mn -26.如图,有4张卡片(形状、大小和质地都相同),正面分别写有字母A 、B 、C 、D 和一个算式.将这四张卡片背面向上洗匀,从中随机抽取一张,记录字母后放回,重新洗匀再从中随机抽取一张,记录字母.(1)用树状图或列表法表示两次抽取卡片可能出现的所有情况(卡片可用A 、B 、C 、D 表示);(2)分别求抽取的两张卡片上算式都正确的概率和只有一个算式正确的概率.27.江堤边江水不断涌出流入洼地,假定每分钟涌出的水量相等,如果用 2 台抽水机抽 水,40 min 可抽完;如果用 4 台抽水机抽水,16 min 可抽完. 如果要在10 min 内抽完水,问至少需要几台抽水机?28.(1)已知两个数的和是17-,其中一个加数是37-,求另一个加数.(2)求45-的绝对值的相反数与265的相反数的差.29.将2627-,206207-,20062007-按从小到大的顺序排列起来.200620626200720727-<-<-30.已知a,b是有理数,且满足|1||2|0a b++-=,求a b+的值.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.A4.B5.C6.A7.D8.C9.C10.C11.D12.A13.A二、填空题14.9-.等边三角形16.117.218.53-x 19.12.5°20.62°,l52°,l80°三、解答题21.3515+米.22.(1)1m =,1x ,2x ;(2)0m =或1m =- 23.-324.9425.(1)2x y - (2)2(2)(2)m mn n m n +- 26.(1)(2)正确的是A ,共有16种可能.∴P(两张都正确)=161;P(一个算式正确)=83166=. 27.6 台28. (1)27 (2)355 29.200620626200720727-<-<-30. 1(1)非正数 (2)非负数 (3)1 (4)1 或-3。

2023年江苏省镇江市中考数学真题试卷附解析

2023年江苏省镇江市中考数学真题试卷附解析

2023年江苏省镇江市中考数学真题试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知⊙O 的半径为6cm ,如果一条直线和圆心O 的距离为5cm ,那么这条直线和这个圆的位置关系为( )A .相离B .相交C .相切D .相切或相离2.某电视台综艺节日从接到的 5000 个热线电话中,抽取 10 名“幸运观众”,小颖打通了一次热线电话,她成为“幸运观众”的概率是( )A .1500B .15000C .1200D .12000 3.如图,M 、N 分别是平行四边形ABCD 的AB 边和BC 边的中点,连结NA 、DM 及对角线AC 、BD ,那么图中与△DAM 面积相等的三角形(除△DAM 外)的个数是( )A .7个B .6个C .5个D .4个 4.关于菱形的说法中,不正确的是( ) A .菱形的四个角相等B .菱形的一条对角线是另一条对角线的中垂线C .菱形的一条对角线平分这组对角D .菱形的对称轴是对角线所在的直线5.如图,双曲线x y 8=的一个分支为( ) A .① B .② C .③ D .④6.为了调查某校八年级学生的身高情况,现在对该校八年级(1)班的全班学生进行调查. 下列说法中,正确的是( )A .总体是该校八年级学生B .总体是该校八年级学生的身高C .样本是该校八年级(1)班学生D .个体是该校八年级的每个学生7.下列各式从左到右的变形中,是因式分解的为( )A .bx ax b a x -=-)(B .222)1)(1(1y x x y x ++-=+-C .)1)(1(12-+=-x x xD .c b a x c bx ax ++=++)(8.下列事件中,确定事件的个数是( )①下周日是晴天;③人没有氧气就会窒息而死;③三角形的面积=12底×高;④掷一 枚硬币,正面朝上.A.1 个B.2 个C.3 个D.4 个9.将某图形先向左平移3个单位,再向右平移4个单位,则相当于()A.原图形向左平移l个单位B.把原图形向左平移7个单位C.把原图形向右平移l个单位D.把原图形向右平移7个单位10.在扇形统计图中,若将圆均匀地分成10份,则每份的圆心角的度数是()A.10°B.18°C.36°D.72°11.如图是小明家一年的费用统计图,从该统计图中可以看出的信息是()A.小明家有3口人B.小明家一年的费用需要2万元C.小明家生活方面费用占总费用的35%D.小明家的收入很高二、填空题12.当你乘车沿一条平坦的大道向前行驶时,你会发现,前方那些高一些的建筑物好像“沉”到了位于它们前面那些矮一些的建筑物后面去了,这是因为.13.如图,⊙O的直径 AB=8cm,C 为⊙O上的一点,∠BAC=30°,则BC=______cm.14.如图是一个长方形公园,如果要从A景点走到B景点,至少要走米.15.和对应相等的两个直角三角形全等,简写成“斜边直角边”或“”.16.夏雪同学每次数学测试的成绩都是优,则在这次中考中他的数学成绩 (填“可能”或“不可能”或“必然”)是优秀.17.111233+=112344+113455+=含自然数n(1n≥)式子表示出来 .18.给出依次排列的一组数:1,-3,5,-7,9,…请按规律写出第 6 个数,第 2000个数.19.绝对值小于 4 的所有整数的积等于 .三、解答题20.如图,已知平行四边形ABCD 中,对角线AC BD ,交于点O ,E 是BD 延长线上的点,且ACE △是等边三角形.(1)求证:四边形ABCD 是菱形;(2)若2AED EAD ∠=∠,求证:四边形ABCD 是正方形.21.如图1,已知等腰直角三角形ABC 中,∠ACB=︒90,直线l 经过点C,AD ⊥l ,BE ⊥l ,垂足分别为D 、E.(1)证明ΔACD ≌ΔCBE ;(2)如图2,当直线l 经过ΔABC 内部时,其他条件不变,(1)中的结论还成立吗?如果成立,请给出证明;如果不成立,请说明理由.22.某教育局在中学开展的“创新素质实践行”中,进行了小论文的评比,各校交论文的时 间为5月1日至30日,评委会把各校交的论文的件数按5天一组分组统计,绘制了频数分布直方图(如图所示),已知从左至右各长方形的高的比为2:3:4:6:4:1,第二组的频数为18,请同答下列问题:E CD B A OE C B D L A 图1 图2(1)本次活动共有多少篇论文参加评比?(2)哪组上交的论文数量最多?有多少篇?23.光明中学的甲、乙两支篮球队在集训期内进行了五场比赛,将比赛成进行统计后,绘制成如图所示的统计图. 已知甲队五场比赛成绩的平均分90x =分,方差241.2s =平方分. 甲、乙两球队比赛成绩折线统计图(1)请你计算乙队五场比赛成绩的平均分x 乙;(2)就这五场比赛,计算乙队成绩的方差;(3)如果从甲、乙两队中选派一支球队参加市篮球锦标赛,根据上述统计情况,试从平均分、 折线的走势、方差三个方面分别进行简要分析,你认为选派哪支球队参赛更能取得好成 绩?24.计算:(1)(-2x )3·(4x 2y ) (2)(4×106)(8×104)·105(3)(m 3)4+m 10·m 2+m·m 5·m 625.从1,2,3,4,5中任取两个数相加.求:(1)和为偶数的概率;(2)和为偶数的概率或和为奇数的概率;(3)和为奇数的概率.26.如图,(1)在方格纸上作下列相似变换:把△ABC 的每条边扩大到原来的2倍;(2)放大后的图形的周长是原图形周长的多少倍?(3)放大后的图形的面积是原图形面积的多少倍?27.计算题:(1))21)(3y x y x --(28.三峡一期工程结束后,当年发电量为 5. 5×109千瓦时,某区有 100 万户居民,若平均每户每年用电32.7510⨯千瓦时,那么该年所发的电能供该区居民使用多少年?29.在一次“寻宝”游戏中,寻宝人已经找到了坐标为(3,2)和(3,一2)的A 、B 两个标志点(如图),并且知道藏宝地点的坐标为(4,4),除此外不知道其他信息.如何确定直角坐标系找到“宝藏”?与同伴进行交流.30.在墙上有一个很大的圆形设计图,其中O是圆心,A,B在圆周上,如图所示.现在想测量AB两点间的距离,但墙很高,又没有梯子,不能直接测量.如果给你一根长度超过直径的竹竿和一把卷尺,你能测量AB两点之间的距离吗?说说你的方法.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.A4.A5.D6.B7.C8.B9.C10.C11.C二、填空题12.盲区增大13.414.15.斜边,直角边,HL16.可能17.(n =+. -11,-399919.三、解答题20.证明:(1)四边形ABCD 是平行四边形,AO CO ∴=.又ACE △是等边三角形,EO AC ∴⊥,即DB AC ⊥.∴平行四边形ABCD 是菱形;(2)ACE △是等边三角形,60AEC ∴∠=.EO AC ⊥,1302AEO AEC ∴∠=∠=. 2AED EAD ∠=∠,15EAD ∴∠=.45ADO EAD AED ∴∠=∠+∠=.四边形ABCD 是菱形,290ADC ADO ∴∠=∠=.∴四边形ABCD 是正方形21.∠DAC=∠ECB,∠ADC=∠CEB=90°,AC=BC, (1)中的结论还成立.22.(1)120篇;(2)第四组,36篇;(3)第六组23.(1)90分 (2)111. 6平方分 (3)从平均分看,两队的平均分相同,实力大体相当;从折线的走势看,甲队比赛成绩呈上升趋势,而乙队比赛成绩呈下降趋势,所以适合选甲队参赛;从方差看,甲队比赛成绩比乙队比赛成绩波动小,甲队成绩教稳定. 所以,选派甲队参赛更脂取得好成绩24.(1)-32x 5y ,(2)3.2×1016,(3)3m 1225.(1)25;(2)1;(3)3526.(1)略,(2)2,(3)427.(2)(3x -2y )2-(3x+2y )2(3))2)(4)(222y x y x y x +--( (4)(2x -1)2+(1-2x )(1+2x ) (1)222327y xy x +-;(2)-24xy ;(3)4224816y y x x +-;(4)-4x+2. 28.2年29.略.提示:连结AB ,AB 长就是4个单位长度,作AB 的中垂线即为x 轴,向左移3个单位长度,再作x 轴的垂线即y 轴,从而可确定“宝藏”位置30.能.方法:构造三角形全等(具体略)。

镇江中考数学试题及答案

镇江中考数学试题及答案

镇江中考数学试题及答案试题一:1. 设集合 A = {1, 2, 3, 4, 5},集合 B = {3, 4, 5, 6, 7},则 A ∪ B = ?()A. {1, 2, 3, 4, 5, 6, 7}B. {1, 2, 3, 4, 5}C. {3, 4, 5}D. {2, 6, 7}解析:集合 A ∪ B 即为 A 和 B 的并集,即包含两个集合中的所有元素。

根据集合的定义,得到 A ∪ B = {1, 2, 3, 4, 5, 6, 7},所以选项 A 正确。

2. 已知角 A 的补角为 60°,则角 A 的度数是多少?()A. 30°B. 60°C. 120°D. 150°解析:补角的定义是两个角的度数之和为 90°。

设角 A 的度数为 x°,则有 x + 60° = 90°,解得 x = 30°。

所以选项 A 正确。

3. 一辆汽车从 A 地以每小时 60 公里的速度出发,另一辆汽车从 B 地以每小时 50 公里的速度出发,A 地与 B 地相距 600 公里。

两辆汽车同时出发后,多长时间两辆汽车会相遇?()A. 3 小时B. 4 小时C. 5 小时D. 6 小时解析:两辆汽车的相对速度为 60 km/h - 50 km/h = 10 km/h。

相对速度乘以相遇所需时间等于相遇时两辆汽车的相对距离,即 10 km/h * t = 600 km,解得 t = 60 小时。

所以选项 D 正确。

4. 若正方形边长为 a,则正方形的对角线长度是多少?()A. aB. a√2C. a/√2D. 2a解析:正方形的对角线可以看成两个相邻边构成的直角三角形的斜边。

根据勾股定理,对角线的长度等于边长的平方根乘以√2,即对角线长度= a * √2,所以选项 B 正确。

5. 已知 a:b = 3:4,b:c = 5:6,求 a:c 的比值。

2023年江苏省镇江市中考数学试卷含答案解析

2023年江苏省镇江市中考数学试卷含答案解析

绝密★启用前2023年江苏省镇江市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I卷(选择题)一、选择题(本大题共6小题,共18.0分。

在每小题列出的选项中,选出符合题目的一项)1.圆锥的侧面展开图是( )A. 三角形B. 菱形C. 扇形D. 五边形2.下列运算中,结果正确的是( )A. 2m2+m2=3m4B. m2⋅m4=m8C. m4÷m2=m2D. (m2)4=m63.据中国国家统计局发布:2023年第一季度,全国居民人均可支配收入10870元.数据10870用科学记数法表示为( )A. 1.087×104B. 10.87×104C. 10.87×103D. 1.087×1034.如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( )A. 1B. 23C. 13D. 195.小明从家出发到商场购物后返回,如图表示的是小明离家的路程s(m)与时间t(min)之间的函数关系,已知小明购物用时30min,返回速度是去商场的速度的1.2倍,则a的值为( )A. 46B. 48C. 50D. 526.如图,在甲、乙、丙三只袋中分别装有球29个、29个、5个,先从甲袋中取出2x 个球放入乙袋,再从乙袋中取出(2x +2y )个球放入丙袋,最后从丙袋中取出2y 个球放入甲袋,此时三只袋中球的个数都相同,则2x+y 的值等于( ) A. 128 B. 64 C. 32 D. 16第II 卷(非选择题)二、填空题(本大题共12小题,共24.0分) 7.−100的相反数是______ .8.使分式1x−5有意义的x 的取值范围是______ . 9.分解因式:x 2+2x = .10.如图,一条公路两次转弯后,和原来的方向相同.第一次的拐角∠ABC 是140°,第二次的拐角∠BCD 是______ °.11.一组数据:2、3、3、4、a ,它们的平均数为3,则a 为______ .12.若x =1是关于x 的一元二次方程x 2+mx −6=0的一个根,则m = ______ .13.若点A(2,y 1)、B(3,y 2)都在反比例函数y =5x 的图象上,则y 1 ______ y 2(填“<”、“>”或“=”).14.如图,用一个卡钳(AD =BC,OCOB=OD OA=13)测量某个零件的内孔直径AB ,量得CD 长度为6cm ,则AB 等于______ cm .15.二次函数y =−2x 2+9的最大值等于______ .16.如图,扇形OAB 的半径为1,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧相交于点P ,∠BOP =35°,则AB ⏜的长l = ______ (结果保留π).17.《九章算术》中记载:“今有勾八步,股一十五步.问勾中容圆径几何?”译文:今有一个直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少?书中给出的算法译文如下:如图,根据勾、股,求得弦长.用勾、股、弦相加作为除数,用勾乘以股,再乘以2作为被除数,商即为该直角三角形内切圆的直径,求得该直径等于______ 步(注:“步”为长度单位).18.已知一次函数y =kx +2的图象经过第一、二、四象限,以坐标原点O 为圆心,r 为半径作⊙O.若对于符合条件的任意实数k ,一次函数y =kx +2的图象与⊙O 总有两个公共点,则r 的最小值为______ . 三、解答题(本大题共10小题,共78.0分。

最新江苏省镇江市中考数学试卷原卷附解析

最新江苏省镇江市中考数学试卷原卷附解析

江苏省镇江市中考数学试卷原卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.在△ABC 中,已知∠C=90°,BC=3,AC=4,则它的内切圆半径是( )A .23B .1C .2D . 322.如图所示,能使BF ∥EG 的条件是( )A .∠l=∠3B .∠2=∠4C .∠2=∠3D .∠l=∠43.已知方程ax+by=10的两个解为1105x x y y =-=⎧⎧⎨⎨==⎩⎩与,则a 、b 的值为( ) A .10101010 (44)10a a a a B C D b b b b ==-==-⎧⎧⎧⎧⎨⎨⎨⎨=-===⎩⎩⎩⎩ 4.如图,在△ABC 中,DE 是边AB 的垂直平分线,BC=8cm ,AC=5cm 则△ADC 的周长为( )A .14 cmB .13 cmC .11 cmD .9 cm5.某商店销售一批服装,每件售价 150 元,可获利 25%,求这种服装的成本价. 设这种服装的成本价为x 元,则得到方程( )A .15025%x =⨯B .25%150x ⋅=C .15025%x x -=D .15025%x -=6.下列各组代数式中,不是同类项的一组是( )A .12-和0 B .213ab c -和2cab C .2xy 和2x y D .3xy 和xy - 7.下列等式一定成立的是( )A .-a-b= -(a-b )B .-a+b= -(a-b )C .2-3x=-(2+3x )D .30-x= 5(6-x )8.你吃过“拉面”吗?如果把一个面团拉开,然后对折,再拉开再对折,如此往复下去,对折 10 次能拉出面条的根数为( )A .2×lO 根B . 10 根C . 102 = 100 根D .210= 1024 根9.根据物理学家波义耳1662年的研究结果:在温度不变的情况下,气球内气体的压强p (p a )与它的体积v (m 3)的乘积是一个常数k ,即pv =k (k 为常数,k >0),下列图象能正确反映p 与v 之间函数关系的是( )二、填空题10.已知⊙O 1和⊙O 2的半径分别是2和4,01O 2=6,则⊙O 1与⊙O 2的位置关系是 . 11.某同学住在汇字花园 19 幢,一天,这位同学站在自家的窗口,目测了对面 22幢楼房的顶部仰角为 30°,底部俯角为 45°,又辆道这两幢楼房的间距是 4.5 m ,那么 22楼房的高度为 m .(精确到0.1 m)12.某工厂生产了一批零件共1600件,从中任意抽取了80件进行检查,其中合格产品78件,其余不合格,则可估计这批零件中有 件不合格.13.若tanx=0.2378, 则x= (精确到l ′).14.已知抛物线l 1:y =2x 2-4x +5,抛物线l 2与抛物线l 1关于x 轴对称,则抛物线l 2的解析式为 .y =-2x 2+4x -515.如图,⊙O 的直径为10,弦AB=8,P 是弦AB 上的一个动点,那么OP•的取值范围是________.16.已知直角三角形的两条边长分别是方程214480x x -+=的两个根,则此三角形的第三边是_______ .17.在□ABCD 中,E ,F 分别为AB 、DC 的中点,连结DE 、EF 、FB ,则图中共有 个平行四边形.18.放假了,小明和小丽去蔬菜加工厂社会实践,两人同时工作了一段时间后,休息时小明对小丽说:“我已加工了28千克,你呢?” 小丽思考了一会儿说:“我来考考你.图⑴、图⑵分别表示你和我的工作量与工作时间的关系,你能算出我加工了多少千克吗?” 小明思考后回答:“你难不倒我,你现在加工了 千克.”19.如图,图中的1∠= .20.已知312x y z ==,则222225x y z xy yz zx-+++= . 21.在大小相同的10个信封里,其中有1个信封装有一张三角形纸片,有2个信封各装有一张正方形纸片,其余的信封各装有一张圆形纸片,你从中选出1个信封,取出的信封中装有 形纸片的可能性最大.22.天河宾馆在重新装修后,准备在大厅的主楼梯上铺设某种红色地毯.已知这种地毯每平方米售价30元,主楼梯宽2 m ,其侧面如图所示,则购买地毯至少需要 元.23.如图,从A 地到B 地走 条路线最近,它根据的是 .三、解答题24. 确定如图所示的路灯灯泡的位置,并用线段表示小明在该路灯下的影长.25.在同一平面直角坐标系中描出下列各组中的点,并将各组中的点用线段依次连结起来.(1)(6,0),(6,1),(4,0),(6,一l),(6,0);(2)(2,O),(5,3),(4,0);(3)(2,O),(5,一3),(4,0).观察得到的图形像什么?如果将这个图形过完全平移到x 轴上方,那么至少要向上平移几个单位长度?26.已知:如图,在△ABC 中,AD 是么BAC 的平分线,AD 的垂直平分线交BC 的延长线于F.试说明∠BAF=∠ACF成立的理由.27.由16个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图). 请你用两种不同的方法分别在下图中再将两个空白的小正方形涂黑,使它成为轴对称图形.28.如图所示,初三(2)班的一个综合实践活动小组去 A.B 两个超市调查去年和今年五一节期间的销售情况,图中是调查后小敏与其他两位同学交流的情况. 根据他们的对话,请你分别求出 A.B 两个超市今年五一节期间的销售额.29.在△ABC中,∠A+∠C=120°,∠B+∠C=110°,求三角形各内角的度数.30.求当19x=,3y=-时,代数式2222111(2)(2)(3)(9)122389x y x y x y x y++++++++⨯⨯⨯的值.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.B4.B5.C6.C7.B8.D9.C二、填空题10.外切7.112.4013.13°23′14.15.3≤OP≤516.1017.418.2019.50°20.3621.11圆22.48023.②,两点之间线段最短三、解答题24.如图所示,P 就是灯泡位置,AB 就是小明的影子.25.一条小鱼,3个26.27.略28.A 超市今年五一节期间的销售额为 115 万元,B 超市今年五一节期间的销售颧为 55 万元29.∠A=70°,∠B=60°,∠C=50°30.31。

2023年江苏省镇江市中考数学附解析

2023年江苏省镇江市中考数学附解析

2023年江苏省镇江市中考数学学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,在△ABC 中,∠C=90°,BC=5,AC=12,则 cosA 等于( )A .512B .513C .125D .1213 2.如图,四边形ABCD 为矩形纸片.把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF .若CD =6,则AF 等于 ( )A .34B .33C .24D .83.下列命题是假命题的是( )A .四个角相等的四边形是矩形B .对角线互相平分的四边形是平行四边形C .四条边相等的四边形是菱形D .对角线互相垂直且相等的四边形是正方形4.下列语句是命题的有 ( )①经过一点有且只有一条直线与已知直线平行;②延长线段AB 到C ,使B 是AC 的中点;③一条直线的垂线只有一条;④如果两个角的两边互相平行,那么这两个角相等.A .1个B .2个C .3个D .4个 5.一组数据共40个,分成5组,第1~4组的频数分别是10,5,7,6,第5组的频率是( )A .0.15B .0.20C .0.25D .0.306.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a 的长应(罐壁的厚度和小圆孔的大小忽格不计)范围是( )A .1213a ≤≤B .1215a ≤≤C .512a ≤≤D .513a ≤≤7.如图,直线AB 对应的函数表达式是( )A .3y x 32=-+B .3y x 32=+C .2y x 33=-+D .2y x 33=+ 8.设M 表示直角三角形,N 表示等腰三角形,P 表示等边三角形,Q 表示等腰直角三角形,下图中能表示它们之间关系的是 ( )A .B .C .D . 9.把等边三角形ABC 一边AB 延长一倍到D ,则∠ADC 是( ) A .等腰三角形B .直角三角形C .等边三角形D .不能确定 10.等腰三角形一腰上的高线与另一腰的夹角为30°,则顶角的度数为( ) A .60°B .120°C .60°或l50°D .60°或l20° 11. 如图,∠1的内错角是( )A .∠2B .∠3C .∠4D .∠512.在△ABC 中,∠A=1O5°,∠B-∠C=15°,则∠C 的度数为( )A . 35°B .60°C .45°D .30° 13.下列多项式不是完全平方式的是( ) A .214m m ++ B .2269a ab b ++ C .24129t t -+ D .224x xy y --14.下列方程组不是..二元一次方程组的是( ) A .⎩⎨⎧x +y =5x -y =2 B .⎩⎨⎧x -y =0y =2 C .⎩⎪⎨⎪⎧x 1+y =5y =3 D .⎩⎪⎨⎪⎧2x +3y =1x -y =115.下列事件中,为必然事件的是( )A .掷一枚均匀的正方形骰子,骰子停止后朝上的点数是3B .一枚均匀的正方形骰子,骰子停止后朝上的点数不是奇数便是偶数C .随机从0,1,2,·…,9这十个数中选取两个数,和为 20D .开电视,正在播广告二、填空题16.若点33),在反比例函数(0)k y k x =≠的图象上,则k = . 17.已知:若432z y x ==,则=+--+z y x z y x 22 . 18.已知二次函数y =kx 2+(2k -1)x -1与x 轴交点的横坐标为x 1,x 2(x 1<x 2),则对于下列结论:① 当x = -2时,y =1;② 当x> x 2时,y>0;③方程kx 2+(2k -1)x -1=0有两个不相等的实数根x 1,x 2;④ x 1<-1,x 2>-1;⑤ x 2-x 1 =1+4k 2 k,其中正确的结论有_______(只需填写序号). 解答题19.已知223x x --与7x +的值相等,则x 的值是 . 20.已知一几何体的三视图如图所示,则该几何体的体积是 cm 3.21.如图,AE=AD ,请你添加一个条件: ,使△ABE ≌△ACD (图形中不再增加其他字母).22.已知x+y=6,xy=4,则x 2y+xy 2的值为 .23.自钝角的顶点引它的一边垂线,把这个钝角分成两个角的度数比为3:2,则该钝角的度数是 .24.如图是2008年 11 月份的日历牌,现用一矩形在日历中任意框出 4个数,请用一个等式表示a 、b 、c 、d 之间的关系 .25.填空:(1)温度由 t ℃下降2℃后是 ;(2)今年李华 m 岁,去年李华 岁;5年后李华 岁;(3)a 的15%减去 70 可以表示为 ;(4)某商店上月收入为 a 元,本月的收入比上月的 2 倍还多 10 元,本月的收入是元;(5)明明用 t(s)走了s(m),那么他的速度是 m/s.三、解答题26.巳知直线y =kx +b 经过点A(3,0),且与抛物线y =ax 2相交于B(2,2)和C 两点.(1)求直线和抛物线的函数解析式,并确定点C 的坐标;(2)在同一直角坐标系内画出直线和抛物线的图象;(3)若抛物线上的点D ,满足S △OBD =2S △OAD ,求点D 的坐标.27.△ABC 在平面直角坐标系中的位置如图.(1)请画出△ABC 关于y 轴对称的111A B C ∆;(2)将△ABC 向下平移 3 个单位长度,画出平移后的222A B C ∆.28.如图所示,直线CD 与∠AOB 的边0B 相交.(1)写出图中所有的同位角,内错角和同旁内角.(2)如果∠1=∠2,那么∠l 与∠4相等吗?∠1与∠5互补吗?为什么?29.化简下列各分式: (1)236sxy x y-; (2) 22699x x x -+-30.22|1|(3)0a b c -+++=,求2a b c +-的值.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.A3.D4.C5.D6.A7.A8.A9.B10.D11.A12.D13.D.14.C15.B二、填空题16.3- 17.74 18. ①③19.5 或-220.12021.答案不唯一,如AB =AC22.2423.150°24.a dbc +=+25.(1) (t-2) (2)m-1,m+5 (3)15%a- 70 (4)2a+10 (5)s t三、解答题26.(1) y =-2x +6, y =12x 2,C(-6,18); (2)略;(3)D 1(-1, 12 ),D 2 (12 ,18). 27.略28.(1)同位角:∠l 与∠4;内错角:∠l 与∠2;同旁内角:∠l 与∠5 ;(2)∠1=∠4,∠1+∠5=180° 理由略29.(1)22y x -;(2)33x x -+ 30.6。

最新江苏省镇江市中考数学精选真题试卷附解析

最新江苏省镇江市中考数学精选真题试卷附解析

江苏省镇江市中考数学精选真题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,一平面经过圆锥的顶点截圆锥所得到的截面形状是( )2.已知圆A 和圆B 相切,两圆的圆心距为8cm ,圆A 的半径为3cm ,则圆B 的半径是( ) A .5cm B .11cm C .3cm D .5cm 或11cm3. 如图,AC 是⊙O 的直径,点 B .D 在⊙O 上,图中等于12∠BOC 的角有( ) A .1 个B . 2 个C .3D .44.若01=++-y x x ,则20052006y x +的值为( )A .0B .1C .-1D . 2 5.若等腰三角形底角为72°,则顶角为( )A .108°B .72°C .54°D .36°6.如图,△ABC 是等边三角形,CD 是∠ACB 的平分线,过D 作BC 的平行线交AC 于E .已知△ABC 的边长为 a ,则EC 的长是( ) A .12aB .aC .32aD .无法确定7.在下列方程中,属于分式方程的有( )①21102x -=;②213x x -=;③114x y -=;④111x x x x--=-A .1 个B .2 个C .3 个D .4 个8.如图,①、③、④、⑤、⑥中可以通过平移图案②得到的是( )A .②B .④C .⑤D .⑥ 9.若25x a b 与30.2y a b -是同类项,则 x 、y 的值分别是( )A .3x =±,2y =±B .3x =,2y =C .3x =-,2y =-D .3x =,2y =-10.A 、B 、C 三点在数轴上的位置如图所示,则它们分别表示的数 a 、b 、c 的大小关系是( )A .a b c =>B .a b c >>C .c b a >>D .不能确定二、填空题11.某口袋中有红色、黄色、蓝色玻璃球 80个.小明通过多次模球实验后,发现摸到红球、黄球、蓝球的频率依次为 20、30、50,则可估计口袋中红球的数目为 ,黄球的数目为 ,蓝球的数目为 .12.扇形的圆心角是60°,半径是3cm ,则扇形的周长是 cm ,扇形的面积是 cm 2. 13.线段 AB=6 cm ,则过A 、B 两点,且半径等于3cm 的圆有 个;半径等于 5 cm 的圆有 个.14.写出一个无理数,使它与2的积为有理数: .15.如图,四边形ABCD 的对角线AC ,BD 交于点O ,EF 过点O ,若OA=OC ,OB=OD ,则图中全等的三角形有_ _ _对.16.小宁将如图①所示的长方形沿一条对角线剪开,拼成如图②的形状,若原来的长方形的两边长分别为3和4,则右图中的四边形较长的对角线为 .解答题17.已知平行四边形的一个锐角是52°,过这个锐角的顶点向对边作两条高,那么这两条高线的夹角是 .18. 已知-1 是关于x 的方程221030x mx m --=的一个根,则m= .19.已知点A (-1,2),将它先向左平移2个单位,再向上平移3个单位后得到点B ,则点OEFB的坐标是______.20.PA与PB是⊙O 的切线,A、B为切点,AC是⊙O 的直径,∠ABC=20°,则∠P=________.21.若1-+ 0 (用“>”“1<”或“=”填空).xx<,则2222.将图1可以折成一个正方体形状的盒子,折好后与“迎”字相对的字是.23.在有理数中,倒数是它本身的数有,平方等于它本身的数有,立方等于它本身的数有,绝对值等于它本身的数有.24.若2++-=,则b a= .a b(2)30三、解答题25.如图,在 Rt△AOB 中,B=40°,以 OA为半径,O为圆心作⊙O交AB于C,交OB于D,求CD的度数.26.将进货单价为 40 元的商品按 50 元出售时,就能卖出 500 个,已知这种商品每涨价一元,其销量减少10个,问售价是多少时所获的利润最大?27.如图,在四边形ABCD中,AB∥CD,AD∥BC,点E,F在对角线AC上,且AE=CF,请你以 F为一端点,和图中已标字母的某点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可).(1)连结;(2)猜想: = ;(3)证明:28.如图,把图中的字母“L”绕点O顺时针旋转90°,画出旋转后的像.29.如图所示,已知△ABE≌△ACE,D是BC的中点,你能说明△BDE≌△CDE吗?30.出租车司机小李某天下午的营运全是在东西走向的人民大街上进行的.如果规定向东为正,向西为负,他这天下午行车里程(单位:千米)如下:+++15--+,+-,5,2,4512,,,110(1)人民大街总长不小于__________千米;(2)将最后一名乘客送往目的地时,小李距离下午出车时的出发点多远?(3)若出租车耗油量为每千米a升,这天下午小李共耗油多少升?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.C4.A5.D6.A7.C8.C9.B10.B二、填空题11.16,24,4012.(6)π+,32π13.1,214.如15.616.17.128°18.5或2-19.(-3,5)20.40°21.>22.运;23.1±,0和 1,0 和1±,非负数24.-8三、解答题 25. 10°26.设售价定为x 元/个时所获的利润为 W 元,依题意得:(40)[500(50)10]W x x =---⨯,整理得210140040000W x x =-+-, ∴当14007022(10)b x a =-=-=⨯-时, 244ac b w a-=最大值24(10)(40000)14004(10)⨯-⨯--=⨯-=9000 元.即每个卖 70 元时,所获的利润最大,为9000 元.27.略28.略29.略30.(1)人民大街总长不小于43千米;(2)向东38千米;(3)54a 升。

镇江市中考数学试题及答案

镇江市中考数学试题及答案

镇江市中考数学试题及答案第一部分选择题(共30小题,每小题2分,满分60分)请认真阅读每个题目,并在题目后面的括号内标出你认为最正确的选项。

1. 若 2x - 5 = 7,则 x 的值是多少?A. 2B. 6C. 7D. 9 ( )2. 一个矩形的长度比宽度多4,如果它的周长是30,那么它的面积是多少?A. 44B. 48C. 52D. 56 ( )3. 下面哪个数是最大的?A. -2B. -5C. -8D. -11 ( )4. 将一个数的7倍减去5,结果等于这个数的9倍,这个数是多少?A. 2/3B. 3/4C. 4/5D. 5/6 ( )5. 一个角的补角的度数是它的三分之二减去30度,那么这个角是多少度?A. 30B. 45C. 60D. 90 ( )...(以下省略)第二部分简答题(共5个题,每个题4分,满分20分)请用文字简洁明了地回答下列问题。

1. 解方程:3x - 7 = 102. 计算下列各组数的平均数:15,16,18,203. 一张正方形的边长是10 cm,计算其周长和面积。

4. 有一辆汽车以每小时60公里的速度行驶,行驶5小时后,汽车行驶的总距离是多少公里?5. 计算:2的立方根 + 3的平方根...(以下省略)第三部分解答题(共2个题,每个题10分,满分20分)1. 一辆汽车在一段时间内以每小时80公里的速度行驶20小时,行驶的总距离是多少公里?请写出详细的解题过程。

2. 小明家有2000元,他每个月花费600元,那么他的钱可以花多少个月?请写出详细的解题过程。

----------------------答案:第一部分选择题答案:1. A2. C3. A4. B5. C ...第二部分简答题答案:1. x = 52. 平均数 = (15 + 16 + 18 + 20) ÷ 4 = 17.253. 周长 = 10 cm × 4 = 40 cm,面积 = 10 cm × 10 cm = 100 cm²4. 距离 = 60 km/h × 5 h = 300 km5. 计算结果 = 2^(1/3) + 3^(1/2)第三部分解答题答案:1. 距离 = 80 km/h × 20 h = 1600 km2. 花费时间 = 2000 ÷ 600 =3.33 个月(约等于3个月)注:以上为示例内容,请根据实际题目编写试题及答案。

2022年江苏省镇江市中考数学测试试卷附解析

2022年江苏省镇江市中考数学测试试卷附解析

2022年江苏省镇江市中考数学测试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.在太阳光下,转动一个正方体,观察正方体在地上投下的影子,那么这个影子最多是几边形( ) A .四边形B .五边形C .六边形D .七边形2.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,连接BC ,若∠ABC=45°,则下列结论正确的是( ) A .AC >ABB .AC=ABC .AC <ABD .AC=12BC 知抛物线2(1)(0)y a x h a =-+≠与x 轴交于1(0)(30)A x B ,,,两点,3.已段AB 的长度为( ) 则线A .1 B .2C .3D .44. 如图,以圆柱的下底面为底面,上底面圆心为顶点的圆锥的母线长为4,高线长为 3,则圆柱的侧面积为( ) A . 30πB .67πC .20πD .47π5.下面四个语句:①内错角相等;②OC 是∠AOB 的角平分线吗?③两条直线互相垂直,则所成的角等于直角;④π不是有理数.其中是真命题的个数为( ) A .1个B .2个C .3个D .4个6.已知y 是x 的一次函数.表1中列出了部分对应值,则m 的值等于( )x - 1 0 1 y1m-17.不是方程123=-y x 的解的一组是( )A .⎩⎨⎧==11y x B .⎪⎩⎪⎨⎧-==210y xC .⎪⎩⎪⎨⎧==031y xD .⎪⎪⎩⎪⎪⎨⎧==2131y x8.已知3040x y y z -=⎧⎨+=⎩(z ≠0),则x z =( )ABOC 45°A. 12 B.112-C.12-D.1129.把2222x xy yz x y-+-+的二次项放在前面有“+”的括号里,把一次项放在前面有“-”的括号里,按上述要求操作,结果正确的是()A.222222()(222)x xy yz x y x y xy x y-+-+=+-+-B.22222(2)(22)x xy yz x y x xy y x y-+-+=-+--C.222222()(222)x xy yz x y x y xy x y-+-+=+---+D.22222(2)(22)x xy yz x y x xy y x y-+-+=-+--+10.在数轴上,到原点的距离是3的点共有()A. 1个B. 2个C.3个D.4个二、填空题11.一斜坡的坡比为 1:2,斜面长为l5m,则斜面上最高点离地面的高度为 m.12.布袋里有 2个白球和 1 个红球,从布袋里取两次球,每次取 1 个,取出后放回,则两次取出的都是白球的概率是.13.如图,DE是△ABC的中位线,△ADE的面积为3cm2,则四边形DBCE的面积为cm2.14.如图,在数轴上,A,B两点之间表示整数的点有个.15.在12xx--中,字母x的取值范围是 .16.直角梯形两腰长之比为1:2,则它的锐角是.17.若一个三角形三边之比为5:12:13,且周长为60 cm,则它的面积为 cm2.18.如图所示,AB∥CD,那么∠1+∠2+∠3+∠4= .19.如图,△ABC是等腰直角三角形,BC是斜边,将△APB绕点A逆时针旋转后,能与△ACP′重合,如果AP=3,那么PP′的长是.20.在实数范围内定义运算“☆”,其规则为:a ☆b=22a b -,则方程(4☆3)☆x=13的解为x= .21.如图是一次函数1y ax b =+(a 、b 为常数,且0a ≠)、1y kx c =+(k 、c 为常数,且0k ≠) 的图象,观察图象直接写出同时满足10y ≥,20y ≥时,x 的取值范围 .解答题22.如果13a =-,那么a -= ;如果5||2a =,那么a = . 23.已知2(3)|2|0a b ++-=,则a= ,b= ,b a = .24.为了了解贯彻执行国家提倡的“阳光体育运动”的实施情况,将某班50名同学一周的体育锻炼情况绘制成了如图所示的条形统计图,根据统计图提供的数据,该班50名同学一周参加体育锻炼时间的中位数与众数之和为 .818204学生人数(人)(小时)炼时间517 题图三、解答题25.求抛物线y =-2x (12 -x )+3的开口方向、对称轴和顶点坐标. 开口向上;直线x =14 ,顶点(14 ,238).26.如图,△ABC 中,A(-2,3),B(-3,1),C(-1,2).(1)将△ABC 向右平移4个单位长度,画出平移后的△A 1B 1C 1; (2)画出△ABC 关于x 轴对称的△A 2B 2C 2;(3)将△ABC 绕原点O 旋转180°,画出旋转后的△A 3B 3C 3; (4)在△A 1B 1C 1,△A 2B 2C 2,△A 3B 3C 3中, △ 与△ 成轴对称,对称轴是 ;△与△成中心对称,对称中心的坐标是.27.把汽油以均匀的速度注入容积为60 L的桶里,注入的时间和注入的油量如下表:注入的时间t(min)123456注入的油量q(L) 1.53 4.567.59(1)求q与t的函数解析式,并判断q是否是t的正比例函数;(2)求变量t的取值范围;(3)求t=1.5,4.5时,q的对应值.28.如图是某市一天的温度曲线图,其中x表示时间(时),y表示某市的温度(℃),根据图象回答下面问题:(1)这个函数反映了哪两个变量之间的关系?(2)这天几时温度最高、最低,它们相差多少度?(3)温度y可以看成时间x的函数吗?为什么?(4)求当x=21时的函数值,并说明它的实际意义.29.说出下列单项式的系数和次数.(1)223x y-;(2)mn;(3)25a;(4)272ab c-30.桌面上放有4张卡片,正面分别标有数字1,2,3,4,这些卡片除数字外完全相同,把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出一张,记下卡片上的数字后仍放反面朝上放回洗匀,乙从中任意抽出一张,记下卡片上的数字,然后将这两数相加.(1)请用列表或画树状图的方法求两数和为5的概率;(2)若甲与乙按上述方式作游戏,当两数之和为5时,甲胜;反之则乙胜;这个游戏对双方公平吗?若甲胜一次得12分,那么乙胜一次得多少分,这个游戏对双方才公平?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.D4.B5.B6.B7.D8.C9.B10.B二、填空题11.12.4913.914.415.1x≥且2x≠16.30°17.120cm218.540°19..6±21.21x-≤<22.13,5 2±23.-3,2,924.17三、解答题25.26.解:图略(4)△A2B2C2与△A3B3C3成轴对称,对称轴是y轴.△A3B3C3与△A1B1C1成中心对称,对称中心的坐标是(2,0).27.(1)q=1.5t,是;(2)0≤t≤40;(3)2.25,6.7528.某市一天中时间与温度之间的关系;(2)这天15时温度最高为16℃,3时温度最低为2℃,相差l4℃;(3)可以;(4)10℃,21时温度为10℃29.(1)23-,3 次 (2) 1,2 次 (3)5,2 次 (4)72-,4 次30.(1)列表或画树状图略;41;(2)不公平,4分.。

最新江苏省镇江市中考数学经典试题附解析

最新江苏省镇江市中考数学经典试题附解析

江苏省镇江市中考数学经典试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1. 如图,在扇形AOB 中,∠AOB=900,C 是OA 的中点, CD ⊥OA ,交AB 于点D ,则( )A . ⌒AD =⌒BDB . ⌒AD =2⌒BDC . ⌒AD =3⌒BD D . ⌒AD =4⌒BD2.二次函数2x y =的图象向右平移3个单位,得到新的图象的函数表达式是( )A .32+=x yB .32-=x yC .2)3(+=x yD .2)3(-=x y 3.如图,若将正方形分成k 个全等的长方形,其中上下各横排两个,中间竖排若干个,则k的值为( )A .6B .8C .10D .124.如图,四边形ABCD 为矩形纸片.把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF .若CD =6,则AF 等于 ( )A .34B .33C .24D .85.下列说法中,不正确...的是( ) A .有三个角是直角的四边形是矩形B .对角线相等的四边形是矩形C .对角线互相垂直的矩形是正方形D .对角线互相垂直的平行四边形是菱形6.一个多边形的内角和与外角和相等,则这个多边形是( )A .三角形B .四边形C .五边形D .六边形 7.如图所示,已知AB ∥CD 且与MN 、PQ 相交,那么有 ( ) A .∠l=∠2 B .∠2=∠3 C .∠l=∠4 D .∠3=∠48.如图,已知直线a,b 被直线c 所截,a ∥b ,∠2=50°,则∠1等于( )A .150°B .130°C .40°D .50°9.如图,在等边ABC △中,9AC =,点O 在AC 上,且3AO =,点P 是AB 上一动点,连结OP ,将线段OP 绕点O 逆时针旋转60得到线段OD .要使点D 恰好落在BC 上,则AP 的长是( )A .4B .5C .6D .810.等腰三角形是轴对称图形,它的对称轴是( )A .过顶点的直线B .底边上的高所在的直线C .顶角平分线所在的直线D .腰上的高所在的直线11.如图所示,在4×4的正方形网格中,∠1,∠2,∠3的大小关系是( )A .∠1>∠2>∠3B .∠l<∠2=∠3C .∠1=∠2>∠3D .∠1=∠2=∠312.若a 、b 互为倒数,a 、c 互为相反数,且||2d =,则式子23()2a c ab d d ++-的值为( ) A .334 B . 334或144 C . 144 D .233 或14313.某种话梅原零售价每袋3元,凡购买2袋以上(包括2袋),商场推出两种优惠销售办法.第一种:1袋话梅按原价,其余按原价的七折销售;第二种:全部按原价的八折销售.你在购买相同数量话梅的情况下,要使第一种方法比第二种方法得到的优惠多,最少需要买话梅( )A .4袋B .5袋C .6袋D .7袋二、填空题14.夏天的某一时刻,如图所示,当太阳光与地面上的树影成 45°角时,树影投射在墙上的影高 CD 等于 2m ,若树根到墙的距离 BC 等于 8m ,则树高 AB 等于 m .15.扇形的圆心角是60°,半径是3cm ,则扇形的周长是 cm ,扇形的面积是 cm 2.16.说明是菱形的条件:(1)一组 相等的 ;(2)四边相等的 .;(3)对角线 的平行四边形.17.如图所示,AD 是△ABC 的中线,延长AD 到点E ,使DE=AD ,连结EB ,EC ,则四边形ABEC 是平行四边形.这是根据 .18.通过平移把点A (1,-3)移到点A 1(3,0),按同样的平移方式把点P (2,3)移到P 1,则点P 1的坐标是(______,_____).19.一次函数图象经过点(2,0)和(-2,4),这个一次函数的解析式是 .20.如图,点A 为反比例函数1y x=的图象上一点,B 点在x 轴上且OA BA =,则AOB △的面积为 .21.已知一组数据1x ,2x ,3x ,4x ,5x 的标准差为4,那么数据(14x -),(24x -),(33x -), (44x -),(54x -)的方差是 .22.观察下面的等式,①111122⨯=-;②222233⨯=-;③333344⨯=-;④444455⨯=-……第n 个等式可表示为 .23. 如果||||5a b +=,且1a =-,那么 b= .24. 相反数等于本身的数是 .25.16的平方根是__________.三、解答题26.如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD ⊥CD 于 D ,AC 平分∠DAB. 求证:CD 是⊙O 的切线.27.如图,AB、CD 是⊙O的两条直径,过点A作AE∥CD 交⊙O于点 E,连结 BD、DE,求证:BD=DE.28.某居民区一处圆形下水管破裂,修理人员准备更换一段新管道,如图所示,污水水面宽度为60 cm,水面至管道顶部距离为 10 cm,问修理人员应准备内径多大的管道?29.截止2007年底,某城市自然保护区的覆盖率为 4%,尚未达到国家A级标准,因此市政府决定加快绿化建设,力争到2009年底自然保护区的覆盖率达到 8%以上,若要达到最低目标8%,则这个城市自然保护区的年平均增长率是多少(保留 2个有效数字)?30.如图,以点 B 为顶点,射线 BC 为一边,作∠EBC,使得∠EBC= ∠A,这时 EB 与 AD 一定平行吗?为什么?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.B4.A5.B6.B7.B8.B9.C10.C11.C12.B13.A二、填空题14.1015.(6)π+,32π 16.(1)邻边,平行四边形;(2)四边形;(3)互相垂直17.对角线互相平分的四边形是平行四边形18.(4,6)19.2y x =-+20.121.1622.11n n n n n n ⨯=-++23. 4±24.25.4±三、解答题26.连结 Oc ,∵OC=OA ,∠OCA=∠OAC=∠CAD ,∴OC ∥AD ,又∵AD ⊥CD , ∴OC ⊥CD ,即 CD 是⊙O 的切线.27.∵AE∥CD,∴⌒AC = ⌒DE,∵∠AOC=∠BOD,∴⌒AC = ⌒BD,DE=BD.28.过点O作AB的垂线OE与圆交点P,连结OB,且OP=OB,∵OE⊥AB,∴.AE=BE(垂径定理),设半径为 x,则 OE=x—10,由勾股定理得22230(10)x x+-=,x=50cm,答:内径应为100 cm.29.41%30.EB∥CD,根据同位角相等,两直线平行。

江苏省镇江市2024年中考数学试卷及答案(word解析版)

江苏省镇江市2024年中考数学试卷及答案(word解析版)

江苏省镇江市2024年中考数学试卷一、填空题(本大题共12小题,每小题2分,共24分)1.(2分)(2024•镇江)的相反数是﹣.考点:相反数.专题:计算题.分析:依据相反数的定义:只有符号不同的两个数称互为相反数计算即可.解答:解:+(﹣)=0,故的相反数是﹣,故答案为﹣.点评:本题主要考查了相反数的定义,依据相反数的定义做出推断,属于基础题.2.(2分)(2024•镇江)计算:(﹣2)×=﹣1.考点:有理数的乘法.分析:依据有理数的乘法法则:两数相乘,同号得正,异号得负,并把肯定值相乘,即可得出答案.解答:解:(﹣2)×=﹣1;故答案为:﹣1.点评:此题主要考查了有理数的乘法,关键是娴熟驾驭有理数的乘法法则,留意符号的推断.3.(2分)(2024•镇江)若在实数范围内有意义,则x的取值范围是x≥1.考点:二次根式有意义的条件.分析:先依据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.解答:解:∵在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.点评:本题考查的是二次根式有意义的条件,即被开方数大于等于0.4.(2分)(2024•镇江)化简:(x+1)2﹣2x=x2+1.考点:整式的混合运算.专题:计算题.分析:原式第一项利用完全平方公式绽开,去括号合并即可得到结果.解答:解:原式=x2+2x+1﹣2x =x2+1.故答案为:x2+1点评:此题考查了整式的混合运算,涉及的学问有:完全平方公式,去括号法则,以及合并同类项法则,娴熟驾驭公式及法则是解本题的关键.5.(2分)(2024•镇江)若x3=8,则x=2.考点:立方根.专题:计算题.分析:依据立方根的定义求解即可.解答:解:∵2的立方等于8,∴8的立方根等于2.故答案:2.点评:此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.留意一个数的立方根与原数的性质符号相同.6.(2分)(2024•镇江)如图,AD平分△ABC的外角∠EAC,且AD∥BC,若∠BAC=80°,则∠B=50°.考平行线的性质.分析:由∠BAC=60°,可得出∠EAC的度数,由AD平分∠EAC,可得出∠EAD的度数,再由AD∥BC,可得出∠B的度数.解答:解:∵∠BAC=80°,∴∠EAC=100°,∵AD平分△ABC的外角∠EAC,∴∠EAD=∠DAC=50°,∵AD∥BC,∴∠B=∠EAD=50°.故答案为:50.点评:本题考查了平行线的性质,解答本题的关键是驾驭角平分线的性质及平行线的性质:两直线平行内错角、同位角相等,同旁内角互补.7.(2分)(2024•镇江)有一组数据:2,3,5,5,x,它们的平均数是10,则这组数据的众数是5.考点:众数;算术平均数.分析:依据平均数为10求出x的值,再由众数的定义可得出答案.解答:解:由题意得,(2+3+5+5+x)=10,解得:x=45,这组数据中5出现的次数最多,则这组数据的众数为5.故答案为:5.点评:本题考查了众数及平均数的学问,解答本题的关键是驾驭众数及中位数的定义.8.(2分)(2024•镇江)写一个你喜爱的实数m的值0,使关于x的一元二次方程x2﹣x+m=0有两个不相等的实数根.考点:根的判别式.专题:开放型.分析:由一元二次方程有两个不相等的实数根,得到根的判别式大于0,列出关于m的不等式,求出不等式的解集得到m的范围,即可求出m的值.解答:解:依据题意得:△=1﹣4m>0,解得:m<,则m可以为0,答案不唯一.故答案为:0点评:此题考查了根的判别式,娴熟驾驭一元二次方程根的判别式的意义是解本题的关键.9.(2分)(2024•镇江)已知点P(a,b)在一次函数y=4x+3的图象上,则代数式4a﹣b ﹣2的值等于﹣5.考点:一次函数图象上点的坐标特征.分析:把点P的坐标代入一次函数解析式可以求得a、b间的数量关系,所以易求代数式4a ﹣b﹣2的值.解答:解:∵点P(a,b)在一次函数y=4x+3的图象上,∴b=4a+3,∴4a﹣b﹣2=4a﹣(4a+3)﹣2=﹣5,即代数式4a﹣b﹣2的值等于﹣5.故答案是:﹣5.点评:本题考查了反比例函数图象上点的坐标特征,经过函数的某点肯定在函数的图象上10.(2分)(2024•镇江)如图,AB是半圆O的直径,点P在AB的延长线上,PC切半圆O于点C,连接AC.若∠CPA=20°,则∠A=35°.考点:切线的性质;圆周角定理.专题:计算题.分析:连接OC,由PC为圆O的切线,利用切线的性质得到OC与CP垂直,在直角三角形OPC中,利用两锐角互余依据∠CPA的度数求出∠COP的度数,再由OA=OC,利用等边对等角得到∠A=∠OCA,利用外角的性质即可求出∠A的度数.解答:解:连接OC,∵PC切半圆O于点C,∴PC⊥OC,即∠PCO=90°,∵∠CPA=20°,∴∠POC=70°,∵OA=OC,∴∠A=∠OCA=35°.故答案为:35点评:此题考查了切线的性质,等腰三角形的性质,以及外角性质,娴熟驾驭切线的性质是解本题的关键.11.(2分)(2024•镇江)地震中里氏震级增加1级,释放的能量增大到原来的32倍,那么里氏7级地震释放的能量是3级地震释放能量的324倍.考点:幂的乘方与积的乘方.分析:设里氏n级地震释放的能量是3级地震释放能量的324倍,依据题意得出方程32n﹣1=3×323﹣1×324,求出方程的解即可.解答:解:设里氏n级地震释放的能量是3级地震释放能量的324倍,则32n﹣1=3×323﹣1×324,32n﹣1=326,n﹣1=6,n=7.故答案为:7.点评:本题考查了幂的乘方和积的乘方的应用,解此题的关键是能依据题意得出方程.12.(2分)(2024•镇江)如图,五边形ABCDE中,AB⊥BC,AE∥CD,∠A=∠E=120°,AB=CD=1,AE=2,则五边形ABCDE的面积等于.考点:等腰梯形的性质;含30度角的直角三角形;勾股定理.分析:延长DC,AB交于点F,作AG∥DE交DF于点G,四边形AFDE是等腰梯形,且∠F=∠D=60°,△AFG是等边三角形,四边形AGDE是平行四边形,求得等腰梯形AFDE的面积和△BCF的面积,二者的差就是所求五边形的面积.解答:解:延长DC,AB交于点F,作AG∥DE交DF于点G.∵AE∥CD,∠A=∠E=120°,∴四边形AFDE是等腰梯形,且∠F=∠D=60°,△AFG是等边三角形,四边形AGDE 是平行四边形.设BF=x,∵在直角△BCF中,∠BCF=90°﹣∠F=30°∴FC=2x,∴FD=2x+1.∵平行四边形AGDE中,DG=AE=2,∴FG=2x﹣1,∵△AFG是等边三角形中,AF=FG,∴x+1=2x﹣1,解得:x=2.在直角△BCF中,BC=BF•tanF=2,则S△BCF=BF•BC=×2×2=2.作AH⊥DF于点H.则AH=AF•sinF=3×=,则S梯形AFDE=(AE+DF)•AH=×(2+5)•=.∴S五边形ABCDE=S梯形AFDE﹣S△BCF=﹣2=.故答案是:.点评:本题考查了等腰梯形的判定与性质,直角三角形的性质,正确求得BF的长是关键.二、选择题(本大题共5小题,每小题3分,共15分.在每小题所给出的四个选项中,只有一项是符合题目要求的)13.(3分)(2024•镇江)下列运算正确的是()A.x﹣2x=x B.(xy2)0=xy2C.D.考点:二次根式的乘除法;合并同类项;零指数幂.分析:依据零指数幂,合并同类项,二次根式的乘法,二次根式的性质求出每个式子的值,再推断即可.解答:解:A、x﹣2x=﹣x,故本选项错误;B、(xy2)0在xy2≠0的状况下等于1,不等于xy2,故本选项错误;C、(﹣)2=2,故本选项错误;D、×=,故本选项正确;故选D.点评:本题考查了零指数幂,合并同类项,二次根式的乘法,二次根式的性质的应用,主要考查学生的计算实力.14.(3分)(2024•镇江)二次函数y=x2﹣4x+5的最小值是()A.﹣1 B.1C.3D.5考点:二次函数的最值.分先利用配方法将二次函数的一般式y=x2﹣4x+5变形为顶点式,再依据二次函数的性析:质即可求出其最小值.解答:解:配方得:y=x2﹣4x+5=x2﹣4x+22+1=(x﹣2)2+1,当x=2时,二次函数y=x2﹣4x+5取得最小值为1.故选B.点评:本题考查了二次函数最值的求法,求二次函数的最大(小)值有三种方法,第一种可由图象干脆得出,其次种是配方法,第三种是公式法.15.(3分)(2024•镇江)用半径为6的半圆围成一个圆锥的侧面,则圆锥的底面半径等于()A.3B.C.2D.考点:圆锥的计算.分析:用到的等量关系为:圆锥的弧长=底面周长.解答:解:设底面半径为R,则底面周长=2Rπ,半圆的弧长=×2π×6=2πR,∴R=3.故选A.点评:本题利用了圆的周长公式,弧长公式求解.16.(3分)(2024•镇江)已知关于x的方程2x+4=m﹣x的解为负数,则m的取值范围是()A.B.C.m<4 D.m>4考点:解一元一次不等式;一元一次方程的解.分析:把m看作常数,依据一元一次方程的解法求出x的表达式,再依据方程的解是负数列不等式并求解即可.解答:解:由2x+4=m﹣x得,x=,∵方程有负数解,∴<0,解得m<4.故选C..点评:本题考查了一元一次方程的解与解不等式,把m看作常数求出x的表达式是解题的关键.17.(3分)(2024•镇江)如图,A、B、C是反比例函数图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满意条件的直线l共有()A.4条B.3条C.2条D.1条考点:反比例函数综合题.分析:如解答图所示,满意条件的直线有两种可能:一种是与直线BC平行,符合条件的有两条,如图中的直线a、b;还有一种是过线段BC的中点,符合条件的有两条,如图中的直线c、d.解答:解:如解答图所示,满意条件的直线有4条,故选A.点评:本题考查了点到直线的距离、平行线的性质、全等三角形等学问点,考查了分类探讨的数学思想.解题时留意全面考虑,避开漏解.三、解答题(本大题共11小题,共81分.解答时应写出必要的文字说明、证明过程或演算步骤)18.(8分)(2024•镇江)(1)计算:;(2)化简:.考分式的混合运算;实数的运算;零指数幂.点:分析:(1)依据负整数指数幂、肯定值、零指数幂的特点分别进行计算,再把所得的结果合并即可;(2)先把除法转化成乘法,再依据乘法的安排律分别进行计算,再进行通分,即可得出答案.解答:解:(1)=﹣1=﹣;(2)=×﹣×===.点评:此题考查了分式的混合运算,用到的学问点是负整数指数幂、肯定值、零指数幂、乘法的安排律,留意运算依次和结果的符合.19.(10分)(2024•镇江)(1)解方程:(2)解不等式组:.考点:解分式方程;解一元一次不等式组.专题:计算题.分析:(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可确定出解集.解答:解:(1)去分母得:2x﹣1+x+2=0,解得:x=﹣,经检验,x=﹣是分式方程的解;(2),由①得:x≥1,由②得:x>3,则不等式组的解集为x>3.点评:此题考查了解分式方程,以及解一元一次不等式组,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程肯定留意要验根.20.(5分)(2024•镇江)算式:1△1△1=□,在每一个“△”中添加运算符号“+”或“﹣”后,通过计算,“□”中可得到不同的运算结果.求运算结果为1的概率.考点:列表法与树状图法.专题:计算题.分析:依据题意得到添加运算符合的全部状况,计算得到结果,即可求出所求的概率.解答:解:添加运算符合的状况有:“+”,“+”;“+”,“﹣”;“﹣”,“+”;“﹣”“﹣”,共4种状况,算式分别为1+1+1=3;1+1﹣1=1;1﹣1+1=1;1﹣1﹣1=﹣1,其中结果为1的状况有2种,则P运算结果为1==.点评:此题考查了列表法与树状图法,用到的学问点为:概率=所求状况数与总状况数之比.21.(6分)(2024•镇江)如图,AB∥CD,AB=CD,点E、F在BC上,且BE=CF.(1)求证:△ABE≌△DCF;(2)试证明:以A、F、D、E为顶点的四边形是平行四边形.考点:平行四边形的判定;全等三角形的判定与性质.专题:证明题.分析:(1)由全等三角形的判定定理SAS证得△ABE≌△DCF;(2)利用(1)中的全等三角形的对应角相等证得∠AEB=∠DFC,则∠AEF=∠DFE,所以依据平行线的判定可以证得AE∥DF.由全等三角形的对应边相等证得AE=DF,则易证得结论.解答:证明:(1)如图,∵AB∥CD,∴∠B=∠C.∵在△ABE与△DCF中,,∴△ABE≌△DCF(SAS);(2)如图,连接AF、DE.由(1)知,△ABE≌△DCF,∴AE=DF,∠AEB=∠DFC,∴∠AEF=∠DFE,∴AE∥DF,∴以A、F、D、E为顶点的四边形是平行四边形.点评:本题考查了平行四边形的判定、全等三角形的判定与性质.在证明(2)题时,利用了“一组对边平行且相等的四边形是平行四边形”的判定定理.22.(6分)(2024•镇江)某市对一大型超市销售的甲、乙、丙3种大米进行质量检测.共抽查大米200袋,质量评定分为A、B两个等级(A级优于B级),相应数据的统计图如下:依据所给信息,解决下列问题:(1)a=55,b=5;(2)已知该超市现有乙种大米750袋,依据检测结果,请你估计该超市乙种大米中有多少袋B级大米?(3)对于该超市的甲种和丙种大米,你会选择购买哪一种?运用统计学问简述理由.考点:条形统计图;用样本估计总体;扇形统计图.分(1)依据甲的圆心角度数是108°,求出所占的百分比,再依据总袋数求出甲种大米析:的袋数,即可求出a、b的值;(2)依据题意得先求出该超市乙种大米中B级大米所占的百分比,再乘以乙种大米的总袋数即可;(3)分别求出超市的甲种大米A等级大米所占的百分比和丙种大米A等级大米所占的百分比,即可得出答案.解答:解:(1)∵甲的圆心角度数是108°,所占的百分比是×100=30%,∴甲种大米的袋数是:200×30%=60(袋),∴a=60﹣5=55(袋),∴b=200﹣60﹣65﹣10﹣60=5(袋);(2)依据题意得:750×=100,答:该超市乙种大米中有100袋B级大米;(3)∵超市的甲种大米A等级大米所占的百分比是×100%=91.7%,丙种大米A等级大米所占的百分比是×100%=92.3%,∴应选择购买丙种大米.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清晰地表示出每个项目的数据;扇形统计图干脆反映部分占总体的百分比大小.23.(6分)(2024•镇江)如图,小明在教学楼上的窗口A看地面上的B、C两个花坛,测得俯角∠EAB=30°,俯角∠EAC=45°.已知教学楼基点D与点C、B在同一条直线上,且B、C两花坛之间的距离为6m.求窗口A到地面的高度AD.(结果保留根号)考点:解直角三角形的应用-仰角俯角问题.分析:设窗口A到地面的高度AD为xm,依据题意在直角三角形ABD和直角三角形ACD 中,利用锐角三角函数用含x的代数式分别表示线段BD和线段CD的长,再依据BD ﹣CD=BC=6列出方程,解方程即可.解答:解:设窗口A到地面的高度AD为xm.由题意得:∠ABC=30°,∠ACD=45°,BC=6m.∵在Rt△ABD中,BD==xm,在Rt△ABD中,BD==xm,∵BD﹣CD=BC=6,∴x﹣x=6,∴x=3+3.答:窗口A到地面的高度AD为(3+3)米.点评:本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并选择合适的边角关系求解.24.(6分)(2024•镇江)如图,抛物线y=ax2+bx(a>0)经过原点O和点A(2,0).(1)写出抛物线的对称轴与x轴的交点坐标;(2)点(x1,y1),(x2,y2)在抛物线上,若x1<x2<1,比较y1,y2的大小;(3)点B(﹣1,2)在该抛物线上,点C与点B关于抛物线的对称轴对称,求直线AC的函数关系式.考点:抛物线与x轴的交点;待定系数法求一次函数解析式;二次函数图象上点的坐标特征.分析:(1)依据图示可以干脆写出抛物线的对称轴与x轴的交点坐标;(2)依据抛物线的对称轴与x轴的交点坐标可以求得该抛物线的对称轴是x=1,然后依据函数图象的增减性进行解题;(3)依据已知条件可以求得点C的坐标是(3,2),所以依据点A、C的坐标来求直线AC的函数关系式.解答:解:(1)依据图示,由抛物线的对称性可知,抛物线的对称轴与x轴的交点坐标(1,0);(2)抛物线的对称轴是直线x=1.依据图示知,当x<1时,y随x的增大而减小,所以,当x1<x2<1时,y1>y2;(3)∵对称轴是x=1,点B(﹣1,2)在该抛物线上,点C与点B关于抛物线的对称轴对称,∴点C的坐标是(3,2).设直线AC的关系式为y=kx+b(k≠0).则,解得.∴直线AC的函数关系式是:y=2x﹣4.点评:本题考查了待定系数法求一次函数解析式,二次函数图象上点的坐标特征.解答该题时,须要熟识二次函数图象的对称性.25.(6分)(2024•镇江)如图1,Rt△ABC中,∠ACB=90°,AB=5,BC=3,点D在边AB 的延长线上,BD=3,过点D作DE⊥AB,与边AC的延长线相交于点E,以DE为直径作⊙O交AE于点F.(1)求⊙O的半径及圆心O到弦EF的距离;(2)连接CD,交⊙O于点G(如图2).求证:点G是CD的中点.考点:圆的综合题.分析:(1)依据勾股定理求出AC,证△ACB∽△ADE,得出==,代入求出DE=6,AE=10,过O作OQ⊥EF于Q,证△EQO∽△EDA,代入求出OQ即可;(2)连接EG,求出EG⊥CD,求出CF=ED,依据等腰三角形的性质求出即可.解答:解:(1)∵∠ACB=90°,AB=5,BC=3,由勾股定理得:AC=4,∵AB=5,BD=3,∴AD=8,∵∠ACB=90°,DE⊥AD,∴∠ACB=∠ADE,∵∠A=∠A,∴△ACB∽△ADE,∴==∴==∴DE=6,AE=10,即⊙O的半径为3;过O作OQ⊥EF于Q,则∠EQO=∠ADE=90°,∵∠QEO=∠AED,∴△EQO∽△EDA,∴=,∴=,∴OQ=2.4,即圆心O到弦EF的距离是2.4;(2)连接EG,∵AE=10,AC=4,∴CF=6,∴CF=DE=6,∵DE为直径,∴∠EGD=90°,∴EG⊥CD,∴点G为CD的中点.点评:本题考查了圆周角定理,相像三角形的性质和判定,等腰三角形性质的应用,主要考查学生综合运用性质进行推理和计算的实力.26.(8分)(2024•镇江)“绿色出行,低碳健身”已成为广阔市民的共识.某旅游景点新增了一个公共自行车停车场,6:00至18:00市民可在此借用自行车,也可将在各停车场借用的自行车还于此地.林华同学统计了周六该停车场各时段的借、还自行车数,以及停车场整点时刻的自行车总数(称为存量)状况,表格中x=1时的y值表示7:00时的存量,x=2时的y值表示8:00时的存量…依此类推.他发觉存量y(辆)与x(x为整数)满意如图所示的一个二次函数关系.时段x 还车数(辆)借车数(辆)存量y(辆)6:00﹣7:00 145 5 1007:00﹣8:00 243 11 n……………依据所给图表信息,解决下列问题:(1)m=60,说明m的实际意义:该停车场当日6:00时的自行车数;(2)求整点时刻的自行车存量y与x之间满意的二次函数关系式;(3)已知9:00~10:O0这个时段的还车数比借车数的3倍少4,求此时段的借车数.考点:二次函数的应用.专题:应用题.分析:(1)依据题意m+45﹣5=100,说明6点之前的存量为60;(2)先求出n的值,然后利用待定系数法确定二次函数的解析式;(3)设9:00~10:O0这个时段的借车数为x辆,则还车数为(3x﹣4)辆,把x=3代入y=﹣4x2+44x+60得到8:00~9:00的存量为156;把x=4代入y=﹣4x2+44x+60得到9:00~10:00的存量为172,所以156﹣x+(3x﹣4)=172,然后解方程即可.解答:解:(1)m+45﹣5=100,解得m=60,即6点之前的存量为60.m表示该停车场当日6:00时的自行车数;(2)n=100+43﹣11=132,设二次函数的解析式为y=ax2+bx+c,把(1,100),(2,132)、(0,60)代入得,解得,所以二次函数的解析式为y=﹣4x2+44x+60(x为1﹣12的整数);(3)设9:00~10:O0这个时段的借车数为x辆,则还车数为(3x﹣4)辆,把x=3代入y=﹣4x2+44x+60得y=﹣4×32+44×3+60=156,把x=4代入y=﹣4x2+44x+60得y=﹣4×42+44×4+60=172,即此时段的存量为172,所以156﹣x+(3x﹣4)=172,解得x=10,答:此时段借出自行车10辆.点评:本题考查了二次函数的应用:依据实际问题中的数量关系找出三对对应值,再利用待定系数法确定二次函数的解析式,然后运用二次函数的性质解决问题.27.(9分)(2024•镇江)通过对苏科版八(下)教材一道习题的探究探讨,我们知道:一次函数y=x﹣1的图象可以由正比例函数y=x的图象向右平移1个单位长度得到类似的,函数的图象是由反比例函数的图象向左平移2个单位长度得到.敏捷运用这一学问解决问题.如图,已知反比例函数的图象C与正比例函数y=ax(a≠0)的图象l相交于点A(2,2)和点B.(1)写出点B的坐标,并求a的值;(2)将函数的图象和直线AB同时向右平移n(n>0)个单位长度,得到的图象分别记为C′和l′,已知图象C′经过点M(2,4).①求n的值;②分别写出平移后的两个图象C′和l′对应的函数关系式;③干脆写出不等式的解集.考点:反比例函数综合题.专题:几何变换.分析:(1)干脆把A点坐标代入y=ax即可求出a的值;利用反比例函数的图象与正比例函数的图象的交点关于原点对称确定B点坐标;(2)①依据题意得到函数的图象向右平移n(n>0)个单位长度,得到的图象C′的解析式为y=,然后把M点坐标代入即可得到n的值;②依据题意易得图象C′的解析式为y=;图象l′的解析式为y=x﹣1;③不等式可理解为比较y=和y=x﹣1的函数值,由于y=和y=x﹣1为函数的图象和直线AB同时向右平移1个单位长度,得到的图象;而反比例函数的图象与正比例函数y=ax(a≠0)的图象的交点为A(2,2)和B(﹣2,﹣2),所以平移后交点分别为(3,2)和B(﹣1,﹣2),则当x<﹣1或0<x<2时,函数y=的图象都在y=x﹣1的函数图象上方.解答:解:(1)把A(2,2)代入y=ax得2a=2,解得a=1;∵反比例函数的图象与正比例函数y=x的图象的交点关于原点对称,∴B点坐标为(﹣2,﹣2);(2)①函数的图象向右平移n(n>0)个单位长度,得到的图象C′的解析式为y=,把M(2,4)代入得4=,解得n=1;②图象C′的解析式为y=;图象l′的解析式为y=x﹣1;③不等式的解集是x≥3或﹣1≤x<1.点评:本题考查了反比例函数的综合题:驾驭反比例函数图象上点的坐标特征、会确定反比例函数与一次函数的交点坐标以及待定系数法确定解析式;会运用图形的平移确定点的坐标和同时提高阅读理解实力.28.(11分)(2024•镇江)【阅读】如图1,在平面直角坐标系xOy中,已知点A(a,0)(a>0),B(2,3),C(0,3).过原点O作直线l,使它经过第一、三象限,直线l与y轴的正半轴所成角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C落在点D处,我们把这个操作过程记为FZ[θ,a].【理解】若点D与点A重合,则这个操作过程为FZ[45°,3];【尝试】(1)若点D恰为AB的中点(如图2),求θ;(2)经过FZ[45°,a]操作,点B落在点E处,若点E在四边形0ABC的边AB上,求出a 的值;若点E落在四边形0ABC的外部,干脆写出a的取值范围;【探究】经过FZ[θ,a]操作后,作直线CD交x轴于点G,交直线AB于点H,使得△ODG与△GAH 是一对相像的等腰三角形,干脆写出FZ[θ,a].考点:几何变换综合题.分析:【理解】由折叠性质可以干脆得出.【尝试】(1)如答图1所示,若点D恰为AB的中点,连接CD并延长交x轴于点F.证明△BCD≌△AFD,进而得到△OCD为等边三角形,则θ=30°;(2)如答图2所示,若点E在四边形0ABC的边AB上,则△ADE为等腰直角三角形,由此求出a=OA=OD+OA=5;由答图2进一步得到,当0<a<5时,点E落在四边形0ABC的外部.【探究】满意条件的图形有两种,如答图3、答图4所示,解答:解:【理解】若点D与点A重合,由折叠性质可知,OA=OC=3,θ=∠AOC=45°,∴FZ[45°,3].【尝试】(1)如答图1所示,连接CD并延长,交x轴于点F.在△BCD与△AFD中,∴△BCD≌△AFD(ASA).∴CD=FD,即点D为Rt△COF斜边CF的中点,∴OD=CF=CD.又由折叠可知,OD=OC,∴OD=OC=CD,∴△OCD为等边三角形,∠COD=60°,∴θ=∠COD=30°;(2)经过FZ[45°,a]操作,点B落在点E处,则点D落在x轴上,AB⊥直线l,如答图2所示:若点E四边形0ABC的边AB上,由折叠可知,OD=OC=3,DE=BC=2.∵AB⊥直线l,θ=45°,∴△ADE为等腰直角三角形,∴AD=DE=2,∴OA=OD+AD=3+2=5,∴a=5;由答图2可知,当0<a<5时,点E落在四边形0ABC的外部.【探究】FZ[30°,2+],FZ[60°,2+].如答图3、答图4所示.点评:本题是几何变换综合题型,考查了翻折(折叠)变换、全等三角形、相像三角形、等边三角形、等腰直角三角形、勾股定理等学问点,有肯定的难度.解题关键是正确理解题目给出的变换的定义,并能正确运用折叠的性质.第(3)问中,有两种情形符合条件,须要分别计算,避开漏解.。

2023年江苏省镇江市中考数学必修综合测试试卷附解析

2023年江苏省镇江市中考数学必修综合测试试卷附解析

2023年江苏省镇江市中考数学必修综合测试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,太阳在房子的后方,那么你站在房子的正前方看到的影子为( )A .B .C .D . 2. 从左面观察如图所示的两个物体,看到的是( )A .B .C .D .3.如图,是由一些相同的小正方形构成的几何体的三视图.这几个几何体中相同的小正方体的个数有( )A .4 个B .5 个C .6 个D .7 个 4.二次函数28y x x c =-+的最小值是( )A .4B .8C .-4D .165.已知矩形的面积为24,则它的长y 所宽x 之间的关系用图象大致可以表示为( )6. 在反比例函数3k y x-=图象的每一支曲线上,y 都随x 的增大而减小,则k 的取值范围是( )A .k >3B .k >0C .k <3D .k <0 7.不等式组x a x b >⎧⎨>⎩的解集为x b >(a b ≠),则a 与b 的关系是( )A.a b>B.a b<C.0a b>>D.0a b<<8.某校把学生的纸笔测试、实践能力、成长记录三项成绩分别按50%、20%、30%的比例计入学期总评成绩,90分以上为优秀.纸笔测试实践能力成长记录甲908395乙889095丙908890甲、乙、丙三人的成绩如上表(单位:分),学期总评成绩优秀的是()A.甲B.乙和丙C.甲和乙D.甲和丙9.若分式x yx y+-中的x、y的值都变为原来的3倍,则此分式的值()A.不变B.是原来的3倍C.是原来的13D.是原来的1610.下列图案是几种名车的标志,在这几个图案中,是轴对称图形的有()A.1个B.2个C.3个D.4个11.如图,在ΔABC中,BC边上的垂直平分线交AC于点D, 已知AB=3,AC=7,BC=8,则ΔABD 的周长为()A.10 B.11 C. 12 D. 1512.现规定一种新的运算“※”:a※b=a b,如3※2=32=8,则3※12等于()A.18B.8 C.16D.32二、填空题13.如图, 在Rt△ABC内有三个正方形CDEF、FGHM、MNPQ, 已知DE=9, GH=6, 则第三个正方形的边长NP= .14.如图表示△AOB 和它缩小后得到的△GOD,它们的相似比为.15.抛物线y=ax2+bx,当a>0,b<0时,它的图象经过第象限.四16.如果菱形的边长是6的周长是 .17.已知AD ∥BC ,要使四边形ABCD 为平行四边形,需要增加的条件是__________(•填一个你认为正确的条件).18.某农科院为了选出适合某地种植的甜玉米种子,对甲、乙两个品种甜玉米各用l0块试验田进行试验,得到这两个品种甜玉米每公顷产量的两组数据(如图所示).根据图中的信息,可知在试验田中, 种甜玉米的产量比较稳定. 19.平行四边形的面积为S ,边长为5,该边上的高为h ,则S 与h 的关系为 ;当h=2时,S= ;当S=40时,h= .20.如图,若∠1+∠B=180°,则 ∥ ,理由是 .21.如图,数轴上两点A ,B ,在线段AB 上任取一点,则点C 到表示1的点的距离不大于2的概率是 .22.某一天杭州的最低气温是零下3℃,最高气温是零上8℃,则这一天杭州的最大温差是 ℃.23.方程24153x x -+=-的解也是方程|8|x b -=的解,则b= . 三、解答题24.已知二次函数2y ax bx c =++,当x=1 时,y=一2,当x=0时,y=一 1,当x=—1时,y= 一4,求此函数的解析式.25.已知y+ a(a 是常数,a ≠0)与x 成反比,当13x =时,y=5;当12x =时,y=2, 求当x= 一2 时,y 的值.26.某地区为了增强市民的法制意识,抽取了一部分市民进行了一次知识竞赛,将竞赛成绩(得分取整数)进行整理后分成5组,并绘制了频数分布直方图,请结合图中提供的信息,解答下列问题:(1)抽取多少人参加竞赛?(2)60.5~70.5分这一分数段的频数和频率分别是多少?(3)这次竞赛成绩的中位数落在哪个分数段内?(4)根据频数分布直方图,请你提出一个问题,并回答你所提出的问题.27.试用两种方法将已知平行四边形ABCD分成面积相等的四个部分(要求用文字简述你所设计的两种方法,并画出示意图).28.在计算器上按下面的程序进行操作:请问:y是x的函数吗?如果是,写出它的表达式;如果不是,说明理由.29.如图,适当地改变方格图中的平行四边形的部分位置,并保持面积不变,先使其成为矩形,再将矩形向下平移 3个格后,继续改变其中某些部分的位置并保持面积不变,使其成为菱形. 说明在变化过程中所运用的图形变换.30.我国国民经济保持良好发展势头,国内生产总值持续较快增长,下图是1998年~2002年国内生产总值统计图:根据图中信息,解答下列问题:(1)1999年国内生产总值是;(2)已知2002年国内生产总值比2000年增加l2956亿元,2001年比2000年增加6491亿元,求2002年国内生产总值比2001年增长的百分率(结果保留2个有效数字);(3)在(2)的条件下,将统计图改为折线统计图;(4)本题哪幅统计图可以较好地反映我国国内生产总值持续较快增长?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.B3.B4.D5.D6.A7.B8.C9.A10.C11.A12.A二、填空题13.414.2:115.16.24°17.AD=BC (答案不惟一)18.乙19.S=5h ,10,820.AD ;BC ;同旁内角互补,两直线平行21.2322. 1123.778三、解答题24.由已知得214a b c c a b c ++=-⎧⎪=-⎨⎪-+=-⎩,解这个方程组得211a b c =-⎧⎪=⎨⎪=-⎩∴ 这个函数的解析式:221y x x =-+- 25.由题意,设ky ax+=,将13x=,y=5;12x=,y=2代入5322a ka k+=⎧⎨+=⎩,解得 k=3,a=4,∴34yx=-,当 x=-2 时,34552y=-=-⋅-26.(1)45;(2)12,415;(3)70. 5~8O. 5 分;(4)略27.两条对角线;两条对边中点的连线,一组对边四等分连线等等,图略.28.y是x的函数,y=3x+529.图略30.(1)82067亿元 (2)6.7% (3)略 (4)折线统计图。

2022年江苏省镇江市中考数学试卷乙卷附解析

2022年江苏省镇江市中考数学试卷乙卷附解析

2022年江苏省镇江市中考数学试卷乙卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.正方形网格中,AOB ∠如图放置,则sin AOB ∠=( ) A .55B .255C .12 D .22.在太阳光下,转动一个正方体,观察正方体在地上投下的影子,那么这个影子最多是几边形( ) A .四边形 B .五边形 C .六边形 D .七边形 3.半径为4和2的两圆相外切,则其圆心距为( )A .2B .3C .4D .64.在△ABC 中,A=70°,⊙O 截△ABC 的三条边所得的弦长相等,则∠BOC 的度数为( ) A .140° B .l35°C .130°D .125°5.小明随机地在如图所示的正三角形及其内部区域投针,则针扎到其内切圆(阴影)区域的概率为( ) A .21B .π63C .π93D .π336.如图,在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD =2,AC =3,则sinB 的值是( ) A . 2 3B . 3 2C . 3 4D . 4 37.在△ABC 中,∠C = 90°,a 、b 分别是∠A 、∠B 的对边,若a :b=2:5,则 sinA : sinB的值是 ( ) A .25B .52C .425D .2548.如图:点A 、B 、C 都在⊙O 上,且点C 在弦AB 所对的优弧上,若72AOB ∠=︒,则ACB ∠的度数是( )A .18°B .30°C .36°D .72° 9.已知两个等腰直角三角形斜边的比是 1:2,那么它们的面积比是( )A .1 : 1B .2C .1:2D .1:410.下列方程属于一元二次方程的是( ) A .22(2)x x x -⋅=B .20ax bx c ++=C .15x x+= D .20x =11.下列说法错误的是( ) A .错误的判断也是命题 B .命题有真命题和假命题两种 C .定理是命题 D .命题是定理12.下面列出的不等式中,正确的是( ) A .a 不是负数,可表示成0a > B .x 不大于 3,可表示成3x <C .m 与 4 的差是负数,可表示成40m -<D .x 与 2 的和是非负数,可表示成20x +>13.赵师傅透过平举的放大镜从正上方看到水平桌面上的菱形图案的一角(如图所示),那么∠A 与放大镜中的∠C 的大小关系是( ) A .∠A=∠C B .∠A >∠CC .∠A <∠CD .∠A 与∠C 的大小无法比较14.已知3x =,2y =,0x y ⋅<,则x y +的值为( ) A .5或-5B .1或-1C .5或1D .-5或-1二、填空题15.如图是一个被等分成6个扇形可自由转动的转盘,转动转盘,当转盘停止后,指针指向红色区域的概率是 .16.如图,小亮在操场上距离杆AB 的C 处,用测角仪测得旗杆顶端A 的仰角为300,已知BC =9米,测角仪的高CD 为1.2米,那么旗杆AB 的高为 米(结果保留根号). 17.掷两枚硬币,一枚硬币正面朝上,另一枚硬币反面朝上的概率是 . 18.把方程x 2+6x -2=0化为(x+m )2=n (n ≥0)的形式为 . 19.若不等式-3x+n>0的解集是x<2,则不等式-3x +n <0的解集是_____________.红 红红白 白 蓝20.方程组42x yx y+=⎧⎨-=⎩中的两方程相加可得;两方程相减可得.所以方程组的解是.21.(1)要反映某学生从 6岁到12岁每年一次体检时的视力情况,要用统计图;(2)要反映某班40名学生所穿鞋的尺码,要用统计图;(3)要反映某市五个区的占地面积与全市总面积的对比情况,要用统计图.22.三个连续奇数的和为69,则这三个数分别为 .23.若(a+2)2+│b-3│=0,则b a=________.24.-(-2)-(-8)+(-3)-(+7)写成省略加号的和式是.25.若将时钟的时针从“12”按逆时针方向拨到“6”,记作拨“12+”周,则将时针从“12”拨“14-周”时,时针所指的数字是.三、解答题26.身高 1.6m 的小明在课外数学活动小组的户外活动中,准备利用太阳光线和影子测旗杆AB的高度. 如图所示,在小亮的帮助下,小明圆满地完成了任务.(1)他们必须测出哪几条线段的长?(2)若旗杆的影长为 4m,小明的影长为1.2m,请你帮小明计算出旗杆的长.27.使用计算器求下列三角函数的值(精确到0.0001).(1) sin54°10′;( 2) cos24°12′16" ;(3) tan59°25′19"28.如图,已知O是坐标原点,B、C两点的坐标分别为(3,-1)、(2,1).(1)以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;(2)分别写出B、C两点的对应点B′、C′的坐标;(3)如果△OBC内部一点M的坐标为(x,y),写出M的对应点M′的坐标.29.已知一元二次方程240x x k -+=有两个不相等的实数根. (1)求k 的取值范围;(2)如果k 是符合条件的最大整数,且一元二次方程240x x k -+=与210x mx +-=有一个相同的根,求此时 m 的值.30.计算:(1)(-32)+(-512)+52+(-712) (2)25409+-- (3)(-18)÷241×94÷(-16) (4))1816191(36--⨯-【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.D4.D5.C6.C7.A8.C9.D10.D11.D12.C13.A14.B二、填空题 15.2116. 33 +1.217. 1218. (x+3)2=1119.x>220.26x =,22y =,31x y =⎧⎨=⎩21.(1)折线;(多)条形;(3)扇形22.21,23,2523.-824.2+8-3-725.3三、解答题 26.(1)必须测出旗杆的影长 AC 和小明的影长DF.(2) ∵EF ∥BC,DE ∥AB ,∴∠EFD=∠BCA ,∠EDF=∠BAC=90°, ∴△ABC ∽△DEF ,∴AB DE AC DF =,∵4 1.6161.23AB ⨯==m∴旗杆高为163m. 27.(1) sin54°10′≈0. 8107;cos24°12′16"≈0. 9121;tan59°25′19"≈1. 692428.(1)画图略;(2)B ′(-6,2),C ′(-4,-2).(3)M ′(-2x ,-2y).29.(1)4k <;(2)0m =或83-30.(1)0;(2)-24;(3)29;(4)4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

镇江市中考数学试题(满分:120分 考试时间:120分钟)一、填空题(本大题共12小题,每小题2分,共24分) 1.2019-的相反数是 . 2.27的立方根为 .3.一组数据4,3,x ,1,5的众数是5,则x = .4.若代数式4x -有意义,则实数x 的取值范围是 .5.氢原子的半径约为0.000 000 000 05 m ,用科学记数法把0.000 000 000 05表示为 .6.已知点()12A y -,、()21B y -,都在反比例函数2y x =-的图象上,则1y 2y .(填“>”或“<”)7.计算:123-= .8.如图,直线a b ∥,ABC △的顶点C 在直线b 上,边AB 与直线b 相交于点D .若BCD △是等边三角形,20A ∠=︒,则1∠= .(第8题)(第10题)9.若关于x 的方程220x x m -+=有两个相等的实数根,则实数m 的值等于 .10.将边长为1的正方形ABCD 绕点C 按顺时针方向旋转到FECG 的位置(如图),使得点D 落在对角线CF 上,EF 与AD 相交于点H ,则HD = .11.如图,有两个转盘A 、B ,在每个转盘各自的两个扇形区域中分别标有数字1,2,分别转动转盘A 、B ,当转盘停止转动时,若事件“指针都落在标有数字1的扇形区域内”的概率是19,则转盘B 中标有数字1的扇形的圆心角的度数是 .12.已知抛物线()24410y ax ax a a =+++≠过点()3A m ,,()3B n ,两点,若线段AB 的长不大于4,则代数式21a a ++的最小值是 .二、选择题(本大题共5小题,每小题3分,共计15分.在每小题给出的四个选项中,恰有一项是符合题目要求的)13.下列计算正确的是()A.236•a a a=B.734a a a÷=C.()538a a=D.()22ab ab=14.一个物体如图所示,它的俯视图是()A B C D15.如图,四边形ABCD是半圆的内接四边形,AB是直径,»»DC CB=.若110C∠=︒,则ABC∠的度数等于()A.55︒B.60︒C.65︒D.70︒16.下列各数轴上表示的x的取值范围可以是不等式组()22160x aa x+⎧⎨--⎩><的解集的是()A B C D17.如图,菱形ABCD的顶点B、C在x轴上(B在C的左侧),顶点A、D在x轴上方,对角线BD2103()20E-,为BC的中点,点P在菱形ABCD的边上运动.当点()06F,到EP所在直线的距离ABCD的边取得最大值时,点P恰好落在AB的中点处,则菱形长等于()A.103B.10C.16 3D.3三、解答题(本大题共有11小题,共计81分.解答时应写出文字说明、推理过程或演算步骤)18.(本小题满分8分)(1)计算:11(22)2cos603-⎛⎫-+-︒⎪⎝⎭;(2)化简:21111xx x⎛⎫+÷⎪--⎝⎭.18.(本小题满分10分)(1)解方程:23122xx x=+--;(2)解不等式:14(1)2x x--<.19.(本小题满分6分)如图,四边形ABCD中,AD BC∥,点E、F分别在AD、BC上,=AE CF,过点A、C分别作EF的垂线,垂足为G、H.(1)求证:AGE CHF△≌△;(2)连接AC,线段GH与AC是否互相平分?请说明理由.21.(本小题满分6分)小丽和小明将在下周的星期一到星期三这三天中各自任选一天担任值日工作,请用画树状图或列表格的方法,求小丽和小明在同一天值日的概率.22.(本小题满分6分)如图,在ABC △中,=AB AC ,过AC 延长线上的点O 作OD AO ⊥,交BC 的延长线于点D ,以O 为圆心,OD 长为半径的圆过点B . (1)求证:直线AB 与O e 相切(2)若=5AB ,O e 的半径为12,则tan BDO ∠= .23.(本小题满分6分)如图,点2A n (,)和点D 是反比例函数(0,0)my m x x =>>图象上的两点,一次函数30y kx k =+≠()的图象经过点A ,与y 轴交于点B ,与x 轴交于点C ,过点D 作DE x ⊥轴,垂足为E ,连接OA ,OD .已知OAB △与ODE △的面积满足34OAB ODE S S =△△::. (1)OAB S =△ ,m = ;(2)已知点60P (,)在线段OE 上,当PDE CBO ∠=∠时,求点D 的坐标.24.(本小题满分6分)在三角形纸片ABC (如图1)中,78BAC ∠=︒,10AC =.小霞用5张这样的三角形纸片拼成了一个内外都是正五边形的图形(如图2). (1)ABC ∠= ︒;(2)求正五边形GHMNC 的边GC 的长.参考值:sin780.98︒≈,cos780.21︒=,tan78 4.7︒≈.图1图225.(本小题满分6分)陈老师对他所教的九(1)、九(2)两个班级的学生进行了一次检测,批阅后对最后一道试题的得分情况进行了归类统计(各类别的得分如下表),并绘制了如图所示的每班各类别得分人数的条形统计图(不完整).得分 类别0 A :没有作答 1 B :解答但没有正确 3 C :只得到一个正确答案6D :得到两个正确答案,解答完全正确已知两个班一共有50%的学生得到两个正确答案,解答完全正确,九(1)班学生这道试题的平均得分为3.78分.请解决如下问题:(1)九(2)班学生得分的中位数是 ;(2)九(1)班学生中这道试题作答情况属于B 类和C 类的人数各是多少?26.(本小题满分6分)【材料阅读】地球是一个球体,任意两条相对的子午线都组成一个经线圈(如图1中的O e ).人们在北半球可观测到北极星,我国古人在观测北极星的过程中发明了如图2所示的工具尺(古人称它为“复矩”),尺的两边互相垂直,角顶系有一段棉线,棉线末端系一个铜锤,这样棉线就与地平线垂直.站在不同的观测点,当工具尺的长边指向北极星时,短边与棉线的夹角α的大小是变化的.【实际应用】观测点A 在图1所示的O e 上,现在利用这个工具尺在点A 处测得α为31︒,在点A 所在子午线往北的另一个观测点B ,用同样的工具尺测得α为67︒.PQ 是O e 的直径,PQ ON ⊥. (1)求POB ∠的度数;(2)已知6400OP km =,求这两个观测点之间的距离即O e 上»AB 的长.(π取3.1)图1图227.(本小题满分10分)如图,二次函数245y x x =-++图象的顶点为D ,对称轴是直线l ,一次函数215y x =+的图象与x 轴交于点A ,且与直线DA 关于l 的对称直线交于点B .(1)点D 的坐标是 ;(2)直线l 与直线AB 交于点C ,N 是线段DC 上一点(不与点D 、C 重合),点N 的纵坐标为n .过点N 作直线与线段DA 、DB 分别交于点P 、Q ,使得DPQ △与DAB △相似.①当275n =时,求DP 的长;②若对于每一个确定的n 的值,有且只有一个DPQ △与DAB △相似,请直接写出n 的取值范围 .28.(本小题满分11分)学校数学兴趣小组利用机器人开展数学活动.在相距150个单位长度的直线跑道AB上,机器人甲从端点A出发,匀速往返于端点A、B之间,机器人乙同时从端点B出发,以大于甲的速度匀速往返于端点B、A之间.他们到达端点后立即转身折返,用时忽略不计.兴趣小组成员探究这两个机器人迎面相遇的情况,这里的“迎面相遇”包括面对面相遇、在端点处相遇这两种.【观察】①观察图1,若这两个机器人第一次迎面相遇时,相遇地点与点A之间的距离为30个单位长度,则他们第二次迎面相遇时,相遇地点与点A之间的距离为个单位长度;②若这两个机器人第一次迎面相遇时,相遇地点与点A之间的距离为40个单位长度,则他们第二次迎面相遇时,相遇地点与点A之间的距离为个单位长度;图1图2【发现】设这两个机器人第一次迎面相遇时,相遇地点与点A之间的距离为x个单位长度,他们第二次迎面相遇y个单位长度.兴趣小组成员发现了y与x的函数关系,并画出了部时,相遇地点与点A之间的距离为分函数图象(线段OP,不包括点O,如图2所示).①a ;②分别求出各部分图象对应的函数表达式,并在图2中补全函数图象;【拓展】设这两个机器人第一次迎面相遇时,相遇地点与点A之间的距离为x个单位长度,他们第三次迎面相遇y个单位长度.时,相遇地点与点A之间的距离为y不超过60个单位长度,则他们第一若这两个机器人第三次迎面相遇时,相遇地点与点A之间的距离次迎面相遇时,相遇地点与点A之间的距离x的取值范围是.(直接写出结果)2019年镇江市中考数学答案解析一、填空题 1.【答案】2019【解析】直接利用相反数的定义进而得出答案. 解:2019-的相反数是:2019. 故答案为:2019. 【考点】相反数 2.【答案】3【解析】找到立方等于27的数即可. 解:3327=Q ,27∴的立方根是3,故答案为:3. 【考点】立方根 3.【答案】5【解析】解:Q 数据4,3,x ,1,5的众数是5,5x ∴=,故答案为:5. 【考点】众数 4.【答案】4x ≥【解析】根据被开方数大于等于0列不等式求解即可. 解:由题意得40x -≥, 解得4x ≥. 故答案为:4x ≥.【考点】二次根式有意义的条件 5.【答案】11510⨯﹣【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为-10na ⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 解:用科学记数法把0.000 000 000 05表示为11510⨯﹣. 故答案为:11510⨯﹣.【考点】用科学记数法表示较小的数6.【答案】< 【解析】反比例函数2y x =-的图象在第二象限,在第二象限内,y 随x 的增大而增大,根据x 的值大小,得出y 值大小. 解:Q 反比例函数2y x =-的图象在二、四象限,而()12A y -,、()21B y -,都在第二象限,∴在第二象限内,y 随x 的增大而增大,21--Q <,12y y ∴<.故答案为:<【考点】反比例函数图像上点的坐标特征7.=.=【考点】二次根式的加减法 8.【答案】40【解析】根据等边三角形的性质得到60BDC ∠=︒,根据平行线的性质求出2∠,根据三角形的外角性质计算,得到答案. 解:BCD Q △是等边三角形,60BDC ∴∠=︒,a b Q ∥,260BDC ∴∠=∠=︒,由三角形的外角性质可知,1240A ∠=∠-∠=︒, 故答案为:40.【考点】等边三角形的性质,平行线的性质 9.【答案】1【解析】利用判别式的意义得到()2240m -∆=-=,然后解关于m 的方程即可.解:根据题意得()2240m -∆=-=,解得1m =. 故答案为1.【考点】一元二次方根的判别式10.1-【解析】先根据正方形的性质得到1CD =,90CDA ∠=︒,再利用旋转的性质得CF ,根据正方形的性质得45CFDE ∠=︒,则可判断DFH △为等腰直角三角形,从而计算CF CD -即可. 解:Q 四边形ABCD 为正方形,1CD ∴=,90CDA ∠=︒,Q 边长为1的正方形ABCD 绕点C 按顺时针方向旋转到FECG 的位置,使得点D 落在对角线CF 上,CF ∴=45CFDE ∠=︒,DFH ∴△为等腰直角三角形,1DH DF CF CD ∴==-=.1.【考点】旋转的性质以及正方形的性质 11.【答案】80【解析】先根据题意求出转盘B 中指针落在标有数字1的扇形区域内的概率,再根据圆周角等于360︒计算即可.解:设转盘B 中指针落在标有数字1的扇形区域内的概率为x ,根据题意得:1129x =, 解得29x =, ∴转盘B 中标有数字1的扇形的圆心角的度数为:2360809︒⨯=︒.故答案为:80. 【考点】事件的概率12.【答案】74【解析】根据题意得413a +≥,解不等式求得12a ≥,把12x =代入代数式即可求得.解:Q 抛物线24410y ax ax a a =+++≠()过点3A m (,),3B n (,)两点,4222m n aa +∴=-=-.Q 线段AB 的长不大于4,413a ∴+≥. 12a ∴≥.21a a ∴++的最小值为:21171224⎛⎫++= ⎪⎝⎭; 故答案为74.【考点】二次函数的性质二、选择题13.【答案】B【解析】直接利用同底数幂的乘除运算法则、积的乘方运算法则、幂的乘方运算法则分别化简得出答案.解:A .235a a a g =,故此选项错误; B .734a a a ÷=,正确;C .3515a a ()=,故此选项错误; D .222ab a b ()=,故此选项错误; 故选:B .【考点】同底数幂的乘除运算,积的乘方运算,幂的乘方运算14.【答案】D【解析】从图形的上方观察即可求解;解:俯视图从图形上方观察即可得到:, 故选:D .【考点】几何体的三视图15.【答案】A【解析】连接AC ,根据圆内接四边形的性质求出DAB ∠,根据圆周角定理求出ACB ∠、CAB ∠,计算即可.解:连接AC ,Q 四边形ABCD 是半圆的内接四边形,18070DAB C ∴∠=︒-∠=︒,»»DC CB =Q ,1352CAB DAB ∴∠=∠=︒,AB Q 是直径,90ACB ∴∠=︒,9055ABC CAB ∴∠=︒-∠=︒,故选:A .【考点】圆内接四边形的性质,圆周角定理16.【答案】B【解析】由数轴上解集左端点得出a 的值,代入第二个不等式,解之求出x 的另外一个范围,结合数轴即可判断.解:由2x a +>得2x a ->,A .由数轴知3x ->,则1a =-,360x ∴--<,解得2x ->,与数轴不符;B .由数轴知0x >,则2a =,360x ∴-<,解得2x <,与数轴相符合;C .由数轴知2x >,则4a =,760x ∴-<,解得67x <,与数轴不符;D .由数轴知2x ->,则0a =,60x ∴--<,解得6x ->,与数轴不符;故选:B .【考点】一元一次不等式组17.【答案】A【解析】如图1中,当点P 是AB 的中点时,作FG PE ⊥于G ,连接EF .首先说明点G 与点F 重合时,FG 的值最大,如图2中,当点G 与点E 重合时,连接AC 交BD 于H ,PE 交BD 于J .设2BC a =.利用相似三角形的性质构建方程求解即可.解:如图1中,当点P 是AB 的中点时,作FG PE ⊥于G ,连接EF .()20E -Q ,,()06F ,2OE ∴=,6OF =,2224210EF ∴=+=,90FGE ∠=︒Q ,FG EF ∴≤.∴当点G 与E 重合时,FG 的值最大.如图2中,当点G 与点E 重合时,连接AC 交BD 于H ,PE 交BD 于J .设2BC a =.PA PB =Q ,BE EC a ==,PE AC ∴∥,BJ JH =.Q 四边形ABCD 是菱形,AC BD ∴⊥,10BH DH =,10BJ =, PE BD ∴⊥.90BJE EOF PEF ∠=∠=∠=︒Q ,EBJ FEO ∴∠=∠,BJE EOF ∴△∽△,BE BJ EF EO ∴=,1062210=, 53a ∴=,1023BC a ∴==, 故选:A .【考点】菱形的性质,直角三角形三边的关系,相似三角形的判定和性质三、解答题18.【答案】解:(1)原式1132=32=+-⨯ (2)21111x x x ⎛⎫+÷ ⎪--⎝⎭ 211111x x x x x -⎛⎫=+÷ ⎪---⎝⎭(1)(1)1x x x x x +-=-g1x =+【解析】(1)根据零指数幂、负整数指数幂的运算法则、特殊角的三角函数值计算;(2)根据分式的混合运算法则计算.【考点】实数的混合运算,分式的混合运算19.【答案】解:(1)方程两边同乘以2x -()得232x x =+-1x ∴=检验:将1x =代入2x -()得1210-=-≠1x =是原方程的解.∴原方程的解是1x =.(2)化简14(1)2x x --<得1442x x --< 932x ∴< 32x ∴<∴原不等式的解集为32x <.【解析】(1)方程两边同乘以2x -()化成整式方程求解,注意检验;(2)按照去括号,移项,合并同类项,系数化为1来解即可.【考点】分式方程和一元一次不等式的解法20.【答案】解:(1)证明:AG EF ⊥Q ,CH EF ⊥,90G H ∴∠=∠=︒,AG CH ∥,AD BC Q ∥,DEF BFE ∴∠=∠,AEG DEF ∠=∠Q ,CFH BFE ∠=∠,AEG CFH ∴∠=∠,在AGE △和CHF △中,H AEG CFHAE CF G ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AGE CHF AAS ∴△≌△;(2)解:线段GH 与AC 互相平分,理由如下:连接AH 、CG ,如图所示:由(1)得:AGE CHF △≌△,AG CH ∴=,AG CH Q ∥,∴四边形AHCG 是平行四边形,∴线段GH 与AC 互相平分.【解析】(1)由垂线的性质得出90G H ∠=∠=︒,AG CH ∥,由平行线的性质和对顶角相等得出AEG CFH ∠=∠,由AAS 即可得出AGE CHF △≌△;(2)连接AH 、CG ,由全等三角形的性质得出AG CH =,证出四边形AHCG 是平行四边形,即可得出结论.【考点】全等三角形的判定与性质,平行四边形的判定与性质,平行线的性质21.【答案】解:解:根据题意画树状图如下:共有9种等情况数,其中小丽和小明在同一天值日的有3种,则小丽和小明在同一天值日的概率是3193=. 【解析】根据题意画出树状图得出所有等情况数和小丽和小明在同一天值日的情况数,然后根据概率公式即可得出答案.【考点】用列表或画树状图法求事件的概率22.【答案】解:(1)证明:连接AB ,如图所示:AB AC =Q ,ABC ACB ∴∠=∠,ACB OCD ∠=∠Q ,ABC OCD ∴∠=∠,OD AO ⊥Q ,90COD ∴∠=︒,90D OCD ∴∠+∠=︒,OB OD =Q ,OBD D ∴∠=∠,90OBD ABC ∴∠+∠=︒,即90ABO ∠=︒,AB OB ∴⊥,Q 点B 在圆O 上,∴直线AB 与O e 相切;(2)23【解析】(1)连接OB ,由等腰三角形的性质得出ABC ACB ∠=∠,OBD D ∠=∠,证出90OBD ABC ∠+∠=︒,得出AB OB ⊥,即可得出结论;(2)由勾股定理得出13OA ==,得出8OC OA AC =-=,再由三角函数定义即可得出结果.解:90ABO ∠=︒Q ,13OA ∴==,5AC AB ==Q ,8OC OA AC ∴=-=,82tan 123OC BDO OD ∴∠===; 故答案为:23.【考点】切线的判定,等腰三角形的性质,直角三角形的性质,勾股定理以及三角函数定义23.【答案】(1)38(2)解:由(1)知,反比例函数解析式是8y x =.28n ∴=,即4n =.故24A (,),将其代入3y kx =+得到:234k +=. 解得12k =.∴直线AC 的解析式是:132y x =+.令0y =,则1302x +=,6x ∴=-,()60C ∴-,.6OC ∴=.由(1)知,3OB =.设D a b (,),则DE b =,6PE a =-.PDE CBO ∠=∠Q ,90COB PED ∠=∠=︒,CBO PDE ∴△∽△,OB OC DE PE ∴=,即366b a =-①,又8ab =②.联立①②,得24a b =-⎧⎨=-⎩(舍去)或81a b =⎧⎨=⎩.故81D (,).【解析】(1)由一次函数解析式求得点B 的坐标,易得OB 的长度,结合点A 的坐标和三角形面积公式求得3OAB S =△,所以4ODE S =△,由反比例函数系数k 的几何意义求得m 的值;解:由一次函数3y kx =+知,03B (,)03B (,). 又点A 的坐标是2n (,),13232OAB S ∴=⨯⨯=△.:3:4OAB ODE S S =Q △△.4ODE S ∴=△.Q 点D 是反比例函数(0,0)m y m x x =>>图象上的点,142ODE m S ∴==△,则8m =.故答案是:3;8;(2)利用待定系数法确定直线AC 函数关系式,易得点C 的坐标;利用90PDE CBO PED ∠=∠=∠=︒,判定CBO PDE △∽△,根据该相似三角形的对应边成比例求得PE 、DE 的长度,易得点D 的坐标.【考点】待定系数法确定函数关系式,函数图像上点的坐标特征,反比例函数系数m 的几何意义,三角形的面积公式,相似三角形的判定与性质24.【答案】(1)30(2)解:作CQ AB ⊥于Q ,在Rt AQC △中,sin QC QAC AC ∠=,sin 100.989.8QC AC QAC ∴=∠≈⨯=g ,在Rt BQC △中,30ABC ∠=︒,219.6BC QC ∴==,9.6GC BC BG ∴=-=.【解析】(1)根据多边形内角和定理、正五边形的性质计算;解:Q 五边形ABDEF 是正五边形,(52)1801085BAF -⨯︒∴∠==︒,30ABC BAF BAC ∴∠=∠-∠=︒,故答案为:30;(2)作CQ AB ⊥于Q ,根据正弦的定义求出QC ,根据直角三角形的性质求出BC ,结合图形计算即可.【考点】正多边形和圆,解直角三角形的应用25.【答案】(1)6(2)解:两个班一共有学生:()222750%98+÷=(人),九(1)班有学生:984850-=(人).设九(1)班学生中这道试题作答情况属于B 类和C 类的人数各是x 人、y 人.由题意,得52250053622 3.7850x y x y +++=⎧⎨⨯+++⨯=⨯⎩,解得617x y =⎧⎨=⎩.答:九(1)班学生中这道试题作答情况属于B 类和C 类的人数各是6人、17人.【解析】(1)由条形图可知九(2)班一共有学生48人,将48个数据按从小到大的顺序排列,第24、25个数据都在D 类,所以中位数是6分;(2)先求出两个班一共有多少学生,减去九(2)班的学生数,得出九(1)班的学生数,再根据条形图,用九(1)班的学生数分别减去该班A 、D 两类的学生数得到B 类和C 类的人数和,再结合九(1)班学生这道试题的平均得分为3.78分,即可求解.【考点】统计图表与条形图的综合运用26.【答案】解:(1)设点B 的切线CB 交ON 延长线于点E ,HD BC ⊥于D ,CH BH ⊥交BC 于点C ,如图所示:则67DHC ∠=︒,90HBD BHD BHD DHC ∠+∠=∠+∠=︒Q ,67HBD DHC ∴∠=∠=︒,ON BH Q ∥,67BEO HBD ∴∠=∠=︒,906723BOE ∴∠=︒-︒=︒,PQ ON ⊥Q ,90POE ∴∠=︒,902367POB ∴∠=︒-︒=︒;(2)同(1)可证31POA ∠=︒,673136AOB POB POA ∴∠=∠-∠=︒-︒=︒,»36π64003968(km)180AB ⨯⨯∴==.【解析】(1)设点B 的切线CB 交ON 延长线于点E ,HD BC ⊥于D ,CH BH ⊥交BC 于点C ,则67DHC ∠=︒,证出67HBD DHC ∠=∠=︒,由平行线的性质得出67BEO HBD ∠=∠=︒,由直角三角形的性质得出23BOE ∠=︒,得出902367POB ∠=︒-︒=︒;(2)同(1)可证31POA ∠=︒,求出36AOB POB POA ∠=∠-∠=︒,由弧长公式即可得出结果.【考点】切线的性质,直角三角形的性质,弧长公式27.【答案】(1)()29,(2)解:对称轴2x =,925C ⎛⎫∴ ⎪⎝⎭,,由已知可求5,02A ⎛⎫- ⎪⎝⎭,点A 关于2x =对称点为13,02⎛⎫ ⎪⎝⎭,则AD 关于2x =对称的直线为213y x =-+,53B ∴(,), ①当275n =时,272,5N ⎛⎫ ⎪⎝⎭,DA ∴=,185DN =,365CD = 当PQ AB ∥时,DPQ DAB △∽△,DAC DPN Q △∽△,DP DN DA DC ∴=,DP ∴=当PQ 与AB 不平行时,DPQ DAB △∽△,DNQ DCA Q V △∽△,DP DN DB DC ∴=,DP ∴=综上所述,DN =; ②92155n << 【解析】(1)直接用顶点坐标公式求即可;解:顶点为29D (,),故答案为()29,;(2)由对称轴可知点92,5C ⎛⎫ ⎪⎝⎭,5,02A ⎛⎫- ⎪⎝⎭,点A 关于对称轴对称的点13,02⎛⎫ ⎪⎝⎭,借助AD 的直线解析式求得(5,3)B ;①当275n =时,272,5N ⎛⎫ ⎪⎝⎭,可求DA =,185DN =,365CD =.当365CD =时,PQ AB ∥,DPQ DAB △∽△,DP =;当PQ 与AB 不平行时,DP =;②当PQ AB ∥,DB DP =时,DB =,245DN =,所以212,5N ⎛⎫ ⎪⎝⎭,则有且只有一个DPQ △与DAB △相似时,92155n <<; 【考点】二次函数的图像及性质,函数图像上点的坐标特征,相似三角形的判定与性质以及分类讨论思想28.【答案】【观察】①90②120【发现】①50②解:当050 x<≤时,点()50150P,在线段OP上,∴线段OP的表达式为3y x=,当150xv vx-<时,即当5075x<<,此时,第二次相遇地点是机器人甲在到点B返回向点A时,设机器人甲的速度为v,则机器人乙的速度为150xvx-,根据题意知,150(150150)xx y x yx-+=-+-,3300y x∴=-+,即:3(050)3300(5075)x xyx x⎧=⎨-+⎩<≤<<,补全图形如图2所示,【拓展】4875x≤<【解析】【观察】①设此时相遇点距点A为m个单位,根据题意列方程即可得到结论;②此时相遇点距点A为m个单位,根据题意列方程即可得到结论;解:①Q相遇地点与点A之间的距离为30个单位长度,∴相遇地点与点B之间的距离为15030120-=个单位长度,设机器人甲的速度为v,∴机器人乙的速度为120430v v=,∴机器人甲从相遇点到点B所用的时间为120 v,机器人乙从相遇地点到点A再返回到点B所用时间为30150454v v+=,而12045v v>,∴设机器人甲与机器人乙第二次迎面相遇时,机器人乙从第一次相遇地点到点A,返回到点B,再返回向A时和机器人甲第二次迎面相遇,设此时相遇点距点A m个单位,根据题意得,() 30150150430m m++-=-,90m∴=,故答案为:90;②Q相遇地点与点A之间的距离为40个单位长度,。

相关文档
最新文档