粒子群算法matlab代码详解

合集下载

粒子群_Matlab程序代码

粒子群_Matlab程序代码

粒子群优化算法(panicle swarm optimization ,PSO)是kennedy 和Eberhart 在研究鸟类和鱼类的群体行为基础上于1995年提出的一种群智能算法,其思想米源予人工生命和演化计算理论,模仿鸟群飞行觅食行为,通过鸟集体协作使群体达到最优。

1.粒子群算法的原理PSO 中,每个优化问题的解看作搜索空间中的一只鸟(即粒子),所有的粒子都有一个被优化的函数决定的适应值,并且有一个速度决定它们飞翔的方向和速率,粒子们追随当前的最优粒子在解空间中搜索。

算法首先初始化一群随机粒子,然后通过迭代找到最优解。

在每一次迭代中,粒子通过跟踪两个“极值”即个体极值和全局极值来更新自己的速度与位置。

在D 维目标搜索空间中,由种群数为m 的粒子组成粒子群,其中第f 个粒子在第d 维的位置为Xid ,其飞行速度为Vid ,该粒子当前搜索到的最优位置为Pid(goodvalue)和整个粒子群当前的最优位置Pgd(bestvalue)。

每维的速度与位置更新公式如下112(1)()(1)()(1)id id id id id id v v c rand p x c rand g x ω+=⨯+⨯⨯-+⨯⨯-L 11(2)id id id x x v ++=+LW 为惯性权重,C1和C2为学习因子,rand ()——[0,1]范围内变化的随机数。

2.参数介绍与设置(1)ww 是保持粒子运动惯性的参数,能使种群扩展搜索空间,获得较好的求解效果。

较大的w 有利于群体在更大的范围内进行搜索。

而较小的w 能够保证群体收敛到最优位置,所以w 的选择及在迭代中的变化对搜索能力和跳出局优能力具有重要影响。

一般将w 设定为0.8左右。

(1)加速因子c1和c2c1和c2用于调整粒子自身经验和社会经验在其运动中的作用,表示将每个粒子拉向pbest 和gbest 位置的随机加速项的权重,低的值允许粒子在被拉回前可以在目标区域外徘徊, 而高的值则导致粒子突然冲向或越过目标区域。

粒子群算法matlab程序

粒子群算法matlab程序

粒子群算法matlab程序粒子群算法(PSO)是一种基于群体智能的求解优化问题的算法。

其通过模拟鸟群等大规模群体行为,实现全局搜索和基于群体协作的局部搜索。

在PSO中,通过一组粒子(每个粒子代表一个解)来搜索问题的解空间,在搜索过程中,粒子的位置表示该解在解空间中的位置,速度表示该解在该方向(即属性)上的变化速率,最终达到全局最优解或局部最优解。

PSO算法有着简单易懂、实现简便、计算速度快以及易于与其他算法结合等优点。

下面我将介绍一下如何使用matlab编写简单的粒子群算法程序。

程序主要分为以下步骤:1.初始化在程序开始之前需要对粒子进行初始化操作,其中需要确定粒子群的大小、每个粒子的位置、速度等初始参数。

2.计算适应值计算每个粒子的适应值,即根据当前位置计算该解的适应值。

适应值可以根据实际问题进行定义,如最小化目标函数或最大化收益等。

3.更新粒子速度和位置这一步是PSO算法的核心步骤,通过改变粒子的速度和位置来找到更优的解。

其核心公式为:v(t+1) = w * v(t) + c1 * rand() * (pbest - x(t)) + c2 * rand() * (gbest - x(t)) x(t+1) = x(t) + v(t+1)其中w是惯性权重,c1、c2是学习因子,pbest是该粒子的历史最优解,gbest 是当前全局最优解。

4.更新pbest和gbest在每次更新位置之后需要更新每个粒子自己的历史最优解以及全局最优解。

5.停止条件判断设定停止条件,如最小适应值误差、迭代次数、最大迭代次数等,如果达到了停止条件,则程序结束,输出全局最优解。

下面是一份简单的PSO算法的matlab代码:function [best_fit, best_x] = pso(func, dim, lb, ub, max_iter, swarm_size, w, c1, c2)%初始化粒子v = zeros(swarm_size, dim);x = repmat(lb, swarm_size, 1) + repmat(ub - lb, swarm_size, 1) .* rand(swarm_size, dim);pbest = x;[best_fit, best_idx] = min(func(x));gbest = x(best_idx,:);%开始迭代for iter = 1 : max_iter%更新速度和位置v = w * v + c1 * rand(swarm_size, dim) .* (pbest - x) + c2 * rand(swarm_size, dim) .* repmat(gbest, swarm_size, 1) - x;x = x + v;%边界处理x = max(x, repmat(lb, swarm_size, 1));x = min(x, repmat(ub, swarm_size, 1));%更新pbest和gbestidx = func(x) < func(pbest);pbest(idx,:) = x(idx,:);[min_fit, min_idx] = min(func(pbest));if min_fit < best_fitbest_fit = min_fit;best_x = pbest(min_idx,:);endendend在使用上述代码时,需要定义适应值函数(func)、解空间维度(dim)、每个维度的上界(ub)与下界(lb)、最大迭代次数(max_iter)、粒子群大小(swarm_size)、惯性权重(w)、学习因子(c1、c2)等参数。

整数空间粒子群算法MATLAB程序

整数空间粒子群算法MATLAB程序

整数空间粒子群算法clear allclcticT =1200; %最大迭代次数PopSize=40; %种群大小c1 =2; %学习因子1c2 = 2; %学习因子2w=0.9; %惯性因子NDim = 60; %空间维数for i=1:PopSizefor j=1:NDim %初始化各粒子初始位置,在有效范围内随机选数x(i,j)=round(rand*20) + 20;endendvmax=zeros(PopSize,NDim);for i=1:PopSizefor j=1:NDim %初始化各粒子最大速度,使粒子不能越出边界vmax(i,j)=10;endendv = vmax.*rand( PopSize,NDim);%计算初始各粒子的适应度值for i = 1:PopSizefvalue(i) = youhualianxuduo(x(i,:));endpbest = x; %记录各粒子的个体极值点位置fpbest = fvalue; %记录初始个体最佳适应度值[fbestval,index] = min(fvalue); % 找出全局极值和相应的序号gbest1=fbestval;g1=x(index,:);%浸入主循环,按照公式依次迭代直到满足迭代次数for i=1:Tfor j=1:PopSizeif(youhualianxuduo(x(j,:))<fpbest(j))pbest(j,:)=x(j,:);fpbest(j)=youhualianxuduo(x(j,:));endif (fpbest(j)<gbest1)g1=pbest(j,:);gbest1=fpbest(j);endfor d=1:NDimif pbest(j,d)>x(j,d)a1=0;elsea1=c1*(pbest(j,d)-x(j,d));endif pbest(j,d)>x(j,d)b1=c1*(pbest(j,d)-x(j,d));elseb1=0;endif g1(d)>x(j,d)a2=0;elsea2=c2*(g1(d)-x(j,d));endif g1(d)>x(j,d)b2=c2*(g1(d)-x(j,d));elseb2=0;endR1=randi([a1,b1],1,1);R2=randi([a2,b2],1,1);v(j,d)=round(w*v(j,d))+R1+R2;end%更新速度Vfor n=1:PopSize %速度v的限定,最大值为10 for k=1:NDimif v(n,k)>10v(n,k)=10;endif v(n,k)<-10v(n,k)=-10;endendendx(j,:)=x(j,:)+v(j,:); %更新位置x% 逸出标志for l=1:PopSize % 阻止逸出for m=1:NDimif x(l,m)<1|x(l,m)>40x(l,m)=round(rand*20+20);endendendendw=0.9-i*0.5/Tgb1(i)=gbest1;endfigure(7)plot(gb1);TempStr=sprintf('c1=%g,c2=%g',c1,c2); title(TempStr);xlabel('迭代次数');ylabel('适应度值');toc。

matlab中调用量子粒子群优化算法__理论说明

matlab中调用量子粒子群优化算法__理论说明

matlab中调用量子粒子群优化算法理论说明1. 引言1.1 概述本文将介绍在MATLAB中调用量子粒子群优化算法的理论说明。

量子粒子群优化算法是一种启发式搜索算法,利用了经典的粒子群优化算法和量子力学概念,能够有效地解决许多实际问题。

本文将从算法原理、算法流程、参数调节方法等方面对量子粒子群优化算法进行介绍,并重点探讨如何在MATLAB中调用和使用这一算法。

1.2 文章结构本文共分为5个部分,除了引言,还包括量子粒子群优化算法的介绍、MATLAB 中的实现、实验结果与讨论以及结论与未来展望。

首先,我们将详细介绍量子粒子群优化算法的原理和流程,并讨论其相关参数的调节方法。

接下来,我们会简要介绍MATLAB中的优化工具箱,并指导读者如何调用和使用其中的量子粒子群优化函数。

随后,我们将通过案例分析展示该算法在解决实际问题上的应用效果,并进行结果对比分析和讨论。

最后,我们将总结主要研究成果并提出改进方向建议,并探讨未来研究方向和展望。

1.3 目的本文的目的是帮助读者了解量子粒子群优化算法以及如何在MATLAB中调用和使用该算法。

通过本文的阅读,读者将能够掌握量子粒子群优化算法的原理和流程,并具备使用MATLAB工具箱进行实际问题求解的能力。

此外,我们还将通过案例分析和结果讨论,展示该算法在实际问题中的有效性和可行性,并为其改进提出建议。

最后,在结论部分,我们将总结文章内容并提出未来研究方向供读者参考。

2. 量子粒子群优化算法介绍:2.1 量子粒子群优化算法原理量子粒子群优化算法(Quantum Particle Swarm Optimization,简称QPSO)是一种基于群体智能的全局优化算法。

该算法的原理基于典型的粒子群优化算法(Particle Swarm Optimization,简称PSO),同时引入了量子力学中的概念和思想。

在传统的PSO中,每个粒子代表一个搜索解,并通过不断更新自己的位置和速度来寻找全局最优解。

改进粒子群算法matlab代码

改进粒子群算法matlab代码

改进粒子群算法matlab代码粒子群算法是一种基于群体智能的优化算法,其主要思想是将优化问题转化为粒子在搜索空间中寻找最优解的过程。

粒子群算法的运作方式是通过定义一群随机粒子,并根据它们在搜索空间中的位置和速度,来引导粒子向着更好的解决方案进行搜索。

以下是改进版粒子群算法的MATLAB代码:%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 粒子群算法-改进版%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 初始化参数和粒子群function [gbest_x, gbest_y] = PSO(num_particles,max_iterations, f, lower_bound, upper_bound)% 定义粒子群基本参数w = 0.7; % 惯性权重c1 = 1.4; % 学习因子1c2 = 1.4; % 学习因子2% 初始化粒子位置和速度particles_position = unifrnd(lower_bound, upper_bound, [num_particles, 2]);particles_velocity = zeros(num_particles, 2);% 初始化个体最优解和全局最优解pbest_position = particles_position;pbest_value = zeros(num_particles, 1);for i = 1:num_particlespbest_value(i) = f(particles_position(i,:));end[global_min_value, global_min_index] = min(pbest_value); gbest_position = particles_position(global_min_index, :);gbest_value = global_min_value;% 迭代优化for iter = 1:max_iterationsfor i = 1:num_particles% 更新粒子速度particles_velocity(i,:) = w *particles_velocity(i,:) ...+ c1 * rand() * (pbest_position(i,:) -particles_position(i,:)) ...+ c2 * rand() * (gbest_position -particles_position(i,:));% 限制粒子速度范围particles_velocity(i,1) = max(particles_velocity(i,1), lower_bound);particles_velocity(i,1) = min(particles_velocity(i,1), upper_bound);particles_velocity(i,2) = max(particles_velocity(i,2), lower_bound);particles_velocity(i,2) = min(particles_velocity(i,2), upper_bound);% 更新粒子位置particles_position(i,:) = particles_position(i,:) + particles_velocity(i,:);% 限制粒子位置范围particles_position(i,1) = max(particles_position(i,1), lower_bound);particles_position(i,1) = min(particles_position(i,1),upper_bound);particles_position(i,2) = max(particles_position(i,2), lower_bound);particles_position(i,2) = min(particles_position(i,2), upper_bound);% 更新个体最优解temp_value = f(particles_position(i,:));if temp_value < pbest_value(i)pbest_value(i) = temp_value;pbest_position(i,:) = particles_position(i,:);endend% 更新全局最优解[temp_min_value, temp_min_index] = min(pbest_value);if temp_min_value < gbest_valuegbest_value = temp_min_value;gbest_position = pbest_position(temp_min_index,:);endend% 返回全局最优解gbest_x = gbest_position(1);gbest_y = gbest_position(2);end其中,num_particles为粒子数目,max_iterations为最大迭代次数,f为目标函数句柄,lower_bound和upper_bound为搜索空间的下界和上界。

(完整word版)用MATLAB编写PSO算法及实例

(完整word版)用MATLAB编写PSO算法及实例

用MATLAB 编写PSO 算法及实例1.1 粒子群算法PSO 从这种模型中得到启示并用于解决优化问题。

PSO 中,每个优化问题的潜在解都是搜索空间中的一只鸟,称之为粒子。

所有的粒子都有一个由被优化的函数决定的适值( fitness value) ,每个粒子还有一个速度决定它们飞翔的方向和距离。

然后粒子们就追随当前的最优粒子在解空间中搜索。

PSO 初始化为一群随机粒子(随机解),然后通过迭代找到最优解。

在每一次迭代中,粒子通过跟踪两个极值来更新自己;第一个就是粒子本身所找到的最优解,这个解称为个体极值;另一个极值是整个种群目前找到的最优解,这个极值是全局极值。

另外也可以不用整个种群而只是用其中一部分作为粒子的邻居,那么在所有邻居中的极值就是局部极值。

假设在一个维的目标搜索空间中,有个粒子组成一个群落,其中第个粒子表示为一个维的向量,。

第个粒子的“飞行 ”速度也是一个维的向量,记为,。

第个粒子迄今为止搜索到的最优位置称为个体极值,记为,。

整个粒子群迄今为止搜索到的最优位置为全局极值,记为在找到这两个最优值时,粒子根据如下的公式(1.1)和( 1.2)来更新自己的速度和位置:(1.1) (1. 2)其中:和为学习因子,也称加速常数(acceleration constant),和为[0,1]范围内的均匀随机数。

式(1.1)右边由三部分组成,第一部分为“惯性(inertia)”或“动量(momentum)”部分,反映了粒子的运动“习惯(habit)”,代表粒子有维持自己D N i D ),,,(21iD i i i x x x X N i ,,2,1 i D ),,21i iD i i v v v V ,( 3,2,1 i i ),,,(21iD i i best p p p p N i ,,2,1 ),,,(21gD g g best p p p g )(2211id gd id id id id x p r c x p r c v w v id id id v x x 1c 2c 1r 2r先前速度的趋势;第二部分为“认知(cognition)”部分,反映了粒子对自身历史经验的记忆(memory)或回忆(remembrance),代表粒子有向自身历史最佳位置逼近的趋势;第三部分为“社会(social)”部分,反映了粒子间协同合作与知识共享的群体历史经验。

粒子群算法解决VRP代码(matlab)

粒子群算法解决VRP代码(matlab)

粒子群算法解决VRP代码(matlab)particle_swarm_optimization.m文件:function PSOforTSP%初始化Alpha=0.25; %个体经验保留概率Beta=0.25; %全局经验保留概率NC_max=100; %最大迭代次数m=80; %微粒数CityNum=14; %问题的规模(城市个数)[dislist,Clist]=tsp(CityNum);NC=1;%迭代计数器R_best=zeros(NC_max,CityNum); %各代最佳路线L_best=inf.*ones(NC_max,1);%各代最佳路线的长度L_ave=zeros(NC_max,1);%各代路线的平均长度%产生微粒的初始位置for i=1:mx(i,:)=randperm(CityNum);L(i)=CalDist(dislist,x(i,:));endp=x; %p为个体最好解pL=L;[L_best(1,1) n_best]=min(L);R_best(1,:)=x(n_best,:);L_ave(1,1)=mean(L);%初始交换序v=ones(CityNum-1,2,m)*(round(rand*(CityNum-1))+1);figure(1);while NC<=NC_max %停止条件之一:达到最大迭代次数for i=1:mxnew(i,:)=changeFun(x(i,:),v(:,:,i));A=changeNum(x(i,:),p(i,:));Arand=randFun(A,Alpha);xnew(i,:)=changeFun(xnew(i,:),Arand);B=changeNum(x(i,:),R_best(NC,:));Brand=randFun(B,Beta);xnew(i,:)=changeFun(xnew(i,:),Brand);v(:,:,i)=changeNum(x(i,:),xnew(i,:));L(i)=CalDist(dislist,xnew(i,:));if L(i)<pl(i)< p="">p(i,:)=xnew(i,:);pL(i)=L(i);endend[L_bestnew n_best]=min(L);R_bestnew=xnew(n_best,:);L_ave(NC+1,1)=mean(L);if L_bestnew<l_best(nc,1)< p="">L_best(NC+1,1)=L_bestnew;R_best(NC+1,:)=R_bestnew;elseL_best(NC+1,1)=L_best(NC,1);R_best(NC+1,:)=R_best(NC,:);endx=xnew;drawTSP10(Clist,R_best(NC,:),L_best(NC,1),NC,0); %pause;NC=NC+1;end%输出结果Pos=find(L_best==min(L_best));Shortest_Route=R_best(Pos(1),:);Shortest_Length=L_best(Pos(1)); figure(2);plot([L_best L_ave]);legend('最短距离','平均距离'); endfunction xnew=changeFun(x,C); changeLen=size(C,1);xnew=x;for i=1:changeLena=xnew(C(i,1));xnew(C(i,1))=xnew(C(i,2));xnew(C(i,2))=a;endendfunction C=changeNum(x,y); CityNum=size(x,2);C=ones(CityNum-1,2);for i=1:CityNum-1pos=find(x==y(i));C(i,:)=[i pos];x=changeFun(x,C(i,:));endendfunction v=randFun(v,w);randLen=size(v,1);for i=1:randLenif rand>wv(i,2)=v(i,1);endendendfunction F=CalDist(dislist,s)%计算回路路径距离DistanV=0;n=size(s,2);for i=1:(n-1)DistanV=DistanV+dislist(s(i),s(i+1));endDistanV=DistanV+dislist(s(n),s(1));F=DistanV;endfunction [DLn,cityn]=tsp(n)city14=[0 0;0.3 0.334;0.08 0.433;0.166 0.456;0.5 0.4439;0.2439 0.1463;0.1207 0.2293;0.2293 0.761;0.6171 0.9414;0.8732 0.6536;0.6878 0.5219;0.8488 0.3609;0.6683 0.2536;0.6195 0.2634];for i=1:14for j=1:14DL14(i,j)=((city14(i,1)-city14(j,1))^2+(city14(i,2)-city14(j,2))^2)^0.5;endendDLn=DL14;cityn=city14;enddrawTSP10.m文件:function m=drawTSP(Clist,BSF,bsf,p,f)CityNum=size(Clist,1);for i=1:CityNum-1plot([Clist(BSF(i),1),Clist(BSF(i+1),1)],[Clist(BSF(i),2),Clist(BSF(i +1),2)],'ms-','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','g');hold on;endaxis([0,1,0,1]);plot([Clist(BSF(CityNum),1),Clist(BSF(1),1)],[Clist(BSF(CityNu m),2),Clist(BSF(1), 2)],'ms-','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','g');title([num2str(CityNum),'城市TSP']);if f==0text(0.1,0.1,['第',int2str(p),' 步',' 最短距离为',num2str(bsf)]);elsetext(0.1,0.1,['最终搜索结果:最短距离',num2str(bsf)]);endhold off;pause(0.05);</l_best(nc,1)<></pl(i)<>。

Matlab中的粒子群优化算法详解

Matlab中的粒子群优化算法详解

Matlab中的粒子群优化算法详解引言:粒子群优化算法(Particle Swarm Optimization, PSO)是一种模拟鸟群觅食行为的优化算法,具有简单易实现、无需求导和全局搜索能力强等特点。

该算法在解决多种问题中得到广泛应用,特别是在机器学习、智能优化等领域。

本文将详细介绍Matlab中粒子群优化算法的实现过程及应用。

一、粒子群优化算法原理粒子群优化算法源自于对鸟群觅食行为的模拟。

假设一个鸟群中的每个个体被称为粒子,所有粒子共同组成了一个搜索空间,每个粒子会根据自身的当前位置和历史最佳位置进行搜索,并且受到其邻近粒子的信息影响。

通过不断的迭代运算,粒子们逐渐收敛到全局最优解或局部最优解。

具体算法流程如下:1. 初始化粒子群的位置和速度。

2. 计算每个粒子的适应度值,并更新个体最优位置。

3. 根据全局最优位置调整粒子的速度和位置。

4. 重复执行第2步和第3步,直到满足终止条件。

二、Matlab中粒子群优化算法实现步骤在Matlab中,可以通过以下步骤来实现粒子群优化算法:1. 初始化粒子群的位置和速度。

首先需要确定粒子群的大小,即粒子的个数。

对于每个粒子,需要随机生成一个初始位置和速度。

可以使用Matlab中的rand函数来生成指定范围内的随机数。

问题优劣的指标,因此需要根据具体问题来确定。

对于更新个体最优位置,可以通过比较当前适应度值和历史最佳适应度值的大小,选择适应度更优的位置进行更新。

3. 根据全局最优位置调整粒子的速度和位置。

粒子的速度和位置的更新是通过以下公式实现的:V(i,j) = w * V(i,j) + c1 * rand() * (P(i,j) - X(i,j)) + c2 * rand() * (G(j) - X(i,j))X(i,j) = X(i,j) + V(i,j)其中,V(i,j)表示第i个粒子在第j个维度上的速度,X(i,j)表示第i个粒子在第j个维度上的位置,P(i,j)表示第i个粒子的历史最佳位置,G(j)表示全局最佳位置,w、c1和c2分别表示惯性权重、个体学习因子和社会学习因子。

粒子群算法 matlab源代码

粒子群算法  matlab源代码

%相关参数的设置UB=600; %函数的上界LB=300; %函数的下界PopSize=40; %种群的大小Dim=10; %微粒的维数c1=2; %学习因子c2=2; %学习因子w_start=0.9;%惯性权重的开始值w_end=0.4;%惯性权重的最后值Vmax=100;%微粒的最大速度MaxIter=1500;%最大迭代次数Iter=0;%初始迭代次数%初始化群和速度X=rand(PopSize,Dim)*(UB-LB)+LB;%微粒位置随机初始化V=rand(PopSize,Dim);%微粒速度随机初始化;%测试函数:Griewank函数ind=repmat(1:Dim,PopSize,1);FX=sum(((X.^2)/4000)')'- prod(cos(X./sqrt(ind))')'+1;%设定当前位置为粒子的最好位置,并记录其最好值PBest=X;FPBest=FX;%找到初始微粒群体的最好微粒[Fgbest,r]=min(FX);CF=Fgbest;%记录当前全局最优值Best=X(r,:);%用于保存最优粒子的位置FBest=Fgbest;%循环while(Iter<=MaxIter)Iter=Iter+1;%更新惯性权重的值;w_now=((w_start-w_end)*(MaxIter-Iter)/MaxIter)+w_end;A=repmat(X(r,:),PopSize,1);%生成随机数R1=rand(PopSize,Dim);R2=rand(PopSize,Dim);%速度更新V=w_now*V+c1*R1.*(PBest-X)+c2*R2.*(A-X);%对进化后速度大于最大速度的微粒进行处理changeRows=V>Vmax;VStep(find(changeRows))=Vmax;%对进化后速度小雨最小速度的微粒进行处理changeRows=V<-Vmax;V(find(changeRows))=-Vmax;%微粒位置进行更新X=X+1.0*V;%重新计算新位置的适应度值ind=repmat(1:Dim,PopSize,1);FX=sum(((X.^2)/4000)')'- prod(cos(X./sqrt(ind))')'+1;%更新每个微粒的最好位置P=FX<FPBest;FPBest(find(P))=FX(find(P));%适应值更换PBest(find(P),:)=X(find(P),:)%粒子位置更换[Fgbest,g]=min(FPBest);%保存最好适应值if Fgbest<CF %如果本次适应值好于上次则保存[fBest,b]=min(FPBest);%最好适应值为fBestBest=PBest(b,:);%最好位置为BestendCF=Fgbest;%保留本次适应值准备与下次比较end %循环结束。

粒子群算法详解matlab代码

粒子群算法详解matlab代码

粒子群算法(1)----粒子群算法简介一、粒子群算法的历史粒子群算法源于复杂适应系统(Complex Adaptive System,CAS)。

CAS理论于1994年正式提出,CAS中的成员称为主体。

比如研究鸟群系统,每个鸟在这个系统中就称为主体。

主体有适应性,它能够与环境及其他的主体进行交流,并且根据交流的过程“学习”或“积累经验”改变自身结构与行为。

整个系统的演变或进化包括:新层次的产生(小鸟的出生);分化和多样性的出现(鸟群中的鸟分成许多小的群);新的主题的出现(鸟寻找食物过程中,不断发现新的食物)。

所以CAS系统中的主体具有4个基本特点(这些特点是粒子群算法发展变化的依据):首先,主体是主动的、活动的。

主体与环境及其他主体是相互影响、相互作用的,这种影响是系统发展变化的主要动力。

环境的影响是宏观的,主体之间的影响是微观的,宏观与微观要有机结合。

最后,整个系统可能还要受一些随机因素的影响。

粒子群算法就是对一个CAS系统---鸟群社会系统的研究得出的。

粒子群算法(Particle Swarm Optimization, PSO)最早是由Eberhart和Kennedy于1995年提出,它的基本概念源于对鸟群觅食行为的研究。

设想这样一个场景:一群鸟在随机搜寻食物,在这个区域里只有一块食物,所有的鸟都不知道食物在哪里,但是它们知道当前的位置离食物还有多远。

那么找到食物的最优策略是什么呢?最简单有效的就是搜寻目前离食物最近的鸟的周围区域。

PSO算法就从这种生物种群行为特性中得到启发并用于求解优化问题。

在PSO中,每个优化问题的潜在解都可以想象成d维搜索空间上的一个点,我们称之为“粒子”(Particle),所有的粒子都有一个被目标函数决定的适应值(Fitness Value ),每个粒子还有一个速度决定他们飞翔的方向和距离,然后粒子们就追随当前的最优粒子在解空间中搜索。

Reynolds对鸟群飞行的研究发现。

有约束多目标粒子群算法matlab程序

有约束多目标粒子群算法matlab程序

有约束多目标粒子群算法matlab程序约束多目标粒子群算法(Constrained Multi-Objective Particle Swarm Optimization,CMOPSO)是一种用于处理多目标优化问题的进化算法。

以下是一个简单的MATLAB 示例程序,演示了如何实现CMOPSO。

请注意,这只是一个基本的框架,你可能需要根据你的具体问题进行适当的修改。

```matlabfunction [paretoFront, paretoSet] = cmopso(objectiveFunction, constraintFunction, nParticles, nIterations, nObjectives)% 参数设置nVariables = 2; % 例子中假设有两个变量w = 0.5; % 权重因子c1 = 2; % 学习因子1c2 = 2; % 学习因子2vMax = 0.2; % 最大速度nConstraints = 2; % 约束数量% 初始化粒子群particles.position = rand(nParticles, nVariables);particles.velocity = rand(nParticles, nVariables);particles.bestPosition = particles.position;particles.bestValue = inf(nParticles, nObjectives);% 迭代优化for iteration = 1:nIterations% 更新粒子位置和速度for i = 1:nParticles% 计算适应值fitness = objectiveFunction(particles.position(i, :));% 计算约束违反度constraintViolation = constraintFunction(particles.position(i, :));% 更新粒子最优解if all(constraintViolation <= 0) && dominates(fitness, particles.bestValue(i, :))particles.bestPosition(i, :) = particles.position(i, :);particles.bestValue(i, :) = fitness;end% 更新全局最优解if all(constraintViolation <= 0) && dominates(fitness, globalBestValue)globalBestPosition = particles.position(i, :);globalBestValue = fitness;end% 更新粒子速度和位置r1 = rand(1, nVariables);r2 = rand(1, nVariables);particles.velocity(i, :) = w * particles.velocity(i, :) + ...c1 * r1 .* (particles.bestPosition(i, :) - particles.position(i, :)) + ...c2 * r2 .* (globalBestPosition - particles.position(i, :));% 速度限制particles.velocity(i, :) = min(max(particles.velocity(i, :), -vMax), vMax);% 更新粒子位置particles.position(i, :) = particles.position(i, :) + particles.velocity(i, :);endend% 获取Pareto 前沿和Pareto 集paretoFront = [];paretoSet = [];for i = 1:nParticlesif all(constraintFunction(particles.position(i, :)) <= 0)isDominated = false;for j = 1:size(paretoFront, 1)if dominates(particles.bestValue(i, :), paretoFront(j, :))isDominated = true;break;elseif dominates(paretoFront(j, :), particles.bestValue(i, :))paretoFront(j, :) = [];break;endendif ~isDominatedparetoFront = [paretoFront; particles.bestValue(i, :)];paretoSet = [paretoSet; particles.bestPosition(i, :)];endendendendfunction result = dominates(a, b)% 判断a 是否支配bresult = all(a <= b) && any(a < b);end```请注意,这只是一个简单的示例,具体问题的约束函数和目标函数需要根据你的应用进行修改。

pso算法matlab代码

pso算法matlab代码

pso算法matlab代码粒子群优化算法(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,其基本思想是通过模拟鸟群觅食行为来寻找最优解。

以下是一个简单的 MATLAB 代码示例,用于实现 PSO 算法:matlab复制代码% 定义问题参数n_particles = 100; % 粒子数量n_iterations = 100; % 迭代次数n_dimensions = 2; % 问题的维度lb = [-10-10]; % 问题的下界ub = [1010]; % 问题的上界c1 = 2; % 个体学习因子c2 = 2; % 社会学习因子% 初始化粒子群particles = lb + (ub-lb).*rand(n_particles,n_dimensions);velocities = zeros(n_particles, n_dimensions);p_best = particles;g_best = particles(1, :);g_best_fitness = inf;% 主循环for i = 1:n_iterations% 计算每个粒子的适应度值fitness = evaluate(particles); % 更新个体最优解for j = 1:n_particlesif fitness(j) < p_best(j, :)p_best(j, :) = particles(j, :); endend% 更新全局最优解for j = 1:n_particlesif fitness(j) < g_best_fitness g_best_fitness = fitness(j);g_best = particles(j, :);endend% 更新粒子速度和位置for j = 1:n_particlesr1 = rand(); % 个体学习因子随机数r2 = rand(); % 社会学习因子随机数velocities(j, :) = velocities(j, :) +c1*r1*(p_best(j, :) - particles(j, :)) + c2*r2*(g_best - particles(j, :));particles(j, :) = particles(j, :) + velocities(j, :);% 边界条件处理particles(j, :) = max(particles(j, :) , lb);particles(j, :) = min(particles(j, :) , ub);endend% 输出结果disp('全局最优解:');disp(g_best);disp('全局最优解的适应度值:');disp(g_best_fitness);其中,evaluate函数用于计算每个粒子的适应度值,需要根据具体问题进行定义。

04-粒子群算法matlab代码---吐血推荐

04-粒子群算法matlab代码---吐血推荐

04-粒子群算法matlab代码---吐血推荐粒子群算法(1)----粒子群算法简介二、粒子群算法的具体表述上面罗嗦了半天,那些都是科研工作者写论文的语气,不过,PSO的历史就像上面说的那样。

下面通俗的解释PSO 算法。

PSO算法就是模拟一群鸟寻找食物的过程,每个鸟就是PSO.中的粒子,也就是我们需要求解问题的可能解,这些鸟在寻找食物的过程中,不停改变自己在空中飞行的位置与速度。

大家也可以观察一下,鸟群在寻找食物的过程中,开始鸟群比较分散,逐渐这些鸟就会聚成一群,这个群忽高忽低、忽左忽右,直到最后找到食物。

这个过程我们转化为一个数学问题。

寻找函数y=1-cos(3*x)*exp(-x)的在[0,4]最大值。

该函数的图形如下:当x=0.9350-0.9450,达到最大值y=1.3706。

为了得到该函数的最大值,我们在[0,4]之间随机的洒一些点,为了演示,我们放置两个点,并且计算这两个点的函数值,同时给这两个点设置在[0,4]之间的一个速度。

下面这些点就会按照一定的公式更改自己的位置,到达新位置后,再计算这两个点的值,然后再按照一定的公式更新自己的位置。

直到最后在y=1.3706这个点停止自己的更新。

这个过程与粒子群算法作为对照如下:这两个点就是粒子群算法中的粒子。

该函数的最大值就是鸟群中的食物计算两个点函数值就是粒子群算法中的适应值,计算用的函数就是粒子群算法中的适应度函数。

更新自己位置的一定公式就是粒子群算法中的位置速度更新公式。

下面演示一下这个算法运行一次的大概过程:第一次初始化第一次更新位置第二次更新位置第21次更新最后的结果(30次迭代)最后所有的点都集中在最大值的地方。

粒子群算法(2)----标准的粒子群算法在上一节的叙述中,唯一没有给大家介绍的就是函数的这些随机的点(粒子)是如何运动的,只是说按照一定的公式更新。

这个公式就是粒子群算法中的位置速度更新公式。

下面就介绍这个公式是什么。

在上一节中我们求取函数y=1-cos(3*x)*exp(-x)的在[0,4]最大值。

粒子群算法matlab代码

粒子群算法matlab代码

一、粒子群主程序psize=20; %粒子个数的设置pd=12; %粒子的维数lz=zeros(psize,pd);for i=1:psize %随机生成粒子群,psize行pd列,pd维。

suiji=rand(1,pd);for j=1:pd/2if suiji(j)<0.5lz(i,j)=fix(unifrnd(0,100))*100;elselz(i,j)=fix(unifrnd(0,100)+1)*100;endendfor j=pd/2+1:1:pdif suiji(j)<0.5lz(i,j)=fix(unifrnd(0,45))/100;elselz(i,j)=fix(unifrnd(0,45)+1)/100;endendlz(i,1:pd/2)=sort(lz(i,1:pd/2));lz(i,pd/2+1:pd)=sort(lz(i,pd/2+1:pd));endlv=lz;goodvalue=lz; %每个粒子自己历史最好值初始化,psize行pd列。

vmax=20; %速度上限c1=2;c2=2; %学习因子w=0.729; %随机因子和惯性因子bestvalue=zeros(1,pd); %全局最好值初始化,1行pd列for j=1:pdbestvalue(1,j)=goodvalue(1,j);endfnew=zeros(1,psize);for j=1:psizefnew(j)=fpso(lz(1,:));endfold=fnew;flagstop=0; %终止标志k=0; %迭代次数记录f0=fpso(bestvalue); %适应值初始化while flagstop==0for i=1:psize %适应值比较,更新各自历史最好值(位置)fnew(i)=fpso(lz(i,:)); %记录每次每个粒子的适应值,便于以后设置终止条件if fnew(i)<fold(i)fold(i)=fnew(i); %fold记录每个粒子的最好历史值goodvalue(i,j)=lz(i,j);endendendfor i=1:psize%每个粒子历史最好值比较,更新全局最好值f1=fold(i);if f1<f0f0=f1;for j=1:pdbestvalue(1,j)=goodvalue(i,j);endendend%*********粒子趋一点终止条件*********%flagstop0=max(abs(fold)); %比较当次的所有粒子的适应值,flagstop1=min(abs(fold)); %若它们之间差别较小,则可以停止。

粒子群算法matlaB程序

粒子群算法matlaB程序
qu(k)=-160/100*(k-350)+1680;
end
for k=451:540
qu(k)=1520;
end
for k=541:700
qu(k)=1520+80/100*(k-540);
end
for k=701:800
qu(k)=qu(700);
legend('Expext Line','PID')
xlabel('时间/分')
subplot(2,2,4)
plot(qut(1:end-1)/3,r,'-.')
legend('r(t)')
xlabel('时间/分')
rou(k+1)=rou(k)+alpha*qu(k)-alpha*vf*(rou(k)-rou(k)^2/rou_jam)+alpha*r(k)/lambda;
end
%%
%显示构造的期望密度
figure(1)
subplot(2,2,1)
plot(qut/3,qu)
xlabel('时间/分')
end00)-90/100*(k-800);
end
for k=951:1100
qu(k)=qu(950);
end
for k=1101:1200
qu(k)=qu(950)+120/100*(k-1100);
end
qu(k)=qu(1520)+70/100*(k-1650);
end
for k=1701:1850

粒子群优化算法matlab 和python

粒子群优化算法matlab 和python

粒子群优化算法matlab 和python[粒子群优化算法matlab 和python]【引言】粒子群优化算法(Particle Swarm Optimization,PSO)是一种仿生智能算法,模拟了鸟群觅食行为中的集体智慧。

其简单易实现、全局优化能力强的特点使得它在工程优化问题中得到了广泛应用。

本文将以Matlab 和Python作为开发环境,详细介绍粒子群优化算法实现的步骤。

【PSO的基本原理】粒子群优化算法源于对鸟群觅食行为的研究,其中的个体被称为粒子。

每个粒子的位置表示一个待优化问题的解,在解空间中搜索最优解。

粒子具有速度和位置两个属性,速度决定了粒子在解空间中的搜索方向和距离。

在每一代迭代中,粒子根据自身的历史最优解和全局最优解来更新自己的速度和位置。

具体更新的公式如下:v_i ←w * v_i + c1 * r1 * (pbest_i - x_i) + c2 * r2 * (gbest - x_i)x_i ←x_i + v_i其中,v_i表示粒子i的速度,x_i表示粒子i的位置,pbest_i表示粒子i 的历史最优解,gbest表示全局最优解,w、c1、c2分别为权重,r1和r2为随机数。

【Matlab实现步骤】1. 初始化粒子群:给定粒子的个数、速度范围、位置范围,随机初始化粒子的位置和速度。

2. 计算适应度值:根据问题的具体定义,计算每个粒子的适应度值。

3. 更新速度和位置:根据PSO的公式,更新每个粒子的速度和位置。

4. 更新个体最优解和全局最优解:根据适应度值,更新每个粒子的个体最优解和全局最优解。

5. 判断停止条件:当达到预定的迭代次数或满足特定的停止准则时,结束优化过程。

6. 输出结果:根据实际需求,输出最优解或其他相关结果。

【Python实现步骤】1. 导入所需库:在Python中,首先需要导入相应的库(例如numpy、random等)来辅助实现PSO算法。

2. 定义问题函数:根据具体问题的定义,编写函数计算适应度值。

粒子群算法matlab代码

粒子群算法matlab代码

粒子群算法(1)----粒子群算法简介一、粒子群算法的历史粒子群算法源于复杂适应系统(Complex Adaptive System,CAS)。

CAS理论于1994年正式提出,CAS中的成员称为主体。

比如研究鸟群系统,每个鸟在这个系统中就称为主体。

主体有适应性,它能够与环境及其他的主体进行交流,并且根据交流的过程“学习”或“积累经验”改变自身结构与行为。

整个系统的演变或进化包括:新层次的产生(小鸟的出生);分化和多样性的出现(鸟群中的鸟分成许多小的群);新的主题的出现(鸟寻找食物过程中,不断发现新的食物)。

所以CAS系统中的主体具有4个基本特点(这些特点是粒子群算法发展变化的依据):首先,主体是主动的、活动的。

主体与环境及其他主体是相互影响、相互作用的,这种影响是系统发展变化的主要动力。

环境的影响是宏观的,主体之间的影响是微观的,宏观与微观要有机结合。

最后,整个系统可能还要受一些随机因素的影响。

粒子群算法就是对一个CAS系统---鸟群社会系统的研究得出的。

粒子群算法(Particle Swarm Optimization, PSO)最早是由Eberhart和Kennedy于1995年提出,它的基本概念源于对鸟群觅食行为的研究。

设想这样一个场景:一群鸟在随机搜寻食物,在这个区域里只有一块食物,所有的鸟都不知道食物在哪里,但是它们知道当前的位置离食物还有多远。

那么找到食物的最优策略是什么呢?最简单有效的就是搜寻目前离食物最近的鸟的周围区域。

PSO算法就从这种生物种群行为特性中得到启发并用于求解优化问题。

在PSO中,每个优化问题的潜在解都可以想象成d维搜索空间上的一个点,我们称之为“粒子”(Particle),所有的粒子都有一个被目标函数决定的适应值(Fitness Value ),每个粒子还有一个速度决定他们飞翔的方向和距离,然后粒子们就追随当前的最优粒子在解空间中搜索。

Reynolds对鸟群飞行的研究发现。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
%对每一个粒子计算其适应度函数的值
for k=1:SwarmSize ParSwarm(k,2*ParticleSize+1)=AdaptFunc(ParSwarm(k,1:ParticleSize));
粒子群算法(2)----标准的粒子群算法
在上一节的叙述中,唯一没有给大家介绍的就是函数的这些随机的点(粒子)是如何运动的,只是说按照一定的公式 更新。这个公式就是粒子群算法中的位置速度更新公式。下面就介绍这个公式是什么。在上一节中我们求取函数 y=1-cos(3*x)*exp(-x)的在[0,4]最大值。并在[0,4]之间放置了两个随机的点,这些点的坐标假设为 x1=1.5; x2=2.5; 这里的点是一个标量,但是我们经常遇到的问题可能是更一般的情况--x 为一个矢量的情况,比如二维的情况 z=2*x1+3*x22 的情况。这个时候我们的每个粒子为二维,记粒子 P1= (x11,x12),P2=(x21,x22),P3=(x31,x32),......Pn=(xn1,xn2)。这里 n 为粒子群群体的规模,也就是这个群中粒子的个数, 每个粒子的维数为 2。更一般的是粒子的维数为 q,这样在这个种群中有 n 个粒子,每个粒子为 q 维。
%功能描述:初始化粒子群,限定粒子群的位置以及速度在指定的范围内
%[ParSwarm,OptSwarm,BadSwarm]=InitSwarm(SwarmSize,ParticleSize,ParticleScope,AdaptFunc)
%
%输入参数:SwarmSize:种群大小的个数
%输入参数:ParticleSize:一个粒子的维数
%输出:OptSwarm 粒子群当前最优解与全局最优解
%
%用法
[ParSwarm,OptSwarm,BadSwarm]=InitSwarm(SwarmSize,ParticleSize,ParticleScope,AdaptFunc);
%
%异常:首先保证该文件在 Matlab 的搜索路径中,然后查看相关的提示信息。
.. -1
1,1
VHale Waihona Puke -1,2. VN-1,D VN-1, FN 第 N-1 个粒
.. -1
D
-1

WN,1
. WN,2
..
WN,D
.
VN,1 VN,2
VN,D-1 VN,D FN 第 N 个粒子
..
表 OptSwarm 记录每个粒子的历史最优解(粒子历史最好的适应度)以及全部粒子搜索到的全局最 优解。用 Wg 代表全局最优解,W.,1 代表每个粒子的历史最优解。粒子群初始化阶段表 OptSwarm 的 前 N 行与表 ParSwarm 中的相同,而 Wg 的值为表 ParSwarm 中适应度值的最大值对应的行。
error('输入的粒子的维数错误,是一个 1 行 1 列的数据。'); end [row,colum]=size(ParticleScope); if row~=ParticleSize|colum~=2
error('输入的粒子的维数范围错误。'); end
%初始化粒子群矩阵
%初始化粒子群矩阵,全部设为[0-1]随机数 %rand('state',0); ParSwarm=rand(SwarmSize,2*ParticleSize+1);
1
2
.. 1
D
第 N 个粒子的历史最优解
Wg, Wg, . Wg,D- Wg,
1
2
.. 1
D
全局粒子的历史最优解
根据这样的思想 MATLAB 代码如下:
function [ParSwarm,OptSwarm]=InitSwarm(SwarmSize,ParticleSize,ParticleScope,AdaptFunc)
%
%编制人:XXX
%编制时间:2007.3.26
%参考文献:无
%
%容错控制 if nargin~=4
error('输入的参数个数错误。') end
if nargout<2 error('输出的参数的个数太少,不能保证以后的运行。');
end
[row,colum]=size(ParticleSize); if row>1|colum>1
W1,1
. W1,2
..
W1,D
.
V1,1
V1,2
V1,D-1 V1,D F1 第 1 个粒子
..
W2,1
. W2,2
..
W2,D
.
V2,1
V2,2
V2,D-1 V2,D F2 第 2 个粒子
..
.
...
...
...
..
.
...
...
...
..
...
... .......
WN-
1,1
WN-
1,2
. WN-1,D VN-
InitSwarm(SwarmSize......AdaptFunc)其主要作用是初始化粒子群的粒子,并设定粒子的速度、位 置在一定的范围内。本函数所采用的数据结构如下所示:
表 ParSwarm 记录的是粒子的位置、速度与当前的适应度值,我们用 W 来表示位置,用 V 来代表 速度,用 F 来代表当前的适应度值。在这里我们假设粒子个数为 N,每个粒子的维数为 D。
粒子群算法(1)----粒子群算法简介
二、粒子群算法的具体表述 上面罗嗦了半天,那些都是科研工作者写论文的语气,不过,PSO 的历史就像上面说的那样。下面通俗的解释
PSO 算法。 PSO 算法就是模拟一群鸟寻找食物的过程,每个鸟就是 PSO 中的粒子,也就是我们需要求解问题的可能解,这
些鸟在寻找食物的过程中,不停改变自己在空中飞行的位置与速度。大家也可以观察一下,鸟群在寻找食物的过程中, 开始鸟群比较分散,逐渐这些鸟就会聚成一群,这个群忽高忽低、忽左忽右,直到最后找到食物。这个过程我们转化 为一个数学问题。寻找函数 y=1-cos(3*x)*exp(-x)的在[0,4]最大值。该函数的图形如下:
粒子群算法(3)----标准的粒子群算法(局部版本)
在全局版的标准粒子群算法中,每个粒子的速度的更新是根据两个因素来变化的,这两个因素是:1. 粒子自己历史 最优值 pi。2. 粒子群体的全局最优值 pg。如果改变粒子速度更新公式,让每个粒子的速度的更新根据以下两个因素更 新,A. 粒子自己历史最优值 pi。B. 粒子邻域内粒子的最优值 pnk。其余保持跟全局版的标准粒子群算法一样,这个算法 就变为局部版的粒子群算法。
这种办法经过实验,取得较好的应用效果,但是由于要计算所有粒子之间的距离,计算量大,且需要很大的存储 空间,所以,该方法一般不经常使用。
粒子群算法(5)-----标准粒子群算法的实现
标准粒子群算法的实现思想基本按照粒子群算法(2)----标准的粒子群算法的讲述实现。主要分为 3 个函数。第一个函数为粒子群初始化函数
当 x=0.9350-0.9450,达到最大值 y=1.3706。为了得到该函数的最大值,我们在[0,4]之间随机的洒一些点,为 了演示,我们放置两个点,并且计算这两个点的函数值,同时给这两个点设置在[0,4]之间的一个速度。下面这些点就 会按照一定的公式更改自己的位置,到达新位置后,再计算这两个点的值,然后再按照一定的公式更新自己的位置。 直到最后在 y=1.3706 这个点停止自己的更新。这个过程与粒子群算法作为对照如下:
%对粒子群中位置,速度的范围进行调节 for k=1:ParticleSize
ParSwarm(:,k)=ParSwarm(:,k)*(ParticleScope(k,2)-ParticleScope(k,1))+ParticleScope(k,1); %调节速度,使速度与位置的范围一致
ParSwarm(:,ParticleSize+k)=ParSwarm(:,ParticleSize+k)*(ParticleScope(k,2)-ParticleScope(k,1))+Pa rticleScope(k,1); end
第二种方法:按照粒子的欧式距离取粒子的邻域 在第一种方法中,按照粒子的编号来得到粒子的邻域,但是这些粒子其实可能在实际位置上并不相邻,于是
Suganthan 提出基于空间距离的划分方案,在迭代中计算每一个粒子与群中其他粒子的距离。记录任何 2 个粒子间的 的最大距离为 dm。对每一粒子按照||xa-xb||/dm 计算一个比值。其中||xa-xb||是当前粒子 a 到 b 的距离。而选择阈值 frac 根据迭代次数而变化。当另一粒子 b 满足||xa-xb||/dm<frac 时,认为 b 成为当前粒子的邻域。
一般一个粒子 i 的邻域随着迭代次数的增加而逐渐增加,开始第一次迭代,它的邻域为 0,随着迭代次数邻域线 性变大,最后邻域扩展到整个粒子群,这时就变成全局版本的粒子群算法了。经过实践证明:全局版本的粒子群算法 收敛速度快,但是容易陷入局部最优。局部版本的粒子群算法收敛速度慢,但是很难陷入局部最优。现在的粒子群算 法大都在收敛速度与摆脱局部最优这两个方面下功夫。其实这两个方面是矛盾的。看如何更好的折中了。
由 n 个粒子组成的群体对 Q 维(就是每个粒子的维数)空间进行搜索。每个粒子表示为:xi=(xi1,xi2,xi3,...,xiQ), 每个粒子对应的速度可以表示为 vi=(vi1,vi2,vi3,....,viQ),每个粒子在搜索时要考虑两个因素:
1。自己搜索到的历史最优值 pi ,pi=(pi1,pi2,....,piQ),i=1,2,3,....,n。 2。全部粒子搜索到的最优值 pg,pg=(pg1,pg2,....,pgQ),注意这里的 pg 只有一个。 下面给出粒子群算法的位置速度更新公式:
相关文档
最新文档