粒子群优化算法MATLAB代码
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这个程序就是最基本的粒子群优化算法程序,用Matlab实现,非常简单。只有几十行代码。正所谓一分钱一分货啊,优化效果不总是令人满意。我还有几个改进的粒子群优化算法版本,这一段时间会陆续发上来。
下面是主函数的源程序,优化函数则以m文件的形式放在fitness.m里面,对不同的优化函数只要修改fitness.m就可以了通用性很强。
主函数源程序(main.m)
%------基本粒子群优化算法(Particle Swarm Optimization)-----------
%------名称:基本粒子群优化算法(PSO)
%------作用:求解优化问题
%------说明:全局性,并行性,高效的群体智能算法
%------作者:孙明杰(dreamsun2001@)
%------单位:中国矿业大学理学院计算数学硕2005
%------时间:2006年8月17日<CopyRight@dReAmsUn>
%------------------------------------------------------------------
%------初始格式化--------------------------------------------------
clear all;
clc;
format long;
%------给定初始化条件----------------------------------------------
c1=1.4962; %学习因子1
c2=1.4962; %学习因子2
w=0.7298; %惯性权重
MaxDT=1000; %最大迭代次数
D=10; %搜索空间维数(未知数个数)
N=40; %初始化群体个体数目
eps=10^(-6); %设置精度(在已知最小值时候用)
%------初始化种群的个体(可以在这里限定位置和速度的范围)------------
for i=1:N
for j=1:D
x(i,j)=randn; %随机初始化位置
v(i,j)=randn; %随机初始化速度
end
end
%------先计算各个粒子的适应度,并初始化Pi和Pg----------------------
for i=1:N
p(i)=fitness(x(i,:),D);
y(i,:)=x(i,:);
end
pg=x(1,:); %Pg为全局最优
for i=2:N
if fitness(x(i,:),D)<fitness(pg,D)
pg=x(i,:);
end
end
%------进入主要循环,按照公式依次迭代,直到满足精度要求------------
for t=1:MaxDT
for i=1:N
v(i,:)=w*v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(pg-x(i,:));
x(i,:)=x(i,:)+v(i,:);
if fitness(x(i,:),D)<p(i)
p(i)=fitness(x(i,:),D);
y(i,:)=x(i,:);
end
if p(i)<fitness(pg,D)
pg=y(i,:);
end
end
Pbest(t)=fitness(pg,D);
end
%------最后给出计算结果
disp('*************************************************************')
disp('函数的全局最优位置为:')
Solution=pg'
disp('最后得到的优化极值为:')
Result=fitness(pg,D)
disp('*************************************************************')
%------算法结束---DreamSun GL & HF-----------------------------------
适应度函数源程序(fitness.m)
function result=fitness(x,D)
sum=0;
for i=1:D
sum=sum+x(i)^2;
end
result=sum;