电容器投切对10KV母线谐波影响
10KVPT含3次谐波
10kV系统的电压谐波分析南京供电公司计量中心曹根发摘要:本文对10kV小电流接地系统的电压谐波,由于10kV电压互感器中性点的消谐电阻,及接地变一侧的灭弧线圈等原因,而造成的错误测试结果,进行了分析,并针对这种现象提出改进的测试方法。
1.前言由于生产发展的需要和国家电力总公司及江苏省公司的要求,我市公司对所辖范围内的电网,配网电能质量,(电压谐波占有率)进行了一次普测、普查。
由于10kV配网系统采用了小电流接地的运行方式,10KV配网的电压互感器接线方式如图1所示。
在PT的一次侧中性点到地串接一只电阻,称消谐电阻。
此电阻一般由氧化锌阀片构成,在正常运行方式下,无电流通过此电阻。
一次侧中心点与地等电位。
近似与Y/Y型接法。
而主变接线方式则是Y/Δ型接法。
所以在10kV母线上并一只接地变,采用Y/Y型接法。
在变一侧中心点串一只电抗器,俗称灭弧线圈。
在10kV系统形成中心点接地的运行方式。
国标规定电压失谐率是相电压的谐波百分比含量做为判别限值的标准。
从而规范了测试信号是相电压,与之相应的测试设备的接线方式是“Y”型接法。
若取线电压为取样信号。
测试设备需按“△”接法,结果将造成取样信号中的3n次谐波被抵消,抵消量大小,与3n次谐波电压与同相的基波电压相位及相电压的不平衡度有关。
在普查进程中,我们发现有6座110kV变电站中的9条10kV母线严重超标。
共同特征是3次电压畸变率是造成超标的最主要因素。
其余各次谐波含量不大。
且占比例极低。
同时所有电压谐波超标的10kV母线,电压三相不平衡度也接近或超过国标值。
(国标Σu <2%)切除变电站10kV侧的补偿电容器组,仅五次谐波有所下降,三次谐波下降量不大总畸变率仍居高不下。
在10kV电源侧110KV测得,3次电压谐波仅有1%左右。
而在这9条母线供电范围内,并无大型工矿企业,和大型非线性生产用户。
基本负荷是大型商场、高层写字楼及居民小区。
仅照明、家用电器、电梯,难以形成如此高的仅以三次谐波为主要因素的电压畸变特征。
电力系统间谐波对继电保护的影响分析
电力系统间谐波对继电保护的影响分析摘要:电力系统运行下电力系统间谐波对继电保护装置有着一定的影响,针对当前继电保护的重要机制,做好谐波处理至关重要。
下面文章对电力系统间谐波对继电保护的影响与治理措施展开探讨。
关键词:电力系统;继电保护;谐波;间谐波引言电力系统是指由发电厂、输电线路以及用电客户端等环节构成的一种电能循环系统,它是通过电能生产以及传输等形式,从而有效的将不同的电力分配给相关的用户,这是一个非常复杂的过程,有关部门通过不同的措施和方法,加强对电力系统和信息数据的控制值,并且安装相应的电力保护装置,并且在自动化技术的应用下实现监控自动化、调度自动化的目的。
但是在电力系统的运行过程中,还是会或多或少的出现不同的安全和质量隐患,造成对电力结构的影响,谐波就是其中的主要危害因素,需要对它进行全面的分析,找到有效的抑制方法。
1间谐波的产生机理随着各个领域用电的广泛增加,电网中的变压器、三相电机等传统的非线性装置以及整流器、变频器等现代的非线性装置的使用量和使用范围也跟着大量增加。
这些负荷装置在电力系统中运行时,造成了电网供电的不平衡性,同时对电力系统的整个运行质量产生了严重的影响。
电力电网中,非线性负载是产生各类谐波的主要来源。
而电力互感器铁心饱和引起的电感变化则是主要的非线性负载来源之一。
实际电力系统中,外界激发作用多见于开关分、合闸,线路接地、断线等,这些都会引起电压、电流互感器铁心饱和。
铁磁谐振作为铁心饱和引起回路共振的一种特殊现象,多见于如下电力网络:空载或轻载条件下(回路损耗足够小),电磁式电压互感器和线路对地电容组成的振荡网络;空载变压器和空载长架空线路对地电容组成的振荡回路等。
对于中性点非有效接地系统,非线性电感元件和电容元件组成振荡回路,回路稳态运行(线性状态)时的自振频率小于某一低频谐振频率,而当铁芯饱和(非线性状态)时,电感迅速减小,则会发生铁磁谐振。
譬如中性点不接地系统中,空载投切线路或母线时,线路对地电容与母线(或线路)PT构成LC振荡回路,在某一谐振频率下会发生串联(电压)谐振,该频段谐波电压幅值大,会对系统产生较大影响。
锌冶炼电网中谐波治理及应用
锌冶炼电网中谐波治理及应用崔红红巴彦淖尔紫金有色金属有限公司,内蒙古 巴彦淖尔 015543摘 要:随着电力技术的发展,电能成为我们生活、工业中必不可少的能源之一,锌冶炼生产系统中,由于工业生产中整流设备、变频设备、电子装置、电葫芦等设备的使用,产生大量的高次谐波,使得电网系统电能质量下降,所以对电网中谐波的治理迫在眉睫,本文通过锌冶炼系统电网运行的实际情况分析谐波的来源和治理的方案。
关键词:电网质量;谐波治理;无功补偿中图分类号:TM935 文献标识码:A 文章编号:1002-5065(2024)02-0010-5Harmonic control and application in zinc smelting power networkCUI Hong-hongBayannaoer Zijin non-ferrous Metals Co. , Ltd. , Inner Mongolia, Bayannaoer,015543Abstract: Power has become essential to my daily life and industry one of the sources of energy, with electric power development, zinc smelting production system, due to the use of industrial production in rectifier equipment, the frequency conversion equipment, electronic device, electric hoist, such as equipment, produce a lot of harmonic, makes the grid system electrical energy quality decline, so the harmonic governance is imminent, this paper through the practice of zinc smelting system analysis and harmonic source governance project.Keywords: Power network quality; harmonic control; reactive power compensation收稿日期:2023-12作者简介:崔红红,女,生于1985年2月8日,甘肃天水人,高级工程师,科长。
变电站电容器组的配置
变电站10kV 电容器组的配置引言目前,电力系统中为了提高电压质量,减少网络损耗,普遍配置了无功补偿装置,由于电容器组容量可大可小,即可集中使用,又可分散配置,具有较大的灵活性,且价格较低,损耗较小,维护方便,故为目前系统中使用最广泛的无功电源之一。
变电站设计中一般将电容器组布置在10kV 侧。
由于10kV 侧配置电容器存在系统短路容量较小、分组数较多、易发生谐振等问题,故如何合理选择10kV 电容器组就显得尤为重要。
1、电容器总容量的选择变电站安装的“最大容性无功量”的选择原则为:对于直接供电末端变电所,其最大容性无功量应等于装置所在母线上的负荷按提高功率因数所需补偿的最大容性无功量与主变压器所需补偿的最大容性无功之和。
即:cbm cfm c Q Q Q += (1)0ef fm cfm Q P Q ⨯= (2)e em d cbm S I I I U Q ⋅+⋅=)100(%)100(%)(022 (3) 式中:c Q :变电站配置最大容性无功量(kvar );cfm Q :负荷所需补偿的最大容性无功量(kvar );cbm Q :主变压器所需补偿的最大容性无功量(kvar );fm P :母线上的最大有功负荷(kW );0ef Q :由1cos φ补偿到2cos φ时,每kW 有功负荷所需补偿的容性无功量(kvar/kW );(%)d U :需要进行补偿的变压器一侧的阻抗电压百分值(%);m I :母线装设补偿装置后,通过变压器需要补偿一侧的最大负荷电流值(A );e I :变压器需要补偿一侧的额定电流值(A );(%)0I :变压器空载电流百分值(%);e S :变压器需要补偿一侧的额定容量(kV A );通过式(1)、(2)、(3)对变电站无功容量进行估算,负荷所需补偿的最大容性无功量约为主变容量的5%~10%(按补偿到功率因数0.96考虑),主变压器所需补偿的最大容性无功量14%~16%。
一起10kV开关柜异常声音的原因分析及解决方案
冶金动力METALLURGICAL POWER2020年第6期总第244期1问题的提出某开关站运行人员点检时发现10kV 某一开路开关柜有异常声音,经分析确认异常声音为开关柜母线室产生,若异常声音不及时消除将对供电设备的安全运行带来隐患。
通过对该问题发生的原因进行总结和分类,提出了具体的解决措施和方案,减少此问题对正常运行设备的影响。
2原因分析经观察和分析异常声音为高压开关柜内发出的短促鸣笛声,调整系统无功补偿装置运行方式,在退出10kV 母线段无功补偿装置后,该开关柜异常声音消除。
经测试确认,该10kV 开关柜异常声音是由于无功补偿装置投入运行后系统内高次谐波超标,系统发生并联谐振,造成开关柜发生异常声响。
2.110kV 电容器组串联电抗器电抗率计算及原因分析现场10kV 电容器参数如下:电容器型号:BFM 11/3-100-1W单只电容:7.92-8.04μF 单只容量:100kVar 电抗器型号:CKDK 额定电流:250A 额定电感:200μH 电抗率具体计算如下:电抗率k =每相感抗÷每相容抗,即k =X L /X C ;将感抗X L ,容抗X C 代入上式,电抗率k =X L /X C =0.11%。
按照国标关于限制合闸涌流的具体规定和要求,成套整流电容器和绕组的额定涌流在输出额定电流的20倍以内,计算公式为:λ=1+(Xc /X L )式中:λ—涌流合闸量是涌流的流量倍数;X C —合闸回路中容抗;一起10kV 开关柜异常声音的原因分析及解决方案侯建强(酒钢集团能源中心动力分厂,甘肃嘉峪关735100)【摘要】针对某开关站10kV 开关柜在正常运行期间产生异常声腔音的原因进行分析,系统内由于现场无功补偿装置的选型及配置不合理等原因而引起的异常声音和系统谐振,通过对现场无功补偿装置的选型及配置的分析,对该开关站的电能质量进行检测,提出了具体的异常声音改进治理措施,解决了由于系统谐振使开关柜产生了异常声音的问题。
电力系统高次谐波\谐波放大及谐波对电力电容器的危害
电力系统高次谐波\谐波放大及谐波对电力电容器的危害本文章论述了电力系统高次谐波、谐波的放大,并且阐述了谐波对于电力电容器的危害。
标签:电力系统高次谐波谐波放大电力电容器1 谐波和谐波源在电力系统中,基波的功率潮流是以发电机作为功率源,负载只吸收功率。
可是对于谐波的功率潮流也许恰好相反,是以负载为功率源。
高次谐波源有两种:电流谐波源和电压谐波源。
各种整流型负荷以及用可控硅调节的负荷,这些非线性的负荷都可以认为是谐波电流源。
由于变压器、发电机等铁心的磁饱和作用产生了电压的畸变,所以发电机等旋转电机以及串补装置都是谐波电压源。
2 电容器组的谐波放大在计算阻抗、感抗、容抗的时候,都会涉及到一个看似十分简单的参数,那就是频率(或者角频率)。
说它看似简单是因为对于基波来说,我们都取50Hz。
可是其重要的意义就是对于谐波的频率是50Hz的整数倍,这就使得感抗和容抗在基波和谐波条件下呈现出不同的数值和状态。
也就可以说谐波引起的一切与基波的不同,都是由这个参数引起的。
无功补偿用电力电容器组在电力系统中的存在,为电力系统带来了大量的容抗。
同时,电力系统中绝大部分电力设备是感抗。
加上电容器组中的串联电抗就使得他们组合对于基波来讲是正常的,可是在谐波条件下就变的复杂起来。
这其中对于电力系统影响和危害最大的就是谐波的放大。
采用串联电抗的电力电容器组的系统接线图和等效电路图如2-1:图中,In为系统中同一母线上具有非线性负荷形成的谐波电流源,所以不计其电阻。
等效之后的电路图中XS、XC、XL分别是系统等效电抗、电容器组电抗、电容器并联电抗器电抗。
则得到的谐波电流为:如图所示,将β分成a-f区域。
对每个区域分析如下:a区域:系统中本身就具有谐波,可是在这里区域里,系统的谐波伴随着β的增加而增大,同时电容器支路的谐波电流也在增大,只是放大的不多。
b区域:曲线斜率的增加说明了谐波电流随着β的增大而迅速增加。
c点:由于谐波电流的频率和系统对于本次谐波的固有频率相等,发生了共振现象。
某化工厂10KV整流装置谐波解析跟治理计划资料精
某化工厂10KV整流装置谐波分析及治理方案1谐波造成的危害谐波主要是由称为谐波源的大功率换流设备(包括化工电解整流设备)及其它非线性负荷产生,谐波源产生的谐波不但危及电网及其它电力用户而且也危及自身,因此谐波的治理是十分必要且有实际经济效益的。
本文以某化工厂为实例对谐波的产生及治理方案进行了分析研究。
该化工厂由郝村站供电,站内装设三组共10.8Mvar并联电容器,分别串联有4.5%,7%和12%电抗率的电抗器,分别用于限制五次及以上、四次及以上、三次及以上高次谐波放大并分别对五次谐波、四次谐波、三次谐波形成不完全滤波。
投运后电容器出现严重过负荷,噪音异常,个别电容器投运不久就发生鼓肚现象,后测试发现母线谐波电压和电容器回路谐波电流严重超标,为防止设备进一步损坏,将10.8Mvar 电容器全部退出运行。
通过对赫村站进一步测试结果表明,谐波主要是来自某化工厂,不仅谐波含量高而且谐波频谱范围宽(最低为二次)。
经过专业人员对化工厂配电系统的接线,设备配置,运行情况进行多次调查和测试,基本摸清情况,并对产生2次及以上高次谐波的原因进行了分析,制订了治理方案。
2原因分析2.1整流变压器接线四台整流变压器接线,一次绕组接线为三角形,二次侧为双反星形接线,等效为六相接线,其产生的特征谐波为:n=kp±1k=1,2……(1)理论计算对于p=6相其谐波为5,7……。
实际上在电解工业中,广泛应用两台六脉波桥式接线整流机组并联组合形成等效十二脉波电路,对于二次为双反星形接线的桥式整流回路,形成等效十二脉波,只需将其一次侧绕组一台接成星形另一台接成三角形(见图1b),使两台整流变压器低压侧形成30°相角差,对于等效十二脉波整流电路应用(1)式计算,理论上只存在11、13等高次谐波,即可将含量较高的5、7次谐波消除,而又无需附加任何投资,这是一种非常好的方法,显然四台变压器一次全部采用三角形接线,二次双反星接线属于设计选型配置不当。
浅析谐波产生的原因-影响及抑制措施
浅析谐波产生的原因\影响及抑制措施摘要:随着高科技的飞速发展,各种新型用电设备也不断地问世和使用,致使产生的高次谐波越来越多。
而电力系统受到谐波影响后,轻则影响系统的运行效率,重则损坏设备以至危害电力系统的安全运行。
本文主要对谐波的产生与危害进行分析,并对店里系统抑制谐波的措施进行探讨,从而保证供电质量。
关键词:谐波;产生原因;影响;抑制措施一、谐波的概念谐波是指对周期性交流分量进行傅立叶级数分解,得到的频率为基波频率大于1整数倍的分量。
通俗地说谐波是一个周期电气量的正弦分量,其频率为基波频率的整数倍。
二、谐波的产生(一)以电力电子元件为基础的开关电源设备,如:各种电力变流设备(整换流装置、变频器)、相控调速和调压装置,大容量的电力晶闸管可控开关设备、电力机车、家用电器等,它们大量的用于化工、电气铁道,冶金,矿山等共矿企业以及各式各样的家用电器中。
(二)具有铁磁饱和特性设备,如变压器、电抗器等;变压器中的谐波电流是由励磁回路的非线性引起的,正常情况下,所加电压为额定电压,铁芯工作在线性范围内,谐波电流含量不大,但在轻载时电压升高,铁芯工作在饱和区,此时谐波电流就会大大增加。
在变压器正常工作过程中,如果有暂态扰动、负载剧烈变化都会产生大量谐波。
三、谐波的危害一般来讲,具有非线性特性或者对电流进行周期性开闭的电气设备对容量相对较大的电力系统影响不很明显,而对容量小的系统,谐波产生的干扰就不可忽视,谐波电流和谐波电压的出现,对公用电网是一种污染,它使用电设备所处的环境恶化,给周围的通信系统和公用电网以外的设备带来危害。
谐波污染对电力系统的危害严重性主要表现在:(一)对供电线路的影响谐波对供电线路产生了附加谐波损耗。
由于集肤效应和邻近效应,使线路电阻随频率增加而提高,造成电能的浪费;由于中性线正常时流过电流很小,故其导线较细,当大量的三次谐波电流流过中性线时,会使导线过热、绝缘老化、寿命缩短、损坏甚至发生火灾。
谐波治理的基本方法
目前谐波治理的基本方法有以下三种,在治理过程中又可以采用变电所集中治理和非线性用电设备处分散治理两种方法。
按谁污染谁治理的原则,应该在非线性用电设备处分散治理。
但对于电脑,彩电,节能灯等民用设备,则只能进行集中治理。
1、减少非线性用电设备与电源间的电气距离。
也就是减少系统阻抗,换句话说就是提高供电电压等级。
例如,在丽水电业局的遂昌钢厂就取得了不错效果,该钢厂原是用35kV供电,由两个110kV变电所各架设一回35kV专线供电,而它的主要用电设备是电弧炉,虽然进行了五次、七次谐波治理,但在110kV的35kV母线上测得谐波分量仍接近或稍超国家标准。
但在丽水局在遂昌新建了一个220kV变电所而且离该钢厂仅4km左右,用5回35kV专线供电,使35kV母线的谐波分量控制在国家标准以内,此外该厂还使用了较大容量的同步发电机,使这些非线性负荷的电气距离大大下降,使该厂生产的谐波对电网的危害性下降,这种方法投资是最大的,往往需要和电网发展规划相协调。
2、谐波的隔离。
非线性用电设备产生的谐波,它不仅直接影响到本级电网,而且经过变压器后,还会影响到上几级电网。
如何把这些非线性用电设备产生的谐波不影响或少影响其他几级电网,这也是谐波治理的一个基本方法。
这一方法在电网中广泛采用,发电机发出的电能经过Y/△、Y0/△、Y0/Y等接线组别的变压器,把发电机产生的三次、九次等零序分量的谐波与上级电网隔离开来,因此在110kV以上高压电网上,三、九次谐波分量很小,几乎是零。
而10kV由于大多数配变为Y/Y0接线,35kV也有少量Y/Y0接线的直配变,因此在10kV和35kV系统中三、九次谐波分量会比高压电网大。
为了减少低压对10kV电网的影响,我局现在10kV配电系统中推广使用了D,yn11接线组别的配电变压器,有效的减少了三、九次谐波的影响。
3、安装滤波器。
目前对变电所侧和用户侧谐波治理的方法,多采用安装滤波器来减少谐波分量。
(完整版)谐波的危害
1、高次谐波能使电网的电压与电流波形发生畸变,另外相同频率的谐波电压和谐波电流要产生同次谐波的有功功率和无功功率,从而降低电网电压,增加线路损耗,浪费电网容量,2、影响供电系统的无功补偿设备,谐波注入电网时容易造成变电站高压电容过电流和过负荷,在谐波场合下,电容柜无法正常投切,更严重的请况下,电容柜会将电网谐波进一步放大。
3、影响设备的稳定性,尤其是对继电保护装置,危害特大。
4、谐波的存在会造成异步电动机效率下降,噪声增大;使低压开关设备产生误动作;对工业企业自动化的正常通讯造成干扰,影响电力电子计量设备的准确性。
5、谐波的存在会使电力变压器的铜损和铁损增加,直接影响变压器的使用容量和使用效率;还会造成变压器噪声增加,缩短变压器的使用寿命。
谐波对公用电网和其他系统的危害大致有以下几个方面:1、加大企业的电力运行成本由于谐波不经治理是无法自然消除的,因此大量谐波电压电流在电网中游荡并积累叠加导致线路损耗增加、电力设备过热,从而加大了电力运行成本,增加了电费的支出。
2、降低了供电的可靠性谐波电压在许多情况下能使正弦波变得更尖,不仅导致变压器、电容器等电气设备的磁滞及涡流损耗增加,而且使绝缘材料承受的电应力增大。
谐波电流能使变压器的铜耗增加,所以变压器在严重的谐波负荷下将产生局部过热,噪声增大,从而加速绝缘老化,大大缩短了变压器、电动机的使用寿命,降低供电可靠性,极有可能在生产过程中造成断电的严重后果。
3、引发供电事故的发生电网中含有大量的谐波源(变频或整流设备)以及电力电容器、变压器、电缆、电动机等负荷,这些电气设备处于经常的变动之中,极易构成串联或并联的谐振条件。
当电网参数配合不利时,在一定的频率下,形成谐波振荡,产生过电压或过电流,危及电力系统的安全运行,如不加以治理极易引发输配电事故的发生。
4、导致设备无法正常工作对旋转的发电机、电动机,由于谐波电流或谐波电压在定子绕组、转子回路及铁芯中产生附加损耗,从而降低发输电及用电设备的效率,更为严重的是谐波振荡容易使汽轮发电机产生震荡力矩,可能引起机械共振,造成汽轮机叶片扭曲及产生疲劳循环,导致设备无法正常工作。
谐波的危害与对策
谐波的危害与对策随着用电负荷快速增加及电力电子设备的大量应用,非线性负荷已经成为电力系统的重要组成部分。
非线性负荷是产生谐波的重要原因。
电网的谐波含量是电能质量的重要指标之一,全面保障电能质量是电力企业和用户共同的责任和义务。
所以研究谐波产生的原因和谐波造成的危害,在电气设计中采取各种相应技术措施进行谐波抑制,是当前电气设计的一项重要内容。
在我院过去的设计项目中,或者因为生产工艺的调整而增加大量的变频设备,或者因为在购置电容器补偿柜时,擅自取消电抗器,而造成补偿电容器损坏的事故都曾发生过。
分析事故造成的原因,都是因为低压系统中谐波电压过大而造成的。
这两起事故引起了我们电气工程设计人员的高度重视。
一、谐波的产生1、产生谐波的主要负荷大型民用建筑绝大多数用电设备为非线性负荷,一类是含开关电源的非线性负荷(电压型谐波源,电容性负载),如计算机、打印机、电信设备、含电子镇流器的照明灯具、电视机、智能化设施等。
另一类是呈感性的非线性负荷,如含电感性的照明灯具。
变频空调、影剧院可控硅调光装置、微波炉、彩电、单相变频空调、个人电脑的谐波含有率分别高达130%、17%、100%,是谐波重要来源。
日本调查显示,来自民用建筑的谐波污染占总谐波量的40%。
相控整流器、同波变流器、不间断电源(UPS)等电力电子非线性负荷产生谐波。
三相变频空调、变频调速风机和水泵、调速电梯、软启动设备,也都是产生谐波的用电负荷。
2、主要异常现象南京某商城先后出现避雷器爆裂、主干母线槽温升高、绝缘损坏跳闸、照明光源更换频繁、变压器运行温升及噪音异常等;某医院低压补偿电容器爆裂;某银行发现中性线与保护线间电压过高、中性线电流严重过载等异常现象。
3、谐波电流危害比较严重的主要场所综合办公楼、商业建筑、金融建筑及大型医技综合楼等大型民用建筑,由于大量使用日光灯、电梯、计算机、变频风机、水泵或软启动设备、EPS或UPS电源、X光机、CT等医疗设备等,这些用电设备都为非线性负荷,是产生谐波电流的主要根源。
电力系统中谐波的危害
电力系统中谐波的危害电网谐波是怎么产生的?其主要来自于以下几个方面:一是发电源质量不高产生谐波:发电机由于三相绕组在制作上很难做到绝对对称,铁心也很难做到绝对均匀一致和其他一些原因,发电源多少也会产生一些谐波,但一般来说很少。
二是输配电系统产生谐波:输配电系统中主要是电力变压器产生谐波,由于变压器铁心的饱和,磁化曲线的非线性,加上设计变压器时考虑经济性,其工作磁密选择在磁化曲线的近饱和段上,这样就使得磁化电流呈尖顶波形,因而含有奇次谐波。
它的大小与磁路的构造形式、铁心的饱和程度有关。
铁心的饱和程度越高,变压器工作点偏离线性越远,谐波电流也就越大,其中3次谐波电流可达额定电流的0.5%。
三是用电设备产生的谐波:晶闸管整流设备。
由于晶闸管整流在电力机车、铝电解槽、充电装置、开关电源等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。
我们知道,晶闸管整流装置采用移相控制,从电网吸收的是缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,显然在留下部分中含有大量的谐波。
如果整流装置为单相整流电路,在接感性负载时则含有奇次谐波电流,其中3次谐波的含量可达基波的30%;接容性负载时则含有奇次谐波电压,其谐波含量随电容值的增大而增大。
如果整流装置为三相全控桥6脉整流器,变压器原边及供电线路含有5次及以上奇次谐波电流;如果是12脉冲整流器,也还有11次及以上奇次谐波电流。
经统计说明:由整流装置产生的谐波占所有谐波的近40%,这是最大的谐波源。
变频装置。
变频装置常用于风机、水泵、电梯等设备中,由于采用了相位控制,谐波成份很复杂,除含有整数次谐波外,还含有分数次谐波,这类装置的功率一般较大,随着变频调速的发展,对电网造成的谐波也越来越多。
电弧炉、电石炉。
由于加热原料时电炉的三相电极很难同时接触到高低不平的炉料,使得燃烧不稳定,引起三相负荷不平衡,产生谐波电流,经变压器的三角形连接线圈而注入电网。
避免谐波对电容器组危害的运行投切原则
2电容器 与谐 波的相互影 响 .
无功 补 偿 电容 器 组 主要 是 用 于 补偿 基 波 电流 的无 功功 率 ,但是 当谐 波 作 用于 电容 器时 ,可 能
出现 完 全 不 同 的 结 果 。 电 容 器 组 既 可 能 吸 收 谐 波 ,改善 电能 质量 ;又 可 能使 谐 波 放大 ,使 电 能
率 ,导 致功 率 因数 下 降及 线 损 增加 ;又 造成 了 电 容 器设 备投 资 的浪 费 。 那 么 ,针 对现 场 这 种情 况 ,本 文 建 立 了相 应 的简 化模 型并 进行 了计 算分析 。
3 . 分析计算
31 .电容器对谐波电流的放大现象
系 统h 谐 波 电流 分 布 等效 图如 图 l 示 ,图 次 所
c p ct rt o h g , n e u e ec p ct rl e e e e d t a a i r u s. i p p ra a y e i p o l m n u o wa d a a a i i h a d r d c st a a i f , v n la o c p c t rt Th s a e n l s st s r b e a d p t r r o o h o i o b h f n
器上的谐波 电流和谐波 电压过大 ,危及电容器的寿命甚 至导 致电容器爆裂。据 此进行了分析并提 出相应 的改进措施 。
Ab t a t s r c :Th a a i r i i o a tr a t e c mp n ai n d v c s i h u sa i n I ee t n o e ca c a e i n t e c p ct s mp  ̄ n e ci o e s t e ie n t e s b tt . f s lc i f r a tn e r t s o o v o o o c re t h a mo i u e t a s d c p ct rwi e a l e . twi a s s t e h r o i u r n n ot g a o i n t e o r c,t e h r n c c r n s e a a i l b mp i d I l c u e h am n c c r e ta d v l eh r nc o h p o l i f l a m
谐波的危害与治(三篇)
谐波的危害与治引言随着现代科技的发展,谐波问题在各个领域中日益突出。
谐波是指在电力系统或电子设备中,在基频上产生的频率是基频的整数倍的特殊电压或电流成分。
尽管谐波本身并不造成太大的危害,但长期存在的谐波问题会导致设备的过载、故障、减寿等问题,甚至可能对人体健康产生负面影响。
因此,对谐波进行合理治理和控制是至关重要的。
本文将探讨谐波的危害以及治理范本。
一、谐波的危害1.设备故障和过载在电力系统中存在谐波电流时,会导致设备的过载和故障。
谐波电流会加大设备的电流负荷,使得设备运行在额定负荷以上,从而加速设备的老化过程,减少设备的使用寿命。
并且,谐波电流还会产生额外的热量,进一步加剧设备的过载,从而引发设备的故障。
2.能源浪费和降效谐波电流会导致能源的浪费。
谐波电流在电力系统中流动时,由于产生压降、损耗等现象,会导致能源的损失。
此外,谐波电流在设备内部的传导和流动过程中也会产生额外的功耗,进一步降低了设备的效率。
3.电网负面影响谐波电流会对电网产生负面影响。
大量的谐波电流会导致电网的电压和电流波形失真,进而影响电网的稳定运行。
在严重的情况下,甚至会导致电网的故障和瘫痪。
4.对人体健康的危害谐波电流还可能对人体健康产生负面影响。
长时间暴露在高谐波电压或电流环境中,可能导致头痛、失眠、神经衰弱等症状。
并且,据研究表明,长期暴露在谐波电流环境中,还可能增加患癌症、心脏病等疾病的风险。
二、谐波治理的范本1.谐波源控制谐波问题的治理首先要从源头入手,减少谐波电流的产生。
可以采取以下措施来控制谐波源:(1)对发电设备进行合理规划和设计,降低发电设备的谐波产生;(2)采用高质量的电力电子设备和组件,降低设备本身产生的谐波;(3)合理设计电力系统的连接和布线,降低谐波电流的传播和影响范围。
2.谐波抑制装置的应用谐波抑制装置是指一种专门用于抑制谐波现象的设备。
通过安装谐波抑制装置,可以有效地降低谐波电流的水平,减小谐波的影响。
纯电容补偿面临的谐波影响及其解决方法
纯电容补偿面临的谐波影响及其解决方法田园【摘要】目前通过在负荷端并联电容器的无功补偿,基本能满足低压配电系统的无功需求。
但由于谐波的存在,无功补偿的电容可能导致谐波电流变大,补偿设备容易被过多的谐波电流损坏。
谐波可以通过安装具有适当电抗率的反应器得到有效抑制,由电容影响扩大的谐波电流也将被减小,补偿电路就能保证正常工作。
同时,部分谐波可以通过过滤器,使谐波含量在正常范围内,确保设备的正常运行。
%The current reactive power compensation can basically meet reactive demand in low -voltage distribution system by shunting capacitors at the load side .However, because of a certain amount of harmonics in distribution system , the reactive compensation using pure capacitance could cause the enlargement of harmonic current , the compensation devices are damaged by excessive harmonic current .Harmonics can be effectively suppressed by mounting reactors with suitable reactance rate , and the amplification of harmonic current caused by capacitor will be decreased , so the normal operation of compensation circuit isensured.Meanwhile, the partial harmonics can be filtered by active filters and passive ones to make harmonic content within normal limits so as to guarantee the normal operation of devices .【期刊名称】《四川电力技术》【年(卷),期】2013(000)002【总页数】6页(P6-10,47)【关键词】补偿;谐波;电容电抗器【作者】田园【作者单位】南充电业局检修公司,四川南充 637007【正文语种】中文【中图分类】TM8640 引言在低压配电系统中的阻感性用电设备得到广泛的应用,造成电网的功率因率偏低,给用电设备以及电网造成比较大的危害。
谐波的危害与治(二篇)
谐波的危害与治随着工业的发展,客户的用电量不断增长,谐波的影响和危害也日益严重。
1谐波源电力系统中谐波源有以下几种:一是各种非线性用电设备,如换流设备、调压装置、电气化铁道、电弧炉、光灯、家用电器以及各种电子节能控制设备等是电力系统谐波的主要来源。
这些设备即使供给它理想的正弦波电压,它取用的电流也是非线性的,即有谐波电流存在。
这些设备产生的谐波电流也会注入电力系统,使系统各处电压产生谐波分量,这些设备的谐波含量决定于它本身的特性和工作状况,基本上与电力系统参数无关。
二是供电系统本身存在的非线性,元件这些非线性元件主要有变压器励磁支路、交直流换流站的晶闸管控制元件、晶闸管控制的电容器、电抗器组等。
三是家用电器,如荧光灯等的单个容量不大,但数量很多且分布于各处,又难以管理。
如果这些设备的电流谐波含量过大,会对电力系统造成严重影响,此类设备的谐波含量,在制造时即应限制在一定的范围之内。
2电容器不能正常投入问题的分析通常将低压电容器组接到配变二次侧或0.4kV母线上,以补偿变压器和负荷的无功损耗,由于无功自动补偿装置能够根据负荷的变化自动投切电容器组,使功率因数保持在0.9以上,且不过补偿,能够获得良好的补偿效果。
但装设电容器后系统的谐波阻抗随系统的谐波频率不同会发生变化,即可大可小,并且当系统的谐波频率达到某一特定值时,并联电容器可能会与系统发生并联谐振或导致该次谐波被放大。
谐波电流一旦被电容器放大并迭加在电容的基波电流上,这将使流过电容器电流的有效值增加,电力电容器会由于谐波电流引起绝缘介质损耗加大、温度升高,加快电容器绝缘老化,甚至引起过热使电容器损坏。
此外,谐波电流放大引发的谐波电压增大一旦叠加在电容器的基波电压上,同样会使电容器承受电压有效值增大,并且电压峰值也会大大增加,造成电容器发生局部放电,这也是电容器损坏的一个主要原因。
由于电容器对谐波电流的放大作用,它不仅危害电容器本身,而且会危及电网中的其它电气设备,严重时会造成电气设备损坏,甚至破坏电网的正常运行。
谐波危害及抑制谐波的方法
谐波危害及抑制谐波的方法论文随着电网容量迅速增长,电网运行电压也不断提高,电网中谐波问题日益严重,谐波电流注入公用电网,必然污染公用电网,使公用电网电源的波形畸变。
受谐波电流污染的公用电源,轻者干扰设备正常运行,影响人们的正常生活,重者致使工业上的大型生产线、系统运行瘫痪,会造成严重经济损失。
标签:电网谐波危害抑制随着工业、农业和人民生活水平的不断提高,除了需要电能成倍增长,对供电质量及供电可靠性的要求也越来越多,电力質量受到人们的日益重视。
由于用电负载大都是非线性负载,都是谐波源,如将这些谐波电流注入公用电网,必然污染公用电网,使公用电网电源的波形畸变,增加谐波成份。
近几年,传感技术、光纤、微电子技术、计算机技术及信息技术日臻成熟。
集成度愈来愈高,微电子器件工作电压变得更低,耐压水平也相对更低,更易受外界电磁场干扰而导致控制单元损坏或失灵。
因此,受谐波电流污染的公用电源,轻者干扰设备正常运行,影响人们的正常生活,重者致使工业上的大型生产线、系统运行瘫痪,会造成严重经济损失。
一、电网谐波的产生1、电源本身谐波由于发电机制造工艺的问题,致使电枢表面的磁感应强度分布稍稍偏离正弦波,因此,产生的感应电动势也会稍稍偏离正弦电动势,即所产生的电流稍偏离正弦电流。
当几个电源并网时,总电源的电流也将偏离正弦波。
2、非线性负载谐波产生的另一个原因是由于非线性负载。
当电流流经线性负载时,负载上电流与施加电压呈线性关系,而电流流经非线性负载时,则负载上电流为非正弦电波,即产生了谐波。
主要非线性负载装置包括开关电源的高次谐波、变压器空载合闸涌流产生谐波、单相电容器组开断时的瞬态过电压干扰、电压互感器铁磁谐振过电压、整流器和逆变器产生的谐波电压和电流以及电弧炉运行引起电压波动。
二、谐波的危害1、污染公用电网如公用电网的谐波特别严重,则不但使接入该电网的设备无法正常工作,甚至会造成故障,而且还会造成向公用电网的中性线注入更多电流,造成超载、发热,影响电力正常输送。
浅析10kV电容器高压熔丝熔断问题 吕争
浅析10kV电容器高压熔丝熔断问题吕争摘要】结合35kV变电站10kV框架式电容器,高压熔丝频繁熔断问题,阐述了此类现象产生机理,并提出解决方案。
关键词电容器熔断1 案例简介35kV炼钢变电站位于新疆省乌鲁木齐八一钢铁公司厂区,投运至今已经运行15年,站内三台主变带10kV四段母线分列运行,每段母线上配置一面10kV中置式高压开关柜,开关柜通过电缆控制一组2500kVar电容器组的投切,电容器组连接方式为单星型连接,高压开关柜配置三段式电流保护、低、高电压保护、零序过流、过压保护,框架式电容器没片电容器配置高压熔丝保护;自2017年起为了提高系统功率因数长期投入四台电容器运行,其中1#电容器频繁熔丝熔断,高压开关柜报“零序过电流”动作跳闸,随即对电容器组进行绝缘检查、电容量测试均无异常,重新更换保险丝后运行1-2天再次跳闸,其中也会存在电容器损坏造成熔丝熔断高压开关柜跳闸。
每次送电后跳闸所维持的时间不统一最长可以维持一周不跳闸,在2个月时间里累计发生电容器高压熔丝熔断5次,累计烧损熔丝11根;这些故障不仅影响生产正常运行,浪费大量的人力物力,增大了人机接触频次,加大了作业风险概率。
2 事故分析1)对单片电容器运行电流及熔断电流进行计算;单片电容为200kVAr,运行电压为10kV,现场配置40A高压熔丝;通过对单片电容器的容量及运行电流与熔丝熔断电流进行计算;熔断熔丝取1.5倍额定电流I=30.A现场配置40A熔丝满足使用要求,排除熔丝选择较小的可能。
2)对电容器的材质、压接质量进行检查;检查现场熔丝熔断部位均在熔丝中间部位,排除熔丝压接质量的可能。
取同一批次熔丝进行熔断电流测试;将熔丝串入电焊机工作回路,钳形电流表测量电焊机所调整电流与实际是否相符;现场对熔丝熔断电流进行五次测试记录如下:所加电流(A) 承受时间(S)现象第一次 20 60 无变化第二次 30 60 熔丝部位变色、氧化第三次 40 10 C变红、10s左右熔断第四次 45 2 2s左右熔丝熔断第五次 50 0 熔丝瞬间熔断经过测试熔丝熔断电流在铭牌标定范围内,排除熔丝质量问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电容器投切对10KV母线谐波影响
电容器投切对10KV母线谐波影响
1电容器投切测试
按照站内电容器运行规定,对电容器进行投切实验,测试投切前后10kV 母线谐波电压和变压器主开关谐波电流,得到的参数如下:电容器投运前,10KV侧母线有功功率为2528KW,无功功率为1946Kvar,电压有效值为6.04KV,电流有效值为0.485KA,电压总畸变率为0.51%,电流总畸变率为1.21%,总谐波电压有效值为30.7V,总谐波电流有效值为5.87A;电容器投运后,各对应参数分别为有功功率为2580KW,无功功率为-504Kvar,电压有效值为6.266KV,电流有效值为0.419KA,电压总畸变率为1.09%,电流总畸变率为4.18%,总谐波电压有效值为68.2V,总谐波电流有效值为17.5A。
对监测得到的这些数据进行分析,可见,电容器投运后,电压总畸变率增加了113.7%,电流总畸变率增加了245.5%,总谐波电压有效值增加了122%,总谐波电流有效值增加了198%。
又谐波的大量增加,可以推断,电容器投运后义井配电站10KV母线侧发生了谐波谐振。
进一步对谐波进行分解处理,得出:电容器投运后,对3 次谐波、5 次谐波、7 次谐波都发生了不同程度的放大,其中,对5 次谐波电压和7 次谐波电流的影响最大。
2、电容器投切测试值的计算分析
将该站的电容器组进行等值处理,负荷简化为谐波电流源,等值后的基波阻抗为20.12Ω。
谐波计算按照叠加原理分解为,背景谐波电压回路和负荷谐波电流回路两部分。
即( 为开关k次谐波电流(测试值); 为背景谐波电压单独产生的k次谐波电流; 为负荷产生的k次谐波电流分流至系统的k次谐波电流)。
系统谐波电放逐大倍数按照公式:计算。
经计算得出:3次谐波电放逐大倍数为1.5;5次谐波电放逐大倍数为14.7;7次谐波电放逐大倍数为1.4。
且谐振发生的次数为5次。
从以上分析可见,背景谐波电压回路发生了5次串联谐振,负荷谐波电流回路发生了5次并联谐振。
因此,开关谐波电流的增大主要是由于电容器投运后发生了5 次串、并联谐振所致使的。
3、10KV出线开关和用户的谐波测试分析
假如配电母线电压畸变率超过1%是由于10kV 负荷谐波电流造成的,则继续在超标时段内对10kV 各出线开关电流进行谐波测试,用表列出各路主要次的谐波电流有效值。
找出谐波影响最大的10kV 出线路。
对谐波影响最大的10kV 出线线路的主要用户进行谐波测试,找出谐波影响最大的用户,按有关谐波治理规定要求用户采取措施降低产生的谐波量。
4、上级电网和负荷的谐波测试分析
假如配电母线电压畸变率超过1%是由于上级供电电网背景谐波电压造成,则继续在10kV 配电母线超标时段内对上级电网和负荷进行测试。
重复上述步骤,对上级电网母线进行分析,终极找出超标的根源即上级负荷或背景的影响。
5、结论
由以上分析终极得出10kV 配电母线电压畸变率超过了国标1%的原因。
义井配电站10KV母线超标原因的结论:
(1) 经监测,义井站10kV母线电压畸变率超过了国际一流的要求1%,谐波电压和电流中以5 次谐波为主。
(2) 经计算,10kV 母线背景谐波电压总畸变率。