潮流场模拟
防城港码头工程前后潮流场的数值模拟
追赶法求解 二维 浅水 方程 , 在对模型进行潮位验证 和潮流验证 的基础上 , 对防城港码头工程 实施 前后 的
潮流场进行 了数值模 拟研究 。研究 表明 : 该工程建设不会减少湾 内纳潮量 , 不会 对海域水动力 学条件产
生较大影响 , 只会对码头附近产生较小影响 。 关键词 : 二维模型 ; 时间层有 限差分法 ; 双 纳潮量 ; 潮流
1 二 维 潮 流数 学模 型
对于海水垂向混合 比较充分的浅海 , 其水平尺度一般远大于垂 向尺度 , 因此可以采用水深平均二维浅水 方 程作为 潮流计 算 的控制 方程 [ - ]
即
3 + 3 t。 x + a =0 。 v —u
3u a
+
、 () 1
中 图分 类号 : 3 .3O 22 1 P7 12 ; . 4 文献标识码 : A 文 章 编 号 :05— 4 320 )5 3 1 0 10 84 (07 0 —03 — 6
防城港 位 于北 部 湾北岸 、 城港市 渔 漫岛西 南端 , 防 港湾 三 面环 山 , 水域 宽 阔 , 纳潮 量 大 , 水深 浪小 , 池航 港 道少淤, 交通 便捷 , 我 国大 陆海 岸线 西南端 的一个深 水 良港 , 我 国沿海 1 是 是 9个主 枢纽 港之一 。为 了满 足 防
城港货物未来吞吐量要求 , 有必要建设新的泊位 , 同时要求工程要保持原有 的通道进出潮量 , 维持 自然生态
平 衡 。为此进 行 了潮流 场数值 模拟 , 以了解工 程 实施前 后潮 流 的 自然 流态及 工 程后 流场 的变化 。 本 文在分 析 以往 水 文调查 资料 的基 础 上 , 立 数 学模 型 , A I 法 进 行 工 程前 后 潮 汐 和潮 流 数 值模 建 用 D方 拟, 比较 工程 前后 的纳潮 量变 化 , 给工程 部 门提供 了可 靠 的依据 。
湛江东海岛近岸潮流场数值模拟
的开挖对湛江主航道影响很小 。工程建设只改变 了工 程区海 域的局部 流态 , 并且新 开挖航 道 的水 动力
条件有助于船舶顺流进港 。 关键词 : 江湾 ;D IC潮流模 型 ; 湛 A CR 亚网格模型 ; 潮流场 中图分类号 : 3 . ; 4 . P7 12 O22 1 3 文献标 识码 : A 文章编号 :05 43 20 )5 35—0 10 一S4 (0 70 —02 6
潮 流流速 05 . /。湛 江港规 划 为调顺 岛 、 . ~15m s 霞海 、 山 、 霞 宝满 、 东海 岛 、 南三 岛 、 头七 大港 区 。在东 海 岛 坡
港区建设原油 、 矿石专用码头 , 以发展集装箱 、 石油、 散货中转运输为主。拟建的中海油气开发利用公司广东 沥 青项 目码 头 工程位 于湾 内东 海 岛东北 部 , 紧邻 湾 口 , 南 三 岛 、 呈 岛 、 头 山 岛 和东 海 岛 天然 屏 障 的环 有 特 东 绕, 掩护条 件较 好 。港址岸 线距 湛 江港 2 万 吨级 航道 南三 岛西航 道段 1k 5 m左右 , 规划 建设 原油 进 口及 成 品
李国杰 , 胡建平
( 中交第 二航务 工程 勘察 设 计院有 限公 司 , 武汉 407 ) 301
摘 要 : S ao nk 亚网格模型引入 A CR 将 m gr sy i D I C潮流模型求解涡粘性 系数 , 使模 型在模 拟近岸潮 流方 面
更加合理 。为进一步揭示 中海油气开发利用公 司广东 沥青项 目码头工 程海 域的潮流 变化 , 利用改 进的 A CR D IC模 型对 湛江东海 岛海 域潮流场进行 了合理地模 拟和分析 。结果表 明该工程 港池和 进港支航 道
湛 江湾是 一个半 封 闭 的海 湾 , 口为沟通 湛 江湾 与外海 的主要通 道 , 湾顶 处有 遂溪 河及 其若 干小支 流 湾 在
浙江近海潮汐潮流的数值模拟-海洋学报
第25卷第5期海洋学报Vol.25,N o.5 2003年9月ACTA OCEANOLOGICA SINICA September,2003浙江近海潮汐潮流的数值模拟陈倩1,2,3,黄大吉2,章本照1(11浙江大学力学系,浙江杭州310027;21国家海洋局第二海洋研究所浙江杭州310012;31国家海洋局海洋动力过程与卫星海洋学重点实验室,浙江杭州310012)摘要:用三维陆架海模式(HAM SOM)对浙江近海的潮汐、潮流进行了数值模拟,并采用网格嵌套和动边界技术对原模式作了改进,以提高计算的精度,改进后的模式在浙江近海的应用中被证明是成功的.沿岸50个潮位站计算与实测值的比较表明,加入动边界以后的小区域细网格计算较之粗网格以及未加动边界以前精度普遍提高,比较的均方差结果为:M2分潮振幅差416cm,相角差7114b;S2分潮振幅差510cm,相角差514b;K1分潮振幅差2125cm,相角差5176b;O1分潮振幅差1156cm,相角差515b,可见计算与实测符合良好.另外,选取了105个实测潮流点,比较了表层M2和K1分潮流调和常数分量U cos N,U sin N,V cos G,V sin G的实测值与计算值的偏差,结果表明计算与实测的符合程度较好.在此基础上,给出了各主要分潮的潮位同潮图、潮流同潮图、潮汐性质、潮流性质、潮流椭圆和潮流的运动形式等,发现4个主要分潮M2,S2,K1,O1在本区内均未出现无潮点;M2分潮流在29b18c N,122b46c E处有一个圆流点.此外还得到了一些有意义的结论,都与实测情况符合良好,从而对整个浙江沿海区域的潮汐潮流特性有了一个全面认识.关键词:数值模拟;网格嵌套;动边界;潮汐潮流;浙江近海中图分类号:P731123文献标识码:A文章编号:0253-4193(2003)05-0009-121引言浙江近海岸线曲折,地形复杂,港湾众多、岛屿星罗棋布.由北往南的主要港湾有杭州湾、宁波-舟山深水港、象山港、三门湾、乐清湾、温州湾等,均属强潮海区.沿岸和诸岛屿上设有一些验潮站和潮流测点.关于浙江沿岸各海区内潮汐潮流实测资料的研究已有不少成果,本文作者[1]也曾以多年来沿岸各潮位站观测资料以及海岸带和海岛调查的实测海流资料为依收稿日期:2002-09-25;修订日期:2002-12-10.基金项目:浙江省自然科学基金资助项目(499018);国家自然科学基金资助项目(40076010).作者简介:陈倩(1975)),女,浙江省舟山市人,国家海洋局第二研究所和浙江大学力学系联合培养博士,从事海洋动力过程研究.E-mail:dajih2001@10海洋学报25卷据,分析研究了整个浙江沿海区域的潮汐潮流特征,得到了一些规律性结论,但是实际观测既昂贵又费时,而且实测点有限,该海域的流场分布又较为复杂,因此要由点到面准确地掌握大面积潮位和潮流的分布变化规律,数值模拟计算仍不失为一种廉价而有效的研究手段.有关浙江近海各海区的数值模拟,前人已做过不少工作,曹德明等[2,3]用有限差分法对杭州湾的潮汐、潮流进行了二维数值模拟;李身铎等[4]采用R坐标下的三维数值模式模拟了杭州湾三维潮波运动;曹欣中等[5]做了宁波、舟山内海域的潮流场数值模拟计算;董礼先等[6]数值模拟了象山港水域的潮波运动;周大成[7]采用平面二维三角形单元显性有限元潮流模型对椒江河口大潮潮流特性进行了数值模拟;李孟国等[8]建立了时间二次插值的三角形网格显式差分数学模型,对瓯江口海区的潮流场进行了成功的模拟.但是,由于该区地形和岸线条件复杂,为提高数值计算的精度,绝大多数的计算工作是针对某局部海区进行的,极少把浙江近海作为一个整体进行数值计算,而且大多数的研究成果局限于某几点的潮位验证或某时刻的流场分布,未给出整个研究海域的潮分布规律(如各分潮的等振幅线和同潮时线等).也有许多模拟东海或渤海、黄海、东海的数值计算文章[9~11],但由于浙江近海只是其中很小一块区域,故其所提供的该区的潮汐潮流分布信息就不够细致.因此,把浙江近海作为一个整体,在较高精度下进行数值计算,并由此得到一系列规律性成果,是很有意义的,而且为了弄清潮汐潮流对物质输送和扩散以及浙江近海温度、盐度分布的影响,也需要把浙江近海作为一个整体来进行计算.本文采用三维陆架海模式对整个浙江海区的潮汐、潮流进行了数值模拟计算,并引入网格嵌套技术使得小区域内的细网格计算精度提高,引入动边界技术来处理露滩问题,使该区潮模拟更加真实可靠.本文用这两项技术对原有的HAMSOM模式进行了改进,改进后的模式被应用于浙江近海潮汐、潮流的三维数值计算中,经验证效果良好.在验证计算值与实测值符合良好的基础上,给出了各主要分潮的潮位等振幅线和同潮时线、潮汐性质、潮流等振幅线和同潮时线、潮流椭圆、潮流性质及潮流的运动形式.2数值模式及其应用211三维陆架海模式(HAMSOM)简介HAMSOM(H amburg shelf ocean model)是由德国汉堡大学海洋研究所Backhaus和他的同事们发展的三维斜压陆架海模式.自20世纪80年代初发展至今,模式已有了不少改进[12~15].下面对HAM SOM的框架及其特点作简要说明.HAMSOM是一垂向分层模式,控制方程建立在任一垂向层上.这是为简化数值计算,通过对原始三维运动方程和连续方程组进行层积分处理(即把相应的方程对模式的垂向某一层积分),得到层积分的连续方程、运动方程和温度、盐度方程[13],从而将三维问题转化为二维问题,层与层之间通过垂向动量交换联系起来.此外,针对限制时间步长的线性不稳定因子,采取相应的措施,使模式的时间步长不受稳定性限制:(1)科氏力项,在运动方程中通过对科氏力项引入一个稳定的二阶旋转矩阵来克服它在时间迭代过程中产生的线性不稳定[13];(2)外重力波项,对运动方程中的正压梯度力项和连续方程中的水平散度项,采用半隐式的差分格式,以克服由外重力波所引起的对稳定性的限制;(3)垂向黏性(扩散)项,对运动方程中的垂向黏性项和温度、盐度方程中的垂向扩散项,采用半隐式的差分格式,以克服该两项对稳定性的限制.通过以上处理并作进一步推导后,可以得到关于水位的椭圆型方程及输运量的三对角方程.用超松弛法可求解关于水位增量的椭圆型方程,从而得到下一时间步长的水位值,用追赶法可求解三对角方程得到水平输运量和水平流速分量,然后求解层积分方程,确定垂向流速场.由于本文仅探讨浙江近海的主要正压动力过程:潮汐和潮流,故采用HAM SOM 模式的正压模拟部分,对温度、盐度方程暂不考虑.212 模式的应用21211 计算海区和模式安排本计算海域为27b ~31b N,12011b ~12311b E 的整个浙江沿岸水域,区域地形如图1所示.经向和纬向水平网格均取1c ,纬线(x 方向)上网格的大小由纬度来校正,垂向取8层,这是为反映岛屿间水道或海峡通道地形的剧烈变化而设置.从上向下各层的厚度分别为10,20,30,40,50,75,100,150m.时间步长取5m in.陆地边界取法向流速为0;开边界潮位给定,包含5个主要分潮(M 2,S 2,N 2,K 1和O 1),由大区域模式(渤海、黄海、东海,如图2)提供.开边界处流速的边界条件根据Orlanski 辐射条件来确定.图1 区域地形(等值线单位:m)及实测比较点的位置图2 大、小计算海区及网格示意图在模式应用过程中,由于研究海域的特殊性,将引入两项数值技术,即网格嵌套和动边界技术.21212 引入网格嵌套技术为小区提供开边界条件浙江近海是个相对于渤海、黄海、东海等较小的海域,且沿岸地形复杂,岸线曲折.为了得到反映该区特征的数值计算结果,更好地刻划岸线以及尽可能反映影响因素(如江河入海径流),都希望把网格划分得足够细,但是小区域的开边界条件往往难以给定,因为研究区域小,115期 陈 倩等:浙江近海潮汐潮流的数值模拟开边界可能引入误差的影响就比较大,为减小此误差,又希望把计算海域尽量扩大.如果在扩大海域下采用单一的细网格,将会增加计算量,因此我们引入网格嵌套技术来解决这一矛盾,即对外部大区域用粗网格,对内部小区域用细网格分别进行计算,其中大区的计算结果为小区提供所需的开边界条件,这样既保证了小区域计算精度,又可避免开边界上过大的误差影响.本文取24b~41b N,117b~131b E的整个渤海、黄海、东海为大区域,经向和纬向水平网格都取10c,小区域即浙江沿岸海域的大小计算海区如图2所示.开边界上潮位边界条件为F=E5i=1H i cos(R i t-g i),(1)式中,i从1到5分别表示5个主要分潮M2,S2,N2,K1和O1.小区域计算中,开边界上的调和常数由大区的计算结果经线性插值得到[16~18].图3浙江近海的潮滩示意图21213引入动边界模拟潮滩涨落浙江沿岸河口、港湾众多,滩地广泛分布.图3为浙江近海的潮滩示意图,其中黑色区域为潮滩.潮滩沙脊等随着潮位的涨落时而淹没时露出,相应水域的面积也随之增大或减小.为正确模拟这类变化的水域,我们引入动边界技术.本文将采用水位判别法[17~23].在计算过程中,随时对滩地网格点作状态判别,根据该时刻某点的瞬时水深判断其是否淹没,以确定该点是否参与计算.对于所有的潮滩点,由于最大可能的瞬时水深都不超过10m(实测最大潮差为8193m),故垂向仅有一层,我们可以把它当作二维问题来讨论.对于平面上任一潮滩点(i,k),瞬时水深h i,k= D i,k+F i,k,其中D i,k,F i,k分别为(i,k)点的滩地高程及潮位.由于算法的限制,对动边界的判别指标往往不能以单元水深为0来确定,而需要引入一个富裕水深D0(本文中取D0=011m)来保证求解的稳定性.落潮过程中,F i,k<0,当h i,k[D0时,认为该点干出,不参与计算,且令其流速为0;反之,则认为该点淹没,参与计算.涨潮过程中,水边界线随潮位的上升向高滩推进,则计算网格点增多.因新增网格点原无潮位值,故取其周围4点(i+1,k),(i-1,k),(i,k+1),(i,k-1)中已淹水的诸点潮位的平均值:F i,k=(F i+1,k E i+1,k+F i-1,k E i-1,k+F i,k+1E i,k+1+F i,k-1E i,k-1)(E i+1,k+E i-1,k+E i,k+1+E i,k-1),(2)式中,E i,k=1水点,0陆点.涨潮时,F i,k>0,当h i,k\D0时,认为该点淹没,参与计算,反之不参与计算.12海洋学报25卷3 计算结果及与实测的比较根据潮汐调和分析理论,分离主要分潮调和常数所需的最短潮位时间序列为15d,在实际应用中,常用1个月的潮位时间序列以获得较好的结果.计算的初始条件为:当t =0时,u =v =w =F =0,其中u,v 分别为水平流速的东分量和北分量,w 为垂向流速,F 为未扰动海面上的潮高.潮汐和潮流模拟时,模式共运行了32d,在2d 内模式已由零初始状态完全建立起来,模式产生的水位和流速数据每隔1h 进行储存,后30d 的逐时数据用于分析计算潮汐和潮流的调和常数,这里我们用最小二乘法来计算7个主要分潮(M 2,S 2,N 2,K 1,O 1,M 4和MS 3)的调和常数.为了验证计算结果的可靠性,我们从历史观测资料中挑选出50个有代表性的沿岸水位站,其位置如图1中空心五角星所示.此外,选出105个潮流比较点,其位置如图1中实心圆点所示.通过比较模拟计算与实测点的调和常数来验证计算的可靠性.表1为50个潮位站上4个主要分潮调和常数之差值(该值为实测减模拟所得)的均方差比较.为验证网格嵌套和动边界技术应用的效果,我们分别列出了10c 固定边界、1c 固定边界、1c 动边界3种情况下的均方差.由表1可见,计算与实测都符合较好.M 2分潮振幅差值中有82%的站点1c 细网格的计算精度优于10c 粗网格,1c 动边界的计算精度又优于1c 固定边界;10%的站点1c 固定边界效果最好,1c 动边界其次,10c 粗网格最差;另外8%的站点1c 动边界计表1 50个潮位站上4个主要分潮调和常数的模拟与观测之差值的均方差比较M 2S 2K 1O 1$H /cm$g /(b )$H /cm $g /(b )$H /cm $g /(b )$H /cm $g /(b )10c812110160817010167310010100210781701c615081786120719221688100118071151c 动边界41607114510051402125517611565150算结果最好,10c 粗网格次之,1c 固定边界最差.其他分潮的振幅、相位差统计结果与此皆相差不大.因此,综合来看,应用了网格嵌套和动边界技术之后,各点的计算精度普遍得到提高,效果明显.在下面的讨论中,我们将仅以1c 动边界情况下所得的模拟计算结果作为研究对象.图4a,b 分别为50个潮位站上4个主要分潮(M 2,S 2,K 1,O 1)调和常数的振幅和相角的实测值(x 轴)与计算值(y 轴)的对比结果,图中的点均分布在第一象限的角平分线附近,表明计算值与观测值比较一致.浙江近海潮流的数值模拟虽然是在三维的HAMSOM 模式下进行,但除近海底外,潮流的垂向变化都较小,因此仅以表层的潮流特征来讨论.图5a,b 分别给出了105个测流站表层M 2,K 1分潮流调和常数分量U cos N ,U sin N ,V cos G ,V sin G 的实测值(x 轴)和计算值(y 轴)的对比结果.测点均匀分布于计算海区.由图可见,计算值与实测值符合较好.误差统计分析表明,对M 2分潮流来说,两者偏差绝对值小于10cm/s 者占93%,最大偏差为1617cm/s;对K 1分潮流来说,两者偏差绝对值小于3cm/s 者占97%,最大偏差为4159cm/s.135期 陈 倩等:浙江近海潮汐潮流的数值模拟图4 模拟与实测各主要分潮M 2,S 2,K 1,O 1调和常数之比较图5 模拟与实测分潮流分量U cos N ,U sin N ,V cos G ,V sin G 之比较a.M 2分潮流,b.K 1分潮流4 计算结果的讨论411 同潮时线和等振幅图图6a,b,c,d 分别为主要半日分潮M 2,S 2和主要全日分潮K 1,O 1的同潮时线和等振幅线图,由图可见,M 2,S 2分潮同潮时线的走向基本一致.在M 2同潮图中,250b 同潮时线以三门湾为顶点,呈八字形向两旁伸展.图中S 2的300b 同潮时线类似分布.同潮时线的这一分布特征表明:半日潮波进入陆架后,由东南向西北挺进,首先在三门湾口附近达到高潮,然后分南北两支传播.K 1,O 1分潮的等振幅线图大致相似,两者的振幅都是由东向西略有增大,但增幅很小.同潮时线分布表明,K 1分潮由东北向西南传播;O 1分潮以西北-东南向传入本海域,在三门湾附近传向渐变为东北-西南.在本海域内,各分潮都没有出现无潮点.14海洋学报 25卷图6潮位的同潮时线和等振幅线a1M2分潮, b.S2分潮, c.K1分潮, d.O1分潮等振幅线/cm;同潮时线/(b)155期陈倩等:浙江近海潮汐潮流的数值模拟412 潮汐类型潮汐类型是根据潮型数F =(H K 1+H Q 1)/H M 2来划分的,它反映了日分潮与半日分潮的相对重要性.根据值的大小,一般可把潮汐分为4种类型,即规则半日潮(010<F [015)、不规则半日潮(015<F [210)、不规则日潮(210<F [410)和规则日潮(F >410).由图7a 可见,浙江近海以半日分潮为主.大部分海域内F [015,为正规半日潮,如浙北的杭州湾以及浙中、浙南的沿岸海域;小部分地区015<F [210,为非正规半日潮,主要分布在甬江两侧并连及舟山群岛部分海区.其产生原因是由于潮波变形,H M 2减小,而H Q 1和H K 1基本不变,故比值增大.图7 潮型数(F )a.潮位,b.表层潮流413 潮流的同潮时线和等振幅图图8a,b 分别给出了M 2,K 1分潮流表层合成流等振幅线和同潮时线的分布.由图可见,M 2,K 1分潮流等振幅线的分布显示,在本海域内存在几个明显的强流区.浙北的杭州湾和舟山群岛诸水道内潮流最强,M 2分潮流的振幅可达120cm/s 以上,这是由于潮流受地形影响显著.由于杭州湾的喇叭口地形,定海、岱山、嵊泗等海区的一些狭长水道,潮流通道的截面较小,故潮流速很强.另外,在三门湾、温州湾等港湾区,潮流振幅随近岸距离的减小而有明显增强趋势,这种变化趋势主要是由海区的水深条件、岸线和地形等因素造成的.M 2分潮流在29b 18c N,122b 46c E 处有一个圆流点,这与文献[11]中所得结果一致.同潮时线的旋转方向为反时针旋转.16海洋学报 25卷图8 潮流的同潮时线和等振幅线(表层)a 1M 2分潮, b.K 1分潮等振幅线/cm,等潮时线/(b )图9 M 2分潮流旋转率K 的分布(表层)414 潮流类型和潮流的运动形式潮流类型的划分标准与潮汐类型相类似.根据我国5港口工程技术规范6[24]的规定,采用(W O 1+W K 1)/W M 2作为指标,其中W O 1,W K 1,W M 2分别为O 1,K 1,M 2分潮流的椭圆长轴.由图7b 可见,绝大部分海域表层潮流F 值在012左右,均小于015,故浙江近海基本都属于正规半日潮流区.潮流的运动形式由潮流的椭圆旋转率K 来描述.K 值为潮流椭圆的短轴与长轴之比.当K 值大于0125时,潮流表现出较强的旋转性,而当其小于0125时,潮流表现为往复流.K 值前面的正负号表示潮流的旋转方向,正号为左旋,负号为右旋.由于本区域内半日潮流具有支配地位,因此我们给出M 2分潮流旋转率K 的分布来表征潮流的旋转特征,如图9所示.由图可见,在沿岸的港湾、河口水域及潮汐通道等处,潮流运动由于受地形、边界条件的制约,往复流的性质非常明显,K 的绝对值多小于012.外海或离岸较远且较宽敞的海区K 175期 陈 倩等:浙江近海潮汐潮流的数值模拟的绝对值大于014,呈旋转流态,如大目洋、三门湾、温州湾外海等.从旋转方向上看,大多数站点的K 为负号,呈右旋,这是由于地球自转效应产生的结果.另外,杭州湾口、浙闽交界水域各有一明显左旋区,这是潮波干涉区的影响所致.415 潮流椭圆图10a,b 分别给出了5c 为间隔的计算点上主要半日分潮M 2和主要全日分潮K 1的潮流椭圆长短轴分布.潮流的椭圆长轴指示了最大流速和最大流速方向.由图可见M 2,K 1分潮流椭圆长短轴的分布较为相似.从南往北,流速渐增.远岸区域旋转性较强,流速较弱;近岸区域则多为往复流,流速较强.M 2分潮流椭圆长轴的分布比较规则,其变化与地形密切相关.本区东南海域椭圆长轴的走向为西北-东南,这显示了潮波的传入方向.潮波传入后分为两支,往北和往南的传播方向各不相同,这在椭圆长轴的走向上有所反映.往南的一支表现为椭圆长轴在浙南海区多为东-西走向,而往北一支潮波则表现为椭圆长轴由浙中的东北-西南走向渐变为浙北的西北-东南走向,进入杭州湾后,基本为东-西走向.在港湾区或河汊水道处,椭圆长轴的方向一般与岸线或港湾水道走向相一致.K 1分潮流椭圆长轴之走向,在三门湾以北区域多为西北-东南,从三门湾往南渐变为东北-西南走向.在近岸区域,椭圆长轴的方向与岸线平行.图10 潮流椭圆长短轴分布图(表层)a.M 2分潮流,b.K 1分潮流5 小结本文用三维陆架海模式对整个浙江近海的潮汐和潮流进行了三维数值模拟,并针对浙江近海岸线曲折、潮滩广泛分布等地形特点,引入网格嵌套和动边界技术以提高计算的精度.改18海洋学报 25卷进后的HAM SOM 模式被成功地应用于该区的潮流数值模拟中,通过与实测点调和常数的比较,验证了这两项技术引入原模式后的良好效果,计算精度普遍得到提高.这是HAMSOM 模式首次应用于浙江近海的潮汐、潮流计算,该模式在研究陆架海动力学上有着独特的优越性.模式在应用过程中根据实际需要所作的改进也被证明是成功的,这使得该模式得到进一步的完善.改进后的模式可以嵌套用于局部更小区域的精细计算,也可以处理边界变动的问题.除模式的改善和成功应用外,本文将浙江近海作为一个整体进行数值计算并得到了一批反映规律的研究成果.本文给出了全区范围内4个主要分潮M 2,S 2,K 1,Q 1的潮汐同潮图,发现在本海域内,这4个分潮都没有出现无潮点;给出了M 2,K 1分潮潮流同潮图,发现M 2分潮流在29b 18c N,122b 46c E 处有一个圆流点,K 1分潮流在该区内无圆流点;此外还得到了潮型数F ,M 2分潮流椭圆率K 和潮流椭圆的分布规律.以上模拟结果都与实测情况[1]符合良好,而模拟结果由于不受实测点的限制,因此更全面、完整.参考文献:[1] 陈 倩,黄大吉,章本照.浙江近海潮汐特征的研究[J].东海海洋,2003,21(2):1)12.[2] 曹德明,方国洪.杭州湾潮汐潮流的数值计算[J].海洋和湖沼,1986,17(2):93)101.[3] 曹德明,方国洪.杭州湾和钱塘江潮波的联合数值模型[J].海洋学报,1988,10(5):521)530.[4] 李身铎,顾思美.杭州湾潮波三维数值模拟[J].海洋与湖沼,1993,24(1):7)15.[5] 曹欣中,唐龙妹,张月秀.宁波、舟山内海域实测海流分析及潮流场的数值模拟[J].东海海洋,1996,14(2):1)9.[6] 董礼先,苏纪兰.象山港潮波响应和变形研究.Ò.象山港潮波数值研究[J].海洋学报,1999,21(2):1)8.[7] 周大成.椒江河口大潮潮流特性的数值分析[J].浙江水利水电专科学校学报,2001,13(3):13)14,26.[8] 李孟国,王正林.瓯江口潮流数值模拟[J].长江科学院院报,2002,19(2):19)22.[9] 赵保仁,方国洪,曹德明.渤、黄、东海潮汐潮流的数值模拟[J].海洋学报,1994,16(5):1)10.[10] 万振文,乔方利,袁业立.渤、黄、东海三维潮波运动数值模拟[J].海洋与湖沼,1998,29(6):611)616.[11] 王凯,方国洪,冯士.渤海、黄海、东海M 2潮汐潮流的三维数值模拟[J].海洋学报,1999,21(4):1)13.[12] BACKHAUS J O.A sem-i implicit scheme for the shallow water equations for applications to shelf sea modelling[J ].ContS helf Res,1983,(2):243)254.[13] BACKHAUS J O.A three -di m ensional model for the simulation of shelf sea dynamics [J ].Deutsche HydrographischeZeitschrift,1985,38:165)178.[14] BACKHAUS J O,HAINBUCHER D.A finite difference general ci rculation model for shelf seas and i ts application to lowfrequency variability on th e North European shelf[A].NIHOUL J C ,JAM ART B M .Three -Dimensional M odels of M arine and Estuarine Dynamics[M ].Amsterdam:Elsevier Science Publishing B.V.,1987.221)244.[15] 黄大吉,陈宗镛,苏纪兰.三维陆架海模式在渤海中的应用[J].海洋学报,1996,18(5):1)13.[16] 辛文杰.差分模型网格嵌套边界技术在工程潮流计算中的应用[J].水利水运科学研究,1999,12:355)360.[17] 辛文杰.河口、海湾平面潮流数值计算中的几个问题[J].水动力学研究与进展,1993,8(3):348)354.[18] FULT ON S R.An adaptive multigrid barotropic tropical cyclone track model[J].M onthly Weather Review ,2001,129(1):138)151.[19] 曹德明.胶州湾潮汐潮流的数值计算[J].海洋科学集刊(21)[C].北京:科学出版社,1984.157)164.[20] 孙英兰,张越美.胶州湾三维变动边界的潮流数值模拟[J].海洋与湖沼,2001,32(4):355)361.[21] 李燕初,蔡文理.ADI 潮汐模型的活动边界方法及其效应[J].海洋学报,1993,15(2):115)120.[22] 张存智,杨连武,窦振兴.具有潮滩移动边界的浅海环流有限元模型[J].海洋学报,1990,12(1):1)13.[23] 韩 康,吴 冠,张存智.普兰店湾潮流场数值模拟[J].海洋环境科学,2001,20(1):42)46.[24] 中华人民共和国交通部.港口工程技术规范(上册)[M ].北京:人民交通出版社,1987.195期 陈 倩等:浙江近海潮汐潮流的数值模拟20海洋学报25卷Nu merical simulation of tide and tidal currentsin the seas adjacent to ZhejiangCH EN Qian1,2,3,HUANG Da-ji2,ZHANG Ben-zhao1(1.Department of M echa nics,Zhe j iang Univ iersity,Hangz hou310012,China;2.Second I nstitute of Oceanography,State Oceanic A d ministration,Hangz hou310012,China;3.K ey L aboratory of Ocean Dynamic Proc esses and Satellite Oceanogra-p hy of S tate Oce a nic A d ministration,Hangz hou310012,China)Abstract:By means of three-dimensional baroclinic primitive equation model)))Hamburg shelf o cean model (HA M SOM),the tide and tidal cur rents in the seas adjacent to Zhejiang are simulated.Fur thermore,the original model is impro ved by two numerical technologies)))nested g rid and mov ing boundary method,which are intro-duced to increase the computat ional precision.T he impro ved mode is proved to be successful while it is applied to the seas adjacent to paring the computed values w ith t hose of50tidal observ ator ies,it is found that the computat ional precision w ith fine gr ids and moving boundar y is gener ally higher t han that with coarse gr ids or fix ed boundary.T he root-mean-square values of comparativ e results show that t he difference betw een the simulated and t he observed amplitudes of M2constituent is only4.6cm,the differ ence of phase-lags is7.14b;the difference of amplitudes and phase-lags of S2constituent are5.0cm and5.4b;the difference of amplitudes and phase-lags of K1 constituent ar e2.25cm and5.76b;the difference of amplitudes and phase-lags of O1constituent are1.56cm and 5.5b.T hese indicate that the computational r esults agree with the observed ones very well.I n addition,105current stat ions are chosen,and the difference between the calculated and the observed harmonic co nstant,U cos N,U sin N, V cos G,V sin G of M2and K1component curr ents at surface layer is compared,and the results also show a goo d a-gr eement.Based on these results,the co-amplitude and co-phase lag lines of the main co mponent tides,the type of t ide,tidal current ellipse,the type and the mov ing mode of tidal current ar e given.It is found that the four main constituents M2,S2,K1,O1have no tide-fr ee points in this ar ea;and the M2co mponent current has o ne current-amphidromic point at29b18c N,122b46c E.In addition,some meaning ful results are concluded,and ag ree w ith the observed ones w ell.T hereby,a thorough kno wledg e of the character istics of tides and t idal currents is got in the w ho le coastal zone of Z hejiang Prov ince.Key words:numerical simulation;nested gr id;mo ving boundary;tides and tidal cur rents;seas adjacent to Zhejiang。
流体力学实验装置的流场模拟与分析方法
流体力学实验装置的流场模拟与分析方法流体力学实验是研究流体运动规律和性质的重要手段,而流场模拟与分析则是实验过程中至关重要的环节。
本文将就流体力学实验装置的流场模拟与分析方法进行探讨,以帮助读者更好地理解和应用相关技术。
一、数值模拟方法在流体力学实验中,数值模拟是一种常用的流场分析方法。
通过数值模拟,可以建立数学模型,利用计算机对流体的流动状态进行仿真,从而实现对流场的模拟和分析。
1.1 流场建模在进行流体力学实验时,首先需要对流场进行建模。
建模的过程是将实际流场问题抽象为数学模型,确定流场的边界条件和初始条件,以便进行数值求解。
常用的流场建模方法包括有限元法、有限差分法和有限体积法等。
1.2 数值求解建立了数学模型之后,接下来是选择适当的数值方法进行求解。
常用的数值求解方法包括迭代法、差分法、有限元法等。
通过数值求解,可以得到流场的速度场、压力场等重要参数,进而进行流场的分析与研究。
1.3 后处理与分析完成数值模拟后,需要对求解结果进行后处理与分析。
后处理是指对数值计算结果进行处理,得到更直观、更容易理解的信息,如绘制流线图、压力分布图等。
通过后处理与分析,可以更全面地了解流场的性质与规律。
二、实验方法除了数值模拟外,实验方法也是流体力学实验装置流场模拟与分析的重要手段。
实验方法可以通过实际实验获得流场的实时数据,与数值模拟相结合,更全面地研究流体流动过程。
2.1 流场测量在流体力学实验中,流场测量是一种常用的实验方法。
通过使用流场测量仪器,如PIV(粒子图像测速仪)、LDA(激光多普勒测速仪)等,可以实时测量和记录流场的速度、压力等参数,为后续的分析提供数据支持。
2.2 数据分析与比对获得了流场实验数据后,需要进行数据分析与比对。
通过对实验数据进行处理和分析,与数值模拟结果进行比对,可以验证数值模拟的准确性,并发现其中的误差和不足之处,有助于进一步优化模拟方法。
2.3 实验验证与仿真实验验证与仿真是流体力学实验装置流场模拟的重要环节。
大亚湾海域潮流场谱方法数值模拟
模 型, 模拟计算 了均匀方池水柱微扰 引起 的水波运 动, 并以大亚湾海域为背景 , 由静止水位 算起 , 模拟计算 了区域 的潮流。 关键词 中图法分类号
潮波是海水运 动的主要表现形式 , 求解潮 波方 程 , 索和 预测海 水 运 动 规律 是 海 洋 动 力学 的 主要 探 任务之一。由于潮波 方程 比较复杂 , 很难求出其解 析 解 , 对潮 波方 程 的求解 一般 采用 数值 方法 。 故 潮波的数值模拟主要有三类方法 : 差分法 、 有限 元法和谱方法。差分法由于不受求解 区域 限制而被 广 泛采用 , 比较成 熟 的显 隐交替 差 分 法 ( D 法 ) A I 能较好地给出潮波方程的数值解。相对差分法求解
2 0 年 1 2 收到 0 6 2月 2日 第 一作者 简介 : 李县法 (9 2 ) 男 , 17 一 , 河北 任县人 , 研究 生 , 研究方 向: 计算物理 通讯作 者简 介 : 李 华 (94 ) 女 , 16 一 , 广东梅 县人 , 究员 , 研 博
士 . 士生 导 师 。 硕
一
现采用分裂步数拟谱法 , 将偏微分项进 行 谱 展 开, 对潮波方程进行求解 , 模拟不同情况下 的潮波运 动, 对谱方法求解不规则区域问题进行探索。
1 理论 模型与数值 计算方法
1 1 理论模 型 .
描述 海水运 动 的基本 方程 是动 量方 程和 连续性 方程 , 维潮流 场方 程 已经 能 够 较好 地 表 现 海 水运 二
形 式选 取
= c。s
I+o 一 + ( )= x O 。 0 警 3 y +x h + , o + 3
厦门附近海域潮流场的数值模拟
厦门附近海域潮流场的数值模拟
温生辉;陈季良
【期刊名称】《海洋学报》
【年(卷),期】1996(018)002
【摘要】本文采用VincenzoCasulli提出的半隐式有限差分方法,首次模拟厦门全海域的潮流场。
利用本单位多年在该海域的水文调查结果(共选出8个短期潮位站和53个全潮周日测流站的资料),对潮流场进行检证,表明潮流场模拟结果是较好的。
包括全海域流态分布,广大潮间带淹没及干出的情况,各测站潮位、潮流大小与位相,等潮差线与同潮时线的分布,以及欧拉余流分布与实际情况吻合较好。
【总页数】11页(P15-25)
【作者】温生辉;陈季良
【作者单位】不详;不详
【正文语种】中文
【中图分类】P731.21
【相关文献】
1.闽江口及附近海域和厦门沿岸海域软骨鱼类种类组成和数量的时空分布 [J], 蒋
新花;谢仰杰;黄良敏;李军;张雅芝
2.大连湾及附近海域潮流场数值模拟 [J], 韩康;张存智
3.福建闽江口及附近海域和厦门海域头足类种类组成的季节变化 [J], 陈强;王家樵;张雅芝;黄良敏;李军;谢仰杰
4.1614号台风"莫兰蒂"在厦门湾及其周边海域引发风暴潮的数值模拟 [J], 朱婧;叶龙彬;陈德花;李彦卿;林毅
5.基于GPU并行的厦门附近海域潮波传播数值模拟研究 [J], 孟江山;路川藤;罗小峰;丁伟
因版权原因,仅展示原文概要,查看原文内容请购买。
广西近岸海域潮流数值模拟
广西近岸海域潮流数值模拟
广西近岸海域潮流数值模拟
采用有限元三角形网格的分步杂交方法,建立了广西近岸海域的二维潮流数值模型,计算值与实测资料符合较好.采用主要分潮组合输入,模拟了研究海域的平均潮潮流场.模拟结果表明:涨急时,潮流向为东北方向,最大涨潮流速为74 cm/s左右:落急时,潮流向为西南方向,最大落潮流速约100 cm/s,落潮流速大于涨潮流速.近岸区域潮流为往复流,离岸边越远潮流越接近旋转流.
作者:张燕孙英兰张学庆刘晓丹ZHANG Yan SUN Yinglan ZHANG Xueqing LIU Xiaodan 作者单位:中国海洋大学环境科学与工程学院,山东,青岛,266003 刊名:海洋通报ISTIC PKU英文刊名:MARINE SCIENCE BULLETIN 年,卷(期):2007 26(5) 分类号:P731.2 关键词:潮流数值模拟广西近海有限元。
瓯江河口潮流水动力场数值模拟
1. 研究背景
瓯江口位于浙江东南部、北纬 27˚~28˚、东经 119˚~121˚之间,是浙江第二大河流瓯江的入海口,也 是重要的沿海经济带(如图 1)。近年来,随着地区经济发展和航运业发展,研究瓯江口水动力条件和波流 特征对开展航运基础设施建设具有十分重要的意义,并取得了一些研究成果[1] [2] [3]。影响瓯江河口水 动力场的因素很多,主要包括:1) 河口区域的复杂地形。口门往上形成了灵昆岛、江心屿、七都岛等江 心洲,河道分汊呈藕节状。2) 潮汐条件和径流变化。受瓯江干流、楠溪江径流及潮流耦合叠加影响。3) 盐 度变化和风应力因素。受台风及咸水入侵作用,对泥沙絮凝淤积有一定影响。4) 人工建筑物对水动力场 的影响,沿江分布有众多码头、船厂、丁顺坝、桥梁等水工建筑物[4]。本文针对瓯江口复杂地形和强潮 条件,建立了瓯江口 3D、非恒定水动力模型,模型基于正交曲线网格,研究瓯江口在径流与潮汐共同作 用下的水动力学特点,并研究了不同潮汐和径流条件下水动力场分布。
International Journal of Mechanics Research 力学研究, 2020, 9(3), 115-122 Published Online September 2020 in Hans. /journal/ijm https:///10.12677/ijm.2020.93013
Received: Aug. 25th, 2020; accepted: Sep. 11th, 2020; published: Sep. 18th, 2020
Abstract
Considering the complex topography and strong tide conditions of Oujiang Estuary, the 3D, time-
ECOMSED模式在厦门湾海域潮流场模拟中的应用
分潮 的作用 ,对整个厦 门湾及其 毗邻海域进行 了二个多月 的模 拟 ,最后将模 拟结果与 实际观测 资料进行对 -
比验证 ,结果表 明本研究所建立 的模 型可以较好地反映厦 门湾海域 的潮流运动过 程 ,为进一 步研 究河 1海 2 l 湾地 区提供 了可靠 的技 术基础。
关键 词 :E O E C MS D;变边 界 ;厦门湾
林建伟
( 福建省水产研究所 ,福建 厦 门 3 1 1 ) 60 2
摘要 :本 研究 基于 E O E C MS D模式 ,引入变边 界技术 ,建 立厦 门湾三维 动边界 潮流模 型 ,以模拟 具有 大面积滩涂的厦 门湾水 动力过程 。模 型综合考 虑九龙江上游径流 和 ,S ,N ,K ,P ,O 2 2 1 1 1等 6个 主要
同理可推得垂直于 Y轴 的过水面积 A () S。 3 13 化 引 水深 h .. x和 h y
.
根 据 窄缝宽 度 的定 义 ,可 以得 出 x 、Y方 向
得到 了广 泛应 用 和验 证 ,如 C eaek 湾 J hspae海 、
墨西 哥湾 等 。
个较 为 成熟 的集 海浪 和沉 积输 运为一 体 的浅海
三维水动力模式——E O s D5,所 以它也 叫 cME _ J
三维水 动力 和 泥沙输 运模 型 。这些 模 型都 比较成 熟 ,具 有先 进 的建模 技 术 。
缝 法模 拟 漫滩 过程这 个处 理模 块 ,并着 重介 绍该
三维水动力模型在厦门湾整个海域的应用情况。
3 1 窄缝法简介 .
窄 缝法 是近 年来 出现 的处 理动 边界 的一 种方 法 ,最早 由陶 建 华 ( 94 提 出 来 。 它 的特 点 18 )
渤、黄、东海M2和K1分潮潮流场的有限元模拟
渤、黄、东海M2和K1分潮潮流场的有限元模拟李磊;杜凌;左军成;李培良【期刊名称】《中国海洋大学学报(自然科学版)》【年(卷),期】2006(036)006【摘要】使用有限元模式(QUODDY)数值模拟了渤、黄、东海浅水区的M2和K1分潮潮流场.对于M2分潮潮流场,东分量和北分量的潮流调和常数与16个测站观测资料的平均绝对误差分别为8.23 cm/s,23.74(°);7.36 cm/s,27.78(°).对于K1分潮潮流场,则分别为8.39 cm/s,36.48(°);9.40 cm/s,38.04(°).文中得到的M2分潮流在模拟海区共有9个圆流点(秦皇岛附近1个,莱州湾口1个,山东半岛北部海域2个,黄海北部2个,苏北辐射沙洲的外侧1个,舟山群岛东南海域2个).K1分潮流在模拟海域也存在9个圆流点(秦皇岛附近1个,莱州湾口1个,北黄海2个,南黄海1个,苏北辐射沙洲的外侧1个,济州岛东南海域3个),其中黄海北部偏北的圆流点(39°25′N,123°05′E)和济州岛东南海域最东南的圆流点(32°50′N,127°50′E)以前未见过报道.【总页数】9页(P851-858,874)【作者】李磊;杜凌;左军成;李培良【作者单位】中国海洋大学物理海洋实验室,山东,青岛,266100;中国海洋大学物理海洋实验室,山东,青岛,266100;中国海洋大学物理海洋实验室,山东,青岛,266100;中国海洋大学物理海洋实验室,山东,青岛,266100【正文语种】中文【中图分类】P731.2【相关文献】1.渤、黄、东海8个主要分潮的数值模拟研究 [J], 宋泽坤;俞亮亮;向芸芸;施伟勇;许雪峰;杨万康;潘冲2.基于潮汐逆模型技术对渤黄海正压M2分潮开边界条件的优化研究:Ⅱ.潮汐特征、潮汐动力学及潮余流 [J], 宋军;姚志刚;郭俊如;李静;高佳;董军兴3.渤、黄、东海海域 9711 号风暴潮数值模拟 [J], 马进荣;张金善;宋志尧4.渤、黄、东海同化TOPEX/POSEIDON高度计资料的半日分潮数值模拟 [J], 李培良;左军成;吴德星;李磊;赵玮5.渤、黄、东海潮汐的相对导纳及N2,K2,P1和Q1分潮的经验同潮图 [J], 徐晓庆;方国洪;王新怡;魏泽勋;王永刚因版权原因,仅展示原文概要,查看原文内容请购买。
大丰港二期工程潮流场及悬浮物扩散数值模拟
由图表可见,涨潮时悬浮物浓度增量超过 20mg/L 的水域,分布在施工点顺 涨潮方向约 125m,面积约为 0.004km2 的范围内。悬浮物扩散影响范围仅限于本 工程与原有岸线之间的带状区域,在涨落潮时悬浮物不会回淤到开挖的港池附 近,对其没有影响;由于回填流悬浮物对水环境的影响仅限于港区范围内的很小 水域,对海域水环境基本没有影响。
3.2 悬浮物污染源强
本工程在引堤吹填时使用 1 台水力冲挖机组, 港池疏浚地绞吸作业产生的悬 浮物源强越位 Qf=4.58 t/h(73.23t/d);陆域回填区一般采用构筑倒滤层的围堰填海 工艺方法,泥砂散失入海量较少,则回填过程产生的悬浮物源强 Qf=0.13 t/h。
6
Numerical simulation of the tidal flow and the diffusion of suspended substance of the second engineering of dafeng haven Zhu jing , Chen xin yong (College of Environmental Science and Engineering, Hohai Univ.,Nanjing 210024) Abstract:
力条件变化情况, 以及建立二维悬浮物扩散模型分析施工过程产生的悬浮物扩散 情况。 研究结果表明: 工程建设后, 大丰港海域的水动力条件基本不会发生变化, 施工期海水悬浮物含量增加值有限,对海域水环境影响程度较小。
关键词:潮流场,悬浮物扩散,数值模拟,海域水环境
1. 前言
大丰港隶属于江苏省盐城市大丰市,拟建二期码头工程位于江苏省海岸中 部, “西洋深槽”西岸。该港区水域和避风条件好,水深稳定,其地理位置、水 陆域条件、经济腹地与集疏散条件十分优越,是建设深水港的理想港址。大丰港 二期工程拟建 5 万吨级散货泊位一个,2 万吨级件杂货泊位一个,年吞吐量 418 万 t/a[1]。本期工程的建成,将在一期工程基础上进一步打通海上通道,并加快大 丰市与长江三角洲、宁通泰经济圈的全面接轨,其建成必将给苏中、苏北乃至 江苏省带来新的发展契机。 本文通过建立二维潮流数学模型, 分析港池开挖和港工结构对海域水动力特 征和海区冲淤变化趋势的影响;同时,为了了解悬浮物影响情况,利用悬浮物扩 散模型对海域施工过程中引起海水中悬浮物含量增加情况进行预测分析。
杭州湾南岸浅滩的漫滩潮流数值模拟
杭州湾南岸浅滩的漫滩潮流数值模拟许雪峰;羊天柱;孙志林;施伟勇;聂源【期刊名称】《海洋科学》【年(卷),期】2012(036)004【摘要】在杭州湾浅滩上采用底座式ADCP测得单点的漫滩潮流流速、流向及同步水位的变化过程,并在此基础上建立平面二维潮流数值模型,分析整个潮滩上的漫滩潮流过程及其特征。
在模型漫滩边界上采用向上取水位值的处理方法,使得模型计算稳定,并获得了稳定逼真的漫滩潮流模拟结果。
模拟结果表明:漫滩潮流模拟过程与实测资料基本一致。
因此在漫滩潮流模拟中向上取水位值的边界处理方法是可行的。
研究成果为漫滩潮流的数值模拟提供了一种较实用的漫滩边界处理方法。
%Floodplain flow velocity was measured by acoustic doppler current profilers, through which direction and water level were measured simultaneously, in the Hangzhou Bay, and a two-dimensional numerical model of the tide was established to analyze the process and characteristics of floodplain flow. By the method of taking water level up on the floodplain boundary, a stable realistic simulation result was obtained, which that was consistent with the measured data, suggesting that this boundary treatment was feasible in the floodplain flow simulation. The research has provided a more practical boundary treatment approach to the numerical simulation of floodplain.【总页数】6页(P107-112)【作者】许雪峰;羊天柱;孙志林;施伟勇;聂源【作者单位】浙江大学建筑工程学院,浙江杭州310012/国家海洋局第二海洋研究所工程海洋学研究中心,浙江杭州310012;国家海洋局第二海洋研究所工程海洋学研究中心,浙江杭州310012;浙江大学建筑工程学院,浙江杭州310012;国家海洋局第二海洋研究所工程海洋学研究中心,浙江杭州310012;国家海洋局第二海洋研究所工程海洋学研究中心,浙江杭州310012【正文语种】中文【中图分类】P731.21【相关文献】1.杭州湾南岸庵东边滩弧顶断面二维形态研究 [J], 潘冬子;金桂中;陈水龙;杨元平;孙超;李红燕2.三维海洋紊流模型对杭州湾附近潮流场数值模拟 [J], 孙昭晨;梁书秀;沈永明;唐士芳3.长江口杭州湾及邻近海区潮汐潮流场三维数值模拟 [J], 杨陇慧;朱建荣;朱首贤4.杭州湾北岸保滩加固工程附近流场的数值模拟 [J], 王亚;王元叶;刘玮祎;李身铎5.长江下游潮流界变动段三益桥边滩与浅滩演变驱动机制分析 [J], 杨云平;郑金海;张明进;王建军;朱玲玲因版权原因,仅展示原文概要,查看原文内容请购买。
流场模拟方法
流场模拟方法流场模拟方法是一种重要的科学技术手段,用于研究和预测流体在各种条件下的运动和相互作用。
它在许多领域中都具有重要应用,如天气预报、风洞试验、环境工程和生物医学研究等。
流体力学是研究流体力学行为的学科,其中流场模拟方法是一个关键的研究领域。
流场模拟方法可以通过数学模型和计算机仿真来预测和分析流体流动的物理特性,从而为各种应用提供有效的解决方案。
流场模拟方法主要包括数值模拟和实验模拟两种。
数值模拟方法是通过建立数学模型和使用计算机算法来模拟流体运动。
这种方法的优点是可以准确预测流场的各种性质,如速度、压力、温度等,并能够在很短的时间内得到结果。
然而,数值模拟方法需要依赖复杂的数学模型和计算机算法,因此对计算资源要求高,而且模拟结果可能受到模型的假设和参数选择的影响。
实验模拟方法是通过设计和进行实验来模拟流体运动。
这种方法的优点是可以直接观测和测量流体的运动和相互作用,对结果的可信度高。
同时,实验模拟方法也能够提供丰富的数据来验证和改进数值模拟方法。
然而,实验模拟方法需要大量的设备和实验操作,并且受到实验条件和测量误差的限制。
在流场模拟方法中,数值模拟方法常用的技术包括有限元法、有限差分法和边界元法等。
这些技术通过对流体运动的偏微分方程进行离散化和求解,从而获得流场的数值解。
有限元法是一种广泛应用的数值模拟方法,它把流场划分为多个小单元,然后通过求解各单元上的方程来获得整个流场的数值解。
有限差分法是另一种常用的数值模拟方法,它将流场划分为网格点,在每个网格点上计算流体的变化量,然后通过迭代求解来获得整个流场的数值解。
边界元法是一种基于边界条件的数值模拟方法,它将流场划分为多个边界元,然后通过求解边界元上的方程来获得整个流场的数值解。
这些数值模拟方法都有各自的优点和适用范围,在具体应用中需要根据问题的复杂程度和计算资源的限制来选择合适的方法。
实验模拟方法中常用的技术包括风洞试验、流体力学实验和粒子图像测速法(PIV)等。
渤海流场的数学模拟和应用.
渤海流场的数学模拟和应用王万战 余欣 杨明(黄河水利科学研究院, 郑州 450003)摘要 利用渤海实测资料率定了渤海平面二维潮流模型,模拟了渤海潮流场。
进行了水流参数灵敏度分析,发现涡粘系数变化对水位和流速影响不大,而糙率影响较大。
数学模拟的成果表明,与河流水流相比,渤海潮流场的基本特点是,水流不仅存在“水向低处流”的过程、而且还存在“水向高处流”的过程,两个过程相互转化,其实质是动能和势能“此涨彼消”、相互转换的过程。
与相对狭长海峡内的潮波、潮流比,渤海流场的特点是,渤海潮波、潮流是旋转型,而不是前进波型。
这些特点也是黄河口实体模型水流控制技术的难点。
把此数学模型应用于黄河口滨海区地形测验中,发现如果使用数学模型给出各测点逐时水位,可减少误差±0.5m, 消除用常规方法造成的不合实际的“深海淤积现象”。
水动力模拟成果表明,用把黄河口导向深海、或加大黄河口入海流量,都不能解决入海泥沙淤积口门附近的问题。
黄河口治理的出路是,在于控制适当的入海水沙条件和用较大的容沙体积换取较长的行河时间。
关键词 渤海;流场;M2分潮;二维潮流数学模型黄河口滨海区及渤海深海流场特性是影响黄河口水沙运动的基础。
本文利用平面二维模型的水动力模块模拟渤海流场水位、流速大小和方向的动态变化;在此基础上,分析了黄河口实体模型的水流控制的难点所在,分析了黄河口滨海地形测验资料整编传统方法的缺点关键技术,初步分析了用向深海延伸黄河口、治理黄河口的方法是否可行。
1. 基本方程基于水动力学和泥沙运动力学的河口模型能够计算在河流来水来沙、风、浪、潮汐、盐度、温度等因素共同作用下河口海域的水沙运动和地形演变。
其基本方程为水流连续方程和动量方程。
td y q x p t ∂∂=∂∂+∂∂+∂∂ς X 方向动量方程: ()()0122222=∂∂+-Ω-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂-++∂∂+⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂a w x w p x h fVV q y p Eh y x p Eh x h c q p gp x gh h pq y h p x t p ρρζY 方向动量方程:()()0122222=∂∂+-Ω+⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂-++∂∂+⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂a wy w p xy h fVV p y q Eh x x q Eh y h c q p gq y gh h pq x h q y t q ρρζ式中,ζ为水位(m),d 为河底高程(m),h 为水深(=ζ-d )(m ),p 、q 分别为 x,y 方向的单宽流量(m 3/s/m),即p=hu,q=vh,u 、v 分别为流速在x 、y 方向的分量,C(x ,y)谢才系数(m 1/2/s),与曼宁系数的关系为 c=n -1h 1/6,g 为重力加速度(m/s 2)),f(v)为风摩擦系数,V 、V x 、V y 分别为风速及其在x,y 方向的分量(m/s), Ω科氏力系数s -1, p a 为 大气压力(kg/m/s 2)),ρw 水的密度(kg/m 3),x ,y 为距离(m),t 为时间(s),E 为水流紊动粘滞系数,由Smagorinsky 公式计算, y v x v y u x u y x C E s ∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+⎪⎭⎫ ⎝⎛∂∂∆⋅∆=21)(222由于本研究重点在于分析渤海潮流场的基本特性,所以暂时不考虑潮汐以外的其他因素如风、浪、温度、盐度和河流入汇的影响。
大海域潮流场数值模拟分析
1 工程概况山心沙岛位于防城港市企沙镇东南海域,东临钦州湾,南濒北部湾。
北纬21°35′18.2″,东经108°30′51.2″,岸线长1.9km,离岸距离为340m。
西北侧陆域为山新村,是一个以海洋捕捞和海水养殖为主的渔村,距钦州港西航道4n mile、企沙镇政府1km、港口区政府25km。
工程海域地处北回归线以南低纬度地区,气候属于我国亚热带海洋性季风气候,冬季温和,夏季多雨,季风明显,受灾害性天气影响较明显。
防城港湾年平均风速为3.1m/s,月平均最大风速出现在12月份,为3.9m/s,其次是1月和2月,为3.7m/s;最小平均风速出现在8月份,为2.3m/s。
防城港的潮汐为正规全日潮,其潮位特征值如下(1985国家高程基准):最高潮位为3.60m(2008.11.1607:09),最低潮位为-2.03m(2002.12.818:53),平均潮位为0.62m,平均大海域潮流场数值模拟分析刘华峥 杨琴琴(烟台仲伯企业管理咨询有限公司,山东 烟台 264000)摘 要:本文以防城港市山心沙岛生态岛礁建设项目为研究对象,采用数值模拟的手段,建立大海域潮流场平面二维数值模型,对项目建设前后的潮流场状况进行数值模拟。
结果表明,现状潮流流速通常<50cm/s,工程东南侧海域流速略大;涨急时刻流速通常<60cm/s;高潮、低潮时刻工程潮流流速均<10cm/s;工程建成后,西南和北东侧涨急时刻流速主要呈现变小的趋势,最大降幅约17.5cm/s,南、东南和西北侧涨急时刻流速呈现增大的趋势,流速最大降幅约为18.5cm/s;涨急时刻流速变化>5.0cm/s的区域主要集中在工程区周边0.8km内。
关键词:大海域;潮流场;数值模拟;水动力;防城港中图分类号:U 652 文献标志码:A并同时在智能终端界面显示故障具体信息,从而帮助技术人员及时解决故障问题。
本文设计的煤炭洗选系统工艺流程如图3所示。
长江口杭州湾及邻近海区潮汐潮流场三维数值模拟
文章编号:1000-5641(2001)03-0074-11长江口杭州湾及邻近海区潮汐潮流场三维数值模拟杨陇慧, 朱建荣, 朱首贤(华东师范大学河口海岸国家重点实验室,上海 200062)摘要:把长江河口、杭州湾及邻近海区作为整体,应用三维高分辨率非正交曲线网格河口海洋模式,模拟了4个主要分潮M 2,S 2,K 1,O 1。
在长江口外半日分潮M 2、S 2从东南方向传入长江口和杭州湾,全日分潮K 1,O 1从北向南传播。
这4个分潮的振幅在长江口南支向上游逐渐减小,但因杭州湾和长江口北支呈喇叭状,而向上游逐渐增加。
计算潮差变化过程和实测值基本一致,4个分潮潮位振幅和位相的计算值与验潮站观测值相比,误差大部分在10%以内。
结合1996年2—3月长江河口现场观测,考虑了径流的作用,三维数值模拟了计算域内流场。
结果表明,即使在斜压效应不太明显的口门内,流速在垂直方向存在着明显的差异,上层流速明显大于下层流速;潮流具有不对称性,由于径流的作用,落潮时间明显大于涨潮时间,落潮流大于涨潮流,但在象北支涨潮槽中,涨潮流反而比落潮流大。
模拟出的以上结论与观测结论较为一致。
关键词:长江河口; 杭州湾; 潮汐潮流; 三维数值模拟中图分类号:P736.211 文献标识码:A0 引 言长江是我国第一大河,河口地形复杂,三级分汊四口入海(南支和北支,南槽和北槽,南港和北港),口门附近存在水下沙坝(图1)。
长江河口的动力过程也十分复杂,影响因子有径流、潮流、波浪、密度流等,其中潮汐潮流在这个系统中起着重要作用[1~4]。
长江河口是中等强度的潮汐河口,口外是正规半日潮,口内是非正规半日潮。
南支的潮差范围从口门到上游逐渐减小。
口门附近的中浚测站的多年平均潮差为2.66米,最大值是4.62米。
黄浦江附近的吴淞站潮差是2.21米。
由于北支的河槽呈喇叭状,所以其潮差大于南支,并且由口门向上游逐渐增大。
潮流在口门内作往复运动,在口门外为旋转流。
船舶浪流场数值模拟研究
船舶浪流场数值模拟研究船舶是人类赖以生存和发展的重要交通工具,其流体动力学特性是造船工业和航海技术研究的重点之一。
其中对于船舶在海面上的波浪和流场问题,一直以来都是困扰人类的难题。
如何减小船舶在海上的阻力、提高船速,以及船舶在海上的稳定性等问题,都需要对其波浪和流场进行深入研究和分析。
数值模拟作为求解流体动力学问题的有效手段之一,近年来得到了广泛的应用。
数值模拟可以精细地描绘船舶在海上的波浪和流场特性,从而为改善船舶水动力性能提供理论基础和技术支持。
1. 浪场数值模拟在海面上,波浪是一种典型的自然现象,其形成和演化涉及到许多因素,如海洋波浪的主要风向、波浪的传播速度、波长、波高等。
为了更好地研究波浪的特性和对船舶的影响,科学家们利用计算机模拟方法,对浪场进行数值模拟。
数值模拟基于计算机辅助的数值方法,通过列出波浪的基本动力学方程,对波浪进行模拟。
包括海水自由面的基本方程、接触线条件和边界条件等。
利用计算机运算,就可以得到海面上各个点的波浪高度、波长、波速等基本参数,甚至预测未来的浪况。
在对浪场进行数值模拟时,需要考虑各种可能的外界因素对模拟结果的影响,如海水温度、海洋风速和气压等。
同时还要考虑不同波浪深度下的波浪传播速度、衍射和折射效应等。
对于船舶来说,必须深入分析和了解波浪的特性,以便在海上航行时正确处理不同的波浪情况,提高船舶的安全性和航行效率。
2. 流场数值模拟除了波浪,船舶在海上还会受到各种流体动力学因素的影响,如水流的速度、方向和湍流等。
为了研究船舶在不同流场条件下的水动力性能,需要进行流场数值模拟。
流场数值模拟的基本原理是求解流体的守恒方程和运动方程,以计算流体的速度、压力和密度等基本参数。
为此,需要建立适当的数学模型和计算模拟算法。
此外,还需考虑各种外界影响因素,如流体物理性质、流体动力学因素和流场中物体的形状和大小等等。
对于船舶的水动力性能研究,流场数值模拟可以精确地计算出船舶在不同速度和流体动力因素下的阻力、浮力和推力等参数。
北黄海北部海域潮余流的模拟研究
北黄海北部海域潮余流的模拟研究黄炳智;胡泽建;金永德;迟万清;刘鑫仓;刘豪【摘要】基于二维水动力模型,在仅考虑潮流作用条件下,通过计算欧拉余流和拉格朗日余流并结合粒子追踪方法研究了辽宁大连—朝鲜龙渊郡连线北侧的北黄海北部海域的潮余流结构和粒子运移的趋势.结果表明:欧拉余流和拉格朗日余流流速整体较小,呈现由南向北的流向,但在獐子岛及长山群岛的附近岛屿和朝鲜半岛沿岸的海域欧拉余流和拉格朗日余流流速较大.对比粒子追踪计算的结果与欧拉余流和拉格朗日余流的结果表明,流向与粒子运移路径基本一致.该海湾的余流及粒子运动规律特点对辽东半岛东岸及朝鲜半岛西侧海域的排污及污染控制有重要的借鉴意义.【期刊名称】《海岸工程》【年(卷),期】2019(038)002【总页数】10页(P134-143)【关键词】北黄海;潮致余流;数值模拟;拉格朗日粒子追踪【作者】黄炳智;胡泽建;金永德;迟万清;刘鑫仓;刘豪【作者单位】自然资源部第一海洋研究所 ,山东青岛266061;自然资源部第一海洋研究所 ,山东青岛266061;自然资源部第一海洋研究所 ,山东青岛266061;自然资源部第一海洋研究所 ,山东青岛266061;中国海洋大学海洋地球科学学院 ,山东青岛266100;南京大学地理与海洋科学学院 ,江苏南京210023【正文语种】中文【中图分类】P731.21北黄海北部海域位于北黄海、以辽宁大连与朝鲜的龙渊郡之间连线的北侧,是介于辽东半岛和朝鲜半岛之间的海域。
在北黄海北部海域,北侧有鸭绿江及其他河流的注入,南侧是渤海与黄海之间水交换的重要通道,在辽宁的东侧沿海,海洋资源丰富,是各种渔业生产的重要基地,在庄河附近目前正在筹划建设核电站,由于各种人类活动的影响,海洋环境的问题也逐渐凸显出来。
北黄海海水水深由南往北逐渐变浅,等深线与岸线基本平行,平均水深38 m[1],由于海底地形的变化,结合该区域的潮流作用,使得该区域产生了一定的潮余流。
船舶设计中的流场模拟与优化
船舶设计中的流场模拟与优化在船舶设计中,流场模拟与优化是一项关键的技术。
通过对水流的模拟分析和优化设计,可以提高船舶的性能,减少燃料消耗,同时也能减少对海洋环境的污染。
流场模拟技术流场模拟技术是指通过计算机模拟水流的流动过程,对船舶的水动力性能进行分析和优化设计的一种技术。
主要包括数值模拟和试验模拟两种方式。
数值模拟是指通过数学模型、计算机程序和算法等手段,对水流的流动进行数值计算和模拟。
这种方法具有计算速度快、成本低、控制参数多等优点,因此得到广泛应用。
试验模拟是指通过实验室试验和船模试验等手段,对船舶的水动力性能进行模拟和测试。
这种方法具有实验结果直观、准确性高、可靠性好等优点,但是成本较高,同时受试验环境、实验设备等因素的限制。
流场模拟技术的应用流场模拟技术在船舶设计中的应用非常广泛,主要包括以下几个方面:1. 静水力计算:对船体形状参数进行计算和优化在船舶设计中,静水力计算是指对船体的主要形状参数如吃水、船长、型深、型宽等进行计算和优化。
这是船舶设计中的第一步,在后续的水动力计算中扮演着重要的角色。
2. 水动力计算:对船舶的水动力性能进行分析和优化在船舶设计中,水动力计算是指对船舶在水中运动过程中的水动力性能进行分析和优化。
主要包括阻力、推力、舵效、操纵性能、自然周期等方面。
3. 压力分布计算:对船体表面的压力分布进行计算和分析在船舶设计中,压力分布计算是指对船体表面的压力分布进行计算和分析。
这是对船体设计的最后一步,着重考虑船体表面的水阻力和摩擦阻力等问题。
4. 海洋环境模拟:对海洋环境进行模拟和分析在船舶设计中,海洋环境模拟是指对船舶在真实海洋环境中的运动过程进行模拟和分析。
这样可以评估船舶在不同的海洋环境下的性能,为航行提供数据支持。
流场模拟技术的挑战虽然流场模拟技术在船舶设计中的应用非常广泛,但是也面临着一些挑战。
主要包括以下几个方面:1. 精度不足:由于液体流动具有非线性、非稳态等复杂特征,数值模拟的精度往往无法完全满足实际要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
潮流场模拟
学生:叶佐元
指导教授:周宗仁博士
日期:2005年6月10日
目录
一前言
二研究方法
三实例操作
四预期成果
前言
在海岸工程的规划设计当中,潮汐与潮流是个相当需要考虑的重要因子,尤其在港湾内,潮汐与潮流对于船舶航行的影响更是重要,为了避免船舶进港时受到潮流影响发生意外,正确推算出潮流潮汐在港湾之变化情形是相当重要的。
以往实测的定点观测潮流,经过分析后的资料,通常仅能代表部分区域水流的性质,若是要了解整体港口的潮流变化不仅需要庞大的经费及时间,因此建立一个潮流场的模式加以分析,是相当有实用性、方便性的。
研究方法
本次模拟主要是使用水环境流场解析这本书(二之宫弘大西和荣编集小林锦子大浦洋子共着),本书是用有限元素法当理论基础来写FORTRAN程序,再利用这些程序来解析潮流的问题。
最主要可用来解析下列三类型的问题:
1.非压缩黏性体流场解析
2.潮流的问题解析
3.污浊扩散问题解析
利用前处理程序输入领域坐标、物理条件、边界条件等等,对领域进行分割,再利用有限元素法计算出问题的结果,最后再使用后处
流程图
实例操作
使用此图形当作例子开始布点
(开始执行程序)
(输入auto)
(输入问题编号)
(输入欲分割的次数)
(插入坐标)
(输入各点坐标)
(检查坐标是否输入正确)
(切换元素模式)
(输入逆时针坐标顺序)
(检查坐标排序是否正确)
再输入一些物理条件、边界条件、初始条件等等…
预期成果
目前只是做了初步的练习,将来希望能拿港口地形图来当做研究范例,做出潮流场的模拟,包含流速压力等等…以避免船舶进港时受潮流影响而发生危险。