七年级平面图形的认识(一)专题练习(word版

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学几何模型部分解答题压轴题精选(难)

1.如图 1,CE 平分∠ACD,AE 平分∠BAC,且∠EAC+∠ACE=90°.

(1)请判断 AB 与 CD 的位置关系,并说明理由;

(2)如图2,若∠E=90°且AB 与CD 的位置关系保持不变,当直角顶点E 移动时,写出∠BAE 与∠ECD 的数量关系,并说明理由;

(3)如图 3,P 为线段 AC 上一定点,点 Q 为直线 CD 上一动点,且 AB 与 CD 的位置关系保持不变,当点 Q 在射线 CD 上运动时(不与点 C 重合),∠PQD,∠APQ 与∠ BAC 有何数量关系?写出结论,并说明理由.

【答案】(1),理由如下:

CE 平分,AE 平分,

(2),理由如下:

如图,延长AE交CD于点F,则

由三角形的外角性质得:

(3),理由如下:

,即

由三角形的外角性质得:

又,即

即.

【解析】【分析】(1)根据角平分线的定义、平行线的判定即可得;(2)根据平行线的性质(两直线平行,内错角相等)、三角形的外角性质即可得;(3)根据平行线的性质(两直线平行,同旁内角互补)、三角形的外角性质、邻补角的定义即可得.

2.如图(1),将两块直角三角板的直角顶点C叠放在一起.

(1)试判断∠ACE与∠BCD的大小关系,并说明理由;

(2)若∠DCE=30°,求∠ACB的度数;

(3)猜想∠ACB与∠DCE的数量关系,并说明理由;

(4)若改变其中一个三角板的位置,如图(2),则第(3)小题的结论还成立吗?(不需说明理由)

【答案】(1)解:∠ACE=∠BCD,理由如下:

∵∠ACD=∠BCE=90°,∠ACE+∠ECD=∠ECB+∠ECD=90°,

∴∠ACE=∠BCD

(2)解:若∠DCE=30°,∠ACD=90°,

∴∠ACE=∠ACD﹣∠DCE=90°﹣30°=60°,

∵∠BCE=90°且∠ACB=∠ACE+∠BCE,

∠ACB=90°+60°=150°

(3)解:猜想∠ACB+∠DCE=180°.理由如下:

∵∠ACD=90°=∠ECB,∠ACD+∠ECB+∠ACB+∠DCE=360°,

∴∠ECD+∠ACB=360°﹣(∠ACD+∠ECB)=360°﹣180°=180°

(4)解:成立

【解析】【分析】(1)根据同角的余角相等即可求证;

(2)根据余角的定义可先求得∠ACE=∠ACD-∠DCE,再由图可得∠ACB=∠ACE+∠BCE,把∠ACE和∠BCE 的度数代入计算即可求解;

(3)由图知,∠ACB=∠ACD+∠BCE-∠ECD,则∠ACB+∠ECD=∠ACD+∠BCE,把∠ACD和∠BCE的度数代入计算即可求解;

(4)根据重叠的部分实质是两个角的重叠可得。。

3.探究题

学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题。

(1)小明遇到了下面的问题:如图1,l1∥l2,点P在l1、l2内部,探究∠A,∠APB,∠B 的关系.小明过点P作l1的平行线,可证∠APB,∠A,∠B之间的数量关系是:∠APB=________.

(2)如图2,若AC∥BD,点P在AB、CD外部,∠A,∠B,∠APB的数量关系是否发生变化?请你补全下面的证明过程.

过点P作PE∥AC.

∴∠A=________

∵AC∥BD

∴________∥________

∴∠B=________

∵∠BPA=∠BPE-∠EPA

∴________.

(3)随着以后的学习你还会发现平行线的许多用途.试构造平行线解决以下问题:

已知:如图3,三角形ABC,求证:∠A+∠B+∠C=180°.

【答案】(1)∠APB=∠A+∠B

(2)∠1;PE;BD;∠EPB;∠APB=∠B -∠1

(3)证明:过点A作MN∥BC

∴∠B= ∠1

∠C= ∠2

∵∠BAC+∠1+∠2=180°

∴∠BAC+∠B+∠C=180°

【解析】【解答】解:(1)如图:

由平行线的性质可得:∠1=∠A, ∠2=∠B,

∴∠1+∠2=∠A+∠B

即APB=∠A+∠B

⑵解:过点P作PE∥AC.

∴∠A=∠1

∵AC∥BD

∴ PE ∥ BD

∴∠B=∠EPB

∵∠APB=∠BPE-∠EPA

∴∠APB=∠B -∠1

【分析】根据图形做出平行辅助线,探究角度关系。此类做辅助线的方法变式多,是考试热点问题。

4.如图1,点A、B分别在数轴原点O的左右两侧,且 OA+50=OB,点B对应数是90.

(1)求A点对应的数;

(2)如图2,动点M、N、P分别从原点O、A、B同时出发,其中M、N均向右运动,速度分别为2个单位长度/秒,7个单位长度/秒,点P向左运动,速度为8个单位长度/秒,设它们运动时间为t秒,问当t为何值时,点M、N之间的距离等于P、M之间的距离;

(3)如图3,将(2)中的三动点M、N、P的运动方向改为与原来相反的方向,其余条件不变,设Q为线段MN的中点,R为线段OP的中点,求22RQ﹣28RO﹣5PN的值.

【答案】(1)解:如图1,∵点B对应数是90,

∴OB=90.

又∵ OA+50=OB,即 OA+50=90,

∴OA=120.

∴点A所对应的数是﹣120

(2)解:依题意得,MN=|(﹣120+7t)﹣2t|=|﹣120+5t|,

PM=|2t﹣(90﹣8t)|=|10t﹣90|,

又∵MN=PM,

∴|﹣120+5t|=|10t﹣90|,

∴﹣120+5t=10t﹣90或﹣120+5t=﹣(10t﹣90)

解得t=﹣6或t=14,

∵t≥0,

∴t=14,点M、N之间的距离等于点P、M之间的距离

(3)解:依题意得RQ=( 45+4t)﹣(﹣60﹣4.5t)=105+8.5t,

RO=45+4t,

PN=(90+8t)﹣(﹣120﹣7t)=210+15t,

则22RQ﹣28RO﹣5PN=22(105+8.5t)﹣28(45+4t)﹣5(210+15t)=0

相关文档
最新文档