halcon图像分割要点

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

沈阳航空航天大学

综合课程设计基于Halcon的图像分割方法的研究

班级 24020104

学号 2012040201174

学生姓名王旭

指导教师赵晨光

课程设计任务书

课程设计的内容及要求:

一、设计说明

图像分割是图像处理的关键技术之一,将感兴趣目标的区域加以提取的技术和过程,图像分割方法包括:基于阈值、基于区域、基于边缘的分割

方法等。

要求学生深入研究图像分割的主要方法,掌握直方图、灰度阈值、区域生长、边缘检测等分割算法,了解相关理论。并在充分调研

图像分割的原理、算法的基础上,针对Halcon这一开发工具,深入学习各

种算子及库函数的使用方法,并能够基于不同应用目标,尝试不同分割算

法,比较实验结果并进行详尽分析。

二、设计要求

1.制定合理有效的设计方案;

2.熟悉Halcon的开发环境,深入学习图像分割理论,并进行分析。

三、推荐参考资料

[1] 周斌. 一种基于P系统的图像阈值分割方法[J]. 西华大学学报(自然科学版). 2012(06)

[2] 王浩军,郑崇勋,闫相国. 基于自适应多尺度的血液细胞图像阈值分割方法研究[J]. 西安交通大学学报. 2001(04)

[3] 肖华. 生物细胞图像阈值分割方法研究[J]. 株洲工学院学报. 2006(02)

[4] 蒋剑,吴建华. 在小波域进行图像的最大熵分割的一种方法[J]. 南昌大学学报(工科版). 2003(02)

四、按照要求撰写课程设计报告

成绩评定表

评语、建议或需要说明的问题:

成绩指导教师签字:日期:

一、概述

HALCON是世界范围内广泛使用的机器视觉软件,用户可以利用其开放式结构凯苏开发图像处理和机器视觉软件。

在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣,这些部分称为目标或前景(其他部分称为背景),他们一般对应图像中特定的、具有独特性质的区域。为了辨识和分析目标,需要将他们分离提取出来,在此基础上才有可能对目标进一步利用。图像分割就是指把图像分成格局特性的区域并提取出感兴趣目标的技术和过程。这里特性可以是象素的灰度、颜色、纹理等,预先定义的目标可以对应单个区域,也可以对应多个区域。现有的图像分割算法有:阈值分割、边缘检测和区域提取法。所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内,表现出一致性或相似性,而在不同区域间表现出明显的不同。简单的讲,就是在一幅图像中,把目标从背景中分离出来,以便于进一步处理。图像分割是图像处理与计算机视觉领域低层次视觉中最为基础和重要的领域之一,它是对图像进行视觉分析和模式识别的基本前提。同时它也是一个经典难题,到目前为止既不存在一种通用的图像分割方法,也不存在一种判断是否分割成功的客观标准。

从图像分割研究的历史来看,可以看到对图像分割的研究有几个明显的趋势:一是对原有算法的不断改进!二是新方法、新概念的引入和多种方法的有效综合运用!人们逐渐认识到现有的任何一种单独的图像分割算法都难以对一般图像取得令人满意的分割效果,因而很多人在把新方法和新概念不断的引入图像分割领域的同时,也更加重视把各种方法综合起来运用!在新出现的分割方法中,基于小波变换的图像分割方法就是一种很好的方法!三是交互式分割研究的深入!由于很多场合需要对目标图像进行边缘分割分析:例如对医学图像的分析,因此需要进行交互式分割研究!事实证明,交互式分割技术有着广泛的应用!四是对特殊图像分割的研究越来越得到重视!目前有很多针对立体图像、彩色图像、多光谱图像以及多视场图像分割的研究,也有对运动图像及视频图像中目标分割的研究,还有对深度图像、纹理图像、计算机断层扫描";<-、磁共振图像、共聚焦激光扫描显微镜图像、合成孔雷达图像等特殊图像的分割技术的研究!相信随着研究的不断深入,存在的问题会很快得到圆满的解决。

二、图像分割原理及算子

1.阈值分割原理 图像阈值化分割是一种最常用,同时也是最简单的图像分割方法,它特别适用于目标和背景占据不同灰度级范围的图像。它不仅可以极大的压缩数据量,而且也大大简化了分析和处理步骤,因此在很多情况下,是进行图像分析、特征提取与模式识别之前的必要的图像预处理过程。图像阈值化的目的是要按照灰度级,对像素集合进行一个划分,得到的每个子集形成一个与现实景物相对应的区域,各个区域内部具有一致的属性,而相邻区域布局有这种一致属性。这样的划分可以通过从灰度级出发选取一个或多个阈值来实现。

阈值分割法是一种基于区域的图像分割技术,其基本原理是:通过设定不同的特征阈值,把图像像素点分为若干类.常用的特征包括:直接来自原始图像的灰度或彩色特征;由原始灰度或彩色值变换得到的特征.设原始图像为f(i ,j),按照一定的准则在f(i ,j)中找到特征值T ,将图像分割为两个部分,分割后的图像为 :

⎩⎨⎧<≥=T j i f T j i f j i g ),(,0),(,1),(

若取 : 0为黑,1为白,即为我们通常所说的图像二值化。 一般意义下,阈值运算可以看作是对图像中某点的灰度、该点的某种局部特性以及该点在图像中的位置的一种函数,这种阈值函数可记作:T(i ,j ,n(i ,j),f(i ,j))式中,f(i ,j)是点(i ,j)的灰度值;n(i ,j)是点(i ,j)的局部邻域特性.根据对T 的不同约束,可以得到3种不同类型的阈值,即

(1)点相关的全局阈值T =T(f(i ,j)):只与点的灰度值有关

(2)区域相关的全局阈值T =T(n(i ,j),f(i ,j)):与点的灰度值和该点的局部邻域特征有关

(3)局部阈值或动态阈值T =T(i ,j ,n(i ,j),f(i ,j)):与点的位置、该点的灰度值和该点邻域特征有关。

2.边缘检测原理

图像分割的一种重要途径是通过边缘检测,即检测灰度级或者结构具有突变的地方,表明一个区域的终结,也是另一个区域开始的地方。这种不连续性称为边缘。不同的图像灰度不同,边界处一般有明显的边缘,利用此特征可以分割图像。

相关文档
最新文档