第十章无穷级数解剖
无穷级数的概念与性质(课堂PPT)
无穷级数
14
收敛的必要条件
级数
un
n 1
收敛
lim
n
un
0.
证明 设
un s
n1
则
un sn sn1 ,
lim
n
un
lim
n
sn
lim
n
sn1
s
s
0.
逆否命题成立:
lim
n
un
0
级数 un 发散 n 1
无穷级数
15
例:判断级数(1)n n 的敛散性。 2n 1
解:lim (1)n n
12 23 34
n n1
1 1 n 1
lim
n
S
n
1 lim (1 )
n n 1
1
(无穷小与无穷大的互逆 关系)
上级数收敛
无穷级数
8
例:判断级数ln 2 ln 3 ln 4 ... ln n 1 ...是否收敛
123
n
解:上述数列的通项可用公式ln A ln A ln B化简 B
n 1 an ln n ln(n 1) ln n
解:部分和 Sn
n(n 1) 2
(等差数列求和公式 )
lim
n
Sn
lim n2 n n 2
上级数发散
无穷级数
7
例:判断级数 1 1 1 ... 1 ...是否收敛
1 2 23 3 4
n (n 1)
解:上述数列的通项有规律可循
an
1 n(n 1)
1 n
1 n 1
部分和Sn
(1 1) (1 1) (1 1) ... (1 1 )
若级数 un 的每一项 un 均为常数 , n1
第十章 无穷级数全
n1
n1
un vn (n 1,2,), 则
大敛小敛
(1) 若级数 vn收敛,则级数 un也收敛;
n1
n1
(2) 若级数 un发散,则级数 vn也发散.
n1
n1
小散大
散
例1
讨论
p
级数
n1
1 np
( p 0) 的敛散性.
解:当
p
1
时,
1 np
1,又
n n1
1 n
发散,故当 p
(1) 当 l 1时级数收敛;
(2) 当 l 1时级数发散;
(3) 当 l 1 时级数的敛散性不定.
例5
讨论下列级数的收敛性:
(1) x n , x 0; n1 n
(2)
n1
n3n 5n
;
(3)
n1
x an
n
,
x 0,
an 0且 an a (n ).
4. 拉阿伯判别法(Raabe判别法)*
(1) 当 0 h 时,若 vn收敛,则 un收敛;
n1
n1
(2) 当 0 h 时,若 vn发散,则 un发散.
n1
n1
例3
讨论下列级数的收敛性:
(1)
2n 1
;
n1 (n 1)(n 2)(n 3)
(2) sin 1 ;
n1
n
(3) (1 cos ), (0 ).
k 1
k 1
k 1
设 ak发散, bk发散,则 (ak bk ) 不一定发散.
k 1
k 1
k 1
例如: (1)n 发散, (1)n1发散.
n1
n1
思考题
高等数学-无穷级数ppt
根据级数项的性质,无穷级数可分为正项级数、交错级数和任意 项级数。
收敛与发散性质பைடு நூலகம்
收敛性质
如果无穷级数的部分和数列有极限, 则称该无穷级数收敛,此时极限值称 为级数的和。
发散性质
如果无穷级数的部分和数列没有极限 ,或者极限为无穷大,则称该无穷级 数发散。
绝对收敛与条件收敛
绝对收敛
如果无穷级数的每一项的绝对值所构 成的级数收敛,则称原级数为绝对收 敛。
在量子力学中,波函数通常表示为无穷级数形式,用于 描述微观粒子的状态和行为。
电磁学中的场强计算
通过无穷级数的展开,可以计算电磁场中各点的场强分 布,进而分析电磁现象。
在工程学中的应用,如信号处理、控制系统设计等
信号处理中的滤波
在信号处理领域,利用无穷级数设计的滤波器可以对 信号进行平滑处理、降噪等操作。
要点二
洛朗级数展开
将函数f(z)在圆环域D内展开成双边幂级数形式,即f(z) = ... + a-2/z^2 + a-1/z + a0 + a1z + a2z^2 + ...,其中an是 洛朗系数,可通过计算f(z)在D内的各阶导数求得。
泰勒级数与洛朗级数的比较
适用范围不同
泰勒级数适用于在一点处展开 的情况,而洛朗级数适用于在 圆环域内展开的情况。
控制系统设计中的稳定性分析
在控制系统设计中,通过无穷级数的稳定性分析方法 ,可以判断控制系统的稳定性并进行相应的优化设计 。
THANK YOU
感谢聆听
幂级数展开
幂级数是指形如$sum_{n=0}^{infty} a_n x^n$的级数,其 中$a_n$为常数。幂级数在收敛域内可以逐项求导和逐项积 分,具有连续性和可微性。
无穷级数(课件)
∞
(1)
1
n1 (n 1)(n 4)
∞
(2)
1
n1 n(n 1)
解
(1)因为
(n
1 1)(n
<1 4) n2
,而级数
∞ n 1
1 n2
收敛,所以根据比较审敛法,级数
∞ n1
(n
1 1)(n
4)
收敛。
(2)因为
1> n(n 1)
1 (n 1)2
1 n 1
,而级数
∞ n1
1 n+1
是级数
∞ n 1
1 n2
去掉
∞
第一项所成的级数,由第一节中的性质 6.3 可知级数
1
发散,所以根据比较审敛法,级
n1 n+1
∞
数
1 发散。
n1 n(n 1)
21
第二节 常数项级数的审敛法
∞
∞
定理 6.3(比较审敛法的极限形式) 设 un 和 vn 都是正项级数,如果
n 1
n1
lim un l,(0<l< ∞) ,
(3)当 =1时,级数可能收敛也可能发散。
【例
11】判断级数
∞ n1
n 2n
1
n
的敛散性。
解
lim
n∞
n
un
lim n n∞ 2n 1
1<1 ,所以级数收敛。 2
26
第二节 常数项级数的审敛法
二、交错级数及其审敛法
定义 6.5 设 un>0 (n 1,2, ) ,形如
u1 u2 u3 u4 (1)n1un 或 u1+u2 u3 +u4 (1)n un 的级数称为交错级数。
无穷级数一)
§10-1 常数项级数的概念和性质 《常数项级数的概念》 定义1 给定数列u1+u2+···+un+···称为无穷级 数。(简称级数) un 叫做通项。
常数项级数—每一项都是常数的级数。n项的和
n
Sn u1 u2 un ui i 1
作为数列的通项,得到新的数列: S1 ,S2 ,···Sn ,···
第十章 无穷级数
定义2
当n 时,若常数项级数的部分和Sn的极限存在
,即
lim
x
Sn
S
则称常数项级数收敛, S为级数的和,记为
S u1 u2 un 或S un n1
若Sn
的极限
lim
x
S
n不存在,
则称常数项极限发散.
级数的余项:(要求当n充分大时,其误差要任意小)
Rn S Sn un1 un2
第十章 无穷级数
定理3 (比较判断法的极限形式)
设 un u1 un , vn v1 vn
n 1
n 1
是两个正项级数, 若 lim un l v n
n
(1)当0 l 时,级数 un、 vn有相同的敛散性;
n 1
n 1
(2)当l 0,且级数 vn收敛时,级数 un也收敛;
n1
1 n3/ 2
收敛
原级数收敛.
第十章 无穷级数
例:
1
ln(1 )
n1
n2
解
:
lim
ln(1
1 n2
)
1____
1 收敛 原级数收敛.
n
1
n2
n1
n2
第十章 无穷级数
级数各项乘以一个非零常数k,以及去掉级数的有限 项,不影响级数的敛散性。
第十章 无穷级数
解
该级数收敛 该级数发散,故收敛域是 .
∴ 收敛区间 .
,∴ 故收敛域为 。
例2求幂级数 的收敛半径。
解:1)若 因为对一切 ,而调和级数 发散,由比较审敛法可知p级数 发散。
2)若 因为当 时, 故
考虑级数 的部分和
故级数收敛,由比较审敛法知p级数收敛。
结论:若 都有
则 发散; 则 收敛。
例2.证明级数 发散。
证:
而级数 发散,根据比较审敛法可知,所给级数发散。
定理3.(比较审敛法的极限形式)设两正项级数 满足 则有
的收敛性问题,通常是化为研究级数
的敛散性问题,即转化为正项级数的敛散性问题.
下面讨论级数 与 敛散性之间的关系。
定理7绝对收敛的级数一定收敛。
证:设 收敛,令
显然 ,且 根据比较审敛法 收敛,
而 、 都收敛,所以 也收敛。
注:如果级数 发散时,级数 不一定发散。例如级数 是发散的,但级数 却是收敛的。
解:考虑加括号后的级数
项通 ,
发散,从而原级数发散。
性质5(级数收敛的必要条件)设收敛级数 则必有
证: ,
注:若级数的一般项不趋于0 ,则级数必发散。
例如, 其一般项为 ,
当 时, 不趋于0,因此这个级数发散。
注: 并非级数收敛的充分条件.
如,调和级数 ,虽然 但此级数发散。
事实上,假设调和级数收敛于S,则 ,但
基本内容
一、函数项级数的概念
定义1设 是定义在区间 上的函数列,则称
为定义在区间I上的函数项级数.
对于区间 内每一点 ,函数项级数既为常数项级数
.
若级数 收敛,则称点x0为函数项级数 的收敛点,级数 的收敛点的全体,称为该级数的收敛域.若级数 发散,则称点x0为函数项级数 的发散点.
第十章 无穷级数
第十章 无穷级数一、概念 1.定义无穷数列}{n u 中:∑∞==++++121......n nn uu u u无穷数列}{n u 的各项之和∑∞=1n nu叫无穷级数,简称级数。
n u 叫∑∞=1n nu的一般项(通项);......21++++n u u u 为展开式。
【例】 ①∑∞=++++⨯+⨯=+1...)1(1...321211)1(1n n n n n ②...ln ...3ln 2ln 1ln ln 1+++++=∑∞=n n n③ (323)21++++=∑∞=nn nne e e e ne④......32321++++=∑∞=n x x x x nx nn n 2.级数的分类⎪⎪⎪⎩⎪⎪⎪⎨⎧=∑∞=),1x u u u n n n n (其中函数项级数:(数项级数)是具体数字常数项级数:每一项都①两个特殊的数项级数⎪⎪⎩⎪⎪⎨⎧≥⋅-≥∑∑∞=∞=0,1011n n n n n n n u u u u )(交错级数:中,正项级数:②一个特殊的函数项级数∑∞=1)(n nx u中,nn n x a x u ⋅=)((常数乘以x 的幂级数),即∑∞=1n nn xa 称为幂级数。
3.级数∑∞=1n nu的收敛与发散前n 项和n n u u u S +++= (21)数列}{n S 叫∑∞=1n nu的部分和数列。
敛散性:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=→∑∑∑∑∞=→∞∞=∞=∞=→∞→∞发散不存在,则若分和数列的极限)要求级数的和,即求部的和,记为叫收敛,则存在(若1111lim ()lim lim n n n n n n n n n n n n n n u S Su u S u S S S 【例】①∑∞=+1)1(1n n n 111)111(...)3121()211()1(1...321211+-=+-++-+-=+++⨯+⨯=n n n n n S n 1lim =∞→n n S ,∑∞=+∴1)1(1n n n 收敛②∑∞=1ln n n!ln ln ...2ln 1ln n n S n =+++=+∞=∞→n n S lim ,∑∞=∴1ln n n 发散4.几何级数与-p 级数 (1)∑∞=-11n n aq几何级数,首项a ,公比qqq a aq aq a S n n n --=++=-1)1( (1)∞→n 时:⎪⎪⎪⎪⎨⎧∞→⎩⎨⎧=⋅-+-+-=-=∞→∞→===-不存在时时n n n n S n a a a a a S q S n na S q q 0)1(...,1,,11||1Ⅰ:1||<q ,0lim =∞→nn q ,qaS n n -=∞→1limⅡ:1||>q ,∞=∞→nn q lim ,∞=∞→n n S limⅢ:【例】①111)21(2121-∞=∞=⋅=∑∑n n n n 收敛nn n n S 211211)211(2121...21212-=--=+++= ∴1lim =∞→n n S②1111)35(3135-∞=∞=-⋅=∑∑n n n n n ,135>=q 发散(2)-p 级数⇒≤⇒>发散收敛11p p ∑∞=131n n收敛∑∑∞=∞==121111n n n n 发散调和级数 (31)21111+++=∑∞=n n发散二、级数的性质 1.∑∞=1n nu与∑∞=1n nku具有相同敛散性(0≠k )【例】∑∞=14n n 发散,∑∞=-125n n收敛2.在∑∞=1n nu中增加、减少、改变有限项不改变敛散性。
第十章 无穷级数 6 泰勒级数
2. 函数能展开成幂级数的充要条件
定理 2: 设函数 f (x)在含有点 x0的某个区间 (a,b) 内有任意阶 的导函数,则
f ( x)在(a,b)内能 展开成泰勒级数
lim
n
Rn
(
x
)
0,
x (a,b)
其中Rn( x)为 f ( x)的泰勒公式的余项. (lagrange)
3. 函数展开成幂级数
R2n ( x)
sin[ (2n 1) ]
2 (2n 1)!
x 2n1
x 2n1 (2n 1)!
x (,),
lim
n
R2n
(
x)
0,
故,
sin x x x3 x5 (1)n1 x2n1
3! 5!
(2n 1)!
x (,).
方法二:间接展开法
利用已有的展开式,通过适当的变换 (变量代换, 四则运算, 恒等变形, 逐项求导, 逐项积分),求出 未知的展开式的方法. 由于泰勒级数的唯一性,新得到的级数一定是 所求函数的泰勒级数 .
若存在,系数是多少 ? 级数表示式唯一吗 ?
1. Taylor级数的概念
幂级数展开的唯一性
定理 1:
设级数 an( x x0 )n在区间( x0 R, x0 R)内收敛于f ( x),
n0
即
f ( x) an( x x0 )n
n0
那么,该幂级数的系数 an与函数 f ( x)有如下关系:
收敛,
故
arctan x (1)n x2n1 n0 2n 1
x 1,1.
例5
将
f (x)
x2
1 4x 3
展开成 (x 1)的幂级数.
第十章 无穷级数2正项级数的收敛判别法
(1) 当 0 h 时,若 vn收敛,则 un收敛;
n1
n1
(2) 当 0 h 时,若 vn发散,则 un发散.
n1
n1
例3
讨论下列级数的收敛性:
(1)
2n 1
;
n1 (n 1)(n 2)(n 3)
(2) sin 1 ;
n1
n
(3) (1 cos ), (0 ).
在a, A 上可积,若极限 lim A f ( x)dx 存在,则称函数 A a
f
(x)
在a,
上的无穷积分 a
f
( x)dx 收敛.并将上
述极限值定义为无穷积分的值,即
A
f ( x)dx lim f ( x)dx
a
A a
若无极限,则称无穷积分发散.
定理 6 (积分判别法)
设 un为正项级数.若存在一个单调下降的非负 n1
数学分析II
第十章 无穷级数
§2 正项级数的收敛判别法
生物数学教研室
定义: 当 un 0 (n 1,2,) 时, un称正项级数. n1
<注>: 正项级数的部分和序列Sn是单调递增的.
命题: 正项级数 un收敛 其部分和序列有上界. n1
1. 比较判别法
定理 1 ( 比较判别法 )
设两正项级数 un与 vn的一般项满足
n2
1 n(ln n)
p
发散.
当
p 1 时,由比较判别法
1 n(ln n) p
1 (n nln n
3),
级数
n2
1 n(ln n)
p
发散.
当 p 1 时,
A 2
1 x(ln x) p
第十章 无穷级数1 柯西收敛原理与数项级数的概念
也收敛,并收敛于cS .
❖ 设有两级数 ak 与 bk .若存在一个 N ,使得
k 1
k 1
ak bk , 当 k N ,
则两个级数敛散性相同.
❖ 将收敛级数的项任意加括号所成的新级数,仍然收
敛到原级数的和. (反之不成立!)
Remark:
1. 级数收敛与否,与前有限项的取值无关.
2. 设 ak收敛, bk发散,则 (ak bk ) 一定发散.
k 1
k 1
k 1
设 ak发散, bk发散,则 (ak bk ) 不一定发散.
k 1
k 1
k 1
例如: (1)n 发散, (1)n1发散.
n1
n1
思考题
判断级数
1
n1 n(n 1)(n 2)
是否收敛;若收敛,求其和.
思考题答案
an
1 2
( n1
n
1
) 1
( n
1
1
n
1
2)
数学分析II
第十章 无穷级数
§1 柯西收敛原理与数项级数的概念
生物数学教研室
1. Cauchy收敛原理
定理 1 (Cauchy收敛原理)
Cauchy序列
设an是一个序列,则an有极限的充要条件是:
0, N , s.t. 当 n N , m N 时,有
an am .
定理 2 (函数的Cauchy收敛原理)
4 3
n1
P1
n 1,2,
An
An1
3{4n2
[(
1 )n1 9
A1
]}
A1
3
1 9
A1
3
4
(1)2 9
第十章 无 穷 级 数
1 1 1 2 2 3 1 ( x x )dx ( x x )dx 0 2 0
( x n 1 x n )dx
0
1
1 1 1 2 2 3 3 4 1 n(n 1)
上的函数族 {un ( x)}
n1
n 1
与数项级数类似,若定义在相同区间 I [a, b] ,称和式
u1 ( x) u2 ( x) un ( x)
为函数项级数。
简单地说,无穷级数就是无穷多项数或函数相加的 理论,它是高等数学的重要内容之一。无穷级数在数学 的各个分支中都有重要应用,如: 近似计算公式:
为级数的余项. 显然
例1 判别级数
n 的敛散性。
n 1
n 1 例2 判别级数 ln 的敛散性。 n n 1
例3 讨论等比级数 (又称几何级数 geometric series)
( q 称为公比 ) 的敛散性. 解: 1) 若 q 1 则部分和
a lim S q 1 时,n n 1q a 因此级数收敛 , 其和为 1 q lim S n , q 1 时,
证: 令 S n
n
n 1
k 1
uk ,
n
则 n c uk c S n ,
cS
lim n
这说明
c un 收敛 , 其和为 cS .
注: 级数各项乘以非零常数后其敛散性不变 .
3 1 例6 求级数 ( n ) 的和。 2 n 1 n( n 1)
回顾:广义积分
1
p 1 时,收敛。 p 1 时,发散。
高等数学:第十章 无穷级数1-2
1 45
1 n(n 1)
也是收敛的
3.收敛级数的性质
(4)将收敛级数的项任意加括号后所成的新级数, 仍然收敛到原级数的和(无穷和的结合律)。
注意: 如果加括号后所成的级数收敛 则 不能断定去括号后原来的级数也收敛。
例如: 级数(11)+(11) + 收敛, 但级数1-11-1 却是发散的.
推 论 如果加括号后所成的级数发散, 则原来级数也发散.
k
1
ak收敛
lim
n
Sn存在.
设 lim n
Sn
S.则有
Sn S,Sn-1 S.
从而 an Sn Sn1 0.
2.数项级数及其收敛性概念
(4)级数收敛的充要条件 定理4:对于任意给定的ε>0,存在一 个N,使得
n p
| ak | ,只要n N , p 1. k n1
定理4的证明:
n
便有 0 1 (n ) 2
这是不可能的.
级数发散 .
1
n1 n
调和级数的部分和
sn
1
1 2
1 n
1
把每一项看成是以 n 为高 以 1 为底的的矩形面积
sn 就是图中 n 个矩形的面积之和
由定积分的几何意义 这块面积显然大于定积分
n1 1dx 即
1x
Sn
1
1 2
1 n
n1 1dx ln( n 1) ,
n1
2.数项级数及其收敛性概念
(2)无穷级数的收敛与发散 ㄥ?在亩ý
仪讯 n? Í
篇 ¶ 恐停 , 艨滞蛐{Sn} 蝎轘 蚱? ý
詹移S? 怫? Ç
.琨祸? 恐万衶Sn }恍 蚱? ⅲ
n
高等数学课件 第十章 无穷级数5-6
1. 幂级数的收敛半径
引理
(Abel定理)
:
(1)若幂级数 an xn在点x x1(x1 0)处收敛,
n0
则对于满足| x |<| x1|的所有x,
an xn绝对收敛;
n0
(2)若幂级数 an xn在点x x2 (x2 0)处发散,则对
n0
于满足| x |>| x2|的所有x, an xn也发散,如图
lim un1 lim an1 | x | l | x | .
n un
n an
当0 l 时,由达朗贝尔判别法,
若l
|
x
|
1,即
|
x
|
1 l
时,
级数
an xn绝对收敛;
n0
当l
|
x
|
1,即
|
x
|
1 l
时,
级数
an xn发散.
n0
所以收敛半径R
1 l
.
定理2的证明:
lim | an1 a n
(3) 若 x2为发散点, (, | x2 |) (|x2|, +)内的一 切点均为发散点.
所以,在(|x1|, |x2|)上有一分界点 r, 使得(0, r) 上 点为收敛点, (r, + )上点为发散点.
同理,在(| x2|, | x1| )上有一分界点S, 使得(S, 0) 的点为收敛点, (, S )上点为发散点, 且 r =S .
n
| l R 1l ,, 0,
0 l , l 0, l .
lim un1 lim an1 | x | l | x | .
n un
n an
当l 0时, 对x (,) \{0},均有lim un1 0 1. u n
高等数学 第十章
确定的有限常数,从而,无穷多个数相加在一定条件下是有
意义的.
二、 常数项级数的概念
定义1 对于无穷数列u1,u2,…,un,… 把它的各项依 次累加的表示式
u1+u2+u3+…+un+…
(1)
称为无穷级数,简称为级数,记为
un
.
其中u1称为级数的
n 1
第1项(或首项),u2称为级数的第2项, …,un称为级数第n项,
lim
n1
un
0
,则可判定级数
u
n
n 1
一定发散.
例4 判定级数
3n
n1 5n 4
的敛散性.
解
级数的一般项
un
3n 5n
4
.
因为
lim
n
u
n
lim
n
3n 5n 4
3 5
0
所以由级数收敛的必要条件知,该级数发散.
10.2 常数项级数的审敛法
一、 正项级数的审敛法
每一项都是非负的级数称为正项级数,即级数
un un 0, n 1,2,
为正项级数.
n1
1. 比较审敛法
设 un和 vn 都是正项级数,且un≤vn(n=1,2,…),
n1
n1
则
(1) 若级数 vn
n 1
(2) 若级数
un
n 1
收敛, 则级数 un
n 1
发散, 则级数
vn
n 1
收敛; 发散.
比较审敛法还有另一种形式(比较审敛法的极限形式).
定义2
对于级数
un
的部分和数列{Sn}, 若n→∞时有
《高等数学》第十章 无穷级数(电子讲稿)
380 第十章 无穷级数在许多科学技术领域中,常常要求我们将无穷多个数或者函数相加,我们把这种和式叫做无穷级数.无穷级数是表示函数、研究函数性态以及进行数值计算的一种有效工具.无穷级数分为常数项级数和函数项级数,本章将先介绍常数项级数的概念及其敛散性的审敛法,然后讨论函数项级数,最后将着重讨论如何将函数展开成幂级数和三角级数的问题.第一节 常数项级数的概念与性质一、常数项级数的基本概念设给定一个数列1u ,2u ,n u ,,用加号把这些项连结起来所构成的和的表达式 1u +2u +n u +(1)称为(常数项)无穷级数,简称(常数项)级数,记作1n n u ∞=∑1u =+2u +n u ++,级数的第n 项u n 通常称为级数的一般项或通项.例如 111111!2!3!!n n n ∞==+++++∑,1(1)1111(1)nn n ∞=-=-+-+-+-+∑,1123n n n ∞==+++++∑ 都是常数项级数.上述级数的定义仅仅是一种形式上的定义,这种加法是否具有“和数”,这个“和数”的意义是什么?为了解决这个问题,我们先作(常数项)级数(1)的前n 项和n s =12n u u u +++1ni i u ==∑, (2)n s 称为级数(1)的部分和.当n 依次取1,2,3,…时,部分和又构成一个新的数列11s u =, 122s u u =+,3123,s u u u =++, n s =12n u u u +++,,即数列12,,,,n s s s .把这个数列{n s }称为级数1n n u ∞=∑的部分和数列(简称为部分和).当n 趋于无穷大时,如果级数1n n u ∞=∑的部分和数列{n s }有极限s ,即lim n n s s →∞=,则称无穷级数1n n u ∞=∑收敛,并称极限s 为级数的和,写成12n s u u u =+++.如果部分和数列{n s }没有极限,则称无穷级数1n n u ∞=∑发散.当级数1n n u ∞=∑收敛时,其部分和n s 是级数的和s 的近似值,它们之间的差值12n n n n r s s u u ++=-=++称为级数的余项.用近似值n s 代替和s 所产生的误差是这个余项的绝对值,即误差是n r .381●●例1 判别无穷级数1123n n n ∞==+++++∑的敛散性.解 由于 (1)122n n n s n +=+++=, 则 (1)lim lim 2n n n n n s →∞→∞+==∞,所以该级数发散.●●例2 讨论级数11111(1)n --+-++-+的敛散性. 解 部分和数列11s =,2110s =-=,31111s =-+=,,11111(1)n n s -=-+-++-.易知,当n 为奇数时,1n s =;当n 为偶数时,0n s =.所以没有极限,故原级数发散. ●●例3 无穷级数20nn n aqa aq aq aq ∞==+++++∑. (3)叫做等比级数(又称为几何级数),其中0a ≠,q 叫做级数的公比,试讨论级数(3)的敛散性.解 如果||1q ≠,级数的部分和1n n s a aq aq-=+++1n a aq q -==-11na aq q q---. 当||1q <时, lim n n s →∞=lim 111n n a aq a q q q →∞⎡⎤-=⎢⎥---⎣⎦, 此时级数(3)收敛,且其和为 1aq -; 当||1q >时,lim n n s →∞=∞,此时级数(3)发散.如果||1q =,则当1q =时,n s na =→∞,因此级数(3)发散;当1q =-时,级数(3)变为n s =a a a a -+-+1(1)n a -+-.显然,n s 随着n 为奇数或为偶数而等于a 或为零,因此n s 的极限不存在,此时级数(3)也发散.综上讨论可知,等比级数11n n aq ∞-=∑当||1q <时收敛,其和为1aq-,当||1q ≥时发散. 例如级数23422223333⎛⎫⎛⎫⎛⎫++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其公比213q =<,则该级数是收敛的.又例如级数23433332222⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其公比312q =>,故该级数是发散的. 二、收敛级数的基本性质由上面的讨论可知,级数的收敛问题,实际上也就是研究它的部分和数列的收敛问题,因此,我们可以应用数列极限的有关知识来研究无穷级数的收敛与发散.从而可以得到收敛级数的一些基本性质.性质1 如果级数123n u u u u ++++收敛于和s ,则它的各项同乘以一个常数a 所得的级数123n au au au au ++++也收敛,且其和为as . 证 设级数1n n u ∞=∑与级数1n n au ∞=∑的部分和分别为n s 和n σ,则n s =12n u u u +++,n σ12n au au au =+++n as =.382 由数列极限的性质知lim lim n n n n as as σ→∞→∞==.即级数1nn au∞=∑收敛于as .性质2 如果级数1n n u ∞=∑和1n n v ∞=∑都收敛,且其和分别为s 与σ,则级数1()nn n uv ∞=±∑1122()()()n n u v u v u v =±+±++±+.也收敛,并且有111()nn n n n n n uv u v ∞∞∞===±=±∑∑∑s σ=±.证 令1nn i i s v ==∑,1nn i i u σ==∑,1()nn i i i T u v ==±∑,则1()nn i i i T u v ==±=∑11n ni in n i i u vs σ==±=±∑∑,所以有lim lim()lim lim n n n n n n n n n T s s s σσσ→∞→∞→∞→∞=±=±=±.也就是说,1()n n n u v ∞=±∑收敛于s σ±.●●例4 判别级数212211131313(11)242424n n n ---⎛⎫⎛⎫⎛⎫+++++++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的敛散性.若收敛时求出它的和.解 由于级数211111222n -+++++与 21213331444n n --+++++都是公比小于1的等比级数,所以它们都收敛,且其和分别为2和4,由性质2知所给级数收敛,其和为212211131313(11)242424n n n ---⎛⎫⎛⎫⎛⎫+++++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭211111222n -⎛⎫=+++++ ⎪⎝⎭21213331444n n --⎛⎫++++++ ⎪⎝⎭246=+=. 性质3 在级数的前面部分去掉或加上有限项,不改变级数的敛散性.证 设将级数121k k k n u u u u u +++++++++的前k 项去掉,则得级数12k k k n u u u +++++++.令新级数的部分和n T =12k k k n u u u ++++++.则12n k k k n T u u u +++=+++k n k s s +=-,其中k n s +为原级数的前k n +项的和,而k s 12k u u u =+++是常数,所以当n →∞时,n T 和n k s +或者同时具有极限,或者同时没有极限,当有极限时,k T s s =-.其中lim n n T T →∞=,lim k n n s s +→∞=.类似地,可以证明在级数的前面加上有限项,也不改变级数的敛散性. 性质4 收敛级数对其项任意加括弧后所成级数仍为收敛的级数,且其和不变. 应该注意,加括号后的级数收敛时,原来未加括弧的级数未必收敛,例如下面的级数(11)(11)(11)-+-+-+ 收敛于零,但级数111111-+-+-+却是发散的.由性质4可得: 如果加括弧后所成的级数发散,则原来级数也发散.383性质5 (级数收敛的必要条件)如果级数1n n u ∞=∑收敛,则当n 无限增大时,它的一般项n u 趋于零,即lim 0n n u →∞=.证 设级数1n n u ∞=∑的部分和数列为{}n s ,且lim n n s s →∞=.因为1n n n u s s -=-,所以1lim lim()n n n n n u s s -→∞→∞=-0s s =-=.性质5表明,若lim 0n n u →∞≠,则1n n u ∞=∑一定发散,但要注意,若lim 0n n u →∞=时,级数1n n u ∞=∑可能收敛,也可能发散. ●●例5 无穷级数111123n+++++ (4)称为调和级数.证明调和级数是发散的.证法1 顺序把级数(4)的两项、两项、四项、八项、2m 项、加括号得级数111111112345678⎛⎫⎛⎫⎛⎫++++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111121222m mm +⎛⎫+++++ ⎪++⎝⎭ 因为 11122+>,1111134442+>+=,111111111,567888882+++>+++=11111111111212222222m m m m m m +++++++>+++=++, 所以这个加括号的级数的前1m +项的和大于12m +,从而可知加括号后的级数发散.由性质4所得的结论可知,调和级数(4)发散.证法2 由0x >时,ln(1)x x >+知,11ln 1n n ⎛⎫>+ ⎪⎝⎭,所以1111ln 1nn n i i s i i ==⎛⎫=>+ ⎪⎝⎭∑∑341ln 2ln ln ln 23n n +=++++341ln 223n n +⎛⎫=⋅⋅⋅⎪⎝⎭ln(1)n =+.由于lim limln(1)nn n s n →∞→∞≥+=∞,故调和级数发散.●●例6 -+-+11n n +-+-+的敛散性.解 对级数每两项加括号后所成的级数为2n ∞=∑221n n ∞==-∑2121n n ∞==-∑,而211n n ∞=-∑为调和级数,它是发散的,故知原级数发散. 习 题 10-11.写出下列级数的前5项:384 (1)21(2)n nn ∞=+∑; (2)113(21)24(2)n n n ∞=⋅⋅⋅⋅-⋅⋅⋅⋅∑;(3)11(1)10n n n -∞=-∑;(4)1!(1)nn n n ∞=+∑. 2.写出下列级数的一般项:(1)111246+++;(2)231153759711a a a ++++⋅⋅⋅⋅;(3)35791113149162536-+-+-+-;(42242468x x +⋅⋅⋅⋅ (0x >).3.判定下列级数的敛散性: (1)1n ∞=∑;(2)11(21)(21)n n n ∞=-+∑;(3)1111223(1)n n ++++⋅⋅+;(4)π2ππsin sin sin 666n ++++;(5)1n ∞=∑;(6)13++;(7)22111111323232n n ⎛⎫⎛⎫⎛⎫-+-++-+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(8)135721357921n n -+++++++;(9)221(n ∞=∑ (0a >);(10)23111111111111123nn +++++⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 4.证明下列级数收敛,并求其和:11111447710(32)(31)n n +++⋅⋅⋅++⋅⋅⋅⋅⋅⋅-+.5.若级数1n n u ∞=∑与1n n v ∞=∑都发散时,级数1()n n n u v ∞=±∑的敛散性如何?若其中一个收敛,一个发散,那么,级数1()n n n u v ∞=±∑散敛性又如何?第二节 常数项级数的审敛法一、正项级数及其审敛法在第一节中,我们介绍了判别一般常数项级数(即级数的各项可以是正数、负数或者零)是否收敛的方法.如果级数1n n u ∞=∑的每一项都是非负的,即0n u ≥(1n =,2,),则称级数1nn u∞=∑为正项级数. 在这一节,我们将对正项级数给出一些常用的审敛判别法.385设正项级数12n u u u ++++ (1) 的部分和为n s ,显然部分和数列{n s }是单调增加数列,也就是说12n s s s ≤≤≤≤根据单调有界数列必有极限的准则可得,如果部分和数列n s 有界,也就是说存在一正数M ,使得n s M ≤对所有的n 都成立,则级数(1)一定收敛;反之,如果正项级数收敛于s ,则数列{n s }一定有界. 由此可得下面的正项级数收敛的基本定理.正项级数1n n u ∞=∑收敛的充分必要条件是它的部分和数列{n s }有界.根据这一定理,我们可以得到正项级数收敛或发散的一些基本判别法则.(比较审敛法)设级数1n n u ∞=∑,1n n v ∞=∑为两个正项级数,且满足不等式n nu v ≤(1n =,2,)则下面的结论成立:(1)如果级数1n n v ∞=∑收敛, 则级数1n n u ∞=∑也收敛; (2)如果级数1n n u ∞=∑发散,则级数1n n v ∞=∑也发散.证 (1)设1n n v ∞==∑σ,1n n k k s u ==∑,1nn k k v σ==∑,则由条件知n s =12n u u u +++12n v v v ≤+++n σ=≤1nn vσ∞==∑,即部分和数列{n s }有界,由定理1知级数1n n u ∞=∑收敛.(2)反证法,若正项级数1n n v ∞=∑收敛,则根据(1)知级数1n n u ∞=∑收敛,与1n n u ∞=∑发散矛盾,故级数1n n v ∞=∑发散.由第一节的性质1和性质3可知,级数的每一项同乘以不为零的常数k ,以及去掉级数前面部分的有限项不会影响级数的收敛性,于是可得如下推论:推论 设1n n u ∞=∑和1n n v ∞=∑是两个正项级数.如果从某项开始(比如从第N 项开始),满足不等式n n u kv ≤(n N ≥,0k >),则(1)若级数1n n v ∞=∑收敛,则级数1n n u ∞=∑收敛;(2)若级数1n n u ∞=∑发散,则级数1n n v ∞=∑发散.为了便于应用,我们下面接着给出比较审敛法的极限形式.(比较审敛法的极限形式) 设1n n u ∞=∑和1n n v ∞=∑为给定的两个正项级数,(1) 如果lim nn nu l v →∞=(0l ≤<+∞),且级数1n n v ∞=∑收敛,则级数1n n u ∞=∑收敛;386 (2) 如果lim 0n n n u l v →∞=>或lim nn nu v →∞=+∞,且级数1n n v ∞=∑发散,则级数1n n u ∞=∑发散.证 (1) 根据极限的定义,对1ε=,存在自然数N ,使得当n N >时,有不等式1nnu l v <+, 即 (1)n n u l v <+ 而级数1n n v ∞=∑收敛,再由比较审敛法的推论,便可知1n n u ∞=∑收敛.(2) 反证法,如果级数1n n u ∞=∑收敛,则由结论(1)得级数1n n v ∞=∑收敛,但已知级数1n n v ∞=∑发散,矛盾.因此,级数1n n u ∞=∑发散.●●例1 证明级数1131nn ∞=+∑是收敛的. 证 因为11313n n ≤+,而且几何级数113n n ∞=∑收敛,故由比较判别法知,1131nn ∞=+∑是收敛的. ●●例2 判别级数11(0)1nn a a ∞=>+∑的收敛性. 解 (1)当01a <<时,11lim 10110n n a →∞==≠++,所以级数111n n a ∞=+∑发散. (2)当1a =时,11lim 012n n a →∞=≠+,所以级数111n n a ∞=+∑发散. (3)当1a >时,111nn a a ⎛⎫< ⎪+⎝⎭. 由于级数11nn a ∞=⎛⎫⎪⎝⎭∑收敛,所以级数111nn a ∞=+∑收敛. 综上所述,当01a <≤时,原级数发散,当1a >时,原级数收敛. ●●例3 级数11111123pp p p n nn ∞==++++∑. (2) 称为p -级数,其中0p >是常数,试讨论p -级数的敛散性.解 (1)当1p ≤时,有 11p n n ≤,由于11n n ∞=∑发散,故由比较审敛法知,级数(2)发散.(2)当1p >时,由1k x k -≤≤知 11p p k x≤,所以111k p pk x k k -=≤⎰d 11k p k x x -⎰d ,(2,3,n =) 从而级数(2)的部分和1n s =+21n p k k =≤∑1+12n k p k k x x -=∑⎰d 11n p x x =+=⎰ d 111111p p n -⎛⎫+- ⎪-⎝⎭111p <+-(2,3,n =), 故数列{}n s 有界,所以级数(2)收 敛.综上所述可得p -级数11pn n∞=∑当1p >时收敛,当1p ≤时发散. ●●例4 判别下列级数的敛散性:387(1)3132n n n n ∞=+-∑; (2)1111n nn∞+=∑; (3)11n n ∞=⎛⎫+ ⎪⎝⎭; (4)21e n n n ∞-=∑.解 (1)因为 323323312lim lim 122n n n n n n n n n n →∞→∞++-==-,而211n n ∞=∑收敛,所以级数3132n n n n ∞=+-∑收敛. (2)因为111lim 11nn n nn+→∞==,又级数11n n ∞=∑发散,所以级数1111n nn∞+=∑发散. (3)因为321ln 1lim 11n n n nn →∞→∞⎛⎫+ ⎪⎝⎭==, 而级数3121n n∞=∑收敛,所以级数11n n ∞=⎛⎫+ ⎪⎝⎭收敛.(4)因为 242e lim lim 01e n n n n n n n -→∞→∞==,而级数211n n ∞=∑收敛,所以级数21e n n n ∞-=∑收敛. ●●例5 判别级数11ln 1p n n ∞=⎛⎫+ ⎪⎝⎭∑的敛散性.(0p >,且为常数)解 因为1ln 1lim 1p n pn n→∞⎛⎫+ ⎪⎝⎭1lim ln 1p n p n n →∞⎛⎫=+ ⎪⎝⎭1ln lim 11p n p n n →∞⎡⎤⎛⎫⎢⎥=+= ⎪⎝⎭⎢⎥⎣⎦ 而p -级数11p n n ∞=∑当1p >时收敛,所以当1p >时原级数收敛;当1p ≤时11p n n∞=∑发散,故当1p ≤原级数发散.判别级数的敛散性,如果已知一些收敛级数和发散级数,则可以以它们为标准进行比较.常用于比较的级数有p -级数、等比级数与调和级数,因此必须记住它们.由比较审敛法的定理我们知道,它是通过与某个敛散性已知的级数的比较来判断给定级数的敛散性,但有时作为比较对象的级数不容易找到,那么能不能从给定的级数自身直接判别级数的敛散性?为此,下面我们将给出使用上很方便的比值审敛法和根值审敛法.(比值审敛法) 设级数1n n u ∞=∑是正项级数,且1lim n n nuu ρ+→∞=.则(1)当1ρ<时,级数1n n u ∞=∑收敛; (2)当1ρ>(或1lim n n nu u +→∞=∞)时,级数1n n u ∞=∑发散;(3)当1ρ=时,级数1n n u ∞=∑可能收敛,也可能发散.388 正项级数敛散性的这一判别法称为比值审敛法或达朗贝尔(D alembert ')审敛法.证(1)当1ρ<时,取一个适当小的正数ε,使得1r ρε+=<,由1lim n n nuu ρ+→∞=知,存在正整数N ,使得当n N >时,有不等式1n nur u ρε+<+=成立,即有1N N u ru +<, 221N N N u ru r u ++<<, 332N N N u ru r u ++<<,…而等比级数23N N N ru r u r u +++收敛(公比1r <),由比较审敛法可知123N N N u u u ++++++收敛.由于级数1n n u ∞=∑只是比级数1nn N u∞=+∑多了前N 项,所以级数1n n u ∞=∑收敛.(2)当1ρ>时,取一个适当小的正数ε ,使得1ρε->,由极限的定义知,存在正整数N ,使得当n N >时,有不等式11n n uu ρε+>->成立,也就是1n n u u +>.所以,当n N >时,级数的一般项逐渐增大,因此lim 0n n u →∞≠,由级数收敛的必要条件可知,级数1n n u ∞=∑发散.类似地,可以证明,当1lim n n nu u +→∞=∞时,级数1n n u ∞=∑发散.(3)当1ρ=时,级数1n n u ∞=∑可能收敛,也可能发散.例如p -级数11p n n ∞=∑,不论0p >为何值,总有1lim n n nu u +→∞=1(1)lim11pn pn n →∞+=.但我们已经知道当1p >时p -级数收敛,而当1p ≤时p -级数发散.所以,仅根据ρ=1是不能判别级数的敛散性的.●●例6 判别级数2222231232222n n +++++的敛散性. 解 因为22n n n u =,22112(1)112lim lim lim 22n n n n n nnn u n n u n ++→∞→∞→∞++⎛⎫== ⎪⎝⎭112=<,根据比值审敛法,所以原级数是收敛的.●●例7 判别级数2132nn n n ∞=∑的敛散性.解 因为232nn n u n =,所以1limn n nu u +→∞=122212323lim lim (1)232(1)n n n nn n n nn n ++→∞→∞⋅=++2313lim 11221n n →∞⎛⎫⎪==> ⎪ ⎪+ ⎪⎝⎭, 所以级数2132nn n n ∞=∑发散.●●例8 判别级数1111123456(21)2n n+++++⋅⋅⋅-⋅的敛散性.389解 由于1(21)2n u n n =-⋅,所以1lim n n nu u +→∞=(21)2lim 1(21)(22)n n nn n →∞-⋅=++,比值审敛法此时失效.但注意到211(21)2n n n <-⋅,而级数211n n ∞=∑收敛,所以级数11(21)2n n n ∞=-⋅∑收敛. (根值审敛法)设级数1n n u ∞=∑是正项级数,且n ρ=,则(1)当1ρ<时,级数1n n u ∞=∑收敛; (2)当1ρ>(或n =+∞)时,级数1n n u ∞=∑发散;(3)当1ρ=时,级数1n n u ∞=∑可能收敛,也可能发散.正项级数敛散性的这一判别法称为根值审敛法或柯西审敛法.证 (1)当1ρ<时,由极限的定义,取一个适当小的0ε>,存在自然数N ,使得当n N >1r ρε<+=<成立,即nn u r <.由于等比级数1n n r ∞=∑(公比1r <)收敛,所以级数1n n u ∞=∑收敛.(2)当1ρ>时,根据极限的定义,取一个适当小的0ε>,存在正整数N ,使n N >时,1ρε>->成立,即1n u >.由于lim 0n x u →∞≠,所以级数1n n u ∞=∑发散.(3)当1ρ=时,根值审敛法失效.仍以p -级数11pn n∞=∑为例,由根值审敛法=1p=→(n →∞). 即1ρ=,但p -级数当1p >时收敛;当1p ≤时发散.因此在1ρ=时级数的敛散性不能由根值审敛法判定. ●●例9 判别级数211115n n n n ∞=⎛⎫+ ⎪⎝⎭∑的敛散性.解因为11e lim 1<155nn n n n →∞⎛⎫=+= ⎪⎝⎭所以由根值审敛法可知级数211115n n n n ∞=⎛⎫+ ⎪⎝⎭∑收敛. ●●例10 判别级数ln 123nn n ∞=∑的敛散性.解 因为=ln 23n n=,而当n →∞时,ln nn的极限为0,所以n ln 2lim 3n n n→∞=21=>,因此所给级数发散.390 二、交错级数及其审敛法如果级数的各项是正负交替出现的,也就是形如 1234u u u u -+-+1(1)n n u -+-+ (3) 或 1234u u u u -+-++(1)n n u +-+(3')(0n u >,1,2,n =)的级数称为交错级数.下面的定理说明了如何对于交错级数的敛散性进行判别.(莱布尼兹(Leibniz )审敛法) 如果交错级数11(1)n n n u ∞+=-∑(0,1,2,n u n >=)满足下面的条件:(1)1n n u u +≥(1,2,3,n =);(2)lim 0n n u →∞=则级数11(1)n n n u ∞+=-∑收敛,且其和1S u ≤,其误差1n n r u +≤.证 先证交错级数(3)的前2n 项和2n s 的极限存在,其和1s u ≤. 因为2n s 可表示为2n s =1234212()()()n n u u u u u u --+-++-,及 2n s =1234522212()()()n n n u u u u u u u u ----------所以由条件(1)知,括弧中的所有项都是非负的,因此由2n s 的第一种表达形式可知,2n s 单调增加,由2n s 的第二个表达式可知,21n s u <.于是,由单调有界数列必有极限的准则可知,当n 无限增大时,2n s 趋于一个极限s ,且s 不大于1u ,即21lim n n s s u →∞=≤.再证交错级数(3)的前21n +项的和21n s +的极限为s ,且1s u ≤. 因为 21221n n n s s u ++=+, 所以由条件(2)知21lim 0n n u +→∞=,所以21221lim lim lim n n n n n n s s u s ++→∞→∞→∞=+=.由于级数的前2n 项的和与前21n +的和趋于同一极限s ,故级数11(1)n n n u ∞+=-∑的部分和n s 当n →∞时具有极限s ,这就证明了交错级数11(1)n n n u ∞+=-∑收敛于和s ,并且1s u ≤.对于级数(3)的余项n r ,可写成如下的形式:12()n n n r u u ++=±-+.它的绝对值12||n n n r u u ++=-+.也是一个交错级数,也满足交错级数收敛的两个条件,因此其和不超过级数的第一项1n u +,也就是说 1|| n n r u +. ●●例11 判别级数111111(1)234n n+-+-++-+的敛散性,并求其和s 的近似值(精确到0.1).解 令1n u n =, 显然有 (1) 1111n n u u n n +=>=+, (1,2,n =), (2)1lim lim0n n n u n→∞→∞==. 由定理6知,原级数收敛.且11111(1)23n n s s n +≈=-+++-.其中11n rn ≤+.因为取9n =时,9110r ≤0.1=,所以111110.74562349s ≈-+-++≈.391●●例12判别级数1(1))πn n n ∞=-∑的敛散性.解 因为(1))πn n -(1)n =-.又s in n u =是单调减少数列,且lim 0n n n u →∞→∞==.由莱布尼兹审敛法可知,原级数收敛.三、绝对收敛与条件收敛上面我们讨论了正项级数和交错级数敛散性的判别法,如果级数1n n u ∞=∑中的项n u(1,2,)n =是任意实数,则把这种级数称为任意项级数.下面我们来讨论任意项级数的敛散性.如果对于任意项级数1n n u ∞=∑中的各项取绝对值所得的正项级数1||n n u ∞=∑收敛,则称级数1nn u∞=∑绝对收敛;如果级数1||n n u ∞=∑发散,而级数1n n u ∞=∑收敛,则称级数1n n u ∞=∑条件收敛.由上述定义,容易得到结论:收敛的正项级数是绝对收敛的.绝对收敛级数和收敛级数之间有如下重要关系.如果级数1||n n u ∞=∑收敛,则级数1n n u ∞=∑收敛.证 令1(||)2n n n v u u =+ (1,2,3,n =).则当0n u ≥时,n n v u =;当0n u <时,0n v =,所以0n v ≥,且||n n v v =11||||(||||)22n n n n u u u u =+≤+||n u =.因为级数1||n n u ∞=∑收敛,由比较审敛法知1n n v ∞=∑收敛,从而12n n v ∞=∑也收敛.又因为2||n n n u v u =-,所以级数1n n u ∞=∑是由两个收敛级数逐项相减而形成的, 即11(2||)nnnn n u v u∞∞===-∑∑.由级数的性质2可知,级数1n n u ∞=∑收敛.该定理表明,对于任意项级数1n n u ∞=∑,如果由正项级数审敛法判定级数1||n n u ∞=∑收敛,则级数1n n u ∞=∑收敛.进而可知,一些任意项级数的敛散性可借助于正项级数的审敛法而得到判定.一般来说,如果1||n n u ∞=∑发散,我们不能断定1n n u ∞=∑发散,但是,如果我们用比值法或根值法,根据1ρ>判定1||n n u ∞=∑发散,则可断定1n n u ∞=∑发散.这是因为从1ρ>可推知lim 0n n u →∞≠,从而可392 知lim 0n n u →∞≠,因此级数1n n u ∞=∑发散.●●例13 证明级数11sin rn n n α∞+=∑(其中0r >)绝对收敛. 证 因为11sin 1r r n nn α++≤,而级数111r n n ∞+=∑收敛,所以由比较审敛法知,11sin r n n n α+∞+=∑收敛,因此所给级数绝对收敛.●●例14 判别级数2111(1)13n n nn n ∞=⎛⎫-+ ⎪⎝⎭∑的敛散性.解 1113nn ⎛⎫+ ⎪⎝⎭,而11lim 13nn n n →∞⎛⎫=+ ⎪⎝⎭e13=<.故由根值审敛法知所给级数收敛.由定理7,我们注意到每个绝对收敛的级数都是收敛的,但反过来不一定成立.也就是说,并不是每个收敛级数都是绝对收敛的.例如,级数111111(1)234n n+-+-++-+是收敛级数,但对各项取绝对值后得到的级数为11111234n++++++是调和级数,它是发散的.●●例15 判别级数1np n x n∞=∑的敛散性,若收敛,讨论其是绝对收敛还是条件收敛解 对级数11||n np p n n x x n n ∞∞===∑∑应用根值审敛法,因为||n x =,由此可知: 当||1x <时,p 为任意实数,级数收敛(绝对收敛);当||1x >时,p 为任意实数,级数发散;当1x =时,(1)1p >时,级数收敛(绝对收敛);(2)1p ≤时,级数发散; 当1x =-时,(1)1p >时,级数收敛(绝对收敛);(2)01p <≤时,级数收敛(条件收敛);(3)0p ≤时,级数发散.绝对收敛级数有一些很好的运算性质,我们不加证明地给出如下:绝对收敛级数不因改变项的位置而改变它的和.1n u 及1n n v ∞=∑都绝对收敛,其和分别为s 和σ,则它们的柯西乘积111221()u v u v u v ++++1211()n n n u v u v u v -+++也是绝对收敛的,且其和为s σ.习 题 10-21.用比较审敛法或其极限形式判定下列各级数的敛散性:(1)1111253647(1)(4)n n ++++⋅⋅⋅+⋅+;(2)1+111357+++;(3)2221111135(21)n +++++-;(4)2222(sin 2)(sin 4)(sin 2)666nn ++++;393(5)ππππsinsin sin sin 2482n +++++. 2.用比值审敛法判别下列级数的敛散性:(1)234521333n n ++++++; (2)232332!33!3!323n n n n ⋅⋅⋅+++++;(3)231111sin 2sin 3sin sin 2222n n +⋅+⋅+++;(4)21(!)(3)!n n n ∞=∑; (5)n ∞=; (6)1!n n n n ∞=∑; (7)213n n n ∞=∑. 3.用根值审敛法判定下列各级数的敛散性:(1)152n n n n ∞=⎛⎫ ⎪+⎝⎭∑; (2)2111n n n ∞=⎛⎫+ ⎪⎝⎭∑; (3)2122n n n n n ∞=+⎛⎫ ⎪⎝⎭∑ ; (4)131ennn ∞=+∑; (5)1nn n b a ∞=⎛⎫⎪⎝⎭∑,其中(),,,n n a a n a b a →→∞均为正数;(6)1(0,lim ,0)nn n n n n x x a a a a ∞→∞=⎛⎫>=> ⎪⎝⎭∑.4.判别下列级数的敛散性:(1)23433332344444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)()11sin 2n n n n ∞=π+∑;(3)1111(1sin1)sin sin 22nn ⎛⎫⎛⎫-+-++-+ ⎪ ⎪⎝⎭⎝⎭;(4)222222ln 1ln 1ln 1123⎛⎫⎛⎫⎛⎫++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(5)222sin 2sin 2sin 333n n πππ⋅+⋅++⋅+;(6)21cos 32nn n n ∞=π∑; (7)111(e e 2)nn n ∞-=+-∑. 5.判别下列级数是否收敛?若收敛的话,是绝对收敛还是条件收敛? (1)1(1)n n ∞-=-∑ (2)111(1)8n n n n ∞-=-∑; (3)1311(1)sin n n n ∞-=-∑; (4)111(1)ln n n n n ∞-=+-∑;(5)11111234a a a a -+-+-++++(a 不为负整数);(6)1111ln 2ln3ln 4ln5-+-+;(7)234111sin sin sin 234πππ-+-πππ;394 (8)22221111sinsin sin sin 1234-+-+.第三节 幂级数一、函数项级数的概念在前两节内容中,我们讨论了常数项级数,这一节我们将研究应用更为广泛的函数项级数.如果1()u x ,2()u x ,, ()n u x ,,是定义在区间I 上的函数列,则由该函数列构成的和式12()()()n u x u x u x ++++(1)称为定义在区间I 上的(函数项)无穷级数,简称(函数项)级数, ()n u x 称为一般项或通项.当x 在区间I 中取某个确定的值0x 时,函数项级数1()n n u x ∞=∑成为常数项级数10200()()()n u x u x u x ++++,该级数可能收敛,也可能发散.如果常数项级数01()n n u x ∞=∑收敛,则称点0x 是函数项级数1()nn u x ∞=∑的收敛点;如果级数01()nn u x ∞=∑发散,则称点0x是函数项级数1()n n u x ∞=∑的发散点. 函数项级数1()n n u x ∞=∑的所有收敛点组成的集合称为它的收敛域,所有发散点组成的集合称为它的发散域.对应于收敛域内的任意一个数x ,函数项级数1()n n u x ∞=∑成为一收敛的常数项级数,因而有一确定的和s .因此,在收敛域上,函数项级数的和是x 的函数()s x ,我们把()s x 称为函数项级数的和函数,和函数的定义域就是级数的收敛域,并记为()s x =12()()()n u x u x u x ++++.类似于常数项级数,把函数项级数1()n n u x ∞=∑的前n 项的部分和记为()n s x ,则在收敛域内有lim ()()n n s x s x →∞=.把()()()n n r x s x s x =-仍然称为函数项级数的余项. 当然,只有在收敛域上()n r x 才有意义.于是当1()n n u x ∞=∑收敛时,有lim ()0n n r x →∞=.●●例1 级数12111n n n x x x x ∞--==+++++∑是定义在(,)-∞+∞上的函数项级数.它的前n 项和为()n s x =21111n n x x x xx --++++=-当||1x <时,该级数收敛,其和函数为11x-,且有21111n x x x x-=+++++- (2) 而当||1x ≥时该级数发散.该级数的收敛域为(1,1)-,而其发散域为(,1][1,)-∞-+∞.395二、幂级数及其收敛性在函数项级数中,简单且常见的一类级数就是幂级数.它的表达形式是2012n n a a x a x a x +++++, (3) 或2010200()()()n n a a x x a x x a x x +-+-++-+(4)其中,012,,,,,n a a a a 叫做幂级数的系数.由于在函数项级数00()n n n a x x ∞=-∑中,如果作变换0y x x =-,则级数(4)就变成级数0n n n a y ∞=∑,因此由级数(3)的性质可以推得级数(4)的性质,所以这里我们主要讨论幂级数(3).由例1 知道,幂级数0n n x ∞=∑的收敛域为(1, 1-),发散域为(,1][1,)-∞-+∞.对于一般的幂级数(3),显然至少有一个收敛点0x =,除此之外,它还有哪些收敛点,怎样得到像例1那样的收敛域呢?对此,下面的阿贝尔(Abel )定理给出了明确的回答.(阿贝尔定理) 如果幂级数0n n n a x ∞=∑在0x x =(00x ≠)处收敛,则对于满足0||||x x <的一切x ,幂级数0nn n a x ∞=∑绝对收敛;反之,如果幂级数0n n n a x ∞=∑在0x x =0(0)x ≠处发散,则对于满足0||||x x >的一切x ,幂级数0n n n a x ∞=∑发散.证 设0x 是幂级数(3)的收敛点,即级数2010200nn a a x a x a x +++++收敛.根据级数收敛的必要条件,有0lim 0nn n a x →∞=.于是,存在一个正数M ,使得nn a x ≤M (0,1,2,3,n =).从而有0000nnn n nn n n n x x a x a x a x x x =⋅=≤0nx M x . 因为当0x x <时,等比级数00nn xM x ∞=∑收敛(公比01x x <),所以级数0n n n a x ∞=∑收敛,故级数0nn n a x∞=∑绝对收敛.定理的第二部分可以用反证法证明.如果幂级数0n n n a x ∞=∑当0x x =(00x ≠)时发散,如果有一点1x 适合10||||x x >,10nn n a x ∞=∑收敛,则根据该定理的第一部分的证明可知,级数0nn n a x ∞=∑收敛,这与假设矛盾,定理得证.定理1说明,如果幂级数(3)在0x x =处收敛,则对于开区间00(||,||)x x -内的任何x ,幂级数(3)都收敛;如果幂级数(3)在0x x =处发散,则对于闭区间00[||,||]x x -以外的任何x ,幂级数都发散.由此可知,如果幂级数(3)既有非零的收敛点,又有发散点,则收敛396 点和发散点不可能交错地落在同一区间内,也就是一定存在收敛区间和发散区间的分界点x R =与x R =-(0R >)使得当||x R <时,幂级数(3)绝对收敛;当||x R >时,幂级数(3)发散;当x R =与x R =-时,幂级数(3)可能收敛也可能发散.通常称正数R 为幂级数(3)的收敛半径;开区间(,)R R -称为幂级数(3)的收敛区间. 由幂级数(3)在x R =±处的收敛性可以决定它的收敛域,其收敛域是(,)R R -,[,)R R -(,]R R -,或[,]R R -中之一.如果幂级数(3)只在0x =处收敛,则规定其收敛半径为0R =;如果幂级数(3)对一切x 都收敛,则规定其收敛半径为R =+∞,此时的收敛域为(,-∞+∞).收敛半径的求法由下面的定理给出.设n a 与1n a +是幂级数0n n n a x ∞=∑的相邻两项的系数,且1limn n na a ρ+→∞=.如果 (1)0ρ≠,则1R ρ=;(2)0ρ=,则R =+∞;(3)ρ=+∞,则0R =.证 记nn n u a x =,则1lim n n n u u +→∞=111lim lim ||n n n n n n n na x a x a a x +++→∞→∞=||x ρ=.由比值审敛法知: (1) 当||1x ρ<,即1||x ρ<时,级数0n n n a x ∞=∑收敛,从而级数(3)绝对收敛;当||1x ρ>即1||x ρ>时,级数0n n n a x ∞=∑发散,因此收敛半径1R ρ=.(2)如果0ρ=,则对任何0x ≠,有||01x ρ=<,所以级数0n n n a x ∞=∑收敛,从而级数(3)绝对收敛,于是收敛半径R =+∞.(3)如果ρ=+∞,则对于除0x =以外的任何x ,有||1x ρ>,所以对任何0x ≠,幂级数(3)发散,即收敛半径0R =.●●例2 求幂级数231(1)23nn x x x x n +-+++-+的收敛半径、收敛区间和收敛域.解 根据定理2有1lim n n na a ρ+→∞==11lim 11n n n→∞+=,所以收敛半径11R ρ==.所给级数的收敛区间为(1,1)-.对于端点1x =,所给幂级数成为交错级数11111(1)23n n +-+-+-+,该级数收敛. 对于端点1x =-,所给幂级数成为111123n------,该级数发散.故所给级数的收敛域为(1,1]-.●●例3求幂级数212nn n x ∞=∑的收敛域.解 本题为缺项幂级数,由于幂级数相邻两项的系数有零,不能直接求收敛半径.可以397利用比值审敛法来处理,考虑幂级数211||2n n n x ∞=∑,因为2212221||112lim lim 122||2n n n n n n x x x x ++→∞→∞==,当2112x <,即||x <时,级数211||2n n n x ∞=∑收敛; 当2112x >,即||x >,级数211||2n n n x ∞=∑发散;收敛半径R =,收敛区间为(;当x =2111(12nn n n ∞∞===∑∑发散,所以幂级数212n n n x ∞=∑的收敛域为(.●●例4 求幂级数12112n n n x ∞--=∑的收敛半径.解 与标准幂级数(3)比较,级数缺少偶次幂项.因此定理2不能直接应用,但可用比值审敛法来求收敛半径.因1lim n n n u u +→∞=2121212lim 22n n n n n x x x +--→∞=.当221x <,即||x <时,级数收敛;当221x >,即||x >R =●●例5求幂级数n n ∞=的收敛域.解 令1t x =-,则1)n nn n x ∞∞==-=.因为1lim ||1n n n n a a +→∞==,所以收敛半径11R ρ==,收敛区间为(1,1)-.当1t =-时,1)nnn n ∞∞===-收敛;当1t =时,nn n ∞∞===所以n n ∞=的收敛域为[1,1)-,即11t -≤<,把1t x =-代入,得02x ≤<,故幂级数nn ∞=[0,2).三、幂级数的运算如果幂级数2012n n a a x a x a x +++++()s x = 的收敛半径为1R ,而幂级数2012n n b b x b x b x +++++()x σ=的收敛半径为2R ,则(1)幂级数的加法和减法:()nnn nnnn n n n a x b x ab x ∞∞∞===+=+∑∑∑()()s x x σ=+;398 0()nnn nnnn n n n a x b x ab x ∞∞∞===-=-∑∑∑()()s x x σ=-.收敛半径为12min{,}R R R =.(2)幂级数乘法:n nnnn n a x b x∞∞==⋅∑∑000110()a b a b a b x =++2021120()a b a b a b x ++++0110()n n n n a b a b a b x -+++++()()s x x σ=⋅.收敛半径为12min{,}R R R =.(3)幂级数除法:220120122012n n n n n n a a x a x a x c c x c x c x b b x b x b x +++++=++++++++++.这里假设00b ≠, 将0nn n b x ∞=∑与0nn n c x ∞=∑相乘,所得多项式的系数分别等于0n n n a x ∞=∑中同次幂的系数,从而可求出012,,,,,n c c c c . 相除后所得幂级数0n n n c x ∞=∑的收敛区间可能比原来的两级数0nn n a x ∞=∑与0n n n b x ∞=∑的收敛区间小得多.关于幂级数的和函数,有下面的重要性质:如果幂级数0nn n a x ∞=∑收敛半径为R (0R >),和函数为()s x ,即()s x 0n n n a x ∞==∑,则有(1)()s x 在收敛区间(,)R R -内连续,且如果级数0n n n a x ∞=∑在收敛区间的端点x R =(或x R =-)也收敛,则和函数()s x 在x R =处左连续(或在x R =-处右连续). (2)()s x 在收敛区间(,R R -)内可导,并且有逐项求导公式()()n n n s x a x ∞=''=∑0()n n n a x ∞='=∑11n n n na x ∞-==∑.逐项求导后所得到的新级数收敛半径仍为R .(3)()s x 在收敛区间(,R R -)内可积,并且有逐项积分公式1()d ()d d 1xxxnnn n n n n n n a s t t a t t a t t x n ∞∞∞+======+∑∑∑⎰⎰⎰. 逐项积分后所得到的新级数收敛半径仍为R .●●例6 求幂级数011nn x n ∞=+∑的收敛域及其和函数. 解 因为1limn n n a a ρ+→∞==1lim 12n n n →∞+=+,故所给级数的收敛半径11R ρ==,收敛区间为(1, 1)-.当1x =时,原级数成为011n n ∞=+∑,发散;当1x =-时,原级数成为0(1)1nn n ∞=-+∑,是交错级399数,收敛;因此原级数的收敛域为[1,1)-.设所求级数的和函数为()s x ,即() [1,1)1nn x s x x n ∞==∈-+∑,给上面的等式两端乘以x ,得1()1n n x xs x n +∞==+∑.等式两边求导,得11000[()]()()11n n n n n n x x xs x x n n ++∞∞∞==='''===++∑∑∑1 (||).<11x x =-对上式两端从0到x 积分,得0d ()ln(1)1x txs x x t ==---⎰ (||1)x <.故当0x ≠且[1,1)x ∈-时,1()ln(1)s x x x =--,当0x =时,由2() 1123n n x x x s x n ∞===++++∑,得(0)1s =.因此[)1ln(1), 1,0(0,1),()1, =0.x x s x x x ⎧--∈-⎪=⎨⎪⎩●●例7 求幂级数210(1)21n n n x n +∞=-+∑的和函数,并求01(1)21n n n ∞=-+∑的和.解 级数的收敛半径为1,收敛域为[1,1]-. 设级数的和函数为()s x ,即()s x 21(1)21n nn x n +∞==-+∑, 逐项求导,得()s x '210(1)()21n nn x n +∞='=-+∑20(1)n nn x ∞==-∑20()n n x ∞==-=∑211x +. 对上式从0到x 积分,得2001()d d arctan .1xxs t t t x t '==+⎰⎰即所求和函数为()(0)arctan ,s x s x -=又因为(0)0,s =所以()arctan ,[1,1].s x x x =∈-在原级数中,令1x =,得0(1)21n n n ∞=-+∑arctan1=4π=.习 题 10-31.求下列幂级数的收敛域:(1)2323x x x +++; (2)2342221234x x x x -+-+-;(3)23224246x x x +++⋅⋅⋅; (4)2323222222112131x x x ++++++;(5)23423421!22!23!24!x x x x ++++⋅⋅⋅⋅; (6)23423413233343x x x x ++++⋅⋅⋅⋅;400 (7)2111(1)(21)!n n n x n -∞+=--∑; (8)11(1)(1)n n n x n ∞-=--∑; (9)221212n n n n x ∞-=-∑; (10)nn ∞=.2.利用逐项求导或逐项积分,求下列级数在收敛区间内的和函数: (1)231234x x x ++++; (2)111(1)n n n nx ∞--=-∑;(3)41141n n x n +∞=+∑;(4)3535x x x +++,并求11(21)2nn n ∞=-∑的和. 第四节 函数展开成幂级数一、泰勒级数第三节讨论了幂级数的收敛域及其和函数的性质,由此可知,一个幂级数()nnn a x x ∞=-∑在它的收敛域内收敛于和函数()s x ,即()s x 00()n n n a x x ∞==-∑.但是,在许多应用中,我们需要解决的是与此相反的问题,也就是对于给定的函数()f x ,它是否可以在某个区间上展开成为幂级数?即是否可以找到一个幂级数,它在某区间内收敛,且其和恰好就是给定的函数()f x ,如果可以的话,如何来确定这个幂级数.下面我们就来讨论这个问题.由第三章第二节的泰勒公式可知,如果函数()f x 在点0x 的某个邻域内具有直到(1)n +阶连续导数,则在该邻域内()f x 的n 阶泰勒公式为()f x =200000()()()()()2!f x f x f x x x x x '''+-+-+()00()()()!n n n f x x x R x n +-+ (1) 其中()n R x =(1)10()()(1)!n n f x x n ξ++-+ (ξ介于0x 与x 之间)为拉格朗日型余项. 这时在该邻域内()f x 可用n 次多项式()n P x =200000()()()()()2!f x f x f x x x x x '''+-+- ()00()()!n n f x x x n ++- (2) 来近似地表示,其误差等于余项的绝对值()n R x .如果()n R x 随着n 的增大而减小,那么我们就可以用增加多项式的项数的办法来提高精确度.如果()f x 在点0x 的某邻域内具有任意阶导数()f x ',()f x '',(),(),n f x ,则可以设想多项式(2)的项数趋向无穷而成为幂级数200000()()()()()2!f x f x f x x x x x '''+-+-++()00()()!n n f x x x n -+⋅⋅⋅ (3) 幂级数(3)称为函数()f x 在0x 处的泰勒级数.显然,当0x x =时,该级数收敛于0()f x ,但除了0x x =外,该级数是否还收敛?如果收敛的话,是否收敛于()f x ?关于这些问题,下。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1000 10000 11111 ,
1 1
9
9
10
9
1000 1 1
10000 11111 ,
9
9
10
也就是说,如果赛程比这个距离短,则乌龟胜;如果赛程恰好 等于这个距离,则双方平分秋色;否则,阿基里斯就要在距离起点
1 1111 处追上并超过乌龟.
9
10
例2
讨论无穷级数
1 1 3
1 35
如此分析下去,显然阿基里斯离乌龟越来越近,但却是永远 也追不上乌龟的.这个结论显然是错误的,但奇怪的是,这种推理 在逻辑上却没有任何毛病.那么,问题究竟出在哪儿呢?
8
如果我们从级数的角度来分析这个问题,齐诺的这个悖论
就会不攻自破.
设乌龟的速度为 v,则阿基里斯的速度为 10v,他跑完 1000 米所化
级数收敛, 且和为1 .
2
11
例3 讨论级数 ln(1 1 ) 的敛散性.
n1
n
解
un
ln(1
1) n
ln(n 1) lnn ,
所以
Sn ln2 ln1 ln3 ln2 ln(n 1) lnn
ln(n 1) n
所以级数发散.
12
级数收敛的必要条件
定理 若级数
如果让阿基里斯(Achilles,古希腊神话中善跑的英雄)和 乌龟之间举行一场赛跑,让乌龟在阿基里斯前头1000米开始,假 定阿基里斯能够跑得比乌龟快10倍,也永远也追不上乌龟.齐诺 的理论依据是:当比赛开始的时候,阿基里斯跑了1000米,此时 乌龟仍然前于他100米;当阿基里斯跑了下一个100米时,乌龟 仍然前于他10米,…,
n1
(a 0)
如果 | q | 1,
当 q 1时, Sn na 发散
当 q 1时, 级数变为a a a a
lim
n
Sn不
存
在,
发散
综上所述,
aq n1
n1
当 | q | 1时, 收敛 当 | q | 1时, 发散
a 1q
7
齐诺悖论—阿基里斯与乌龟
公元前五世纪,以诡辩著称的古希腊哲学家齐诺(Zeno) 用他的无穷、连续以及部分和的知识,引发出以下著名的悖论:
n1
n
n
再举一个重要例子:
调和级数 1 1 1 1 1 ,
n1 n
23
n
lim 1 0 ,但级数是否收敛? n n
15
(2n
1 1) (2n
1)
的收敛性.
解
un
1 (2n 1)(2n
1)
1 2
(1 2n 1
1) 2n 1
,
Sn
1 1 3
1 35
1 (2n 1) (2n 1)
1 (1 1) 1 (1 1) 1 ( 1 1 )
2 3 23 5
2 2n 1 2n 1
1 (1 1 ) 1 (n ) , 2 2n 1 2
un
收
敛,则必有
lim
n
un
0.
n1
证明 un Sn Sn1,
lim
n
Sn
S
,
lim
n
un
lim(
n
Sn
Sn1 )
lim
n
Sn
lim
n
Sn1
SS 0.
13
若级数
un
收
敛,则必有
lim
n
un
0
.
n1
说明:
1、如果级数的一般项不趋于零,则级数发散;
例如 1 2 3 (1)n1 n
234
计算圆的面积
正六边形的面积 a1
正十二边形的面积
正 3 2n 形的面积
a1 a1
a2 a2
an
即 A a1 a2 an
R
3
1、级数的定义:
一般项
un u1 u2 u3 un
n1
— (常数项)无穷级数
级数的部分和
n
Sn u1 u2 un ui
部分和数列
i 1
S1 u1, S2 u1 u2 , S3 u1 u2 u3 ,, Sn u1 u2 un ,
的时间为 1000 100 ,在这段时间里,乌龟又爬了v 100 100 米,
10v v
v
阿基里斯为跑完这段路又花费时间 100 10 ,此时乌龟又在他前面 10v v
10 米处,……,依次类推,阿基里斯需要追赶的全部路程为
1000 100 10
这是一个公比为 q 1 1 的几何级数,易求得它的和为 10
n1
| un | 1 , 所以 un 0 , 级数发散;
再如,cos
2
cos
4
cos
8
cos
2n
lim cos 2n 1 0 ,
级数发散。
14
2、必要条件不充分:
若
lim
n
un
0 ,级数却不一定收敛.
如 ln(1 1 ) : ln(1 1 ) 0 (n ) , 但级数发散。
如此分析下去,显然阿基里斯离乌龟越来越近,但却是永远 也追不上乌龟的.这个结论显然是错误的,但奇怪的是,这种推理 在逻辑上却没有任何毛病.那么,问题究竟出在哪儿呢?
2
第一节 常数项级数的概念和性质
无穷级数是高等数学的一个重要组成部分, 它是表示函数、研究函数的性质以及进行数值 计算的一种工具.
一、级数的基本概念
aqn1 a aq aq2 aqn1 (a 0)
n1
的收敛性.
解 如果 q 1,
Sn
a
aq
aq2
aqn1
a aqn 1q
,
当 | q | 1时,
lim qn 0
n
lim
n
Sn
a 1
q
收敛
当 | q | 1时, lim qn n
lim
n
Sn
发散
6
aqn1 a aq aq2 aqn1
4
2、级数的收敛与发散:
当 n 时,如果级数 un 的部分和数列{Sn } 有极限 S ,
n1
即
lim
n
Sn
S
,则称无穷级数
un 收敛,
n1
这时极限 S 叫做级数 un 的和,并写成
n1
un S
n1
如果数列{Sn } 没有极限,则称无穷级数 un 发散.
n1
5
例1 讨论等比级数(几何级数)
第十章 无穷级数
第一节 常数项级数的概念与性质 第二节 数项级数的审敛法 第三节 幂级数 第四节 函数的幂级数展开 第五节 傅里叶级数
1
齐诺悖论—阿基里斯与乌龟
公元前五世纪,以诡辩著称的古希腊哲学家齐诺著名的悖论:
如果让阿基里斯(Achilles,古希腊神话中善跑的英雄)和 乌龟之间举行一场赛跑,让乌龟在阿基里斯前头1000米开始,假 定阿基里斯能够跑得比乌龟快10倍,也永远也追不上乌龟.齐诺 的理论依据是:当比赛开始的时候,阿基里斯跑了1000米,此时 乌龟仍然前于他100米;当阿基里斯跑了下一个100米时,乌龟 仍然前于他10米,…,