几何图形初步经典测试题含答案
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. B. C. D.
【答案】C
【解析】
【分析】
利用正方体及其表面展开图的特点解题.
【详解】
解:A、B、D经过折叠后,下边没有面,所以不可以围成正方体,C能折成正方体.
故选C.
【点睛】
本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形.
3.如图,将矩形纸片沿EF折叠,点C在落线段AB上,∠AEC=32°,则∠BFD等于()
在Rt△A′QC中,由勾股定理得:A′C= =15cm,
故选:B.
【点睛】
本题考查了圆柱的最短路径问题,掌握圆柱的侧面展开图、勾股定理是解题的关键.
17.如图,在 中, , ,如图:(1)以 为圆心,任意长为半径画弧分别交 、 于点 和 ;(2)分别以 、 为圆心,大于 的长为半径画弧,两弧交于点 ;(3)连结 并延长交 于点 .根据以上作图过程,下列结论中错误的是()
故选:D.
【点睛】
本题考查由三视图判断几何体及展开图折叠成几何体,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.
10.在直角三角形ABC中,∠C=90°,AD平分∠BAC交BC于点D,BE平分∠ABC交AC于点E,AD、BE相交于点F,过点D作DG∥AB,过点B作BG⊥DG交DG于点G.下列结论:①∠AFB=135°;②∠BDG=2∠CBE;③BC平分∠ABG;④∠BEC=∠FBG.其中正确的个数是()
16.如图,圆柱形玻璃板,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的A处,则蚂蚁到达蜂蜜的最短距离( )cm.
A.14B.15C.16D.17
【答案】B
【解析】
【分析】
在侧面展开图中,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,求出A′Q,CQ,根据勾股定理求出A′C即可.
∵∠3=∠G+∠CFG,∠1=∠2+∠G,∠CFG=∠AFE,
∴∠3=∠G+∠2+∠G,∠G= (∠3﹣∠2).
故选:C.
【点睛】
本题考查了三角形中角度的问题,掌握角平分线的性质、三角形外角的性质是解题的关键.
8.如果圆柱的母线长为5cm,底面半径为2cm,那么这个圆柱的侧面积是( )
A.10cm2B.10πcm2C.20cm2D.20πcm2
A. 是 的平分线B.
C.点 在 的中垂线上D.
【答案】D
【解析】
【分析】
根据作图的过程可以判定AD是∠BAC的角平分线;利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度数;利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D在AB的中垂线上;利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.
12.一把直尺和一块三角板ABC(含30°,60°角)的摆放位置如图,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CED=50°,那么∠BAF=( )
A.10°B.50°C.45°D.40°
【答案】A
【解析】
【分析】
先根据∠CED=50°,DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小.
14.如图, , 平分 ,且 ,则 与 的关系是()
A. B.
C. D.
【答案】A
【解析】
【分析】
延长 交 的延长线于 ,根据两直线平行,内错角相等可得 ,再根据两直线平行,同位角相等可得 ,然后根据角平分线的定义解答.
【详解】
证明:如图,延长 交 的延长线于 ,
,
,
,
,
,
平分 ,
,即 .
故选:A.
又阴影部分正方形在左,三角形在右,而且相邻,故只有选项B符合题意.
故选B.
点评:此题主要考查了几何体的展开图,本题虽然是选择题,但答案的获得需要学生经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生空间观念.
2.下列图形中,是正方体表面展开图的是()
【详解】
根据题意得,点 从点 运动到点 时以及从点 运动到点 时是一条线段,故选项C与选项D不合题意;
点 从点 运动到点 时, 是 的二次函数,并且有最小值,
∴选项B符合题意,选项A不合题意.
故选B.
【点睛】
本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y与x的函数关系,然后根据二次函数和一次函数图象与性质解决问题.
【点睛】
本题考查了平行线的性质,角平分线的定义,熟记性质并作辅助线是解题的关键.
15.如图, 为等边三角形,点 从A出发,沿 作匀速运动,则线段 的长度y与运动时间x之间的函数关系大致是()
A. B.
C. D.
【答案】B
【解析】
【分析】
根据题意可知点P从点A运动到点B时以及从点C运动到点A时是一条线段,故可排除选项C与D;点P从点B运动到点C时,y是x的二次函数,并且有最小值,故选项B符合题意,选项A不合题意.
A.线段比曲线短B.经过一点有无数条直线
C.经过两点,有且仅有一条直线D.两点之间,线段最短
【答案】D
【解析】
【分析】
如下图,只需要分析AB+BC<AC即可
【详解】
∵线段AC是点A和点C之间的连线,AB+BC是点A和点C经过弯折后的路径
又∵两点之间线段最短
∴AC<AB+BC
故选:D
【点睛】
本题考查两点之间线段最短,在应用的过程中,要弄清楚线段长度表示的是哪两个点之间的距离
【答案】D
【解析】
分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
详解:正方体的表面展开图,相对的面之间一定相隔一个正方形,
“的”与“害”是相对面,
“了”与“厉”是相对面,
“我”与“国”是相对面.
故选:D.
点睛:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
【答案】D
【解析】
【分析】
根据角平分线定理可得AE:BE=AC:BC=3:4,进而求得AE= AB,再由点D为AB中点得AD= AB,进而可求得 的值.
【详解】
解:∵ 平分 ,
∴点E到 的两边距离相等,
设点E到 的两边距离位h,
则S△ACE= AC·h,S△BCE= BC·h,
∴S△ACE:S△BCE= AC·h: BC·h=AC:BC,
【详解】
解:将其折成正方体后,则“扫”的对面是除.
故选B.
【点睛】
本题考查了正方体的相对面的问题.能够根据正方体及其表面展开图的特点,找到相对的面是解题的关键.
7.如图,三角形ABC中,AD平分∠BAC,EG⊥AD,且分别交AB、AD、AC及BC的延长线于点E、H、F、G,下列四个式子中正确的是()
A.∠1= (∠2﹣∠3)B.∠1=2(∠2﹣∠3)
C.∠G= (∠3﹣∠2)D.∠G= ∠1
【答案】C
【解析】
【分析】
根据角平分线得,∠1=∠AFE,由外角的性质,∠3=∠G+∠CFG=∠G+∠1,∠1=∠2+∠G,从而推得∠G= (∠3﹣∠2).
【详解】
解:∵AD平分∠BAC,EG⊥AD,
∴∠1=∠AFE,
A.28°B.32°C.34°D.36°
【答案】B
【解析】
【分析】
根据折叠的性质和矩形的性质,结合余角的性质推导出结果即可.
【详解】
解:如图,设CD和BF交于点O,由于矩形折叠,
∴∠D=∠B=∠A=∠ECD=90°,∠ACE+∠BCO=90°,∠BCO+∠BOC=90°,
∵∠AEC=32°,
∴∠ACE=90°-32°=58°,
又∵S△ACE:S△BCE=AE:BE,
∴AE:BE=AC:BC,
∵在 中, , ,
∴AC:BC=3:4,
∴AE:BE=3:4
∴AE= AB,
∵ 为 边上的中பைடு நூலகம்,
∴AD= AB,
∴ ,
故选:D.
【点睛】
本题主要考查了角平分线定理的应用及三角函数的应用,通过面积比证得AE:BE=AC:BC是解决本题的关键.
几何图形初步经典测试题含答案
一、选择题
1.图①是由白色纸板拼成的立体图形,将它的两个面的外表面涂上颜色,如图②所示.则下列图形中,是图②的表面展开图的是().
A. B. C. D.
【答案】B
【解析】
试题分析:由平面图形的折叠及立体图形的表面展开图的特点解题.
解:由图中阴影部分的位置,首先可以排除C、D,
【详解】
∵DE∥AF,∠CED=50°,
∴∠CAF=∠CED=50°,
∵∠BAC=60°,
∴∠BAF=60°﹣50°=10°,
故选:A.
【点睛】
此题考查平行线的性质,几何图形中角的和差关系,掌握平行线的性质是解题的关键.
13.如图,在 中, , , 为 边上的中线, 平分 ,则 的值()
A. B. C. D.
∴∠BEC=∠FBG,故④正确.
故选:C
【点睛】
本题考查了角平分线性质、三角形内角和定理、平行线的性质以及等角的余角相等等知识,熟练运用这些知识点是解题的关键.
11.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( )
A.厉B.害C.了D.我
【详解】
解:沿过A的圆柱的高剪开,得出矩形EFGH,
过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则
AP+PC就是蚂蚁到达蜂蜜的最短距离,
∵AE=A′E,A′P=AP,
∴AP+PC=A′P+PC=A′C,
∵CQ= ×18cm=9cm,A′Q=12cm﹣4cm+4cm=12cm,
∴∠BAF+∠ABF=45°,
∴∠AFB=135°,故①正确;
∵DG∥AB,
∴∠BDG=∠ABC=2∠CBE,故②正确;
∵∠ABC的度数不确定,
∴BC平分∠ABG不一定成立,故③错误;
∵BE平分∠ABC,
∴∠ABF=∠CBE,
又∵∠C=∠ABG=90°,
∴∠BEC+∠CBE=90°,∠ABF+∠FBG=90°,
【详解】
解:A、根据作图方法可得AD是∠BAC的平分线,正确;
B、∵∠C=90°,∠B=30°,
∴∠CAB=60°,
A. B.
C. D.
【答案】D
【解析】
【分析】
根据三视图可判断这个几何体的形状;再由平面图形的折叠及立体图形的表面展开图的特点解题.
【详解】
解:根据三视图可判断这个几何体是圆柱;D选项平面图一个长方形和两个圆折叠后,能围成的几何体是圆柱.A选项平面图折叠后是一个圆锥;B选项平面图折叠后是一个正方体;C选项平面图折叠后是一个三棱柱.
将直角三角形绕斜边所在直线旋转一周后形成的几何体为:
故选C.
【点睛】
本题考查了面动成体,点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.
6.如图,是一个正方体的表面展开图,将其折成正方体后,则“扫”的对面是( )
A.黑B.除C.恶D.☆
【答案】B
【解析】
【分析】
正方体的空间图形,从相对面入手,分析及解答问题.
A.1个B.2个C.3个D.4个
【答案】C
【解析】
【分析】
根据角平分线性质、三角形内角和定理以及平行线的性质,即可判定①②正确;根据等角的余角相等,即可判定④正确.
【详解】
∵AD平分∠BAC交BC于点D,BE平分∠ABC交AC于点E,
∴∠BAF= ∠BAC,∠ABF= ∠ABC,
又∵∠C=90°,
∴∠ABC+∠BAC=90°,
【答案】D
【解析】
【分析】
根据圆柱的侧面积=底面周长×高.
【详解】
根据圆柱的侧面积计算公式可得π×2×2×5=20πcm2,故选D.
【点睛】
本题考查了圆柱的计算,解题的关键是熟练掌握圆柱侧面积公式.
9.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()
∴∠BCO=90°-∠ACE=32°,
∴∠BOC=90°-32°=58°=∠DOF,
∴∠BFD=90°-58°=32°.
故选B.
【点睛】
本题考查了折叠的性质和矩形的性质和余角的性质,解题的关键是掌握折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应角相等.
4.如图,如果用剪刀沿直线将一个正方形图片剪掉一部分,发现剩下部分的周长比原正方形图片的周长要小,能正确解释这一现象的数学知识是( )
5.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是
A. B. C. D.
【答案】C
【解析】
【分析】
分三种情况讨论,即可得到直角三角形绕一条边所在直线旋转一周后形成的几何体.
【详解】
解:将直角三角形绕较长直角边所在直线旋转一周后形成的几何体为:
将直角三角形绕较短直角边所在直线旋转一周后形成的几何体为:
【答案】C
【解析】
【分析】
利用正方体及其表面展开图的特点解题.
【详解】
解:A、B、D经过折叠后,下边没有面,所以不可以围成正方体,C能折成正方体.
故选C.
【点睛】
本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形.
3.如图,将矩形纸片沿EF折叠,点C在落线段AB上,∠AEC=32°,则∠BFD等于()
在Rt△A′QC中,由勾股定理得:A′C= =15cm,
故选:B.
【点睛】
本题考查了圆柱的最短路径问题,掌握圆柱的侧面展开图、勾股定理是解题的关键.
17.如图,在 中, , ,如图:(1)以 为圆心,任意长为半径画弧分别交 、 于点 和 ;(2)分别以 、 为圆心,大于 的长为半径画弧,两弧交于点 ;(3)连结 并延长交 于点 .根据以上作图过程,下列结论中错误的是()
故选:D.
【点睛】
本题考查由三视图判断几何体及展开图折叠成几何体,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.
10.在直角三角形ABC中,∠C=90°,AD平分∠BAC交BC于点D,BE平分∠ABC交AC于点E,AD、BE相交于点F,过点D作DG∥AB,过点B作BG⊥DG交DG于点G.下列结论:①∠AFB=135°;②∠BDG=2∠CBE;③BC平分∠ABG;④∠BEC=∠FBG.其中正确的个数是()
16.如图,圆柱形玻璃板,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的A处,则蚂蚁到达蜂蜜的最短距离( )cm.
A.14B.15C.16D.17
【答案】B
【解析】
【分析】
在侧面展开图中,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,求出A′Q,CQ,根据勾股定理求出A′C即可.
∵∠3=∠G+∠CFG,∠1=∠2+∠G,∠CFG=∠AFE,
∴∠3=∠G+∠2+∠G,∠G= (∠3﹣∠2).
故选:C.
【点睛】
本题考查了三角形中角度的问题,掌握角平分线的性质、三角形外角的性质是解题的关键.
8.如果圆柱的母线长为5cm,底面半径为2cm,那么这个圆柱的侧面积是( )
A.10cm2B.10πcm2C.20cm2D.20πcm2
A. 是 的平分线B.
C.点 在 的中垂线上D.
【答案】D
【解析】
【分析】
根据作图的过程可以判定AD是∠BAC的角平分线;利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC的度数;利用等角对等边可以证得△ADB的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D在AB的中垂线上;利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.
12.一把直尺和一块三角板ABC(含30°,60°角)的摆放位置如图,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CED=50°,那么∠BAF=( )
A.10°B.50°C.45°D.40°
【答案】A
【解析】
【分析】
先根据∠CED=50°,DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小.
14.如图, , 平分 ,且 ,则 与 的关系是()
A. B.
C. D.
【答案】A
【解析】
【分析】
延长 交 的延长线于 ,根据两直线平行,内错角相等可得 ,再根据两直线平行,同位角相等可得 ,然后根据角平分线的定义解答.
【详解】
证明:如图,延长 交 的延长线于 ,
,
,
,
,
,
平分 ,
,即 .
故选:A.
又阴影部分正方形在左,三角形在右,而且相邻,故只有选项B符合题意.
故选B.
点评:此题主要考查了几何体的展开图,本题虽然是选择题,但答案的获得需要学生经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生空间观念.
2.下列图形中,是正方体表面展开图的是()
【详解】
根据题意得,点 从点 运动到点 时以及从点 运动到点 时是一条线段,故选项C与选项D不合题意;
点 从点 运动到点 时, 是 的二次函数,并且有最小值,
∴选项B符合题意,选项A不合题意.
故选B.
【点睛】
本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y与x的函数关系,然后根据二次函数和一次函数图象与性质解决问题.
【点睛】
本题考查了平行线的性质,角平分线的定义,熟记性质并作辅助线是解题的关键.
15.如图, 为等边三角形,点 从A出发,沿 作匀速运动,则线段 的长度y与运动时间x之间的函数关系大致是()
A. B.
C. D.
【答案】B
【解析】
【分析】
根据题意可知点P从点A运动到点B时以及从点C运动到点A时是一条线段,故可排除选项C与D;点P从点B运动到点C时,y是x的二次函数,并且有最小值,故选项B符合题意,选项A不合题意.
A.线段比曲线短B.经过一点有无数条直线
C.经过两点,有且仅有一条直线D.两点之间,线段最短
【答案】D
【解析】
【分析】
如下图,只需要分析AB+BC<AC即可
【详解】
∵线段AC是点A和点C之间的连线,AB+BC是点A和点C经过弯折后的路径
又∵两点之间线段最短
∴AC<AB+BC
故选:D
【点睛】
本题考查两点之间线段最短,在应用的过程中,要弄清楚线段长度表示的是哪两个点之间的距离
【答案】D
【解析】
分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
详解:正方体的表面展开图,相对的面之间一定相隔一个正方形,
“的”与“害”是相对面,
“了”与“厉”是相对面,
“我”与“国”是相对面.
故选:D.
点睛:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
【答案】D
【解析】
【分析】
根据角平分线定理可得AE:BE=AC:BC=3:4,进而求得AE= AB,再由点D为AB中点得AD= AB,进而可求得 的值.
【详解】
解:∵ 平分 ,
∴点E到 的两边距离相等,
设点E到 的两边距离位h,
则S△ACE= AC·h,S△BCE= BC·h,
∴S△ACE:S△BCE= AC·h: BC·h=AC:BC,
【详解】
解:将其折成正方体后,则“扫”的对面是除.
故选B.
【点睛】
本题考查了正方体的相对面的问题.能够根据正方体及其表面展开图的特点,找到相对的面是解题的关键.
7.如图,三角形ABC中,AD平分∠BAC,EG⊥AD,且分别交AB、AD、AC及BC的延长线于点E、H、F、G,下列四个式子中正确的是()
A.∠1= (∠2﹣∠3)B.∠1=2(∠2﹣∠3)
C.∠G= (∠3﹣∠2)D.∠G= ∠1
【答案】C
【解析】
【分析】
根据角平分线得,∠1=∠AFE,由外角的性质,∠3=∠G+∠CFG=∠G+∠1,∠1=∠2+∠G,从而推得∠G= (∠3﹣∠2).
【详解】
解:∵AD平分∠BAC,EG⊥AD,
∴∠1=∠AFE,
A.28°B.32°C.34°D.36°
【答案】B
【解析】
【分析】
根据折叠的性质和矩形的性质,结合余角的性质推导出结果即可.
【详解】
解:如图,设CD和BF交于点O,由于矩形折叠,
∴∠D=∠B=∠A=∠ECD=90°,∠ACE+∠BCO=90°,∠BCO+∠BOC=90°,
∵∠AEC=32°,
∴∠ACE=90°-32°=58°,
又∵S△ACE:S△BCE=AE:BE,
∴AE:BE=AC:BC,
∵在 中, , ,
∴AC:BC=3:4,
∴AE:BE=3:4
∴AE= AB,
∵ 为 边上的中பைடு நூலகம்,
∴AD= AB,
∴ ,
故选:D.
【点睛】
本题主要考查了角平分线定理的应用及三角函数的应用,通过面积比证得AE:BE=AC:BC是解决本题的关键.
几何图形初步经典测试题含答案
一、选择题
1.图①是由白色纸板拼成的立体图形,将它的两个面的外表面涂上颜色,如图②所示.则下列图形中,是图②的表面展开图的是().
A. B. C. D.
【答案】B
【解析】
试题分析:由平面图形的折叠及立体图形的表面展开图的特点解题.
解:由图中阴影部分的位置,首先可以排除C、D,
【详解】
∵DE∥AF,∠CED=50°,
∴∠CAF=∠CED=50°,
∵∠BAC=60°,
∴∠BAF=60°﹣50°=10°,
故选:A.
【点睛】
此题考查平行线的性质,几何图形中角的和差关系,掌握平行线的性质是解题的关键.
13.如图,在 中, , , 为 边上的中线, 平分 ,则 的值()
A. B. C. D.
∴∠BEC=∠FBG,故④正确.
故选:C
【点睛】
本题考查了角平分线性质、三角形内角和定理、平行线的性质以及等角的余角相等等知识,熟练运用这些知识点是解题的关键.
11.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( )
A.厉B.害C.了D.我
【详解】
解:沿过A的圆柱的高剪开,得出矩形EFGH,
过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则
AP+PC就是蚂蚁到达蜂蜜的最短距离,
∵AE=A′E,A′P=AP,
∴AP+PC=A′P+PC=A′C,
∵CQ= ×18cm=9cm,A′Q=12cm﹣4cm+4cm=12cm,
∴∠BAF+∠ABF=45°,
∴∠AFB=135°,故①正确;
∵DG∥AB,
∴∠BDG=∠ABC=2∠CBE,故②正确;
∵∠ABC的度数不确定,
∴BC平分∠ABG不一定成立,故③错误;
∵BE平分∠ABC,
∴∠ABF=∠CBE,
又∵∠C=∠ABG=90°,
∴∠BEC+∠CBE=90°,∠ABF+∠FBG=90°,
【详解】
解:A、根据作图方法可得AD是∠BAC的平分线,正确;
B、∵∠C=90°,∠B=30°,
∴∠CAB=60°,
A. B.
C. D.
【答案】D
【解析】
【分析】
根据三视图可判断这个几何体的形状;再由平面图形的折叠及立体图形的表面展开图的特点解题.
【详解】
解:根据三视图可判断这个几何体是圆柱;D选项平面图一个长方形和两个圆折叠后,能围成的几何体是圆柱.A选项平面图折叠后是一个圆锥;B选项平面图折叠后是一个正方体;C选项平面图折叠后是一个三棱柱.
将直角三角形绕斜边所在直线旋转一周后形成的几何体为:
故选C.
【点睛】
本题考查了面动成体,点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.
6.如图,是一个正方体的表面展开图,将其折成正方体后,则“扫”的对面是( )
A.黑B.除C.恶D.☆
【答案】B
【解析】
【分析】
正方体的空间图形,从相对面入手,分析及解答问题.
A.1个B.2个C.3个D.4个
【答案】C
【解析】
【分析】
根据角平分线性质、三角形内角和定理以及平行线的性质,即可判定①②正确;根据等角的余角相等,即可判定④正确.
【详解】
∵AD平分∠BAC交BC于点D,BE平分∠ABC交AC于点E,
∴∠BAF= ∠BAC,∠ABF= ∠ABC,
又∵∠C=90°,
∴∠ABC+∠BAC=90°,
【答案】D
【解析】
【分析】
根据圆柱的侧面积=底面周长×高.
【详解】
根据圆柱的侧面积计算公式可得π×2×2×5=20πcm2,故选D.
【点睛】
本题考查了圆柱的计算,解题的关键是熟练掌握圆柱侧面积公式.
9.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()
∴∠BCO=90°-∠ACE=32°,
∴∠BOC=90°-32°=58°=∠DOF,
∴∠BFD=90°-58°=32°.
故选B.
【点睛】
本题考查了折叠的性质和矩形的性质和余角的性质,解题的关键是掌握折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应角相等.
4.如图,如果用剪刀沿直线将一个正方形图片剪掉一部分,发现剩下部分的周长比原正方形图片的周长要小,能正确解释这一现象的数学知识是( )
5.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是
A. B. C. D.
【答案】C
【解析】
【分析】
分三种情况讨论,即可得到直角三角形绕一条边所在直线旋转一周后形成的几何体.
【详解】
解:将直角三角形绕较长直角边所在直线旋转一周后形成的几何体为:
将直角三角形绕较短直角边所在直线旋转一周后形成的几何体为: