电力系统三相短路的分析与计算及三相短路的分类

合集下载

三相短路电流的计算

三相短路电流的计算
根据选择的计算方法和已知的电源参数、短路点 等,计算三相短路电流的有效值。
考虑非对称分量影响
在计算时需考虑三相不对称对短路电流的影响。
3
验证计算结果的准确性
通过对比历史数据或实测数据,验证计算结果的 准确性。
04 三相短路电流计算实例
实例一:简单电路的三相短路电流计算
总结词
适用于基础理论学习,简单明了地展示了三相短路电流的计算过程。
短路点的位置
确定短路点在系统中的位置,以便根据实际情况进行计算。
选择计算方法
欧姆定律法
基于欧姆定律,适用于电源容量较小、输电线路较短的情况。
叠加法
将三相电压和电流分别进行计算,再求和得到短路电流,适用于 较复杂系统。
迭代法
通过不断迭代计算,逐步逼近真实值,适用于大型电力系统。
计算短路电流
1 2
计算三相短路电流的有效值
详细描述
在简单电路中,三相短路电流可以通过电源电压、电源内阻抗和短路点到电源之间的距离来计算。首先计算短路 点到电源之间的电抗,然后利用欧姆定律计算短路电流。
实例二:复杂电路的三相短路电流计算
总结词
适用于掌握基本理论后,进一步学习如何处理更复杂的电路情况。
详细描述
在复杂电路中,需要考虑电源间互感、线路分布电容、变压器阻抗等因素对三相短路电流的影响。计 算时需要使用更加复杂的公式和模型,并进行必要的近似和简化处理。
短路可能导致电弧的产生,对工作人员和设备的安全构成威胁。
短路电流计算的重要性
保护设备
通过计算短路电流,可以合理选 择和配置电气设备,确保设备在 发生短路时不会受到损坏。
优化系统设计
准确的短路电流计算有助于优化 电力系统设计,提高电力系统的 稳定性和可靠性。

电力系统三相短路的分析与计算

电力系统三相短路的分析与计算

算算3【例1】在图1所示网络中,设8.1;;100===M av B BK U U MVA S,求K 点发生三相短路时的冲击电流、短路电流的最大有效值、短路功率?解:采用标幺值的近似计算法 ①各元件电抗的标幺值1008.03.610008.05.0222.13.03.631001004100435.0301001005.10121.01151004.0402*2**2*1=⨯⨯==⨯⨯⨯=⨯==⨯==⨯⨯=L N B R T L X I I X X X②从短路点看进去的总电抗的标幺值: 7937.1*2***1*=+++=∑L R T L X X X X X③短路点短路电流的标幺值,近似认为短路点的开路电压fU 为该段的平均额定电压avU5575.01****===∑∑XX U I f f4④短路点短路电流的有名值kA I I I Bf f113.53.631005575.0*=⨯⨯=⨯=⑤冲击电流kAI i f M 01.13113.555.255.2=⨯== ⑥最大有效值电流kAI I f M 766.7113.552.152.1=⨯==⑦短路功率MVAI I S S S B f B f f 75.551005575.0**=⨯=⨯=⨯=[例2] 电力系统接线如图2(a )所示,A 系统的容量不详,只知断路器B 1的切断容量为3500MV A ,C 系统的容量为100MV A ,电抗X C =0.3,各条线路单位长度电抗均为0.4Ω/km ,其他参数标于图中,试计算当f 1点发生三相短路时短路点的起始次暂态电流''1f I 及冲击电流i M ,(功率基准值和电压基准值取avBBU U MVA S ==,100)。

50km40kmf 1(3)A40km40km B 135kV(a)f 2(3)5X AX CX 1 X 2X 3X 4 X 5 f 1S AS C(b)S CX 9 X 7 X 8 X 10f 1X CS A(c)X 1X 11 (d)图2 简单系统等值电路(a) 系统图 (b)、(c)、(d)等值电路简化解:采用电源电势|0|''1E ≈和忽略负荷的近似条件,系统的等值电路图如图7-7(b)所示。

三相短路分析及短路电流计算

三相短路分析及短路电流计算

三相短路分析及短路电流计算三相短路分析及短路电流计算是电力系统中一个重要的问题,在电力系统运行和设计中起着至关重要的作用。

理解和计算三相短路电流对于保护设备和系统的可靠性至关重要。

下面我将详细介绍三相短路分析及短路电流计算的内容。

1.三相短路分析三相短路是指三相电源之间或电源与负载之间发生短路故障,造成电流突然增加。

三相短路会导致电流剧增,电网负载增大,电网发电机负荷骤降。

因此,对于电力系统而言,短路是一种严重的故障。

短路的原因主要有以下几种:-外部因素,如雷击、设备故障等;-人为因素,如误操作、设备维护不当等。

短路的位置主要有以下几种:-发电机绕组内部;-输电线路中;-终端设备终端内部。

短路的类型主要有以下几种:-对地短路(单相接地短路、双相接地短路);-相间短路;-相对地短路;-三相短路。

短路电流是指在短路发生时,电路中的电流值。

短路电流的计算是电力系统设计、保护设备选择、线路容量选择的重要依据。

正确计算短路电流能够保证系统的安全运行。

短路电流的计算包括以下步骤:-确定故障位置和类型;-确定电路参数,包括发电机额定电流、负载电流、接地电阻等;-选择合适的计算方法,如对称分量法、复杂网络法、解耦法等;-根据选定的计算方法进行计算,并考虑系统运行时的各种条件,如电源电压波动、电源短路容量等;-对计算结果进行验证和分析,确保结果的准确性。

在进行短路电流计算时,还需要考虑以下几个因素:-各种设备的短路容量,包括母线、断路器、继电器等;-系统的整体阻抗和电流限制;-瞬时电流和持续电流的功率损耗;-预测设备短路容量的变化趋势。

总之,三相短路分析及短路电流计算对于电力系统的正常运行和设备的保护至关重要。

准确计算短路电流能够帮助电力系统工程师定位和解决故障,从而确保系统的安全运行。

电力系统三相短路分析

电力系统三相短路分析

电力系统三相短路分析电力系统短路是指电力系统中正常工作状态下的导体相互接触或与大地接触,导致电流过大而瞬间形成一个低阻值的回路,称为短路。

短路可能导致电力系统设备受损、事故发生甚至引发火灾等严重后果,因此对电力系统进行短路分析显得尤为重要。

电力系统短路分析的主要目的是确定短路电流大小及其分布情况,以便确定保护装置的设置参数和电气设备的选型设计。

在进行短路分析时需要考虑各种电力设备的参数、电力系统的拓扑结构以及电力系统的操作方式等因素。

电力系统短路分析可以分为对发电机、变压器、线路和负荷等不同组件进行短路分析。

首先对发电机进行短路分析,需要考虑其内部参数以及与系统的连接方式。

通常将发电机模型化为两个序列,即正序和负序。

正序各个参数均与实际相同,而负序则将相序改为逆序。

通过正序和负序的计算,可以得出发电机的短路电流。

接下来进行变压器的短路分析,变压器的短路分析主要是通过计算其短路阻抗,从而得出短路电流。

变压器的短路阻抗一般分为正序、负序和零序三种模式。

根据变压器的接法和绕组的配置,可以计算出不同模式下的短路电流。

线路的短路分析主要是通过计算线路的电阻、电抗和电容等参数,以及线路的长度和材料来得出短路电流。

线路的短路电流可以通过正序和零序计算得出。

负荷的短路分析一般较为简单,只需根据负荷的类型和连接方式计算出其短路电流。

在进行电力系统短路分析时,有两个重要的指标需要考虑,即故障电流和短路持续时间。

故障电流是指发生短路时电流的最大值,它对于各种保护设备的选择和设置均有重要的影响。

短路持续时间是指短路时电流的持续时间,它对于保护设备的热稳定性和热分散性有一定要求。

对于电力系统短路分析,目前常用的方法有解析法和数值计算法两种。

解析法主要是通过解析电路方程组,利用复数计算方法来求解短路电流。

数值计算法则通过建立系统的数值模型,利用计算机软件进行电流计算。

目前较为常用的软件有DigSILENT、PSS/E等。

总结起来,电力系统短路分析是对电力系统中各个组件进行短路计算,通过计算短路电流大小和分布情况,确定保护装置的设置参数和电力设备的选型设计。

电力系统三相短路实用计算

电力系统三相短路实用计算

电力系统三相短路实用计算电力系统中的三相短路是指电力线路中的三个相之间发生了异常电流的情况。

短路通常是由线路故障或设备故障引起的,可能导致电力系统的瞬时过电压和电流,严重的情况下可能导致设备烧毁和火灾。

因此,实用计算三相短路的问题不仅仅是学术研究,更是在电力工程中非常必要的一项工作。

本文将详细介绍三相短路计算的实用方法。

在进行三相短路计算之前,需要明确一些基本的概念。

首先是电力系统的三个相,分别是A、B和C相。

然后是短路电流,它是电力系统中由短路引起的瞬时过电流。

最后是短路电阻,它是电力系统中分析短路电流流动路径时所使用的电阻值。

三相短路计算的目的是为了确定在短路故障发生时,电力系统中的瞬时过电压和电流的大小,并对系统中的设备进行保护设计。

根据短路电流的大小和持续时间,可以确定保护设备的额定容量和设置参数。

三相短路计算的方法可以分为两种,即解析计算和数值计算。

解析计算是根据电力系统的拓扑结构和参数方程,通过数学公式推导出短路电流的准确解。

数值计算则是通过电力系统的数学模型和计算机算法,近似计算出短路电流的数值解。

解析计算方法包括对称分量法、组合法和椭圆法。

对称分量法是通过将三相电力系统转化为正序、负序和零序对称分量,然后计算出其对应的短路电流。

组合法是通过将电力系统划分为若干简化的电路片段,然后计算每个片段内的短路电流,再将片段的短路电流合并为整个系统的短路电流。

椭圆法是通过近似计算短路电流的复合序分量,然后将其转化为实数域计算。

数值计算方法常用的有有限元法、有限差分法和时间序列法。

有限元法是通过将电力系统离散为若干网格单元,然后通过求解离散方程求得短路电流。

有限差分法是通过将电力系统的导纳矩阵转化为差分方程,然后通过数值迭代求得短路电流。

时间序列法是通过电力系统的状态方程和入口过程随机过程的仿真,然后通过统计方法计算出短路电流的概率分布。

无论采用哪种方法进行三相短路计算,都需要输入电力系统的拓扑结构、线路参数、发电机参数和负荷参数等,进行模型的建立。

第8章 电力系统三相短路的分析与计算

第8章 电力系统三相短路的分析与计算

泸州职业技术学院
电力系统
10
计算短路电流的基本假设 8.1.6 计算短路电流的基本假设
1.电力系统在正常工作时三相是对称的。 1.电力系统在正常工作时三相是对称的。 电力系统在正常工作时三相是对称的 2.所有发电机的转速和电势相位在短路过程中保 2.所有发电机的转速和电势相位在短路过程中保 所有发电机的转速 不变。 持不变。 3.电力系统各元件的电容和电阻略去不计, 3.电力系统各元件的电容和电阻略去不计,只计 电力系统各元件的电容和电阻略去不计 电抗。 电抗。 4.各元件的电抗在短路过程中保持不变 4.各元件的电抗在短路过程中保持不变。 各元件的电抗在短路过程中保持不变。
第8章 电力系统三相 短路的分析与计算
§8-1 短路的基本概念
• 故障:一般指短路和断线,分为简单故障和复杂故障 故障:一般指短路和断线, • 简单故障:电力系统中的单一故障 简单故障: • 复杂故障:同时发生两个或两个以上故障 复杂故障: • 短路:指一切正常运行之外的相与相之间或相与地 短路: 之间的连接。 之间的连接。
电力系统 13
泸州职业技术学院
2.基准值的选取 2.基准值的选取
(1)除了要求和有名值同单位外,原则上可以是任意值。 (2)考虑采用标幺值计算的目的。 目的:(a)简化计算。 (b)便于对结果进行分析比较。 单相电路中处理
UP = ZI , SP = UP I
基准值的选取原则: 选四个物理量,使它们满足: 1.全系统只选一套
f (1,1)
非对称故障
10~20%
泸州职业技术学院
电力系统
4
短路的危害 8.1.3 短路的危害
(1)电流剧增:设备发热增加,若短路持续时间较长, (1)电流剧增:设备发热增加,若短路持续时间较长,可 电流剧增 能使设备过热甚至损坏;由于短路电流的电动力效应, 电动力效应 能使设备过热甚至损坏;由于短路电流的电动力效应, 导体间还将产生很大的机械应力, 导体间还将产生很大的机械应力,致使导体变形甚至 损坏。 损坏。 (2)电压大幅度下降,对用户影响很大。 (2)电压大幅度下降,对用户影响很大。 电压大幅度下降 (3)当短路发生地点离电源不远而持续时间又较长时, (3)当短路发生地点离电源不远而持续时间又较长时,并 当短路发生地点离电源不远而持续时间又较长时 发电机可能失去同步, 列运行的发电机可能失去同步 列运行的发电机可能失去同步,破坏系统运行的稳定 造成大面积停电,这是短路最严重的后果。 性,造成大面积停电,这是短路最严重的后果。 (4)发生不对称短路时,三相不平衡电流会在相邻的通讯 (4)发生不对称短路时,三相不平衡电流会在相邻的通讯 发生不对称短路时 线路感应出电动势,影响通讯. 线路感应出电动势,影响通讯.

电力系统三相短路的分析与计算及三相短路的分类

电力系统三相短路的分析与计算及三相短路的分类

第一节电力系统故障概述在电力系统的运行过程中,时常会发生故障,如短路故障、断线故障等。

其中大多数是短路故障(简称短路)。

所谓短路,是指电力系统正常运行情况以外的相与相之间或相与地(或中性线)之间的连接。

在正常运行时,除中性点外,相与相或相与地之间是绝缘的。

表7—1示出三相系统中短路的基本类型。

电力系统的运行经验表明,单相短路接地占大多数。

三相短路时三相回路依旧是对称的,故称为对称短路;其它几种短路均使三相回路不对称,故称为不对称短路。

上述各种短路均是指在同一地点短路,实际上也可能是在不同地点同时发生短路,例如两相在不同地点短路.产生短路的主要原因是电气设备载流部分的相间绝缘或相对地绝缘被损坏。

例如架空输电线的绝缘子可能由于受到过电压(例如由雷击引起)而发生闪络或由于空气的污染使绝缘子表面在正常工作电压下放电。

再如其它电气设备,发电机、变压器、电缆等的载流部分的绝缘材料在运行中损坏.鸟兽跨接在裸露的导线载流部分以及大风或导线覆冰引起架空线路杆塔倒塌所造成的短路也是屡见不鲜的.此外,运行人员在线路检修后未拆除地线就加电压等误操作也会引起短路故障。

电力系统的短路故障大多数发生在架空线路部分。

总之,产生短路的原因有客观的,也有主观的,只要运行人员加强责任心,严格按规章制度办事,就可以把短路故障的发生控制在一个很低的限度内。

表7-1 短路类型短路对电力系统的正常运行和电气设备有很大的Array危害。

在发生短路时,由于电源供电回路的阻抗减小以及突然短路时的暂态过程,使短路回路中的短路电流值大大增加,可能超过该回路的额定电流许多倍。

短路点距发电机的电气距离愈近(即阻抗愈小),短路电流愈大。

例如在发电机机端发生短路时,流过发电机定子回路的短路电流最大瞬时值可达发电机额定电流的10~15倍。

在大容量的系统中短路电流可达几万甚至几十万安培。

短路点的电弧有可能烧坏电气设备。

短路电流通过电气设备中的导体时,其热效应会引起导体或其绝缘的损坏.另一方面,导体也会受到很大的电动力的冲击,致使导体变形,甚至损坏。

电力系统三相短路

电力系统三相短路
特点
三相短路是一种严重的故障,其 特点是短路电流大、短路点电压 为零、短路点附
01
02
03
设备损坏
大电流通过设备时会产生 高温,可能烧毁电气设备, 甚至引发火灾。
系统稳定性受影响
短路会导致系统电压降低, 影响整个电力系统的稳定 运行。
停电影响
短路可能导致大面积停电, 给人们的生产和生活带来 不便。
电力系统三相短路
目 录
• 电力系统三相短路概述 • 电力系统三相短路的物理过程 • 电力系统三相短路的计算与分析 • 电力系统三相短路的保护与控制 • 电力系统三相短路的预防与应对措施
01 电力系统三相短路概述
定义与特点
定义
三相短路是指电力系统正常运行 时,由于某种原因导致三相电源 的正极和负极直接接触,形成电 流回路。
04 电力系统三相短路的保护 与控制
短路保护的原理与分类
短路保护的基本原理
短路保护装置通过检测电流的大小和变化,判断电力系统是否发生短路故障, 并在必要时切断故障电路,以防止短路引起的设备损坏和系统稳定性问题。
短路保护的分类
根据保护装置的动作原理,短路保护可以分为电流保护、电压保护、距离保护 和差动保护等类型。不同类型的保护装置具有不同的动作特性和适用场景。
数字仿真法
利用电力系统仿真软件,模拟系统在短路故 障下的运行状态,得到短路电流。
短路功率的计算与分析
短路功率计算
根据系统阻抗和短路电流计算短路功 率。
短路功率分析
分析短路功率对电力系统稳定性的影 响,以及可能造成的设备损坏。
短路功率限制
通过技术手段和保护装置限制短路功 率,以减小对系统的冲击。
短路功率的利用
短路电流的衰减过程持续时间较 长,通常在几分钟到几十分钟之

电力系统短路电流的计算与分析

电力系统短路电流的计算与分析

电力系统短路电流的计算与分析电力系统是现代社会不可或缺的基础设施之一,它为我们的生活提供了稳定可靠的电力供应。

然而,电力系统在运行过程中常常会遇到一些故障,其中最常见和严重的故障之一就是短路故障。

短路故障会引起电流异常增大,可能引发火灾、设备毁坏甚至电网崩溃等严重后果。

因此,计算和分析电力系统的短路电流是非常重要的。

短路电流指的是在短路点或短路区域产生的电流。

为了保证电力系统的安全运行,必须对短路电流进行准确的计算和分析。

首先,要计算短路电流,需要了解短路故障的类型。

短路故障一般分为单相短路和三相短路。

单相短路指的是电网中某一个相与地或两个相之间产生短路,而三相短路指的是三个相之间形成短路。

对于不同类型的短路故障,计算短路电流的方法也有所不同。

其次,要计算短路电流,还需要了解电力系统的参数和拓扑结构。

电力系统的参数包括发电机、变电站、输电线路、变压器等各个组成部分的电阻、电抗、容抗等参数。

拓扑结构指的是电力系统的连通关系,即各个组成部分之间的连接方式。

只有掌握了这些基础信息,才能进行短路电流的计算和分析。

短路电流的计算通常分为三个步骤。

首先,需要进行潮流计算,确定电力系统中各个节点的电压和电流。

其次,根据潮流计算的结果,选取短路点或短路区域,并假设所有其他节点均为短路。

然后,根据短路点或短路区域处的电阻、电抗、容抗等参数,进行短路电流的计算。

计算中常用的方法包括梯级方法、复合方法、综合法等。

这些方法都有各自的特点和适用范围,根据具体情况选择合适的方法进行计算。

短路电流的分析是对计算结果的解读和评估。

分析的目的是确定短路电流是否满足电力系统的安全要求,并对不满足要求的情况提出相应的措施。

分析需要考虑短路电流对设备的影响、电力系统的稳定性、保护装置的动作特性等因素。

通过对短路电流进行分析,可以帮助工程师制定合理的保护方案,提高电力系统的运行可靠性。

然而,短路电流的计算和分析并不是一项简单的任务,它涉及到电力系统的复杂性和多变性。

电力系统【第七章:电力系统三相短路的分析与计算】

电力系统【第七章:电力系统三相短路的分析与计算】

电⼒系统【第七章:电⼒系统三相短路的分析与计算】⼀.电⼒系统故障概述 1.短路 短路是指电⼒系统正常运⾏情况下以外的相与相或相与地【或中性线】之间的故障连接。

2.对称短路与不对称短路 三相短路时三相回路依旧是对称的,故称为对称短路。

其它⼏种短路均使三相回路不对称,故称为不对称短路,如下: 3.产⽣短路的主要原因是电⽓设备载流部分的相间绝缘或相对地绝缘被损坏。

4.系统中发⽣短路相当于改变了电⽹的结构,必然引起系统中功率分布的变化,⽽且发电机输出功率也相应发⽣变化。

5.为了减少短路对电⼒系统的危害,可以采⽤限制短路电流的措施,在线路上装设电抗器。

但是最主要的措施是迅速将发⽣短路的部分与系统其它部分进⾏隔离,这样发电机就可以照常向直接供电的负荷和配电所的负荷供电。

6.电⼒系统的短路故障有时也称为横向故障,因为它是相对相【或相对地】的故障。

还有⼀种故障称为纵向故障,即断线故障,指的是⼀相或多相断线使系统运⾏在⾮全相运⾏的情况。

在电⼒系统中的不同地点【两处以上】同时发⽣不对称故障的情况,称为复杂故障。

⼆.⽆限⼤功率电源供电的系统三相短路电流分析 1.电源功率⽆限⼤时外电路发⽣短路(⼀种扰动)引起的功率改变对电源来说微不⾜道,因⽽电源的电压和频率对应于同步发电机的转速保持恒定。

2.⽆限⼤电源可以看做由多个有限功率电源并联⽽成的,因其内阻抗为零,电源电压保持恒定。

实际上,真正的⽆限⼤电源是不存在的,只能是⼀种相对概念往往是以供电电源的内阻抗与短路回路总阻抗的相对⼤⼩来判断电源是否作为⽆限⼤功率电源。

若供电电源的内阻抗⼩于短路回路总阻抗的10%时,则可认为供电电源为⽆限⼤功率电源。

在这种情况下,外电路发⽣短路对电源影响较⼩,可近似认为电源电压幅值和频率保持恒定。

3.当短路点突然发⽣三相短路时,这个电路即被分成两个独⽴的回路。

及有电源连接的回路和⽆电源连接的回路。

在有电源连接的回路中,其每相阻抗减⼩,对应的稳态电流必将增⼤。

电力系统三相短路的分析计算

电力系统三相短路的分析计算
由无阻尼绕组同步发电机的磁链平衡方程(上一章节的内容):
d q
X did X qiq
X adi f
f X adid X f i f
X X
d f
X ad X ad
Xa X f

d q
( Xa X ad )id X qiq
X adi f
X aid
X ad (i f
id )
电力系统中某一处发生短路和 断相故障的情况
两个以上简单故障的组合
电力系统 短路故障
电力系统 断相故障
1.三相对称短路 2.单相接地短路 3.两相短路 4.两相接地短路
1.断一相故障 2.断两相故障


在各种短路故障中,单相

接地占大多数(65%),三

相短路的机会最少(5%).

但三相短路的短路电流最
当电源距短路点的电气距离较远时,内阻抗相对于外阻抗要小得多,且 由短路而引起的电源送出功率的变化远小于电源的容量,这时认为电源的 电压幅值和频率都不发生变化。这样,可以将该电源视为恒定电势源或无 限大容量电源。
二、恒定电势源的三相短路
2.1、三相短路的暂态过程
短路前,系统中的A相电压和电流分别为
e Em sin(t ) i Im sin(t )
因此,在有限容量系统突然发生三相短路时,短路电流的 初值将大大超过稳态短路电流。
实际电机的绕组中都存在电阻,励磁绕组中的直流分量将衰减至零。 与该分量对应的定子电流中的自由分量也将逐步衰减,定子电流最终为 稳态短路电流。
三、同步发电机三相短路的暂态过程
同步发电机的暂态电势和暂态电抗
为了便于描述同步电机突然短路的暂态过程,需要确定一个短路瞬间不突 变的电势—交轴暂态电势 (通常以暂态后电势 代替)。

发生三相短路。abc3相短路电流

发生三相短路。abc3相短路电流

发生三相短路。

abc3相短路电流
三相短路是指在电力系统中,A、B、C三相之间发生短路故障。

当发生三相短路时,会产生巨大的电流,这是由于电压的突然降低
导致系统中的电流迅速增加所致。

在这种情况下,短路电流的大小
取决于电力系统的参数和短路点的位置。

首先,让我们来看一下短路电流的计算方法。

短路电流的大小
取决于电力系统的参数,包括发电机的额定电流、变压器的阻抗、
输电线路的阻抗等。

通常情况下,短路电流可以通过短路电压和系
统阻抗来计算。

短路电压是指在短路点处的电压,而系统阻抗则是
指在短路点处的等效阻抗。

通过这些参数的计算,可以得出短路电
流的大小。

其次,短路电流的大小还与短路点的位置有关。

如果短路点距
离电源较近,那么短路电流通常会更大,因为距离电源较近意味着
系统阻抗较小,从而导致短路电流增加。

相反,如果短路点距离电
源较远,那么短路电流通常会较小。

另外,短路电流的大小对于电力系统的保护和设备的选型都有
重要影响。

在设计电力系统时,需要考虑短路电流对设备的影响,
以确保设备能够承受短路电流带来的冲击。

此外,短路电流还对保护装置的选择和设置产生影响,因为保护装置需要能够及时准确地检测和切断短路电流,以保护电力系统的安全稳定运行。

总之,三相短路时的短路电流大小取决于电力系统的参数和短路点的位置,对电力系统的设计和运行都有重要影响。

因此,在实际工程中,需要对短路电流进行准确的计算和分析,以确保电力系统的安全稳定运行。

电力系统三相短路的分析计算

电力系统三相短路的分析计算

电力系统三相短路的分析计算
三相短路是指电力系统中三相导体之间发生短路故障,通常是由于设
备故障或外部原因引起的。

三相短路可能引起电流突然增大,电流过大很
容易导致设备的损坏或损坏。

因此,对三相短路进行及时的分析和计算非
常重要。

三相短路的分析计算主要包括以下几个方面:
1.短路电流计算:根据电力系统的拓扑结构和设备参数,通过计算和
仿真得到短路电流。

这是确定系统中短路故障的重要步骤,可以帮助工程
师了解系统中电流的大小和方向。

2.短路电流传播计算:根据系统中设备的参数,计算短路电流在系统
中的传播路径和传播过程。

这可以帮助工程师确定短路故障的类型和位置,以及各个设备受到的短路电流大小。

3.设备保护装置设定计算:根据短路电流的计算结果,确定设备保护
装置的动作时间和动作电流。

这可以帮助工程师对电力系统的保护装置进
行设置和校验,确保系统中的设备在短路故障发生时能够及时动作,保护
设备的安全运行。

4.短路电流对设备的影响计算:根据短路电流的计算结果,分析短路
故障对系统中设备的影响。

这可以帮助工程师评估设备的稳定性和可靠性,确保设备能够在短路故障发生时正常运行。

总之,电力系统三相短路的分析计算是电力系统工程中的重要任务之一、通过对短路电流的计算和分析,可以帮助工程师了解系统中的故障状态,确定短路故障的类型和位置,并对设备的保护装置进行设置和校验,
以确保系统的安全运行。

电力系统三相短路的分析与计算

电力系统三相短路的分析与计算

电力系统三相短路的分析与计算电力系统三相短路是指电力系统中发生的由于过大的电流流过电气设备、电缆、电缆接头、电线路等导体元件而引起的电气故障。

三相短路是一种严重的故障,可能导致设备损坏、事故发生甚至火灾爆炸。

因此,对电力系统三相短路进行准确分析和计算是非常重要的。

首先,我们来看一下三相短路的类型。

三相短路可以分为对称短路和不对称短路两种情况。

对称短路是指三相短路电流大小相等,相位相同的短路;不对称短路是指三相短路电流大小不等,相位差大于120度的短路。

接下来,我们介绍一下三相短路的分析方法。

三相短路的分析可以采用阻抗法、复数法和对称分量法等方法进行。

其中,阻抗法是最常用的一种方法。

阻抗法的基本原理是利用设备和导线的等效阻抗来分析三相短路。

首先,需要测量或查表得到电源电压、设备电流和电源电阻的值。

然后,根据欧姆定律和基尔霍夫定律,利用等效电路模型计算电路中电流和电压的数值。

最后,通过计算得到的电压和电流值,可以得出电力系统中设备的功率损耗、电流大小等信息。

接下来,我们来看一下三相短路计算的具体步骤。

首先,需要收集电力系统的相关信息,包括电源电压、设备电流、电源电阻等。

然后,根据短路的类型选择相应的计算方法。

对于对称短路,可以使用复数法进行计算;对于不对称短路,可以使用对称分量法进行计算。

在计算中,可以采用手动计算或使用专业软件进行模拟计算。

最后,根据计算结果对电力系统的安全性进行评估,并采取相应的措施进行处理。

三相短路的分析和计算是一项复杂的工作,需要对电力系统和相关理论有较深入的了解。

在实际工作中,应该高度重视电力系统的安全问题,采取相应的预防措施和应急措施,保障电力系统的正常运行和人员的安全。

同时,还需要不断学习和更新电力系统的相关知识,提高自身的技术水平。

总结起来,电力系统三相短路的分析与计算是一项重要的工作,需要掌握相应的理论和方法。

只有进行准确的分析和计算,才能及时发现电力系统中的故障,保障电力系统的安全和可靠运行。

第6章电力系统三相短路故障分析

第6章电力系统三相短路故障分析

6.2无限大容量电源供电的 电力系统三相短路
•6.2.1 无限大容量电源的概念
概念
电源距短路点的电气距离较远时,由短路而
引起的电源送出功率的变化S 远小于电源的 容量 S ,这时可设 S ,称该电源为无限
大容量电源。
重要 特性
电源的端电压及频率在短路后的暂态过程中 保持不变
理想概念,表示为:
6.2.2 无限大容量电源供电的三相短路电流分析
6.1.2 短路计算的简化假设
• 1.不计入发电机间的摇摆现象和磁路饱和。 • 2.假设发电机是对称的,不对发电机作过
细的讨论,只用次暂态电动势和次暂态电 抗来表示发电机。 • 3.因为短路电流很大,相比之下可以忽略 变压器的对地导纳(即忽略其励磁支路)。 • 4.忽略电力线路的对地电容,在高压电网 (110kV及110kV以上)忽略电力线路的电 阻。
元件 模型
发电机 (调相机)
负荷
负荷 (大型电动
机)
变压器, 线路等
与稳态模 型相同, 近似计算 时可忽略 电阻。
计算公式
E(0 ) U 0 jI0 X
RL
U(20-), PL
XL
U2 (0-)
QL
EM (0 ) U 0 jI0 X M
例6-4
• 电力系统接线图如图6-11所示,其中G为发电机, M为电动机,负载(6)为由各种电动机组合而成的 综合负荷,设在电动机附近发生三相短路故障, 试画出下列电力系统三相短路故障分析时的等值 网络图。
或近似有:I I* IB 1.156
100 6.356 kA 3 10.5
例6-2
• 冲击电流, iimp 1.8Im 2.55 6.356 16.208 kA

短路电流的计算与影响分析

短路电流的计算与影响分析

短路电流的计算与影响分析在电力系统中,短路电流是指由于线路或设备出现故障导致的电流异常增大的现象。

短路电流的计算与影响分析是电力系统运行与规划中关键的一环。

本文将从计算方法和影响分析两个方面来深入探讨短路电流的相关问题。

一、短路电流的计算方法短路电流的计算是建立在电力系统的拓扑结构和电气参数的基础上进行的。

一般来说,短路电流可以分为对称短路电流和不对称短路电流两种情况,下面将介绍它们的计算方法。

1. 对称短路电流的计算对称短路电流是指系统中的三相电流均相等的情况。

在计算对称短路电流时,我们常用的方法是采用对称分解法。

首先,根据系统的拓扑结构和电气参数,我们可以得到系统的节点导纳矩阵Y和节点电压向量U。

然后,通过对称分解法,我们可以将节点导纳矩阵Y分解为正序分量矩阵Y0、负序分量矩阵Y1和零序分量矩阵Y2。

最后,利用节点电压向量U和分解得到的矩阵Y0,我们可以计算得到对称短路电流。

2. 不对称短路电流的计算不对称短路电流是指系统中的三相电流不相等的情况。

在计算不对称短路电流时,我们常用的方法是采用正序不对称分量法。

首先,根据系统的拓扑结构和电气参数,我们可以得到系统的节点导纳矩阵Y和节点电压向量U。

然后,通过正序不对称分量法,我们可以将节点导纳矩阵Y分解为正序分量矩阵Y0、负序分量矩阵Y1和零序分量矩阵Y2。

最后,利用节点电压向量U和分解得到的矩阵Y0、Y1和Y2,我们可以计算得到不对称短路电流。

二、短路电流的影响分析短路电流的异常增大会对电力系统的设备和运行产生一系列的影响,下面将对其进行分析。

1. 设备保护与安全短路电流的计算可以为设备保护提供重要依据。

通过计算得到的短路电流,可以确定合适的保护器件的额定电流和动作时间,从而保护设备免受过载和短路故障的损害。

另外,短路电流的异常增大还可能导致设备的温升过高,进而影响设备的正常运行和寿命。

2. 动态稳定性短路电流的异常增大会对电力系统的动态稳定性产生影响。

电力系统三相短路的分析与计算及三相短路的分类

电力系统三相短路的分析与计算及三相短路的分类

电力系统三相短路的分析与计算及三相短路的分类电力系统中,三相短路是指电力系统中三相导线之间发生短路现象,导致电力系统中产生大电流甚至爆炸的一种故障。

三相短路的分析与计算是电力系统运行和维护中非常重要的一项工作,可以帮助电力系统工程师及时发现并解决问题,确保电力系统的安全可靠运行。

三相短路的分析与计算主要包括以下几个方面:1.短路电流计算:短路电流是指在电力系统中出现短路时的电流大小。

短路电流的计算是分析短路故障的重要步骤,可以通过进行电力系统拓扑分析和电源参数测量等方法来得到准确的短路电流数值。

2.短路电压计算:电力系统中的短路电压是指在短路故障发生时,短路点之间的电压差。

短路电压的计算可以通过短路电流和系统的阻抗参数来得到,可以帮助判断短路故障的严重程度。

3.短路过程分析:短路过程分析是指对电力系统中短路故障的发展过程进行详细的分析,包括短路产生的原因、短路发展的路径等。

通过对短路过程的分析,可以帮助电力系统工程师找到故障点并及时解决。

4.短路保护设备设计:为了保护电力系统免受短路故障的影响,需要设计合理的短路保护设备。

短路保护设备设计包括选择合适的短路保护器件和设置合理的保护动作参数等。

三相短路可以分为以下几类:1.对地短路:对地短路是指系统其中一相或多相导线与大地之间发生短路。

对地短路会导致系统中出现过电压和过电流现象,严重时会引发设备损坏甚至火灾。

2.对相短路:对相短路是指发电系统的两个相之间产生短路。

对相短路会导致系统中产生高热现象,增加设备负荷,严重时会引发系统的瘫痪。

3.三相短路:三相短路是指系统的三个相之间全部发生短路。

三相短路会导致系统中产生非常高的短路电流,严重时会导致设备损坏和系统宕机。

总之,三相短路的分析与计算是电力系统安全运行的重要环节,通过详细的分析和计算,可以及时发现短路故障并采取相应的措施,确保电力系统的安全可靠运行。

三相短路过程分析和短路电流的计算方法

三相短路过程分析和短路电流的计算方法

三相短路过程分析和短路电流的计算方法电力系统三相短路时,出现的短路冲击电流值为该短路点的极限值。

三相短路电流通常是选择和校验一二次设备的重要依据。

本文对三相短路过程进行了理论分析,采用多种方法计算三相短路电流,仿真结果验证了电路三要素法不能直接应用于交流激励源作用下的过渡过程分析。

标签:三相短路,短路电流计算0.引言电力系统发生三相短路的概率很小,但是当系统发生三相短路时,电流值是发生短路故障的地点可能出现的最大值。

该短路电流值的大小与短路地点的位置有关系,与短路回路中的导体阻抗大小有关系,还与电力系统中电源的短路阻抗有关系。

三相短路电流主要用于校验该电力网络中的电气设备和导线的热稳定度和动稳定度。

因此,在某一电压等级的电力网络中计算三相短路电流时,通常假定该网络中发生最不理想的状况,即在可能出现最大三相短路电流的地点发生短路。

1.三相短路的过程发生三相短路前,电力系统是处于正常运行的状态,即已达到负荷稳定的正弦稳态,此稳态为电力系统的初始状态。

当由于某种原因电力系统中某一点发生三相短路,其短路的过程等效为电力系统中的阻抗突变,使得电力系统由原来的负荷稳态向三相短路稳态过渡,即三相短路过程为大阻抗稳态向小阻抗稳态切换。

在这个过程中,阻抗发生突变,但由于回路中存在储能元件,电流不能突变。

因此,三相短路的过渡过程是其短路电流在短时间内剧增的过程。

2.短路电流的计算电力系统中进行三相短路电流的计算时s,作如下假定:(1)电力系统为无限大容量或電力系统的电源阻抗非常小,即使在三相短路时其母线上的电压也能基本维持不变。

(2)电力系统短路切换前后其阻抗都为简单的阻感性。

由于电源、电力线路、变压器和用电设备大都是阻感性,因此这个假定是合理的。

(3)假设短路前电力系统中的阻抗为短路后电力系统的阻抗为A.电路三要素法由以上假定可知,三相短路电流的计算为一阶线性电路的求解,可以尝试应用电路三要素法分析。

电路三要素即初始值、稳态值和时间常数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一节电力系统故障概述在电力系统的运行过程中,时常会发生故障,如短路故障、断线故障等。

其中大多数是短路故障(简称短路)。

所谓短路,是指电力系统正常运行情况以外的相与相之间或相与地(或中性线)之间的连接。

在正常运行时,除中性点外,相与相或相与地之间是绝缘的。

表7-1示出三相系统中短路的基本类型。

电力系统的运行经验表明,单相短路接地占大多数。

三相短路时三相回路依旧是对称的,故称为对称短路;其它几种短路均使三相回路不对称,故称为不对称短路。

上述各种短路均是指在同一地点短路,实际上也可能是在不同地点同时发生短路,例如两相在不同地点短路。

产生短路的主要原因是电气设备载流部分的相间绝缘或相对地绝缘被损坏。

例如架空输电线的绝缘子可能由于受到过电压(例如由雷击引起)而发生闪络或由于空气的污染使绝缘子表面在正常工作电压下放电。

再如其它电气设备,发电机、变压器、电缆等的载流部分的绝缘材料在运行中损坏。

鸟兽跨接在裸露的导线载流部分以及大风或导线覆冰引起架空线路杆塔倒塌所造成的短路也是屡见不鲜的。

此外,运行人员在线路检修后未拆除地线就加电压等误操作也会引起短路故障。

电力系统的短路故障大多数发生在架空线路部分。

总之,产生短路的原因有客观的,也有主观的,只要运行人员加强责任心,严格按规章制度办事,就可以把短路故障的发生控制在一个很低的限度内。

表7-1 短路类型短路对电力系统的正常运行和电气设备有很大的Array危害。

在发生短路时,由于电源供电回路的阻抗减小以及突然短路时的暂态过程,使短路回路中的短路电流值大大增加,可能超过该回路的额定电流许多倍。

短路点距发电机的电气距离愈近(即阻抗愈小),短路电流愈大。

例如在发电机机端发生短路时,流过发电机定子回路的短路电流最大瞬时值可达发电机额定电流的10~15倍。

在大容量的系统中短路电流可达几万甚至几十万安培。

短路点的电弧有可能烧坏电气设备。

短路电流通过电气设备中的导体时,其热效应会引起导体或其绝缘的损坏。

另一方面,导体也会受到很大的电动力的冲击,致使导体变形,甚至损坏。

因此,各种电气设备应有足够的热稳定度和动稳定度,使电气设备在通过最大可能的短路电流时不致损坏。

图7-1 正常运行和短路故障时各点的电压短路还会引起电网中电压降低,特别是靠近短路点处的电压下降得最多,结果可能使部分用户的供电受到破坏。

图7-1中示出了一简单供电网在正常运行时和在不同地点(12f f 和)发生三相短路时各点电压变化的情况。

折线2表示1f 点短路后的各点电压。

1f 点代表降压变电所的母线,其电压降至零。

由于流过发电机和线路L -1、L -2的短路电流比正常电流大,而且几乎是纯感性电流,因此发电机内电抗压降增加,发电机端电压下降。

同时短路电流通过电抗器和L -1引起的电压降也增加,以至配电所母线电压进一步下降。

折线3表示短路发生在2f 点时的情形。

电网电压的降低使由各母线供电的用电设备不能正常工作,例如作为系统中最主要的电力负荷异步电动机,它的电磁转矩与外施电压的平方成正比,电压下降时电磁转矩将显著降低,使电动机转速减慢甚至完全停转,从而造成产品报废及设备损坏等严重后果。

系统中发生短路相当于改变了电网的结构,必然引起系统中功率分布的变化,则发电机输出功率也相应地变化。

如图7-1中,无论12f f 或点短路,发电机输出的有功功率都要下降。

但是发电机的输入功率是由原动机的进汽量或进水量决定的,不可能立即变化,因而发电机的输入和输出功率不平衡,发电机的转速将发生变化,这就有可能引起并列运行的发电机失去同步,破坏系统的稳定,引起大片地区停电。

这是短路造成的最严重的后果。

不对称接地短路所引起的不平衡电流产生的不平衡磁通,会在临近的平行的通信线路内感应出相当大的感应电动势,造成对通信系统的干扰,甚至危及设备和人身的安全。

为了减少短路对电力系统的危害,可以采取限制短路电流的措施,例如图7-1中所示的在线路上装设电抗器。

但是最主要的措施是迅速将发生短路的部分与系统其它部分隔离。

例如在图7-1中1f 点短路后可立即通过继电保护装置自动将L -2的断路器迅速断开,这样就将短路部分与系统分离,发电机可以照常向直接供电的负荷和配电所的负荷供电。

由于大部分短路不是永久性的而是短暂性的,就是说当短路处和电源隔离后,故障处不再有短路电流流过,则该处可以重新恢复正常,因此现在广泛采取重合闸的措施。

所谓重合闸就是当短路发生后断路器迅速断开,使故障部分与系统隔离,经过一定时间再将断路器合上。

对于短暂性故障,系统就因此恢复正常运行,如果是永久性故障,断路器合上后短路仍存在,则必须再次断开断路器。

短路问题是电力技术方面的基本问题之一。

在电厂、变电所以及整个电力系统的设计和运行工作中,都必须事先进行短路计算,以此作为合理选择电气接线、选用有足够热稳定度和动稳定度的电气设备及载流导体、确定限制短路电流的措施、在电力系统中合理的配置各种继电保护并整定其参数等的重要依据。

为次,掌握短路发生以后的物理过程以及计算短路时各种运行参量(电流、电压等)的计算方法是非常必要的。

电力系统的短路故障有时也称为横向故障,因为它是相对相(或相对地)的故障。

还有一种称为纵向故障的情况,即断线故障,例如一相断线使系统发生两相运行的非全相运行情况。

这种情况往往发生在当一相发生短路故障后,该相的断路器断开,因而形成一相断线。

这种一相断线或两相断线故障也属于不对称故障,它们的分析计算方法与不对称短路的分析计算方法类似,在本篇中将一并介绍。

在电力系统中的不同地点(两处以上)同时发生不对称故障的情况,称为复杂故障,可参考其它书籍,本书不作介绍。

第二节 无限大功率电源供电的系统三相短路电流分析本节将分析图7-2所示的简单三相电路中发生突然对称短路的暂态过程。

在此电路中假设电源电压幅值和频率均为恒定,这种电源称为无限大功率电源,这个名称从概念上是不难理解的:1)无限大电源可以看作是由多个有限功率电源并联而成,因而其内阻抗为零,电源电压保持恒定; 2)电源功率为无限大时,外电路发生短路(一种扰动)引起的功率改变对电源来说是微不足道的,因而电源的电压和频率(对应于同步机的转速)保持恒定。

实际上,真正的无限大功率电源是没有的,而只能是一个相对的概念,往往是以供电电源的内阻抗与短路回路总阻抗的相对大小来判断电源能否作为无限大功率电源。

若供电电源的内阻抗小于短路回路总阻抗的10%时,则可认为供电电源为无限大功率电源。

在这种情况下,外电路发生短路对电源影响很小,可近似地认为电源电压幅值和频率保持恒定。

一、 短路后的暂态过程分析对于图7-2所示的三相电路,短路发生前,电路处于稳态,其a 相的电流表达式为:)sin(00ϕαω-+=t I i m a (7-1) 式中 2220)()(L L R R U I mm '++'+=ω)()(0R R L L arctg '+'+=ωϕ当在f 点突然发生三相短路时,这个电路即被分成两个独立的回路。

左边的回路仍与电源连接,而右边的回路则变为没有电源的回路。

在右边回路中,电流将从短路发生瞬间的值不断地衰减,一直衰减到磁场中储存的能量全部变为电阻中所消耗的热能,电流即衰减为零。

在与电源相连的左边回路中,每相阻抗由原来的()()R R j L L ω''+++减小为R j L ω+,其稳态电流值必将增大。

短路暂态过程的分析与计算就是针对这一回路的。

假定短路在t=0秒时发生,由于电路仍为对称,可以只研究其中的一相,例如a 相,其电流的瞬时值应满足如下微分方程:)sin(αω+=+t U Ri dtdi L m a a(7-2) 这是一个一阶常系数、线性非齐次的常微分方程,它的特解即为稳态短路电流a i ∞,又称交流分量或周期分量pa i 为:)sin()sin(ϕαωϕαω-+=-+==∞t I t ZU i i m mpa a (7-3) 式中,Z 为短路回路每相阻抗(R j L ω+)的模值;ϕ为稳态短路电流和电源电压间的相角(RLarctg ω);m I 为稳态短路电流的幅值。

短路电流的自由分量衰减时间常数a T 为微分方程式(7-2)的特征根的负倒数,即: a LT R= (7-4) 短路电流的自由分量电流为: at T aa i Ce-= (7-5)又称为直流分量或非周期分量,它是不断衰减的直流电流,其衰减的速度与电路中L R 值有关。

式中C 为积分常数,其值即为直流分量的起始值。

短路的全电流为:图7-2 无限大功率电源供电的三相电路突然短路aT t m a Cet I i -+-+=)sin(ϕαω (7-6)式中的积分常数C 可由初始条件决定。

在含有电感的电路中,根据楞次定律,通过电感的电流是不能突变的,即短路前一瞬间的电流值(用下标0表明)必须与短路发生后一瞬间的电流值(用下标0表示)相等,即:000000)sin()sin(aa pa m a m a i i C I i I i +=+-==-=ϕαϕα所以:)sin()sin(00000ϕαϕαα---=-==m m pa a a I I i i i C (7-7)将式(7-7)代入式(7-6)中便得:aT t m m m a eI I t I i ----+-+=)]sin()sin([)sin(00ϕαϕαϕαω (7-8)由于三相电路对称,只要用)120(︒-α和)120(︒+α代替式(7-8)中的α就可分别得到b 相和c 相电流表达式。

现将三相短路电流表达式综合如下:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫-︒+--︒++-︒++=-︒---︒-+-︒-+=---+-+=---a a aT t m m m c T t m m m b T tm m m a e I I t I i e I I t I i e I I t I i )]120sin()120sin([)120sin()]120sin()120sin([)120sin()]sin()sin([)sin(000000ϕαϕαϕαωϕαϕαϕαωϕαϕαϕαω (7-9)由上可见,短路至稳态时,三相中的稳态短路电流为三个幅值相等、相角相差120︒的交流电流,其幅值大小取决于电源电压幅值和短路回路的总阻抗。

从短路发生到稳态之间的暂态过程中,每相电流还包含有逐渐衰减的直流电流,它们出现的物理原因是电感中电流在突然短路瞬时的前后不能突变。

很明显,三相的直流电流是不相等的。

图7-3示出三相电流变化的情况(在某一初始相角为α时)。

由图可见,短路前三相电流和短路后三相的交流分量均为幅值相等、相角相差120︒的三个正弦电流,直流分量电流使t=0时短路电流值与短路前瞬间的电流值相等。

相关文档
最新文档