第四章 离子注入(作业)

合集下载

第4章离子注入_6.

第4章离子注入_6.

● 扩散法掺杂时受到化学结合力、扩散系 数及固溶度等方面的限制,而离子注入是 一个物理过程,所以它可以注入各种元素。
● 扩散法是在高温下掺杂,离子注入法掺 杂可以在高温下进行,也可以在室温下或 低温下进行,这样可以减少高温过程对器 件产生的不良影响。
● 离子注入法可以做到高纯度的掺杂,避 免有害物质进入硅片。
(4-2)
Z是离子的电荷数
如果加速管的两端间加的电压差是V ,
则离子通过加速管所获得的能量为:
E=Z×V
(4-3)
一个电子受到1伏的电压差的加速获得的 能量是:
1ev=1.6×10-12尔格
对于IC制造中的离子注入,根据不同的工 艺,能量范围从几十kev到几百kev。
NN阱阱CCMMOOSS工工艺艺中中的的离离子子注注入入
如果束流是稳定的电流I,则:
NSS
=
It q
(4-5)
t = qNS S I
(4-6)
其中:NS 单位面积的注入剂量(个/cm2 ),S 是扫描面积(cm2 ),q 是一个离子的电荷
(1.6×10-19库仑),I 是注入的束流(安培),
t 是注入时间(秒)。
例题:如果注入剂量是5×1015,束流 1mA,求注入一片6英寸硅片的时间
一个质量数为M的正离子,以速 度v垂直于磁力线的方向进入磁场,受 洛伦茨力的作用,在磁场中作匀速圆 周运动的半径R(cm)为:
R = 1.44 MV ×10−2 (4-1) BZ
其中:V 为电压(伏特),Z 为离子的 电荷数,B 是磁场强度(特)。
正交电磁场分析器

电磁场的磁极
平行平板电极
当离子束垂直进入均匀的正交电磁场时,将同时
受到电场力和洛伦茨力的作用,这两个力的方向正好 相反,只有在某个质量为M的离子在分析器中所受的 电场力和洛伦茨力的数值相等时,不发生偏转而到达 靶室,大于或小于M的离子则被偏转掉。

离子注入二

离子注入二

4.5 离子注入设备与工艺
离子注入系统原理-磁分析器



从离子源吸出的离子束中,包括多种离子。如 对BCl3气体源,一般包括H+、B+、Cl+、O+ 、C+等。 在磁分析器中,利用不同荷质比的离子在磁 场中的运动轨迹不同,可以将离子分离,并选 出所需要的一种杂质离子。 被选离子通过可变狭缝,进入加速管。
热退火中的扩散称为增强扩散。
4.4 退火
热退火过程中的扩散效应

注入杂质经退火后在靶内的分布仍然是 高斯分布


标准偏差需要修正 扩散系数明显增加
4.4 退火
热退火过程中的扩散效应

高斯分布的杂质在热退火过程中会使其分布展宽, 偏离注入时的分布,尤其是尾部,出现了较长的按 指数衰减的拖尾.
4. 快速热退火的主要优点是什么?
要求:11月4日上课交作业,或发送至 xyfan@。 32
第四章 离子注入-作业
/show/-JP8k1MK7kT9fziZnp4vA...html /programs/view/fLp7hS0elT0
4.5 离子注入设备与工艺
靶室

样品架 法拉第杯(控制注入剂量)
第四章 离子注入-作业
1.比较离子注入与热扩散工艺,分析两者各自的优缺点。
2.试用LSS理论分析离子注入的基本原理,入射离子能量损
失的两种模型各是什么? 2. 简述沟道效应的形成机理,并给出减弱或消除沟道效应 的几种措施。 3. 离子注入后为何要进行退火热处理?

晶格损伤解离而释放出大量的间隙Si原子,这些间隙Si原 子与替位B原子接近时,可以相互换位,使得B原子进入 晶格间隙,激活率下降。

第4章离子注入

第4章离子注入

离子注入掺杂
发展历史: 1954年肖克莱首先提出并申请了专利。 1955年英国人W. D. Gussins 用硼离子轰击 Ge晶片,在n型材料上形成p型层,但当时对 p-n结形成机理不很清楚,所以这一新技术没 有得到人们重视。 随着原子能技术的发展,对于离子束对 物质轰击效果的研究,强离子束设备的出现, 为离子注入的发展奠定了基础。
掩蔽层
Mask
xj Silicon substrate
Mask
Silicon substrate
a) 低掺杂浓度与浅结
b) 高掺杂浓度与深结
聚焦方式的优点是不需掩模,图形形成灵活。
缺点是 生产效率低,设备复杂,控制复杂。聚焦方
式的关键技术是
1、高亮度、小束斑、长寿命、高稳定的离子源;
2、将离子束聚焦成亚微米数量级细束并使之偏转
液态金属
同轴形
毛细管形
钨针
对液态金属的要求 (1) 与容器及钨针不发生任何反应; (2) 能与钨针充分均匀地浸润;
(3) 具有低熔点低蒸汽压,以便在真空中及不太
高的温度下既保持液态又不蒸发。
能满足以上条件的金属只有 Ga、In、Au、Sn
等少数几种,其中 Ga 是最常用的一种。
E3 E1 是主高压,即离子束的 加速电压;E2 是针尖与引出极
离子注入概述
扩散掺杂
• 最先被采用的半导体掺杂技术 • 是早期集成电路制造中最重要的技术之一,高温炉 通称为“扩散炉”。 • 需在高温炉中进行 • 需使用二氧化硅作掩膜 • 无法独立控制结深和浓度 • 各向同性 • 杂质剂量控制精度较差。 自1970年中期开始离子注入技术被广泛采用。扩散技 术目前主要应用于杂质的推进,以及用于形成超浅结 (仍处于研发中)。

第四章 离子注入

第四章 离子注入

射程参数


RNm1 m2 4a2
(m1 m2 )2
其中,m1,m2为注入离子和靶原子的质量,N是单位体积 内的原子数,a为屏蔽长度
a

0.88a0
( Z11/ 3

Z 2/3 2
)1/ 2
由此,导出核阻止能量损失曲线。P84图4.5
13
1、注入离子能量三个区域中的阻止机制
1)低能区:核阻止 2)中能区:核阻止、电子阻止 3)高能区:电子阻止
注入离子靶原子:形成间隙-空位缺陷; 间隙靶原子靶原子:在入射离子轨迹周围形成大量
间隙-空位缺陷。
因此,须消除衬底损伤,并使注入离子处于电激 活位置,以达到掺杂目的。
31
一、级联碰撞
1、几个概念
1) 注入离子通过碰撞把能量传递给靶原子核及其电子的过程, 称为能量淀积过程。 弹性碰撞: 总动能守恒 注入离子能量低 非弹性碰撞:总动能不守恒 注入离子能量高 在集成电路制造中,注入离子的能量较低,弹性碰撞占 主要地位。
exp
1 2
y2

Y
2

z2 Z 2

(x Rp)2 R p 2

(4.21) 因入射靶材为各向同性的非晶材料,则在垂直入射方向的平
面内分布是对称的,即有
Y Z R 即Y方向、Z方向上的标准偏差 等于 横向离散 R 。
25
通过狭窄掩模窗口注入离子后的杂质分布情况
14
2、一级近似下的阻止机制
1)核阻止本领
S
0 n
与入射离子E能量无关;
2)电子阻止本领 Se (E)与速度成正比关系;
3)在EC处核阻止和电子阻止本领相等,不同的靶材料和不同的

微电子工艺 离子注入

微电子工艺   离子注入

称作投影射程。

内有多少条鱼浓度(个数域单位体积内有多少条鱼,…….离子源通过吸极电源把离子从离子源引出可变狭缝v⊕一个质量数为M的正离子,以速度v垂直于磁力线的方向进入磁场,受洛伦茨力的作用,在磁场中作匀速圆周运动的半径为R。

子离开分析仪电磁场的磁极平行平板电极⊕当离子束垂直进入均匀的正交电磁场时,将同时受到电场力和洛伦茨力的作用,这两个力的方向正好相反,只有在某个质量为M的离子在分析器中所受的电场力和洛伦茨力的数值相等时,不发生偏转而到达靶室,大于或小于M的离子则被偏转加速器加速离子,获得所需能量;高真空(<10-6Torr 静电加速器:调节离子能量静电透镜:离子束聚焦静电偏转系统:滤除中性粒子X方向扫描板Y方向扫描板扫描范围中性束偏转板+-的浓度比其它地方高。

终端台:控制离子束扫描和计量离子束扫描:扫描方式:静电扫描、机械扫描和混合扫描。

常用静电扫描和混合扫描。

静电光栅扫描适于中低束流机,机械扫描适于强束流机。

两种注入机扫描系统<110>向和偏转10°方向的晶体结构视图<111><100><110>40 kevP +31注入到硅中的浓度分布0.20.40.60.8 1.0µm43210 注入深度对准<110> 偏<110> 2°偏<110> 8°子在靶中行进的重要效应之一。

窗口边缘处浓度为同等深度窗口中心部位浓度的1/2离子越轻,阈值剂量越高;温度越高,阈值剂量越高。

扩散率提高,聚集成团,几种等时退火条件下,硅中注入硼离子的激活百分比。

第四章离子注入

第四章离子注入
分析磁体 粒子束
加速管
工艺腔 扫描盘
工艺控制参数
❖ 杂质离子种类:P+,As+,B+,BF2+,P++,B++,… ❖ 注入能量(单位:Kev)——决定杂质分布深度和形状,
10~200Kev ❖ 注入剂量(单位:原子数/cm2)——决定杂质浓度 ❖ 束流(单位:mA或uA)——决定扫描时间 ❖ 注入扫描时间(单位:秒)——决定注入机产能
Figure 17.15
中性束造成的注入不均匀性
带正电的离子束从质量分析器出来到硅片表面的过程中,
要经过加速、聚焦等很长距离,这些带电粒子将同真空系统中
的残余气体分子发生碰撞,其中部分带电离子会同电子结合,
成为中性的粒子。
对于出现在扫描 系统以前的中性粒子
没有偏转的中性束粒子继续向前
,扫描电场对它已不
200 kev 注入离子在 靶中的高斯分布图
硼原子在不同入射能量 对深度及浓度分布图
高斯分布只在峰值附近 与实际分布符合较好
根据离子注入条件计算杂质浓度的分布
❖ 已知杂质种类(P,B,As),离子注入能量(Kev),靶材 (衬底Si,SiO2,Si3N4等)
求解step1:查LSS表可得到Rp和ΔRp
和电子阻止(Se(E) )所损失的能量,总能量 损失为两者的和。
ddE xSnESeE
-dE/dx:能量损失梯度
E:注入离子在其运动路程上任一点x处的能量
Sn(E):核阻止本领
能量E的函数
Se(E):电子阻止本领
C: 靶原子密度 ~51022 cm-3 for Si
能量为E的 入射粒子在 密度为C的 靶内走过x 距离后损失 的能量

集成电路工艺第四章:离子注入

集成电路工艺第四章:离子注入

其中N为入射离子总数, 为第i 其中N为入射离子总数,RPi为第i个离子的投影射 程
离子投影射程的平均标准偏差△ 离子投影射程的平均标准偏差△RP为
其中N 其中N为入射离子总数 Rp 为平均投影射程 Rpi为第 Rpi为第i个离子的投影射程 为第i
离子注入浓度分布
LSS理论描述了注入离子在无定形靶中的浓度分布 LSS理论描述了注入离子在无定形靶中的浓度分布 为高斯分布其方程为
其中φ为注入剂量 其中 为注入剂量 χ为离样品表面的深度 为离样品表面的深度 Rp为平均投影射程 为平均投影射程 △Rp为投影射程的平均标准偏差 为投影射程的平均标准偏差
离子注入的浓度分布曲线
离子注入浓度分布的最大浓度Nmax 离子注入浓度分布的最大浓度Nmax
从上式可知,注入离子的剂量φ越大, 从上式可知,注入离子的剂量φ越大,浓度峰值越高 从浓度分布图看出, 从浓度分布图看出,最大浓度位置在样品内的平均投 影射程处
4.2 离子注入工艺原理
离子注入参数
注入剂量φ 注入剂量 注入剂量φ是样品表面单位面积注入的离子总数 是样品表面单位面积注入的离子总数。 注入剂量 是样品表面单位面积注入的离子总数。单 位:离子每平方厘米
其中I为束流,单位是库仑每秒( 其中 为束流,单位是库仑每秒(安 培) t为注入时间,单位是秒 为注入时间, 为注入时间 q为电子电荷,等于 ×10-19库仑 为电子电荷, 为电子电荷 等于1.6× n为每个离子的电荷数 为每个离子的电荷数 A为注入面积,单位为 2 —束斑 为注入面积, 为注入面积 单位为cm
2267 475 866 198 673 126
4587 763 1654 353 1129 207
6736 955 2474 499 1553 286

第四章离子注入

第四章离子注入
第四章 离子注入
1954年,Bell Lab. ,Shockley 提出; 应用:COMS工艺的阱,源、漏,调整VT的沟道掺 杂,防止寄生沟道的沟道隔断,特别是浅结。 定义:将带电的、且具有能量的粒子入射到衬底中。 特点: ①注入温度低:对Si,室温;对GaAs,<400℃。避免了 高温扩散的热缺陷;光刻胶,铝等都可作为掩蔽膜。 ②掺杂数目完全受控:同一平面杂质均匀性和重复性在 ±1%(高浓度扩散5%-10%);能精确控制浓度分 布及结深,特别适合制作高浓度浅结器件。
max
⎢ ⎣ 2
∆RP
⎥ ⎦
Nmax=0.4NS/ΔRP—峰值浓度(在RP处),NS—注入剂量
4.2 注入离子分布
4.2.2 横向效应 ①横向效应与注入 能量成正比; ②是结深的30% -50%; ③窗口边缘的离子 浓度是中心处的50%;
4.2 注入离子分布
4.2.3 沟道效应(ion channeling) 非晶靶:对注入离子的 阻挡是各向同性; 单晶靶:对注入离子的 阻挡是各向异性; 沟道:在单晶靶的主晶 轴方向呈现一系列平行 的通道,称为沟道。
dR dR
n
dR
e
n
e
−1 E0 dE R = ∫ dR = − ∫ = ∫ [S n (E ) + S e (E )] dE E0 dE / dR 0 0
式中,E0—注入离子的初始能量。
4.2 注入离子分布
2.投影射程XP: 总射程R在离子入射方向 (垂直靶片)的投影长度 ,即离子注入的有效深度。 3.平均投影射程RP: 投影射程XP的平均值,具 有统计分布规律-几率分 布函数。
4.1 核碰撞和电子碰撞
4.1.1 核阻挡本领Sn(E) Sn(E)=(dE/dx)n (dE/dx)n --核阻挡能量 损失率.

第四章 离子注入(作业)

第四章 离子注入(作业)
若注入剂量为11015cmБайду номын сангаас试求注入的峰值浓度结深及注入离子的平均浓度假定为对称的高斯分布
第四章

离子注入
讲:毛 维
mwxidian@ 西安电子科技大学微电子学院
第3次作业

1.已知硅n型外延层的掺杂浓度为1.5×1016cm-3。现用 硼离子注入形成基区,其能量为60keV。若注入剂量
为1×1015cm-2,试求注入的峰值浓度、结深、及注入 离子的平均浓度(假定为对称的高斯分布)。

2.已知硅n型外延层的掺杂浓度为1.5×1016cm-3。现通过 注入B+来制作集电结,要求掺杂的峰值浓度达到 2×1019cm-3,结深0.4μm。试估算入射离子所需要的 能量和剂量。

第四章 离子注入作业

第四章 离子注入作业

第四章离子注入作业1、离子注入定义:离化后的原子在强电场的加速作用下,注射进入靶材料的表层,以改变这种材料表层的物理或化学性质。

2、离子注入工艺相比扩散工艺具有以下优点:(1)、可以在较低的温度下,将各种杂质掺入不同的半导体中。

(2)、能精确地控制掺入硅片内部杂质的浓度分布和注入深度。

(3)、可以实现大面积的均匀掺杂,而且重复性好。

(4)、掺入杂质纯度高。

(5)、由于注入杂质的直射性,杂质的横向扩散小。

(6)、可以得到理想的杂质分布。

(7)、工艺条件容易控制。

(8)、没有固溶度极限。

注入杂质含量不受硅片固溶度限制。

4、一般横向扩散结深=(0.75~0.85)×Xj(Xj为纵向结深)7、阻止机制:材料对入射离子的阻止能量的大小用阻止机制来衡量。

阻止机制表示离子在靶内受到阻止的概率。

1963年,Lindhard, Scharff and Schiott首先确立了注入离子在靶内分布理论,简称LSS理论。

LSS理论认为,注入离子在靶内的能量损失分为两个彼此独立的过程电子阻止机制:来自原子之间的电子阻止,属于非弹性碰撞。

核阻止机制:来自原子核之间的碰撞,属于原子核之间的弹性碰撞。

总能量损失为两者的和9、核碰撞特点:入射离子与晶格原子的原子核发生碰撞,散射显著、引起晶格结构的损坏。

电子碰撞特点:入射电子与晶格原子的电子发生碰撞,入射离子的路径几乎不变、能量传输小、晶格结构的损坏可以忽略不计。

11、非局部电子阻止不改变入射离子要点方向;局部电子阻止电荷/动量交换导致入射离子运动方向的改变( 核间作用)。

电子阻止本领和入射离子的能量的平方根成正比。

核阻止机制在低能量下起主要作用;电子阻止机制在高能量下起主要作用。

12、入射离子的浓度分布理论计算表明,在忽略横向离散效应和一级近似下,注入离子在靶内的纵向浓度分布可取高斯函数形式。

13、什么是横向效应?横向效应指的是注入离子在垂直于入射方向平面内的分布情况。

第四章离子注入

第四章离子注入

离子/cm2)内变化,且在此范围内精度可控制 到±1%。与此相反,在扩散系统中,高浓度时 杂质浓度的精度最多控制到 5 - 10 % , 低浓度 时比这更差。
3、离子注入时,衬底一般是保持在室温或温
度不高(≤ 400℃), 因此,可用各种掩模 (如氧化硅、氮化硅、铝和光刻胶)进行选 择掺杂。在制备不能采用扩散工艺的器件时, 这为独特的自对准掩模技术的设计提供了很 大的自由度。 4、离子束的穿透深度随离子能量的增大而增 大,因此,控制同一种或不同种的杂质进行 多次注入时的能量和剂量,可以在很大的范 围内得到不同的掺杂剂浓度分布截面。用这 种方法比较 容易获得超陡的和倒置的掺杂截 面。
在 x = RP 的两侧,注入离子浓度对称地下降, 且下降速度越来越快: 峰值附近与实际分布符合较 好,当离峰值位置较远时,有较 大偏离。
注入离子的二维分布
注入离子的真实分布

真实分布非常复杂,不 服从严格的高斯分布 硼比硅原子质量轻得多, 硼离子注入就会有较多 的大角度散射。被反向 散射的硼离子数量也会 增多,因而分布在峰值 位置与表面一侧的离子 数量大于峰值位置的另 一侧,不服从严格的高 斯分布。 砷等重离子和硼轻离子 的分布正好相反。
于两者之间。因此,沟道效应 依<110 >、 <111>、 <100 >顺序减 弱。
100
倾斜旋转硅片后的无序方向
实践表明,沟道效应与多种因素有关,包括:
单晶靶的取向 离子的注入方向 离子的注入能量 注入时的靶温
注入剂量
将沟道效应降低到最小:
a. 在晶体上覆盖一层非晶体的表面层:常用非晶覆盖材料是一 层薄氧化层。使离子束方向随机化,离子以不同角度进入晶片; b. 将晶片晶向偏转:大部分注入系统将硅片倾斜7°,并从平边 扭转22°; c. 在晶片表面制作一个损伤层:在晶片表面注入大量硅或锗可 以损伤晶片表面,在晶片表面产生一个随机层。

4第四章 离子注入

4第四章 离子注入





1.硅材料的热退火特性
结构简单的缺陷(空位、间隙原子),热处理时具有较 高的迁移率,它们相互靠近时,就可能复合而使缺陷消 失;对于非晶区域,由单晶区向非晶区通过固相外延再 生长而使整个非晶区得到恢复。 退火的温度、时间和方式依据损伤程度、损伤区域的大 小而定;选择退火条件,需考虑基片电参数的恢复程度, 还应考虑基片许可的热处理温度。 低剂量损伤,在低温下退火即可消除;高剂量损失形成 的非晶区域,需要较高的退火温度(550-600℃开始重结 晶),并且随着温度的升高,位错环的密度增大 (<800℃)。
轻离子,电子碰撞为主,位移少,晶格损伤小,损伤体 积计算见P105
重离子,原子碰撞为主,位移多,晶格损伤大,损 伤体积计算见P105 4.22式
4.4

热退火
退火:将注入离子的硅片在一定温度和真空或氮、氩 等高纯气体的保护下,经过适当时间的热处理, 作用:①部分或全部消除硅片中的损伤,少数载流子 的寿命及迁移率也会不同程度的得到恢复;②电激活 掺入的杂质。 根 据 注 入 的 杂 质 数 量 不 同 , 退 火 温 度 一 般 在 450 - 950℃之间。 讲授内容:硅的热退火特性、硼的退火特性、磷的退 火特性、扩散效应、快速退火等5部分。
1.平均投影射程Rp,标准偏差DR通过查表 根据靶材(Si,SiO2,Ge),杂质离子(B,P,As)能量 (keV)
2.单位面积注入电荷:Qss =It/A,I:注入束流,t:时 间,A:扫描面积(园片尺寸) 3.单位面积注入离子数(剂量): Ns = Qss/q =(I t) /(q A) Ns 4.最大离子浓度:NMAX= 2 DR
2
NB
x j R p DR p

第4章IC工艺之离子注入ppt课件

第4章IC工艺之离子注入ppt课件

Beam scan
Mask xj
Mask
Silicon substrate
a) Low dopant concentration (n–, p–) and shallow junction (xj)
Mask xj
Mask
Silicon substrate
b) High dopant concentration (n+, p+) and deep junction (xj)
Scanning disk with wafers
Suppressor aperture
Faraday cup
Ion beam
Current integrator
Scanning direction
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
( dE dx
) nuel
( dE dx
) e
R p ( E )
E 0
dE ( dE tot

E 0
dE S (E
)
dx
E
dE
0 Sn(E) Se(E)
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
– 4.3. 注入离子的激活与辐照损伤的消除
P.103~112 1)注入离子未处于替位位置 2)晶格原子被撞离格点
ET(M 4M i iM M tt) E0f()Ea
Ea为原子的位移阈能 大剂量——非晶化 临界剂量(P。111) 与什么因素有关? 如何则量?

第04章 离子注入

第04章 离子注入

31
§4.2 注入离子在无定形靶中的分布
四. 1.
浅结的形成 目的:为了抑制MOSFET的穿通电 流和减小器件的短沟道效应,要求 减小CMOS的源/漏结的结深。


降低注入离子的能量——使用 较多
绪论

源(Source):在半导体应用中,为了操作方便,一般 采用气体源,如 BF3,BCl3,PH3,AsH3等。如用固体或 液体做源材料,一般先加热,得到它们的蒸汽,再导入
放电区。

气体源:BF3,AsH3,PH3,Ar,GeH4,O2,N2,...

离子源(Ion Source):灯丝(filament)发出的自由电
2


由如上描述可知,离子注入掺杂方式与扩散掺杂方式不同,杂质的最大 浓度不在固体表面,而在距表面Rp处,即次表面。
21
§4.2 注入离子在无定形靶中的分布
4.
实际的杂质纵向分布


真实分布非常复杂,不服从严格 的高斯分布。 轻离子注入到重原子靶中时,如 B→Si靶

由于B质量轻,会有较多的B离子 受到大角度的散射,被反向散射 的B离子数量会增多,导致在峰值 位臵靠近表面一侧有较多的离子 堆积。
1.

将某种元素的原子或携带该元素的分子 经离化变成带电的离子。 在强电场中加速,获得较高的动能后, 射入材料表层(靶)。
2.
3.
改变材料表层的物理或化学性质。
3
绪论
磁分析器 聚焦 扫描系统 靶
加速管
离 子 源
1 I dt Q A q
4
BF3:B++,B+,BF2+, F+, BF+,BF++

第四章 离子注入

第四章 离子注入
作用,注入离子与靶原子之间的势函数用下面形 式表示:
V r q Z 1Z 2 r
2
r f a
其中f(r/a)为电子屏蔽函数,a为屏蔽参数。
13
二、核阻止本领与离子能量的关系
如果屏蔽函数为: f r a
a r
此时注入离子与靶原子核碰撞的能量损失率为常数,用S0n表示。
总能量损失为它们的和。
7
核碰撞:是注入离子与靶内原子核之间的相互碰撞。 因注入离子与靶原子的质量一 般为同一数量级,每次碰 撞之后,注入离子都可能发生大角度的散射,并失去一定的能 量。靶原子核也因碰撞而获得能量,如果获得的能量大于原子 束缚能,就会离开原来所在晶格进入间隙,并留下一个空位, 形成缺陷。
第四章 离子注入
离子注入技术是用一定能量的杂质离子束轰 击要掺杂的材料(称为靶,可以是晶体,也可以 是非晶体),一部分杂质离子会进入靶内,实现 掺杂的目的。
离子注入是集成电路制造中常用的一种掺杂 工艺,尤其是浅结,主要是靠离子注入技术实现 掺杂。
1
离子注入的发展历史:
1952年,美国贝尔实验室就开始研究用离子束轰击技术来改善 半导体的特性。 1954年前后,shockley提出来用离子注入技术能够制造半导体 器件,并且预言采用这种方法可以制造薄基区的高频晶体管。 1955年,英国的W.D.Cussins发现硼离子轰击锗晶片时,可在n 型材料上形成p型层。 1960年,对离子射程的计算和测量、辐射损伤效应以及沟道效 应等方面的重要研究己基本完成,离子注入技术开始在半导体 器件生产中得到广泛应用。 1968年报道了采用离子注入技术制造的、具有突变型杂质分布 的变容二极管以及铝栅自对准MOS晶体管。 1972年以后对离子注入现象有了更深入的了解,目前离子注入 技术已经成为甚大规模集成电路制造中最主要的掺杂工艺。

第4章 离子注入(掺杂工艺)精简

第4章 离子注入(掺杂工艺)精简

Se(E) ——电子阻止本领 电子阻止本领
dE S n (E ) ≡ dx n
电子信息与计算机工程系
LSS理论 理论
dE − = N Sn ( E ) + S dx
e
( E )
能量为E的 能量为 的 入射粒子在 密度为N的 密度为 的 靶内走过x 靶内走过 距离后损失 的能量
M—质量, Z—原子序数,下标 质量, 原子序数, 离子, 质量 原子序数 下标1—离子,下标 离子 下标2—靶 靶
摘自J.F. Gibbons, Proc. IEEE, Vol. 56 (3), March, 1968, p. 295 摘自
4.1.2 电子阻止本领
例如:磷离子 例如:磷离子Z1 = 15, M1 = 31 注入 硅Z2 = 14, M2 = 28, 计算可得: 计算可得: Sn ~ 550 keV-µm2 µ
1 dE 1 dE S n (E ) = , S e (E ) = N dx n N dx e
-dE/dx:能量随距离损失的平均速率 : E:注入离子在其运动路程上任一点x处的能量 :注入离子在其运动路程上任一点 处的能量 Sn(E):核阻止本领 : 能量E的函数 能量 的函数 Se(E):电子阻止本领 : N: 靶原子密度 ~5×1022 cm-3 for Si ×
电子信息与计算机工程系
离子注入过程是一个非平衡过程, 离子注入过程是一个非平衡过程,高能离子进入靶 后不断与原子核及其核外电子碰撞,逐步损失能量, 后不断与原子核及其核外电子碰撞,逐步损失能量, 最后停下来。停下来的位置是随机的, 最后停下来。停下来的位置是随机的,大部分不在 晶格上,因而没有电活性。 晶格上,因而没有电活性。

§4离子注入工艺

§4离子注入工艺

2017/2/17
18
(二)电子阻止本领

同注入离子的速度成正比,即和注入 离子能量的平方根成正比。
2017/2/17
19
(三)射程的概念
2017/2/17
20
§4.2注入离子的分布
(一)纵向分布
2017/2/17
22
* 注入离子的分布计算
1.平均投影射程Rp,标准偏差R通过查表
根据靶材(Si, SiO2, Ge),杂质离子(B,P,
2017/2/17 13



离子注入时,由于受到高能量杂质离子的轰击, 硅片内许多晶格被破坏而出现晶格缺陷,严重时会 出现非晶层。这种缺陷一定要经过退火处理来消除, 所以退火工艺在离子注入工艺中是必不可少的。 与扩散一样,离子注入也需要掩蔽,其掩蔽物 可以是二氧化硅、氮化硅、AL2O3及AL都行,且掩 蔽膜厚度随电场强度和杂质剂量的增加而加厚。
2017/2/17
43
4.扩散效应
2017/2/17
44
5.快速退火
2017/2/17
45
§4.5 离子注入优缺点
一.离子注入的优缺点
优点:1)可在较低的温度下,将各种杂质 掺入到不同的半导体中; 2)能精确控制 掺入基片内杂质的浓度分布和注入深度; 3 )可以实现大面积均匀掺杂,而且重复 性好;4)掺入杂质纯度高;5)获得主浓 度扩散层不受故浓度限制
39
2017/2/17

1.普通热退火:退火时间通常为15-30min,使用通常的扩散炉,在真空或 氮、氩等气体的保护下对衬底作退火 处理。缺点:清除缺陷不完全,注入 杂质激活不高,退火温度高、时间长, 导致杂质再分布。
2017/2/17
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档