自动控制原理及其应用(第二版)答案-黄坚.

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
s=-3 s=-2
= -1
=2
2 - 1 F(s)= s+3 s+2
f(t)=2e-3t-e-2t
2-3-2 函数的拉氏变换。 s F(s)= (s+1)2(s+2) s d [ s est] st 解:f(t)= e +lim (s+1)2 s=-2 s -1 ds s+2 st st 2 -2t st) =-2e +lim( e + e s -1 s+2 (s+2)2 =-2e-2t-te-t+2e-t =(2-t)e-t-2e-2t
第二章习题课
(2-1a)
2-1(a) 试建立图所示电路的动态微分方 程。 u

c

i1=i2-ic
+ d1(ui-uo+ ) + uo R u1u =[ -C R2 ]R1+uo ui u dt i R2 o - - -
C
解:
C C i1 R1 R2
ic
+ uo i2 -
dui du。 o 输入量为 u ,输出量为 u i=u 1+uo i o R2ui=uoR1-Cdt R1R2+C dt R1R2u +u R o 2 duc d(ui-uo) uo u1=i1R1 duo ic=C dui dt = dt i2= R uoR1+C dt R1R2+uoR 2 2=R2ui+C dt R1R2
解:L[t3+e4t]= (3) f(t)=tneat 解:L[tneat]= n! (s-a)n+1 3! 1 3! 1 + s-4 = 4 + s-4 3+1 s s
(4) f(t)=(t-1)2e2t 2 2 2t -(s-2) 解:L[(t-1) e ]=e (s-2)3
2-3-1 函数的拉氏变换。 s+1 F(s)=(s+1)(s+3) s+1 解:A1=(s+2) (s+1)(s+3) A2=(s+3) s+1 (s+1)(s+3)
第二章习题课
(2-1b)
2-1(b) 试建立图所示电路的动态微分方 程。 duc CL d2uo duo du L ic= = +C o L 2 R 1 uL= dt R2 dt dt R2 dt + + 2 uo C CL d uoR2 duo uo u u + +C i1= i o i2= R ui=u1+uo 2 dt - R2 R2 dt - 2 输入量为ui,输出量为uo。 duc d(ui-uo) u1=i1R1 ic=C dt = dt diL uo u =L L dt iL=i2= i1=iL+ic R2
UC(s)=UO(s)+UL(s) I1(s)=IL(s)+IC(s)
UO(s) I2(s)= R2 UI(s)+UC(S) I1(s)= 即: R1 IL(s)=I1(s)-IC(s)
Ui 1 R1 I1
2-5-b 试画出题 2-1图所示的电路 的动态结构图,并 求传递函数。 解:ui=R1I1+uc uo ∴ iL= R2 UL(s)=sLIL(s)
+ ui -
R1 C
L
R2
+ uo -
uc=uo+uL i1=iL+ic
diL uL=L dt duc ic=C dt
Ui(s)=R1I1(s)+UC(s)
求下列函数的拉氏变换。 (1) f(t)=sin4t+cos4t w 解:∵L[sinwt]= 2 2 w +s s L[coswt]= 2 2 w +s
习题课一 (2-2)
4 + s ∴L[sin4t+cos4tΒιβλιοθήκη Baidu= s2+16 s2+16 s+4 = 2 s +16
(2) f(t)=t3+e4t
C C ic
+ ui -
i1 R1 R2
+ uo i2 -
IC(s)=CsUC(s)
[UI(s)-UO(s)]Cs=IC(s)
UI(s)
UI(s) sC
1+ sC )R2 (R 1 IC(s) + I2(s) + I1(s)
UO(s)
-
1 R1
R2
UO(s)
1 ( +sC)R2 UO(s) R1 R2+R1R2sC = = 1 UI(s) R1+R2+R1R2sC ( sC)R + 1+ R 2 1
6+2s2+12s ∴ Y(s)= 2 s(s +5s+6) A1=sY(s)
s=0
1 s
(2-4-2)
求下列微分方程。
d3y(t) d2y(t) dy(t) 初始条件: +4 2 +29 =29, 3 dt dt dt · · y(0)=0 , y(0)=17 , · y(0)=-122 解:
2-5-a 试画题2-1图所示电路的动态结构图,并 求传递函数。 + uc - 解:ui=R1i1+uo ,i2=ic+i1 duc ic=C dt UI(s)=R1I1(s)+UO(s) I2(s)=IC(s)+I1(s) UI(s)-UO(s) 即: =I1(s) R1
2-3-3 函数的拉氏变换。
∴ f(t)=1+cost-5sint
2s2-5s+1 F(s)= s(s2+1) 解:F(s)(s2+1) s=+j =A1s+A2 A1=1, A2=-5
s=+j s=0
A3=F(s)s
=1
s -5 1 F(s)= s + 2 + 2 s +1 s +1
2-3-4 函数的拉氏变换。
(2-4-1) 求下列微分方程。 A3=(s+3)Y(s) A2=(s+2)Y(s) s=-2
s=-3
d2y(t) dy(t) +5 dt +6y(t)=6 ,初始条件: 2 dt · y(0)=y(0)=2 。 A1=1 , A2=5 , A3=-4 ∴ y(t)=1+5e-2t-4e-3t
′ 解:s2Y(s)-sY(0)-Y(0)+5sY(s)-5Y(0)+6Y(s)=
s+2 2 1 -3t 3 -t t -t (4) F(s)= = + e - e - e 2 s(s+1) (s+3) 3 12 4 2 s+2 s+2 st st 解:f(t)= e + e 2 2 (s+1) (s+3) s=0 s(s+1) s=-3 s+2 est ] d[ s(s+3) + lim s -1 ds st 2 st (s+2)te 2 1 -3t (-s -4s-6)e = + e +lim [ + 2 ] 2 2 s -1 3 12 (s +3) s +3s
相关文档
最新文档