焊缝金属的组织与性能

合集下载

焊缝组织分析与质量控制

焊缝组织分析与质量控制

过热粗晶区魏氏组织
低碳钢中的魏氏组织
3、细晶区
此区加热温度在A~1100°之 间。在加热过程中,铁素体和 珠光体全部转变为奥氏体,即 产生金属的重结晶现象。由于 加热温度稍高于A ,奥氏体晶 粒尚未长大,冷却后将获得均 匀而细小的铁素体和珠光体, 相当于热处理时的正火组织, 故又称为正火区或相变重结晶 区。该区的组织比退火 (或轧制) 状态的母材组织细小,如图所 示。
纯钛加热快冷β→α’,钛马氏体。
3、有同素异构转变的多相合金
钢材(Fe-C合金) 过热区(1100--1490℃),易产生魏氏组织 重结晶区(900--1100℃)加热与冷却两次重
结晶,内部晶格发生变化。低碳钢相当于正火 组织
不完全重结晶区(750--900℃)粗晶与细 晶的混合组织
再结晶区 (晶粒外形变化)冷变形钢—晶粒细 化
1、焊接熔池体积小,冷却速度快(平均100℃/s,是铸造 104).
2、熔池液态金属高度过热,温度梯度大,熔池中心与边 缘的金属液态梯度比铸造高103– 104倍。
3、熔池在运动状态下结晶,结晶前沿随热源同步移动, 结晶主轴逆散热方向并向热源中心生长,到焊缝中心区停 止生长。此区是杂质易聚集区。
(一)焊接熔池的凝固
• 焊接熔池凝固的过程是从液相转变成固相的焊 接一次结晶过程。
• 此过程中易产生缺陷:气孔、裂纹、夹杂、宏 观偏析、粗大柱状晶等。
• 导致塑性降低、强度降低,断裂事故发生。
等轴晶
柱状晶
焊缝组织宏观分析
焊 接 区 域 低 倍 下 形 貌
20钢
(二)焊接熔池凝固与铸造凝固区别
元素较多时,熔合区

的结晶形态往往是胞
枝 晶
状树枝晶(或树枝晶),

焊接接头的组织与性能

焊接接头的组织与性能

织和性能变化的区域,称为焊接
热影响区,亦称近缝区,
热影响区
熔合区
过热区 正火区
受到 不同规范的
热处理
部分 相变区
组织 性能最差
比淬火组织 脆性还大
正火处理 晶粒细化
晶粒大小 不均匀
熔合区
❖又称半熔化区,是焊 缝与母材的交界区,
❖加热温度:1490~1530℃ ❖组织:未熔化但因过热
而长大的粗晶组 织和 部分新结 晶的 铸态组织,
空气中的氧、氮; 空气中的水汽; 工件表面的锈、油和水
焊缝中气体含量增多, 产生气孔等缺陷,降低 焊缝的性能。
2 熔池体积小,冷却速度快,导致化学成分不均匀,易形 成气孔、夹渣等缺陷,甚至产生裂纹,
为保证焊缝的质量,焊接过程中通常采取以下措施:
❖减少有害元素进入熔池 在焊接过程中对熔化金属进行保护,使之与空气隔开,如: 采用焊条药皮、埋弧焊焊剂、气体保护焊的保护
❖正火区:紧靠着过热区; ❖加热温度:850~1100℃ AC1至AC3以上100-200℃ ❖组织:加热时金属发生重结
晶,冷却后得到均匀 细小的铁素体和珠光 体组织 近似于正火 组织 ,
❖特点:宽度约1.2~4.0mm,力学性能优于母材,
焊接热影响区:部分相变区
❖加热温度: AC1~AC3之
间 ❖组织:
❖特点:该区很窄,组织不均匀,强度下降,塑性很 差,是产生裂纹及局部脆断的发源地,
焊接热影响区:过热区
❖紧靠熔合区;
❖加热温度: 1100℃~1490℃
1100℃~固相线
❖组织: 粗大的过热组织,
❖特点:宽度为1~3mm,塑性和韧性下降, 焊接刚度大的结构时,该区易产生裂纹,
焊接热影响区:正火区

金属熔焊原理 第二章 焊缝的组织和性能

金属熔焊原理 第二章 焊缝的组织和性能
熔焊时,母材上由熔焊的焊条金属与局部熔化的母材所 组成的具有一定几何形状的的液体金属叫熔池。如焊接时不 填充金属,则熔池仅由局部熔化的母材组成。
一、熔池的形状和尺寸
熔池的形状类似于不标准的半椭球,其轮廓为温度等于母材熔 点的等温面。
熔池的宽度和深度沿X轴连续变化。电流增加熔池的最大宽度(Bmax)略增, 最大深度(Hmax)增大;随电弧电压的增加, Bmax增大, Hmax减小。
接触过渡
自由过
渣壁过
图2-4 熔滴的重力和熔滴的表面张力示意图 图 2-5 通有同方向电流的两根导 线的相互作用力 F1 -熔滴的重力 F2-熔滴的表面张力
图2-6 磁力线在熔滴上的压缩作用 p —电磁压缩力
图2-7 斑点压力阻碍熔滴过渡 的示意图
2-8焊条药皮形成的套筒示意图
焊接熔池的形成
第二章
焊缝的组织和性能
第一节 焊条、焊丝及母材的熔化
第二节 焊缝金属的一次结晶
第三节 焊缝金属的二次结晶 第四节 焊缝组织和性能的改善
第一节 焊条、焊丝及母材的熔化
焊条金属的加热
1) 电阻热:焊接电流通过焊芯时产生的电阻 热。 2) 电弧热:焊接电弧传给焊条端部的热量。 3) 化学反应热:药皮部分化学物质化学反应 时产生的热量。
3、液态金属与母材交界处,运动受限制, 化学成分不均匀。
焊缝金属的熔合比
熔合比:熔焊时,局部熔化的母材在焊 缝金属中所占的百分比。
A——熔化的母材 B——填充金属
图2-11 不同接头形式焊缝横截面积的熔透情况
图2-12 接头形式与焊道层数对熔合比的影响 I-表面堆焊 II-V形坡口对接 III-U形坡口对接 (奥氏体钢、焊条电弧焊)
比表面积(S):熔滴表面积(A)与其质量(ρV) 之比,即S=A/ρV 。 设熔滴是半径为R的球体,则S=3/ρR。 熔滴越细其熔滴比表面积越大,凡是能使熔滴变细 的因素,都能加强冶金反应。

焊缝及其热影响区的组织和性能_OK

焊缝及其热影响区的组织和性能_OK
• 焊接接头由焊缝(Weld Metal)、热影响区(HAZ)、熔合区(Fusion Zone)和母材 (Base Metal)组成。
7
熔焊焊接接头的形成及其冶金过程
• 保证焊接接头的措施: 1 选择合适的母材; 2 选择合适的焊材; 3 控制焊接热过程,保证焊缝金属达到成分和组织要求及焊接接头的力学性能; 4 控制HAZ的组织转变,使接头满足设计和使用要求; 5 控制使焊接接头性能下降且在局部加热和冷却过程中产生的成分偏析、夹杂、
12
低碳钢焊缝的室温组织
• 因含碳量较低,沿A晶界析出F,然后发 生共析转变:A→P(F+Fe3C)
• 焊缝过热时,可能出现魏氏组织,其特 征是F在原A晶界呈网状或沿原A晶粒内 部一定方向析出,具有长短不一的针状 或片状,亦可直接插入P晶粒之中。
• 焊缝金属是一种多相组织,是晶界F、侧 板条F和P混合组织的总称。
编辑本段加工余量
加工余量概述
为了加工出合格的零件,必须从毛坯上 切去的 那层金 属的厚 度,称 为加工 余量。 加工余 量又可 分为工 序余量 和总余 量。某 工序中 需要切 除的那 层金属 厚度, 称为该 工序的 加工余 量。从 毛坯到 成品总 共需要 切除的 余量, 称为总 余量, 等于相 应表面 各工序 余量之 和。 机床
编辑本段生产类型
生产类型通常分为三类。
1.单件生产 单个地生产某个零件,很少重复地生 产。
2.成批生产 成批地制造相同的零件的生产。
3.大量生产 当产品的制造数量很大,大多数工作 地点经 常是重 复进行 一种零 件的某 一工序 的生产 。
拟定零件的工艺过程时,由于零件 的生产 类型不 同,所 采用的 加方法 、机床 设备、 工夹量 具、毛 坯及对 工人的 技术要 求等, 都有很 大的不 同。

焊接工艺中的焊缝形貌与力学性能分析

焊接工艺中的焊缝形貌与力学性能分析

焊接工艺中的焊缝形貌与力学性能分析焊接是一种常见的金属加工方法,通过加热和加压使金属材料连接在一起。

焊缝是焊接后形成的接头,其形貌和力学性能对焊接质量有着重要的影响。

本文将对焊接工艺中的焊缝形貌与力学性能进行分析。

一、焊缝形貌分析焊缝形貌是指焊接后焊缝的外观形态及其组织特征。

焊缝形貌的好坏直接反映了焊接工艺的合理性和焊接接头的质量。

以下是焊缝形貌的主要观察指标。

1.焊缝外观焊缝外观主要包括焊缝宽度、焊缝凹凸度、焊缝表面质量等指标。

焊缝宽度应符合设计要求,不能过宽或过窄。

焊缝凹凸度应均匀,不能存在明显的凸起或凹陷。

焊缝表面应光滑、光亮,并且不能有裂纹、气孔等缺陷。

2.焊缝组织结构焊缝组织结构是指焊接过程中金属材料的晶粒生长状态和相组成。

焊缝组织结构的好坏与焊接材料的选择、焊接工艺参数的控制密切相关。

理想的焊缝组织应该具有细小均匀的晶粒和致密的结构,以提高焊接接头的强度和韧性。

3.焊缝形状焊缝形状是指焊缝截面的形状和形貌。

常见的焊缝形状有直角焊缝、V型焊缝、X型焊缝等。

选择合适的焊缝形状可以提高焊缝的强度和疲劳寿命。

二、力学性能分析焊缝的力学性能是指焊接接头在受力情况下的承载能力和变形能力。

焊缝的力学性能直接影响焊接件的使用寿命和安全性能。

以下是焊缝力学性能的主要评估指标。

1.拉伸强度焊缝的拉伸强度是指焊接接头在拉伸载荷下的最大承载能力。

高强度的焊缝具有较好的抗拉性能,能够保证焊接接头在受力情况下不易发生断裂。

2.抗剪强度焊缝的抗剪强度是指焊接接头在剪切载荷下的最大承载能力。

焊缝的抗剪强度对于焊接接头的剪切稳定性和耐疲劳性能具有重要影响。

3.韧性焊缝的韧性是指焊接接头在受到外力作用下的变形能力。

良好的焊缝韧性可以减缓焊接接头的断裂速度,提高焊接接头的断裂韧性和疲劳寿命。

4.疲劳寿命焊缝的疲劳寿命是指焊接接头在循环载荷作用下能够承受的次数。

焊缝的疲劳寿命直接决定了焊接接头的使用寿命和可靠性。

综上所述,焊接工艺中的焊缝形貌与力学性能对焊接质量具有重要意义。

3.2 -气孔与夹杂

3.2 -气孔与夹杂
(一) 氧的来源
(1)弧气中的氧化性气体O2、CO2和水蒸气
(2)氧化性熔渣(含FeO、MnO、SiO2); (3)焊丝、工件表面的氧化铁(Fe3O4)和铁锈(Fe2O3 );
(二)氧对焊接质量的影响
1.降低焊缝的力学性能 [O]↑→强度、塑性、韧性↓,尤其低温冲击韧性↓↓ 2.使焊缝中有益的合金元素烧损,造成飞溅和CO气孔 3.降低焊缝导电性、导磁性、耐蚀性等物化性能
3.CO气孔
(1)形貌特征:沿结晶方向分布,象条虫子卧在焊缝内部,内壁 有氧化色彩
(2)原因:冶金反应产生大量的CO,在结晶过程中来不及逸出
焊缝中的气孔
氢气孔特征
CO气孔特征
四、影响气孔产生的因素及防止措施
(一)影响因素
1.冶金因素的影响
(1)熔渣氧化性的影响
熔渣氧化性↑→CO气孔↑;熔渣氧化性↓→H2气孔↑
吸热反应,效果比元素脱硫好的多 ,但依然有限
③ 稀土脱硫: 1)脱硫; 2)改变硫化物夹杂的尺寸、形态和分布,尺寸大、呈片状层状分布→细 小均匀的点状分布
(二)磷的危害与控制 1.存在形式:以Fe2P和Fe3P为主 2.危害 ① 促使金属热裂:磷化铁与铁和镍形成低熔点
共晶
Fe3P+Fe(1050℃) Ni3P+Fe(880℃)
3.控制措施-以“限”为主
(1)限制硫的来源-母材、焊丝、药皮或焊剂 (2)冶金脱硫 ① 元素脱硫:[FeS]+[Mn]=(MnS)+[Fe],放热反应,脱硫效果差 ② 熔渣脱硫:
[FeS]+(MnO)=(MnS)+(FeO)
[FeS]+(CaO)=(CaS)+(FeO) [FeS]+(MgO)=(MgS)+(FeO)

焊缝金属的组织与性能

焊缝金属的组织与性能

焊缝金属的组织与性能一、焊缝熔池的一次结晶1.焊缝一次结晶的特点焊缝熔池的结晶都经过晶核生成和长大的过程。

有如下特征:(1)焊缝熔池小,冷却速度快;(2)焊缝熔池中的液态金属处于过热状态;(3)焊缝熔池金属是在运动状态下结晶;2.焊缝熔池一次结晶组织的特征:是从熔合线未完全熔化的晶粒上开始,沿着垂直熔合线的方向,向与散热方向禁止反的方向长大,形成柱状晶。

1.焊缝熔池一次结晶的组织性能由液态凝固后所得到的组织是一次组织,而在室温显微镜下所观察到的焊缝组织都是二次组织。

要观察一次组织时,必须用特殊的浸蚀方法才能将它显示出来。

焊缝对一次结晶时性能的影响是很吸显的。

粗大的柱状晶不但降低焊缝的温度,而且还降低焊缝的韧性。

此外,焊缝的一次结晶形态还对产生裂纹、气孔、夹渣、腐蚀都有很大的影响。

2.焊缝中的偏析焊接过程中,由于冷却速度过快,焊缝熔池在结晶时,其化学成分还来不及扩散均匀就已凝固,出现偏差;此外,还有一些非金属夹杂物,因来不及浮出熔池表面残存在在焊缝内也形成偏差。

焊缝中的偏差,常常是力学性能最薄弱的地带。

焊缝中的偏析分3种1)显微偏析:焊缝熔池在结晶过程中,先结晶的固相比较纯,后结晶的固相含合金元素和杂质略高,最后结晶的固相含合金元素和杂质最高。

影响显微偏析的主要因素是金属的化学成分。

2)区域偏析:焊缝熔池在结晶时随着电弧向前移动,熔池中的柱状晶也在不断的推移和大,此时会把未凝固的合金成分和杂质推向焊缝熔池中心,使中心的杂质浓度逐渐升高形成区域偏析。

3)层状偏析:在焊缝断面上,不同分层的化学成分分布不均匀的现象为层状偏析焊缝熔池结晶时,在结晶前沿的液体金属中,熔质的浓度较高,同时也集结一些杂质,当冷却速度较慢时,这一层的浓度较高的熔质和杂质可以通过扩散来减轻偏析的程度;当泠却速度较快时,浓度较高的熔质和杂质还没来不及“均匀化”就已凝固,使这个区域形成层状偏析。

二、焊缝金属的二次结晶1.二次结晶的组织焊缝熔池金属一次结晶结束后,熔池金属将转变为固体焊缝。

焊接接头的组织和性能

焊接接头的组织和性能

.
24
以上就是低合金高强钢焊缝金属可能存在 的几种组织。概括而言,我们希望得到较 多的针状细晶铁素体,不希望得到侧板条 铁素体,先共析铁素体,如果合金成分能 显著增加奥氏体稳定性,降低其分解温度, 这一愿望即可实现。试验表明Mn含量0.8~ 1.0%、Si0.1~0.25%,而Mn/ Si=3~6时,即 可得到细晶铁素体和针状铁素体。我们还 希望得到的贝氏体为下贝氏体,而不希望 产生上贝氏体或粒状贝氏体,以及孪晶高 碳马氏体,其办法是控制
.
25
冷却速度;使在600~450℃区间(贝氏体转变的 高温段)停留时间尽量短,以尽量减少形成粒 状贝氏体和上贝氏体的机会(可控制t8-5来实 现)、降低含C量,使一且发生马氏体转变时
能形成板条状位错型马氏体,它的存在有利 而无害。有资料表明,焊缝含有微量Ti、B有
利形成针状铁素体,而抑制先共析铁素体的 形成,Ti与B同时加入最佳,因为Ti优先和氧 反应对B不被氧化起到保护作用。B凝聚在A
学性能。
.
9
2、焊缝金属的显微组织与性能
低碳钢是亚共析钢,在焊接熔池冷却凝固 的一次结晶完成后,在一定温度下将发生 二次结晶即固态相变,这时的组织应该是 铁素体加少量珠光体。其组织质量分数的 不同和性能的不同取决于冷却速度,即冷 却速度越大,铁素体含量越少,
.
10
珠光体越高,硬度强度也随之增高,且组织 细小。反之则组织变粗,铁素体越多珠光体 越少、硬度强度降低。需要注意的是铁素体 的形态,在不同冷却速度下也是不同的。且 对性能有影响。
低温压力容器、锅炉专业用低合金高强度钢 标准。
.
18
1、低合金高强度钢的焊缝合金化
我们以焊条电弧焊为例来讨论。其实从焊条标

Q345钢焊接接头组织性能分析

Q345钢焊接接头组织性能分析

摘要:对Q345钢焊接性分析并制定Q345钢板(板厚δ=10mm)的对接埋弧焊工艺,依照工艺进行埋弧焊;对Q345埋弧焊接头典型部位截取试样,进行金相显微试样的制备;观察显微组织,测量显微维氏硬度,作显微组织和力学性能分析。

1实验原理:1.1 Q345(16Mn)焊接性分析及焊接方法的选择Q345应用最广用量最大的低合金高强度结构钢,综合性能好,低温冲击韧性,冷冲压性及切削性能均好,屈服强度≥345MPa,抗拉强度≥490Mpa,适用于多种焊接方法,本次实验选择焊接性能良好的埋弧焊。

1.2埋弧焊焊接工艺1.2.1埋弧焊简介埋弧自动焊是指电弧在颗粒状焊剂层下燃烧的一种自动焊方法,是目前广泛使用的一种高效的机械化焊接方法。

广泛用于锅炉、压力容器、石油化工、船舶、桥梁、冶金及机械制造工业中。

1.2.2埋弧焊焊接原理埋弧焊的焊接过程:先送丝,经导电嘴与焊件轻微接触,焊剂堆敷在待焊处,引弧。

随着电弧向前移动,熔池液态金属冷却凝固形成焊缝,液态熔渣冷却而形成渣壳。

焊接时,焊机的启动、引弧、送丝、机头(或焊件)移动等过程全由焊机机械化控制。

1.2.3焊前准备1.坡口的选择与加工由于埋弧焊的使用的电流比较大,熔透深度比较大,因此当焊件厚度小于14mm时可以不开坡口,这样仍能保证焊透和良好的焊缝成形;因为此次实验所选钢板为10mm厚,故不开坡口。

2.焊件的清理焊接前,必须将坡口及焊接部位表面的锈蚀、油污、水分、氧化皮等清楚干净。

方法有手工清除、机械清除等。

3.焊丝的清理和焊剂的烘干焊接前,必须将焊丝表面的油污、铁锈等污物清除干净。

为防止氢侵入焊缝,对焊剂必须严格烘干,而且要求烘干后立即使用。

不同类型的焊剂要求烘干温度不同,这次实验所用焊剂为HJ431,查焊接材料手册知要求250℃、2h烘干。

4.焊件的装配焊件装配时,必须保证间隙均匀,高低平整。

定位焊的位置应在第一道焊缝的背面,长度一般应大于30mm。

此次定位焊选用CO2气体保护焊。

焊缝及其热影响区的组织和性能

焊缝及其热影响区的组织和性能
②高碳马氏体(片状马氏体) 形态:马氏体较粗大,往往贯穿整个奥氏体晶 粒,使以后形成的马氏体片受到阻碍 形成机理:孪晶
24
七、改善焊缝组织的途径
1.凝固组织形态对性能的影响 生成粗大的树枝状晶,韧性降低,对气孔、夹杂、热裂 都有影响
2.焊缝金属的性能的改善措施 ①固溶、细晶等强化和变质处理 加入Mo、V、Ti、Zr、Al、B、N、稀土Te等 ②振动结晶 机械振动、高频超声振动、电磁振动 ③焊接工艺 焊后处理、热处理、多层焊、锤击、跟踪回火等。
20
2、低合金钢 (1)多以F+P为主,有时出现B及M,与焊材及工艺有关。 (2)铁素体(F)转变 ①粒界F(高温转变900-700℃):为先共析F,由奥氏 体晶界析出向晶内生长,呈块状 ②侧板条F(700-550℃):由奥氏体晶界形核,以板 条状向晶内生长(由于F形成温度较高,F内含碳极 低,故又称为无碳贝氏体) ③针状F(500℃附近):大都非自发形核,在奥实体 内形成 ④细晶F (500℃以下):奥氏体晶内形成,有细晶元素
18
2.熔合区的化学不均匀性
①熔合区的形成
母材与焊缝交界的地方并不是一条线,而是一个区
熔合区熔化不均(传热、晶粒散热)
②熔合区成分分布
在液相中的溶解度>在固相中的溶解度
故:固相浓度 界面
液相浓度
C0 - C´
C0 + C´
分配取决于扩散系数和分配系数,特别是
S、P、C、B、O、N等
熔合区还存在物理不均匀(组织、性能)
Pcm

C

Si 30

Mn
Cu 20

Cr

Ni 60

Mo 15

V 10

熔焊原理:焊接接头的组织与性能

熔焊原理:焊接接头的组织与性能

熔焊原理:焊接接头的组织与性能
层状偏析的存在,说明焊缝的凝固速度在作周期性变化,但造成这种变化的 原因,目前尚未完全认识清楚。层状偏析对焊缝质量的影响目前研究的也不够充 分。现已发现,层状偏析不仅可能使焊缝金属的力学性能不均匀,有时还会沿层 状线产生裂纹或气孔等缺陷。
三、焊缝金属的固态相变 熔池凝固后得到的组织通常叫做一次组织,对大多数钢来说是高温奥氏体。 在凝固后的继续冷却过程中,高温奥氏体还要发生固态相变,又称为二次结晶, 得到的组织称为二次组织。焊缝经过固态相变得到的二次组织即为室温组织。二 次组织是在一次组织的基础上转变而成,二者承前启后,对焊缝金属的性能都有 着决定性的作用。 1.低碳钢焊缝的固态相变 低碳钢焊缝的二次组织主要是铁素体十少量的珠光体,这是因为其含碳量很 低所致。一般情况下,铁素体首先沿原奥氏体柱状晶晶界析出,可以勾画出凝固 组织的轮廓。当焊缝在高温停留时间较长而冷速又较高时,铁索体也可从奥氏体 晶粒内部沿一定方向析出,以长短不一的针状或片状直接插入珠光体晶粒之中, 而形成所谓魏式组织。而在冷却速度特别大时,低碳钢焊缝中也可能出现马氏体 组织。
熔焊原理:焊接接头的组织与性能
◆ 熔池的凝固与焊缝金属的固态相变 随着温度下降,熔池金属开始了从液态到固态转变的凝固过程(图3—1),并
在继续冷却中发生固态相变。熔池的凝固与焊缝的固态相变决定了焊缝金属的结 晶结构、组织与性能。在焊接热源的特殊作用下,大的冷却速度还会使焊缝的化 学成分与组织出现不均匀的现象,并有可能产生焊接缺陷。
熔焊原理:焊接接头的组织与性能
1.焊缝金属的变质处理 液体金属中加人少量合金元素使结晶过程发生明显变化,从而使晶粒细化的方 法叫做变质处理。 2.振动结晶 振动结晶是通过不同途径使熔池产生一定频率的振动,打乱柱状晶的方向并 对熔池产生强烈的搅拌作用,从而使晶粒细化并促进气体排出。常用的振动方法 有机械振动、超声振动和电磁振动等。

焊接接头的性能及其影响因素

焊接接头的性能及其影响因素

3.氢的影响
氢侵入焊缝的主要原因各种形态的水分: 焊接材料潮湿、坡口表面附近有油锈水 分,或焊接环境介质的湿度太大,氢在 高温条件下是以原子状态溶解到熔化的 金属中。
氢的存在危害极大,它使焊缝金属变脆, 塑性和韧性显著降低,导致氢致裂纹、 氢白点和氢气孔缺陷。
控制氢的措施:烘干焊条、焊剂,清除 锈、水、油污。选用低氢型焊条,采用 后热、消氢处理等。
4.不锈钢焊缝组织
奥氏体不锈钢一般为奥氏体加少量 (2%~6%)铁素体
铁素体不锈钢组织与采用的焊接材料有 关,焊接材料与母材金属化学成分相近 时,其焊缝组织为铁素体,焊接材料为 铬镍奥氏体时其焊缝组织为奥氏体。
马氏体不锈钢焊缝组织与焊接材料和热 处理状态有关,焊接材料与母材金属化 学成分相近时,焊态组织为马氏体,回 火后为回火马氏体,焊接材料为铬镍奥 氏体时,焊缝组织为奥氏体。
2.热影响区
受焊接热循环作用,组织和性能 发生变化的基本金属部分。 热影响区的宽度主要取决于焊接 线能量的大小。
3.熔合区
熔合区是焊缝区和热影响区的交 界处,在焊接过程中,处于固、 液状态的半熔化区。
熔合区一般很窄,约有 0.1~0.4mm宽,常称熔合线,在 合金钢焊接接头中很难区分出熔 合区。
第八章
焊接接头的性能及其影响因素
主要内容
第一节
焊 接 接头
第二节
焊 接 热循环
第三节 焊缝的金属组织和性能
第四节 熔合区和热影响区的组织和性

第 五节 影响焊接接头性能的因素及其
处理方法
第一节 焊 接 接 头
焊接接头是基本金属或基本金属和填充 金属在高温热源的作用下,经过加热和冷 却过程而形成不同组织和性能的不均匀体。

焊缝及其热影响区的组织与性能

焊缝及其热影响区的组织与性能

第七章 焊缝及其热精选影ppt响区的组织与性能
23
3、回火软化区
如母材焊前是调质状态,焊接热影响区的组织分布除存在 完全淬火区和不完全淬火区外,还存在一个回火软化区。
在回火区内组织和性能发生变化的程度决定于焊前调质的 回火温度Tt :热循环温度低于Tt 的部位,其组织性能不 发生变化,而高于Tt 的部位,将发生软化现象;
第七章 焊缝及其热精选影ppt响区的组织与性能
13
45钢
40Cr
ωH : 1—1400℃/s;2—270℃/s; 3—35℃/s; 4—7.5℃/s)
ωH :1—1600℃/s;2—300℃/s; 4—42℃/s; 5—7.2℃/s
图7-4 焊接快速加热对Ac1、Ac3和晶粒长大的影响(CCT图) d—晶粒的平均直径;A—奥氏体;P—珠光体;F—铁素体;K—碳化物
若焊前为淬火态,则可获得不同的回火组织。紧靠Ac1的部 位,相当于瞬时高温回火,得到回火索氏体;离焊缝较远 的区域,获得回火马氏体。
第七章 焊缝及其热精选影ppt响区的组织与性能
24
二、 焊接热影响区的性能
问题的严重性:焊缝可以通过化学成分的调整再配 合适当的焊接工艺来保证性能的要求,而热影响区性 能只能通过控制焊接热循环作用来改善。
第七章 焊缝及其热精选影ppt响区的组织与性能
10
第二节 焊接热循环条件下的 金属组织转变特点
与热处理条件下的组织转变相比,其基本原理相 同,又具有与热处理不同的特点。
焊接过程的特殊性
焊接加热过程的组织转变
焊接时冷却过程的组织转变
第七章 焊缝及其热精选影ppt响区的组织与性能
11
一、焊接过程的特殊性
第七章 焊缝及其热精选影ppt响区的组织与性能

焊缝的组织和性能及改善方法

焊缝的组织和性能及改善方法
纹倾 向 。( 作者 单位 : 口市锅 炉压 力容器检验研 究所 ) 营
l不锈 焊 织, 焊 材料 与 钢的 缝组 当 接 成分 母材相 时分 近
l别为 素体 马氏 铁 和 体, 采 铬镍 体焊 料时 当 用 奥氏 接材
焊 接时 , 池从 高温 冷却到 室温 , 熔 中间 经过 两次 组 织转 变过 程 。第~ 次是从 液体转 变成 相变温 度 以上 固 体 的结晶过 程 ,第 次是焊 缝金 属温度 降低 至相 变温
调节焊 缝的化 学成分 可 以改 善焊缝 的性能 。 对于耐 热钢和 不锈钢 ,为保证 焊缝 的高温性 能和抗 腐蚀性能 , 其 焊材 的化学成 分应与 母材 大致相 同。 对于奥 氏体不锈 钢 , 了 获得 少 量铁 素 体 , 在焊 接 材料 中加 钛 、 为 常 铌等
不 同的焊 接方 法对焊缝 的性能 也产生 不同 的影响 。
从合 金元素 烧损和 减少焊 缝 中的杂质和 气体含量 来看 , 手 工钨极氩 弧焊 由于采用 了氩气 保护 , 合金 元素基 本没 有 损失 , 焊缝 中 的气体 含量 和 杂质元 素较 少 , 工 电弧 手 焊 和埋 弧焊 次之 ,气 焊焊 缝性 能最 差 。从 焊缝 组织 来
素 含量较 多时 , 缝组织 为贝 氏体 或低碳 马 氏体 。 焊 不锈
钢 焊缝 组织 多种 多样 ,奥 氏体 不锈钢 的焊 缝 组织一 般
为奥 氏体不锈 钢加 少量 铁素体 ,铁 素体 型和 马 氏体 型
善焊 缝性能 。对 于马 氏体 不锈钢 , 应在焊 后进行 高温回
火 处理 , 得到 回 火马 氏体 组织 , 减小 淬硬 倾向 和延迟 裂
焊缝的组织和性能及改善方法
口姚振兴 展宏字 韩 鹏

焊接接头的组织和性能

焊接接头的组织和性能

G/R
30
2.焊缝中的结晶组织
(1)结晶组织的分布 熔池中成分过冷的分布在 焊缝的不同部位是不同的,将会出现不同的结 晶形态。Y↑, G↓、R ↑,过冷度↑
31
32
33
(2)焊接条件对结晶组织的影响
1) 溶质浓度影响 纯AL 99 .99%焊缝熔合线附近为平面晶, 中心为胞状晶。若纯AL99.6%,焊缝出现胞 状晶,中心为等轴晶 2) 焊接规范的影响 焊接速度过大时,焊缝中心出现等轴晶, 低速时,焊缝中心有胞状树枝晶。焊接电流 大时,出现粗大的树枝晶。
60
2)、片状M
C≥0.4% 马氏体片不相互平行,初始形成的M 片较大,往往贯穿A晶粒。 透射电镜观察,片M存在许多细小平 行的带纹-孪晶带,硬度高、脆,容 易产生冷裂纹。
61
62
20μ
15μ
(a)
(b)
马氏体的显微组织 (a)板条状马氏体; (b)片状马氏体
63
3)、马氏体的强化和韧性
固溶强化,相变强化,时效强化 片状马氏体晶格畸变大,高密 度的显微裂纹,韧性差。
42
43
3)针状铁素体(AF)
生于500℃附近,出现于原奥氏体晶内的有方 向性的细小铁素体.宽约2μm左右,长宽比多 在3:1以至10:1的范围内。针状铁素体可能是 以氧化物或氮化物(如TiO或TiN)为基点,呈放 射状生长,相邻AF间的方位差为大倾角,其 间隙存在有渗碳体或马氏体,多半是M-A组 元,决定于合金化程度。针状铁素体晶内位 错密度较高,为先共析铁素体的2倍左右。位 错之间也互相缠结,分布也不均匀,但又不 同于经受剧烈塑性形变后出现的位错形态。
58
粒状贝氏体
59
(4) 马氏体转变

第四章焊接接头焊缝组织与性能介绍

第四章焊接接头焊缝组织与性能介绍
合金元素的作用复杂。结合具体的钢种、焊接方法 和焊接工艺规范具体分析。 微合金化,Mo、V、Ti、Nb、B、Zr、Al和稀土,细 化晶粒→强韧性提高。
1)Mn和Si对焊缝性能的影响
低碳钢和低合金钢焊缝中不可缺少的元素; 焊缝金属充分脱氧; 提高焊缝的抗拉强度(固溶强化)。
w(Mn)=0.8%~1.0%时,焊缝冲击吸收功最高
2) 熔池中的晶核长大 粗大的柱状晶 柱状晶生长的形态与焊接条件密切相关,如: 焊接 线能量、焊缝位置、熔池搅拌与振动等。
4.1.3 焊缝金属的化学成分不均匀性
冷速快,化学成分扩散不充分→偏析。 1)焊缝中的化学不均匀性 显微偏析 成分偏析 区域偏析 层状偏析 晶界、亚晶界、树枝晶之间 杂质等在焊缝中心区域聚集 结晶过程的周期性变化
2)Nb和V对焊缝韧性的影响 适量的Nb和V可以提高焊缝冲击韧性。改善组织, 得到细小的AF。 w(Nb)=0.03~0.04%,w(V) =0.05~0.10%时,焊缝 韧性良好。
形成难熔氮化物(NbN、VN),固定焊缝中的N, 韧性提高。
恰当的焊后热处理。强烈共格沉淀强化作用,强度大 幅度提高,韧性下降。
针状铁素体 Acicular Ferrite (AF)
FGF+P
2) 珠光体 没有什么变化。
P+F
粒P+AF
3) 贝氏体 对焊缝性能影响很复杂。
粒贝
羽状Bu+板M
4) 马氏体 有淬硬倾向的钢,焊后冷却时可能形成马氏体。 冷裂纹形成概率增大
M+MA
板条M与MA
4.3 焊缝性能的控制
4.3.1 焊缝金属的固溶强化和变质处理
1、从冷态开始到加热熔化,形成熔池的温度可达2000 ℃以上,母材又是冷态金属,两者温差巨大。并且随 热源的移动局部受热区也在不断移动,造成组织转变 差异和整个接头组织不均匀。 2、焊接熔池体积小,焊缝金属从熔化到凝固只有几秒钟 时间。在如此短时间内,冶金反应是不平衡的,使焊 缝金属的成分分布不均匀,有时区域偏析很大。 3、焊接过程中温度高,液体金属蒸发,化学元素烧损, 有些元素在焊缝金属和母材金属之间相互扩散,近缝 区各段所处的温度不同,冷却后焊接区的显微组织差 别极大。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一节焊缝金属的组织与性能
一、焊缝熔池的一次结晶
1.焊缝一次结晶的特点
焊缝熔池的结晶都经过晶核生成和长大的过程。

有如下特征:
(1)焊缝熔池小,冷却速度快;
(2)焊缝熔池中的液态金属处于过热状态;
(3)焊缝熔池金属是在运动状态下结晶;
2.焊缝熔池一次结晶组织的特征:
是从熔合线未完全熔化的晶粒上开始,沿着垂直熔合线的方向,向与散热方向禁止反的方向长大,形成柱状晶。

1.焊缝熔池一次结晶的组织性能
由液态凝固后所得到的组织是一次组织,而在室温显微镜下所观察到的焊缝组织都是二次组织。

要观察一次组织时,必须用特殊的浸蚀方法才能将它显示出来。

焊缝对一次结晶时性能的影响是很吸显的。

粗大的柱状晶不但降低焊缝的温度,而且还降低焊缝的韧性。

此外,焊缝的一次结晶形态还对产生裂纹、气孔、夹渣、腐蚀都有很大的影响。

2.焊缝中的偏析
焊接过程中,由于冷却速度过快,焊缝熔池在结晶时,其化学成
分还来不及扩散均匀就已凝固,出现偏差;此外,还有一些非金属夹杂物,因来不及浮出熔池表面残存在在焊缝内也形成偏差。

焊缝中的偏差,常常是力学性能最薄弱的地带。

焊缝中的偏析分3种
1)显微偏析:焊缝熔池在结晶过程中,先结晶的固相比较纯,后结晶的固相含合金元素和杂质略高,最后结晶的固相含合金元素和杂质最高。

影响显微偏析的主要因素是金属的化学成分。

2)区域偏析:焊缝熔池在结晶时随着电弧向前移动,熔池中的柱状晶也在不断的推移和大,此时会把未凝固的合金成分和杂质推向焊缝熔池中心,使中心的杂质浓度逐渐升高形成区域偏析。

3)层状偏析:在焊缝断面上,不同分层的化学成分分布不均匀的现象为层状偏析
焊缝熔池结晶时,在结晶前沿的液体金属中,熔质的浓度较高,同时也集结一些杂质,当冷却速度较慢时,这一层的浓度较高的熔质和杂质可以通过扩散来减轻偏析的程度;当泠却速度较快时,浓度较高的熔质和杂质还没来不及“均匀化”就已凝固,使这个区域形成层状偏析。

二、焊缝金属的二次结晶
1.二次结晶的组织
焊缝熔池金属一次结晶结束后,熔池金属将转变为固体
焊缝。

随高温的焊缝金属被逐渐冷却到室温,焊缝金属组织将进一步发生转变,这种组织变化的过程为焊缝金属的二次结晶。

2)二次结晶组织的性能
1)从塑性、韧性看出,奥氏体组织在温度下降的时候,没有明显的脆性转变现象,塑性、韧性、比其它组织好;铁素体加珠光体组织次之;珠光体组织的强度比铁素体组织高,塑性,韧性比铁素体组织低;下贝氏体组织既具有较高的强度,又有较好的韧性;粒状氏体组织的强度较低,但韧性较好,上氏体组织韧性最差;高碳马氏体则既有相当好的强度,又有相当好的塑性和韧性。

2)从抗裂性能看:铁素体组织加珠光体组织和奥氏体组织的抗裂性能较好;奥氏体组织加少量铁素体组织的双相组织抗裂性能比单相奥氏体组织更好;贝氏体组织、贝氏体组织加马氏体组织则对冷裂纹的敏感性最大。

3)焊缝金属的二次结晶组织越均匀、越细,与粗大而不均匀的焊缝金属二次相比,其力学性能就越好。

三、焊接热影响区的组织与性能
热影响区:把焊接材料因受热的影响(但没有熔化),而发生金相组织力学性能变化的区域。

焊接热循环:是在焊接热源的作用下,焊件上的某点温
度随时间变化(即温度由低到高,达到最高值后,又由高到
低)的过程。

焊接是一个不均匀加热和冷却的过程,从而使焊接热影
响区形成一个不均匀的组织和性能,产生复杂的应力和应
变。

由于母材的成分不同,在焊接热影响区各点经受的热循
环不同,使焊后热影响区发生的组织和性能变化也不相同,主要有2种:
1.不易淬火钢热影响区组织;
2.易淬火钢热影响区组织;
3.焊接热影响区的性能
(1)硬度变化:热影响区熔合线附近的硬度最高,而离深合线越远的地方就越接近被焊金属基体的硬度。

说明熔合线附近金属的塑性最差,是焊接的薄弱地带。

(2)强度和塑性变化:在1200 ° C左右的粗晶区,其硬度和强度都高于被焊金属,而塑性则低于被焊金属。

在700-900 ° C的区域中,屈服点稍低于被焊金属。

(3)韧性变化:通常焊接热输入越大,高温停留时间越长,
晶粒越粗大,韧度降低越明显。

相关文档
最新文档