第二章 基因工程的主要技术原理2

合集下载

基因工程(基因工程的主要技术与原理分子杂交技术)

基因工程(基因工程的主要技术与原理分子杂交技术)
通过放射自显影或生化检测, 就可判断滤膜上是否存在与探针 同源的DNA分子及其分子量。
Southern杂交主要用来判断某 一生物样品中是否存在某一基因, 以及该基因所在的限制性酶切片 段的大小。(DNA水平)
Southern杂交也可检测目的基 因的拷贝数。
CK 1 2 3 4 5
Southern bloting
这种检测方法与其它免疫学方法的不同是,一方面 可以避免非特异性的免疫反应,而且更关键的是可以 检测出目标蛋白质的分子量,从而直观的在滤膜上显 示出目标蛋白。
五、Dot blot hybridization
1、原理:
在Southern杂交的基础上发展起来的用于 快速检测特异核酸分子的杂交技术。将核酸 样品直接转移到适当的滤膜上,然后进行杂 交检测。
凝胶
3)转移并固定到滤膜上
通过毛细管渗吸或电转移或真空转移的方式,将凝 胶上的DNA转移到硝酸纤维素滤膜或尼龙膜上。最后 通过80℃处理或紫外线照射将DNA固定在滤膜上。
Southern blotting 装置示意图
4)探针的制备及杂交
预杂交:将结合了DNA分子的滤膜先与特定的预 杂液进行预杂交,也就是将滤膜的空白处用鱼精 DNA或牛奶蛋白封闭起来,防止在杂交过程中滤膜 本身对探针的吸附。
当用一个标记的核酸分子与核酸样品杂交, 便可查明该样品中是否存在与该标记核酸分 子具有同源性的核酸分子。这个标记的核酸 分子称为探针(probe),可以是DNA,也可以 是RNA,或合成的寡核苷酸。
二、基本过程
1、核酸印迹(Nucleic acid blotting): 将核酸样品(DNA、RNA或蛋白质)在凝胶
在1975年,由英国的E. Southern首先设计发明的, 因此又称为Southern杂交(Southern blotting)。

基因工程的原理和过程是什么

基因工程的原理和过程是什么

基因工程的原理和过程是什么基因工程是一门利用现代生物技术方法对生物体的遗传物质进行编辑、改变和操控的学科。

通过基因工程,科学家们可以改变生物体的基因组,进而实现对其性状、功能和特性的调控。

本文将详细介绍基因工程的原理和过程。

基因工程的原理基因工程的原理基于以下几个重要概念:DNA的结构和功能DNA(脱氧核糖核酸)是构成生物体遗传信息的分子基础。

它由四种碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶和鳞嘧虫嘧啶)和磷酸二酯键组成。

一个DNA分子由两条互补的链以螺旋结构相互缠结而成,形成了一个双螺旋结构。

碱基之间通过氢键相互连接,A与T之间形成两个氢键,C与G之间形成三个氢键。

DNA的结构使得它能够通过碱基配对的规则进行复制和传递遗传信息。

基因是DNA上的特定序列,携带着特定的遗传信息,决定了生物体的性状和功能。

DNA重组技术DNA重组技术是基因工程的核心方法之一。

通过DNA重组,科学家可以将不同生物体中的基因片段组装到目标生物体的DNA中,实现基因的转移和插入。

一般情况下,DNA重组技术包括以下步骤:1.DNA的提取:从不同生物体中提取目标基因的DNA。

2.DNA切割:利用酶切技术,将目标基因和载体(如质粒或病毒)的DNA切割成特定的片段。

3.DNA连接:将目标基因片段与载体的DNA片段通过DNA连接酶连接在一起,形成重组DNA。

4.DNA转化或转染:将重组DNA导入到宿主细胞中,使其成为宿主细胞的一部分。

5.遗传选择:通过筛选和分离,选择出携带目标基因的宿主细胞。

6.基因表达:将目标基因在宿主细胞中表达,并产生所需的蛋白质。

外源基因的表达在基因工程中,外源基因是从不同生物体中获取的,将其插入到目标生物体的DNA中。

为了使外源基因能够在目标生物体中表达,需要通过合适的调控序列将其与目标生物体的基因组连接起来。

调控序列是一段DNA序列,可以启动、增强或抑制目标基因的表达。

在基因工程中,科学家需要选择适当的启动子、转录因子结合位点和终止子等调控序列,以确保外源基因能够在目标生物体中正确地表达。

基因工程的主要技术与原理-核酸分离电泳

基因工程的主要技术与原理-核酸分离电泳

在基因工程领域的应用前景
基因组学研究
随着人类基因组计划的完成和各种生物基因组测序的推进, 核酸分离电泳技术在基因组学研究中将发挥越来越重要的 作用。
疾病诊断与治疗
通过核酸分离电泳技术,可以快速准确地检测疾病相关基 因的突变和异常表达,为疾病的诊断和治疗提供有力支持。
生物制药与合成生物学
在生物制药和合成生物学领域,核酸分离电泳技术可用于 筛选和优化目的基因的表达,提高药物的疗效和生物制品 的生产效率。
聚丙烯酰胺凝胶电泳
琼脂糖凝胶孔径大小可调,常用于分离长 度在几百至几千碱基对的核酸片段。
聚丙烯酰胺凝胶具有高分辨率,适用于分 离长度在几十至几百碱基对的核酸片段。
脉冲场凝胶电泳
毛细管电泳
脉冲场凝胶电泳采用交替方向的电场,适 用于分离大分子量核酸片段,如基因组 DNA。
毛细管电泳具有高分辨率和高通量,适用 于核酸分子的快速分离和检测。
基因工程的主要技术与原理-核酸 分离电泳
目录
• 引言 • 核酸分离电泳技术原理 • 核酸分离电泳的实验操作流程 • 核酸分离电泳的优缺点 • 核酸分离电泳在基因工程中的应用 • 未来展望Βιβλιοθήκη 01 引言基因工程简介
01
基因工程是通过改变生物体的基 因来改变其遗传特性的技术。
02
它涉及到对DNA的提取、切割、 拼接和导入等操作,以实现特定 的遗传特性改变。
电泳技术可以将不同大小和性质的核 酸分子进行分离,从而获得纯化的目 的基因,提高基因克隆的效率和成功 率。
在基因突变研究中的应用
基因突变是生物进化的重要驱动力, 通过核酸分离电泳技术,可以对目的 基因进行突变分析,研究突变对基因 功能的影响。
电泳技术可以检测出基因突变引起的 核酸分子大小和电荷的变化,从而确 定突变的类型和位置,为进一步的功 能研究提供基础。

基因工程的主要技术原理

基因工程的主要技术原理

基因工程的主要技术原理基因工程是一种利用现代分子生物学和生物化学技术来对生物体进行基因组的修改、操作和调控的技术。

它的主要技术原理涉及到以下几个方面:1.DNA重组技术:DNA重组是基因工程的核心技术之一、它通过切割不同生物体中的DNA片段,然后重新组合、连接,将特定的基因或基因片段导入到目标组织、细胞或生物体中。

DNA重组技术包括PCR、限制酶切、DNA连接等。

2.遗传转化技术:遗传转化是将外源DNA导入目标生物细胞或组织中的过程。

常用的转化方法包括细菌的转化、植物的遗传转化以及动物细胞的转染等。

3.基因克隆技术:基因克隆是指通过复制DNA片段来得到多个完全相同的基因分子或有关基因分子的方法。

基因克隆包含了DNA提取、DNA扩增、DNA定序等技术。

5.选择标记技术:为了辅助识别和选择已经被转化的细胞或生物体,常常需要在外源基因上引入选择标记基因。

选择标记基因通常携带特定抗性或基因标记,如抗生素抗性基因或荧光蛋白基因。

6.基因表达调控技术:为了使外源基因在目标生物体中得到高效表达,常需对其进行适当调控。

基因表达调控技术包括启动子的选择、转录因子的调控、信号通路的调节等。

7. 基因测序技术:基因测序是确定DNA序列的方法,可用于分析基因组结构、功能和演化。

目前,最主要的基因测序技术是高通量测序技术,如Illumina测序技术和PacBio测序技术。

8.产生转基因生物技术:基因工程的一个重要应用是产生转基因生物。

转基因生物是指通过基因工程技术将外源基因导入到目标生物体中,使其获得新的性状或功能。

常见的转基因生物包括转基因植物、转基因微生物等。

以上是基因工程的主要技术原理。

随着科学技术的不断进步,基因工程技术将进一步发展和应用,为解决人类面临的许多生物学和医学问题提供更好的解决方案。

基因工程的原理是什么

基因工程的原理是什么

基因工程的原理是什么基因工程是一种利用生物技术手段对生物体进行基因组的改造和调控的技术,它的原理主要包括基因定位、基因克隆、基因转移和基因表达调控等几个方面。

基因工程的原理是通过对生物体的基因进行精准的编辑和调控,从而实现对生物体性状的改良和优化。

首先,基因工程的原理之一是基因定位。

基因定位是指通过一系列实验手段来确定目标基因在染色体上的具体位置,包括物理定位和遗传定位两种方式。

通过基因定位,科学家们可以准确地找到目标基因,并为后续的基因编辑和调控奠定基础。

其次,基因工程的原理还包括基因克隆。

基因克隆是指将目标基因从一个生物体中复制出来,并将其插入到另一个生物体中的过程。

通过基因克隆,科学家们可以获取大量目标基因的复制体,并进行进一步的研究和应用。

另外,基因工程的原理还涉及基因转移。

基因转移是指将目标基因从一个生物体转移到另一个生物体中的过程,可以是同种生物体之间的基因转移,也可以是跨种生物体之间的基因转移。

通过基因转移,科学家们可以实现对生物体基因组的改造和调控,从而获得具有特定性状的生物体。

最后,基因工程的原理还包括基因表达调控。

基因表达调控是指通过一系列的调控机制来控制目标基因的表达水平和表达时机,从而实现对生物体性状的精准调控。

通过基因表达调控,科学家们可以实现对生物体特定性状的增强或抑制,为农业、医药等领域的应用提供了可能。

综上所述,基因工程的原理主要包括基因定位、基因克隆、基因转移和基因表达调控等几个方面。

通过这些原理的应用,基因工程技术可以实现对生物体基因组的精准编辑和调控,为人类社会的发展和进步带来了巨大的潜力和可能性。

第2课时 基因工程的原理和技术 学案(含答案)

第2课时 基因工程的原理和技术 学案(含答案)

第2课时基因工程的原理和技术学案(含答案)第第2课时课时基因工程的原理和技术基因工程的原理和技术学习目标1.简述基因工程的原理。

2.概述基因工程基本操作的几个步骤。

一.基因工程的原理1.基本原理让人们感兴趣的基因即目的基因在宿主细胞中稳定和高效地表达。

2.变异类型基因工程属于可遗传变异中的基因重组。

归纳总结1在基因工程中,不同DNA链的断裂和连接产生DNA 片段的交换和重新组合,形成了新的DNA分子,在这个操作中交换了DNA片段,故属于基因重组。

2基因工程中的基因重组不同于减数分裂过程中的基因重组。

前者属于无性生殖中的基因重组,并发生在不同种生物间,打破了物种间的界限,可以定向地改造生物的遗传特性,此操作均在细胞外进行。

例1科学家用纳米技术制造出一种“生物导弹”,可以携带DNA分子。

把它注射入组织中,可以通过细胞的胞吞作用进入细胞内,DNA被释放出来,进入到细胞核内,最终整合到细胞染色体上,成为细胞基因组的一部分,DNA整合到细胞染色体中的过程属于A.基因突变B.基因重组C.基因互换D.染色体畸变答案B解析基因突变是基因内部结构的改变;染色体畸变是以染色体作为研究对象,探讨染色体结构和数目的变化;基因工程是将外源基因导入受体细胞,得到人们所需要的产物,属于基因重组。

例2下列叙述符合基因工程基本原理的是A.B淋巴细胞与肿瘤细胞融合,杂交瘤细胞中含有B淋巴细胞中的抗体基因B.将人的干扰素基因重组到质粒后导入大肠杆菌,获得能产生人干扰素的菌株C.用紫外线照射青霉菌,使其DNA发生改变,通过筛选获得青霉素高产菌株D.自然界中天然存在的噬菌体自行感染细菌后将其DNA整合到细菌DNA上答案B解析基因工程是在生物体外,通过对DNA分子进行人工“剪切”和“拼接”,对生物的基因进行改造和重新组合,然后导入受体细胞内,使目的基因在受体细胞内表达,产生出人类所需要的基因产物,因此,B项为基因工程。

方法技巧正确理解基因工程的5个方面操作对象人们感兴趣的基因即目的基因需要的基本要素多种工具酶.目的基因.载体.宿主细胞等常见目的基因植物的抗虫基因.抗病基因.抗除草剂基因.人胰岛素基因和人干扰素基因等完成的场所体外构建重组DNA分子,宿主细胞内表达完成的结果目的基因稳定和高效地表达,产生人们所需的功能物质二.基因工程的基本操作步骤1.获得目的基因的方法1已知序列用化学方法合成;用聚合酶链式反应PCR扩增。

基因工程复习资料精心整理.docx

基因工程复习资料精心整理.docx

第一章绪论1 •基因工程的定义:在体外对不同生物的遗传物质(基因)进行剪切、重组、连接,然后插入到载体分子中(细菌质粒、病毒或噬菌体DNA),转入微生物、植物或动物细胞内进行无性繁殖,并表达出基因产物。

2•基因工程理论上的三大发现和技术上的三大发现3 •基因工程的基本步骤(1)目的基因的获取:从复杂的生物基因组中,经过酶切消化或PCR扩增等步骤,分离出带有目的基因的DNA片断。

(2)重组体的制备:将冃的基因的DNA片断插入到能自我复制并带有选择性标记(抗菌素抗性)的载体分子上。

(3)重组体的转化:将重组体(载体)转入适当的受体细胞川。

(4)克隆鉴定:挑选转化成功的细胞克隆(含有目的基因)。

(5)目的基因表达:使导入寄主细胞的目的基因表达出我们所需要的基因产物。

4 •基因工程的意义(1)基因工程在农业生产中的应用:提高植物的光合作用率;提高豆科植物的固氮效率;转基因植物;转基因动物。

(2)基因工程在工业中的应用:1)纤维素的开发利用:克隆各种参与纤维素降解的酶的基因,导入酿酒酵母,就可能利用廉价的纤维素來生产葡萄糖,发酵成酒。

2)酿酒工业:用外源基因改造酿酒酵母,产生优质的啤酒。

或用酿酒酵母生产蛋白质等。

(3)基因工程在医药上的应用:用微生物生产药物;用转基因植物或动物生产药物;设计高效高特异性的生物制剂-疫苗;制造新型疫苗;基因诊断;法医鉴定;基因治疗。

(4)基因工程在环境保护中的作用:1)检测水污染:用重组细菌或转基因鱼等检测水污染2)生物降解:用带有重组质粒的“超级菌〃分解油(烷怪类)、有机农药污染。

(5)基因工程商业化的发展第二章基因工程主要技术原理1. 质粒和基因组DNA的提取方法与纯化步骤,主要试剂是什么质粒的提取和纯化方法最常用的为碱抽提法:原理:闭合环状的质粒DNA,在变性后不会分离,复性快。

染色体线性DNA和或有缺口的质粒DNA变性后双链分离,难以复性而形成缠绕的结构,与蛋白质-SDS复合物结合在一起, 在离心的时候沉淀下去。

基因工程的原理和技术有哪些

基因工程的原理和技术有哪些

基因工程的原理和技术有哪些1. 引言基因工程是一门以改变生物体的遗传信息为核心的生物技术领域。

通过改变生物体的基因组,基因工程使得我们能够实现对生物体的精准编辑和控制,以达到特定的目的。

本文将介绍基因工程的原理和常见的技术,包括基因克隆、DNA测序、PCR扩增、CRISPR-Cas9系统等。

2. 基因工程的原理基因工程的原理基于对生物体遗传信息的理解和改变。

生物体的遗传信息储存在DNA分子中,通过改变DNA序列,我们可以影响生物体的表型和功能。

基因工程通常包括以下几个步骤:•DNA提取:从目标生物体中提取DNA,可以通过化学方法或者机械方法进行。

•DNA切割:利用限制性内切酶将目标DNA分子剪切成特定的片段。

•DNA连接:将所需的DNA片段连接到载体DNA上,生成重组DNA。

•DNA转化:将重组DNA导入到宿主细胞中,宿主细胞根据重组DNA的指令表达特定蛋白质。

3. 基因工程的常见技术3.1 基因克隆基因克隆是一种常见的基因工程技术,它通过将目标基因从源生物体中提取并插入到宿主细胞中,实现对基因的复制和繁殖。

基因克隆通常包括以下步骤:1.DNA提取:从源生物体中提取目标基因的DNA。

2.DNA切割:使用限制性内切酶将目标基因的DNA切割成特定片段。

3.载体DNA准备:将一种称为“载体”的DNA分子准备好,它可以将目标基因插入其中。

4.DNA连接:将目标基因的DNA片段与载体DNA连接,生成重组DNA。

5.DNA转化:将重组DNA导入到宿主细胞中,宿主细胞会按照重组DNA的指令表达特定蛋白质。

3.2 DNA测序DNA测序是一种确定DNA序列的技术,它是基因工程领域中非常重要的一项技术。

DNA测序可以帮助我们了解生物体的遗传信息,从而对基因进行研究和编辑。

常见的DNA测序技术包括Sanger测序和新一代测序技术。

这些技术基于不同的原理和方法,可以高效准确地确定DNA序列。

3.3 PCR扩增PCR(聚合酶链式反应)是一种能够从极少量的DNA模板扩增大量DNA的技术,也是基因工程中常用的技术之一。

第二章.基因工程主要技术原理-研究DNA-蛋白质互作的方法

第二章.基因工程主要技术原理-研究DNA-蛋白质互作的方法

2.6.2 DNasel足迹试验 尽管凝胶阻滞试验能够揭示出在体内发生的DNA蛋白质之间 相互作用的有关信息,然而它却无法确定两者结合的准确部 位 。 要 解 答 这 个 问 题 , 则 需 要 应 用 DNasel 足 迹 试 验 (footprinting assay)。它是一类用于检测与特定蛋白质结合
切割产生的不同长度DNA片段组成的序列梯度条带。但是,如果有一 种蛋白质已经结合到DNA分子的某一特定区段上,那么它就将保护这 一区段的DNA免受DNasel的消化作用,因而也就不可能产生出相应长 度的切割条带。所以在电泳凝胶的放射自显影图片上,相应于蛋白质 结合的部位是没有放射标记条带的,出现了一个空白的区域,人们形 象地称之为“足迹” 。基Βιβλιοθήκη 工程第二章 基因工程技术原理
基因工程
第二章 基因工程技术原理
足迹试验的优点 可以形象地展示出一种特殊的蛋白质因子同特定DNA片段 之间的结合区域。如果使用较大的DNA片段,通过足迹试 验便可确定其中不同的核苷酸序列与不同蛋白质因子之间 的结合位点的分布状况。如同凝胶阻滞试验一样,也可以 加入非标记竞争DNA,来消除特定的足迹,据此确定其核 酸序列的特异性。
基因工程
第二章 基因工程技术原理
2.6.4 体内足迹试验
上面所讨论的这三种方法有一个共同的不足之处,即它们都是在体外进 行的试验。因此人们自然会问,这些结果能够确切地反映活细胞内发生 的DNA一蛋白质相互作用的真实情况吗?为了解答这个问题,科学工作 者又设计出了一种体内足迹试验体系。然而究其实质而言,这种技术无
使用竞争DNA,可间接阐明体内的DNA与蛋白质的相互作用。如,使用 一种具有与已知转录因子结合位点的竞争DNA,就可以判断检测到的蛋白 质是否属于此类转录因子,或是与之相关的其它转录因子;如果事先引入 突变,可以检测突变对其与转录因子结合作用的影响。

基因工程技术的原理与应用例题和知识点总结

基因工程技术的原理与应用例题和知识点总结

基因工程技术的原理与应用例题和知识点总结一、基因工程技术的原理基因工程技术,简单来说,就是在分子水平上对基因进行操作的技术。

其核心原理包括以下几个关键步骤:1、目的基因的获取目的基因是我们想要研究或应用的特定基因片段。

获取目的基因的方法多种多样,常见的有从基因文库中筛选、通过 PCR 技术扩增以及人工化学合成等。

2、基因载体的选择基因载体就像是一辆“运输车”,负责将目的基因运送到受体细胞中。

常用的基因载体有质粒、噬菌体和病毒等。

它们具有能够在宿主细胞中自主复制、稳定存在等特点。

3、基因重组将获取的目的基因与选择好的基因载体进行连接,形成重组 DNA分子。

这个过程需要用到特定的限制性内切酶和 DNA 连接酶,以确保目的基因能够准确无误地插入到载体中。

4、重组 DNA 导入受体细胞将构建好的重组 DNA 分子导入到受体细胞中,使其能够在受体细胞内稳定遗传和表达。

导入的方法包括转化、转导、显微注射等。

5、目的基因的检测与鉴定导入受体细胞后,需要对目的基因是否成功导入、是否表达以及表达水平等进行检测和鉴定。

常用的方法有核酸分子杂交、PCR 检测、蛋白质检测等。

二、基因工程技术的应用例题1、胰岛素的生产糖尿病患者需要定期注射胰岛素来控制血糖。

传统的胰岛素提取方法产量低、成本高。

通过基因工程技术,科学家将人的胰岛素基因导入到大肠杆菌中,让大肠杆菌能够大量合成胰岛素,大大提高了胰岛素的产量,降低了成本,为糖尿病患者带来了福音。

2、转基因抗虫棉棉花在生长过程中常常受到棉铃虫等害虫的侵害。

利用基因工程技术,将苏云金芽孢杆菌中的 Bt 毒蛋白基因导入到棉花细胞中,使棉花能够自身合成毒蛋白,从而具有抗虫的特性,减少了农药的使用,保护环境的同时提高了棉花的产量。

3、基因治疗对于一些由于基因突变导致的遗传性疾病,如血友病、囊性纤维化等,基因治疗为患者带来了新的希望。

通过将正常的基因导入患者的细胞中,以替代或修复突变的基因,从而达到治疗疾病的目的。

基因工程技术的原理与应用例题和知识点总结

基因工程技术的原理与应用例题和知识点总结

基因工程技术的原理与应用例题和知识点总结一、基因工程技术的原理基因工程,也称为重组 DNA 技术,是一种在分子水平上对基因进行操作和改造的技术。

其基本原理是在体外将不同来源的 DNA 分子进行剪切、拼接和重组,然后将重组的 DNA 分子导入到受体细胞中,使其在受体细胞中表达和遗传。

基因工程的操作主要包括以下几个步骤:1、目的基因的获取从生物体的基因组中直接分离:对于一些结构和功能比较清楚的基因,可以通过限制性内切酶将其从基因组 DNA 中切割下来。

人工合成:如果已知基因的核苷酸序列,可以通过化学方法人工合成目的基因。

PCR 扩增:利用聚合酶链式反应(PCR)技术,以少量的 DNA 为模板,快速扩增出大量的目的基因。

2、基因载体的选择和构建基因载体是能够携带目的基因进入受体细胞的工具。

常用的基因载体有质粒、噬菌体和病毒等。

载体需要具备自我复制能力、多个限制性内切酶切点、标记基因等特点。

3、目的基因与载体的连接通过限制性内切酶切割目的基因和载体,产生相同的黏性末端或平末端。

然后利用 DNA 连接酶将目的基因和载体连接起来,形成重组 DNA 分子。

4、将重组 DNA 分子导入受体细胞常用的导入方法有转化(细菌)、转染(动物细胞)和农杆菌介导转化(植物细胞)等。

5、重组体的筛选和鉴定由于导入受体细胞的重组体中可能存在未成功重组的分子,因此需要进行筛选和鉴定。

常用的筛选方法有抗性筛选、标记基因筛选、核酸分子杂交筛选等。

二、基因工程技术的应用例题1、基因工程在农业领域的应用抗虫棉的培育:将苏云金芽孢杆菌中的抗虫基因导入棉花细胞中,培育出具有抗虫特性的棉花品种。

举例:某地区常年遭受棉铃虫的侵害,导致棉花产量大幅下降。

科研人员通过基因工程技术,将一种能够编码产生杀虫蛋白的基因导入棉花植株中。

经过筛选和培育,获得了抗虫棉新品种。

在种植过程中,这种抗虫棉能够有效地抵御棉铃虫的危害,减少了农药的使用量,提高了棉花的产量和质量。

基因工程第二章 DNA重组的克隆操作

基因工程第二章 DNA重组的克隆操作

5、插入外源基因的重组质粒较易导入宿主细胞并复制和表达。
基 因 工 程 GENE ENGINEERING
三、质粒载体的构建
(一)pBR322质粒载体的构建
1、组成 来自pSCl01的四环素 抗性基因Tetr
来自ColEl的衍生物 pMBl的松弛复制起 点ori
来自RSF2124的氨苄 青霉素抗性基因Ampr。
2.1 DNA重组的载体
2.1.1 质粒载体
一、质粒的一般生物学特性
(一)质粒DNA的分子特性
1、自主复制性
已知的绝大多数质粒都是双链闭合环状DNA分子。除了酵 母的杀伤质粒是一种RNA分子外,其他已知的所有质粒无 一例外地都是DNA分子。 质粒DNA分子 的三种构型 闭合环状DNA(ccDNA),即SC构型 开环DNA(ocDNA),即OC构型
基 因 工 程 GENE ENGINEERING
人为地将λ 噬菌体基因组分为3个区域: (1)左侧区,自基因A到基因J,包含外壳蛋白的全部编码 基因。 (2)中间区:介于基因J与基因N之间,又称非必需区。 (3)右侧区:位于N基因的右侧,包含全部的主要调节基因 及复制基因和裂解基因。
左侧区
A W B C D E F ZUVGH M L K I J b2
λ噬菌体的改造
⑴ 缩短野生型的长度,扩充λ 噬菌体载体的克隆容量;
⑵ 删除重复的酶切位点; ⑶通过在某些非必需基因中引入无义突变使之成为安全载体,以利于生 物学防护。
(4)引入合适的选择标记基因(remarke gene)。
基 因 工 程 GENE ENGINEERING
(二)构建λ 噬菌体载体的基本内容
基 因 工 程 GENE ENGINEERING
一、M13噬菌体的生物学特性

基因工程的原理是什么

基因工程的原理是什么

基因工程的原理是什么
基因工程是一种利用生物技术手段对生物体进行基因改造的技术,它的原理主要包括基因分离、基因修饰和基因重组三个方面。

基因工程的原理是通过对生物体的基因进行改造,实现对生物体性状的调控和改良,从而达到人为控制生物体遗传特征的目的。

首先,基因工程的原理之一是基因分离。

基因是生物体内控制遗传信息传递和表现的基本单位,通过基因分离技术,可以将特定的基因从一个生物体中分离出来。

这一过程需要利用分子生物学技术,如PCR、酶切等,将目标基因从细胞或DNA中分离出来,为后续的基因修饰和重组奠定基础。

其次,基因工程的原理还包括基因修饰。

基因修饰是指对已分离的基因进行改造,使其具有特定的性状或功能。

这包括基因的点突变、插入、删除等操作,通过改变基因的序列,使其表达产生不同的蛋白质或调控特定的生物过程,从而实现对生物体性状的调控和改良。

最后,基因工程的原理还涉及基因重组。

基因重组是指将不同来源的基因进行组合,形成新的基因组合,使生物体表现出新的性
状或功能。

通过基因重组技术,可以将来自不同生物体的基因进行组合,形成转基因生物,从而实现对生物体性状的改造和调控。

总的来说,基因工程的原理是通过基因分离、基因修饰和基因重组等技术手段,对生物体的基因进行改造,实现对生物体性状的调控和改良。

基因工程技术的应用,不仅可以用于农业领域的作物育种和畜禽改良,还可以用于医学领域的基因治疗和药物研发,对人类健康和生物资源的可持续利用具有重要意义。

基因工程生物知识点

基因工程生物知识点

第一章基因工程基因工程是狭义的遗传工程,遗传工程的核心是构建重组DNA分子。

基因工程也称为“重组DNA技术”。

第一节工具酶的发现和基因工程的诞生基因工程的理论基础:DNA是遗传物质,DNA的双螺旋结构,以及遗传信息的传递方式。

基因工程的技术保障:限制性核酸内切酶,DNA连接酶和质粒载体发现与应用。

一、限制性核酸内切酶:能够识别和切割DNA分子内一小段特殊核苷酸序列的酶。

(平末端和黏性末端)限制性核酸内切酶可作为切割DNA分子的手术刀,它的发现和应用,使DNA重组成为可能。

二、DNA连接酶:将具有末端碱基互补的2个DNA片段连接在一起,形成的DNA分子称为重组DNA分子。

DNA连接酶具有缝合DNA片段的作用。

三、质粒:能够自主复制的双链环状DNA分子,它们在细菌中以独立于大型DNA分子之外的方式存在,是一种特殊的遗传物质。

最常用的是大肠杆菌的质粒,其含有抗生素抗性基因。

标志基因工程诞生的试验:通过重组,使大肠杆菌同时具有四环素和卡那霉素的抗性。

四、基因工程的载体载体是运载外源DNA进入宿主细胞的车子,即运载工具。

除质粒外,基因工程载体还有入噬菌体、植物病毒和动物病毒。

入噬菌体:将外源基因载入大肠杆菌等宿主细胞。

植物病毒:将外源基因带入植物细胞。

动物病毒:将外源基因带入动物细胞。

第二节基因工程的原理和技术基因工程的基本原理是让人们感趣的基因(目的基因)在宿主细胞中稳定和高效表达。

基因工程的基本要素:工具酶、目的基因、载体和宿主细胞。

基因工程的基本操作步骤:A目的基因的获得;B重组DNA的形成;C重组DNA导入受体细胞(宿主细胞);D筛选含有目的基因的受体细胞;E目的基因的表达。

一、获得目的基因目的基因序列已知:化学合成方法合成目的基因,PCR扩增目的基因。

目的基因序列未知:构建基因文库。

二、形成重组DNA分子用相同的限制性核酸内切酶分别切割目的基因和载体,两者形成相同的黏性末端,然后用DNA连接酶将目的基因和载体连接在一起,形成重组DNA分子。

基因工程的主要技术及其原理

基因工程的主要技术及其原理

基因工程的主要技术及其原理基因工程是一种利用分子生物学和遗传学知识对生物体进行基因改造的技术。

它可以用于改良农作物、生产药物、治疗疾病等领域。

基因工程的主要技术包括基因克隆、基因编辑、转基因等,下面将分别介绍这些技术的原理和应用。

一、基因克隆技术基因克隆是指将感兴趣的基因从一个生物体中复制出来,并将其插入到另一个生物体中的技术。

其原理是利用限制性内切酶将DNA切割成片段,然后将感兴趣的基因片段插入到质粒或病毒载体中,最后将载体转化到宿主细胞中。

基因克隆技术可以用于生产大量的特定基因,用于研究基因功能、生产蛋白质等。

二、基因编辑技术基因编辑是指利用特定的酶对DNA序列进行精准的修改的技术。

目前最常用的基因编辑技术是CRISPR/Cas9系统,其原理是利用Cas9蛋白和RNA引导序列形成复合物,精准地切割目标DNA序列,然后通过修复机制进行修复或插入新的DNA序列。

基因编辑技术可以用于研究基因功能、治疗遗传疾病、改良农作物等方面。

三、转基因技术转基因是指将外源基因导入到目标生物体中,使其表达外源基因产生的蛋白质或表型。

其原理是利用载体将外源基因导入到目标生物体的细胞中,然后使其稳定地整合到目标生物体的染色体中。

转基因技术可以用于改良农作物、生产药物、治疗疾病等领域。

基因工程技术在农业、医药、生物学等领域有着广泛的应用。

在农业领域,基因工程技术可以用于改良农作物的抗病虫性、耐逆性等性状,提高农作物的产量和质量。

在医药领域,基因工程技术可以用于生产重组蛋白质药物、治疗遗传疾病、研发新型疫苗等。

在生物学研究领域,基因工程技术可以用于研究基因功能、构建基因组库等。

然而,基因工程技术也面临着一些挑战和争议。

一方面,基因工程技术可能会引起环境风险和健康风险,例如转基因作物可能会对生态系统产生影响,基因编辑技术可能会引起不可逆的基因突变等。

另一方面,基因工程技术的应用也涉及到伦理道德、食品安全、知识产权等问题,需要进行严格的监管和管理。

基因工程讲解

基因工程讲解

基因工程讲解基因工程是一项涉及基因的科学技术,通过在生物体的基因组中修改、操控和转移基因,从而改变生物体的遗传特性。

它使人类能够更深入地理解基因的功能和作用,并有望为人类带来巨大的医学和农业进步。

本文将从基因工程的基本概念、原理和应用方面进行详细讲解。

一、基因工程的基本概念基因工程,又称遗传工程,是指通过改变生物体的遗传物质,使其具备特定的性状和功能。

基因工程技术是细胞和分子生物学、遗传学等多学科的交叉应用,它利用遗传物质(DNA、RNA)进行基因的克隆、修饰和转移,使其能够产生有益的变化。

基因工程技术已经广泛应用于药物研发、农业改良和环境保护等领域。

二、基因工程的原理基因工程的主要原理是通过DNA重组技术,将想要的外源基因导入到目标生物体中,并使其能够在目标生物体内表达出来。

DNA重组技术包括DNA的分离、切割、连接和转染等步骤。

首先,从源生物体或合成DNA样本中分离出目标基因;然后,利用限制性内切酶或PCR方法对DNA进行切割;接着,将切割好的目标基因与载体(如质粒)连接起来,形成重组DNA;最后,将重组DNA导入到目标生物体中,使其能够在目标生物体内表达出来。

三、基因工程的应用基因工程技术在医学、农业和环境保护等领域都有广泛的应用。

在医学领域,基因工程技术可以用于疾病的诊断和治疗。

例如,基因工程技术可以通过克隆和表达人类蛋白质来生产药物,如重组人胰岛素和重组人生长激素等。

此外,基因工程技术还可以用于基因治疗,即将正常基因导入患者体内,以纠正基因缺陷所导致的疾病。

在农业领域,基因工程技术可以用于农作物的改良和耐病性的提高。

通过转基因技术,科学家们可以将具有抗虫、抗病等特性的基因导入作物中,使其能够抵御病虫害的侵袭,提高农作物的产量和品质。

同时,基因工程技术也可以改善作物的营养组分,使其更加丰富和有益于人类健康。

在环境保护方面,基因工程技术可以用于生物修复和生物监测。

生物修复是指利用基因工程技术改良生物体的代谢途径,使其具备降解有害物质的能力,从而清除环境中的污染物。

基因工程技术的原理与应用例题和知识点总结

基因工程技术的原理与应用例题和知识点总结

基因工程技术的原理与应用例题和知识点总结基因工程技术,作为现代生物技术的核心领域之一,正以惊人的速度改变着我们的生活和未来。

它就像是一把神奇的钥匙,打开了生命奥秘的大门,让我们能够对生物的基因进行精确的操作和改造。

接下来,让我们一起深入探索基因工程技术的原理、应用例题,并对重要的知识点进行总结。

一、基因工程技术的原理基因工程技术的核心原理基于对DNA 分子结构和功能的深入理解。

我们知道,DNA 是由四种碱基(腺嘌呤 A、胸腺嘧啶 T、鸟嘌呤 G、胞嘧啶 C)组成的双螺旋结构,这些碱基的排列顺序决定了基因所携带的遗传信息。

基因工程的第一步是获取目的基因。

这可以通过从生物体的基因组中直接分离,或者利用反转录法从 mRNA 合成 cDNA 来实现。

例如,如果我们想要获取胰岛素基因,就可以从胰岛细胞中提取 mRNA,然后通过反转录酶合成 cDNA。

获得目的基因后,需要将其与合适的载体(如质粒、噬菌体等)进行连接,构建重组 DNA 分子。

这个过程就像是给目的基因找了一辆“车”,以便将其运输到目标细胞中。

在连接过程中,需要使用特定的限制酶和 DNA 连接酶。

限制酶能够识别特定的碱基序列,并在该位置切割 DNA 分子,产生粘性末端或平末端;DNA 连接酶则能够将具有相同末端的 DNA 片段连接起来。

接下来,将重组 DNA 分子导入受体细胞。

常用的导入方法包括转化(对于细菌等原核生物)、转染(对于动物细胞)和农杆菌介导法(对于植物细胞)等。

一旦重组 DNA 分子成功进入受体细胞,它就可以随着细胞的分裂和遗传进行复制和表达。

最后,通过筛选和鉴定,选出含有目的基因并且能够正确表达的受体细胞。

这可以通过抗性标记、分子杂交等技术来实现。

二、基因工程技术的应用例题(一)生产药物胰岛素是治疗糖尿病的重要药物。

过去,胰岛素主要从动物的胰腺中提取,不仅产量低,而且成本高。

通过基因工程技术,我们可以将人的胰岛素基因导入大肠杆菌或酵母细胞中,使其大量表达胰岛素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

妙用RNaseH 这种酶能识别mRNA-cDNA杂交分子中的 mRNA,并将其降解成许多小片断。 小片断正好成为DNA聚合酶的引物, 用来合成冈崎片断。 DNA Pol I除去引物并修补后再使用 DNA连接酶连成一整条DNA链。
3’ 5’ 引物 3’ 5’ 引物
mRNA cDNA 反转录酶 mRNA cDNA第一链 RNaseH
GAL4的效应基因是his3/lacZ/URA3。
GAL4激活组氨酸合成酶的表达,使酵母 菌能生长在组氨酸缺乏培养基上。
五、构建双杂交体系的穿梭质粒 1. 穿梭质粒(shuttle plasmid) 既能在大肠杆菌中复制,又能在酵母 菌中复制和表达的质粒。 2. 双杂交体系需要两种穿梭质粒 分别携带已知的靶蛋白基因和携带 未知基因序列。
利用mRNA都含有一段polyA尾巴, 将mRNA从总RNA(rRNA、tRNA 等)中分离纯化。 mRNA只占总RNA的1%-2%。 ② mRNA的分离纯化 Column(柱) 分离mRNA用商业化的Oligo dT纤维柱。
(3)cDNA的合成
① cDNA第一链合成
逆转录酶能以RNA为模板合成DNA。
4.应用双向杂交系统鉴定不同突变子与靶蛋白的反应能力。
5.在细胞内研究抗原和抗体的相互作用。
八、酵母双杂交系统存在的问题
1. 双杂交系统分析蛋白间的相互作用定位于细 胞核内,而许多蛋白质间的相互作用依赖于翻 译后的修饰如磷酸化和二硫键形成等,这些反 应在核内是无法进行的. 2. 假阳性,由于某些蛋白质本身具有转录激活作 用.
N:所需的重组载体数(克隆数)
ln (1-p) ln (1-99%) N= ln (1-f) = ln (1-f) = 4.61× G f
G N= 4.61× f G:Genome大小;f:fragment大小 例如:人的基因组是 3×109 bp,插入DNA 片断的平均长度如果的制备
断点完全随机,片断长度合适于载体连接。 不能用一般的限制性内切酶消化法。 ① 物理切割法: 超声波(300bp)或机械搅拌(8kb)。 ② 酶切法: 内切酶Sau3A进行局部消化。可得到 10-30kb的随机片断。
(2)载体与基因组DNA大片段的连接 直接连接、人工接头或同聚物加尾。 ① 粘性末端直接连接 载体与外源DNA大片段的两个末端 都有相同的粘性末端。 如:Sau3A与BamHI的酶切末端。 ②人工接头法(adapter) 人工合成的限制性内切酶粘性末端片断。
转录表达
双杂交原理
X基因和Y基因 产物的相互结 合,导致 reporter gene表 达。
Reporter gene表 达就可说明X基 因产物与Y基因 产物能结合。
三、构建双杂交体系的宿主菌 删除基因组中的内源野生型GAL4基因 使酵母菌只能利用载体表达的GAL4蛋白。 此外还有其他营养缺陷。 如: SFY526; HF7c等菌株。 四、构建报告基因(reporter gene)
蛋白B
Active domain
DNA binding domain 蛋白A
4. 观察报告基因表达 通过效应基因是否被激活来检查:
在体内,蛋白A与蛋白B是否能结合。
(1)如果蛋白A与蛋白B不能相互结合 GAL4的DB domain与AD Domain也不 能靠近,所以仍然不能启动效应基因 的转录。 蛋白B 转录激活domain
(1)BD-plasmid 靶基因按正确的读码结构和取向克隆在 GAL4的BD之后。 P: ADH1启动子。 T: ADH1终止子。
ADH:Alcohol dehydrogenase
核定位信号是GAL4 本身的一部分 筛选标志:TRP
(2)AD-plasmid 外源基因按正确阅读框克隆到GAL4的 AD片断之后。 P: ADHI启动子。 T: ADHI终止子。 核定位信号是 SV40的T抗原 的序列 以在细菌中直接表达。 (3)包含库的一般步骤 (1)总RNA(total RNA)提取 提取总RNA有商业化的试剂盒(kit)。
(2)mRNA的分离纯化
① 原理
DNA 聚合酶mRNA DNA 聚合酶
3’ mRNA 5’
3’ 5’
mRNA
cDNA第一链
去引物
DNA ligase
cDNA第二链 cDNA第一链
5.cDNA与载体连接:
在双链cDNA末端接上人工接头,即可与 载体连接,转入受体菌。 或借助末端转移酶给载体和双链cDNA的3’ 端分别加上几个C或G,成为粘性末端。 接上人工接头
五 .分子杂交技术 1、Southern blot 原理和方法: 双链DNA
放射自显影
限制性内切酶 消化 洗膜 杂交 转膜
电泳分离
NaOH变性
检测
NaOH或高温变性
标记的探针转基因样品检测, 等…
2、Northern blot 原理和方法: 是相对于Southern blot而命名的。 利用 DNA-RNA链或RNA-RNA链杂交的原理, 通过DNA(或RNA)探针检测RNA样品。
测蛋白质样品。
主要用于基因在蛋白质水平上的表达研
究。
Western blot的原理与Southern blot相比 有两点不同:
(1) 检测的对象不同.
(2) 探针的性质不同,在Western blot中使
用的细胞的整个基因组DNA切割 成大小合适的片断,并将所有这些片断 都与适当的载体连接,引入相应的宿主 细胞中保存和扩增。 理论上讲,这些重组载61× 5 = 8.1 × 10 4 N= 4.61×逆转录出的DNA称cDNA。 3’ mRNA 5’ 5’ 引物 cDNA 反转录酶 3’ 2. cDNA library 利用某种生物的总mRNA合成cDNA,再将 这些cDNA与载体连接,转入细菌细胞中进 行保存和扩增,称cDNA。单链RNA放射自显影
变性胶电泳分离
检测
洗膜
杂交
转膜
NaOH或高温变性
标记的探针
应用:
主要用于基因在转录水平上的表达研究。
基因时空特异性表达,及表达模式分析;
候选基因表达分析,有利于排除候选
基因,等…
CRG2(2) 物理图谱 5.8 kb
CRG3(0) 4.8 kb
CRG4(0)
RM5647(5) 6.4 kb
粘性末端
末端转移%的mRNA时 所需要的克隆数目。
ln (1-p) N=n : 某一种低丰度(不足14份拷贝)mRNA 占细胞整个mRNA的比例
N:所需的重组载体数(克隆数)
例如: 啤酒酵母的半乳糖苷酶基因激活因子GAL4: 1-147aa 768-881aa Active domain N DNA binding domain C
结合 结合 激活转录 GAL4效应基因 上游激活序列(UAS) 转录机
实验发现:
转录表达
只要DNA binding domain(DNA-BD)与Active domain(AD)靠近就能够求 载体容量越大,所要求的DNA片断数目 越少,所需的重组子越少。 (2)目前常用的载体 载体系列: 容量为 24 kp cosmid载体: 容量为 50 kb YAC: 容量为 1 Mb BAC: 容量为 300 kb
六、酵母双杂交的实验过程
报告基因:HIS(合成组氨酸)
1. 把蛋白A插入到BD质粒上(pGBT9) 2. 把蛋白B插入到AD质粒上(pGAD424) 3. 两种重组质粒共同转化酵母菌(HF7c) 4. 筛选观察
(1)存活选择 在缺少亮氨酸(LEU)和色氨酸(TRP)培 养基上筛选双载体转化子。 双载体转化才能合成亮氨酸和色氨 酸,菌体存活。 Trp-
各种酶的接头可以向公司定做或购买。
接上人工接头 粘性末端 ③ 同聚物加尾 末端转移酶 CCC 粘A时所 需要的克隆数目。
ln (1-pf: 插入载体的DNA片断的平均长度占整个基因 组DNA的百分数
2. 拆开 Domain 用重组DNA技术把GAL4的两个Domain分 开,就丧失了激活效应基因的能力。
Active domain
DNA binding domain 结合 上游激活序列(UAS) 转录机 GAL4效应基因
不能转录
3. 重组Domain 用重组DNA技术把这两个Domain分别与 两个不同的多肽连接。
用Oligo dT(或随机引物)作引物,合 成cDNA的第一链。 3’AAAAAAA mRNA 5’ TTTTTTT cDNA 反转录酶 Oligo dT引物 5’
② 降解mRNA模板 用碱处理或用RNaseH降解mRNA-DNA 杂交分子中的mRNA。 3’ 5’ 引物 3’ 5’ 引物 mRNA cDNA 反转录酶 3’ mRNA cDNA第一链 碱 或RNaseH 5’ 引物 cDNA第一链 3’ 5’ 5’ 3’
Leu-
(2)蛋白结合选择 在缺少组氨酸(HIS)、亮氨酸(LEU)和 色氨酸(TRP)的培养基上筛选蛋白A和蛋 白B能相互作用的双载体转化子。
HisTrp-
Leu-
七、酵母双杂交系统的应用
1.鉴定已发现新的蛋白质和蛋白质的新功能。 3.用于药物的筛选中。
③ cDNA第二链合成 剩下的cDNA单链的3’末端一般形成一个弯 回来的双链发卡结构(机理不明),可成 为合成第二条cDNA链的引物。用DNA聚 合酶合成第二链DNA.。 5’ cDNA第一链 DNA聚合酶 cDNA第二链合成 cDNA第一链 cDNA第二链
5’ 3’
④去掉发卡结构
用核酸酶S1可以切掉发卡结构(但这会 导致cDNA中有用的序列被切掉!)。 5’ 3’ cDNA第一链 cDNA第二链 核酸酶S1 5’ 3’ cDNA第一链 cDNA第二链 3’ 5’
a
RiceGAAS预测
b
Pi36-1
NBS-LRR
Pi36-2
相关文档
最新文档