组态王油罐液位控制课设
基于组态王的储油罐液位控制的监控软件系统设计
毕业设计(论文)任务书摘要:利用组态王开发的监控软件系统,是新型的工业自动控制系统,它以标准的工业计算机软、硬件平台构成的集成系统取代了传统的封闭式系统。
组态王监控软件系统在石油化工生产中起着非常重要的作用。
本文针对生产过程中的储油罐液位,设计开发了基于组态王的上位机监控软件系统。
该系统利用北京亚控公司生产的组态王软件实施上位机界面组态,对系统进行实时的操作和监控,在整个原油液位控制过程中不需要下位机。
储油罐液位监控软件系统实现上位机直接控制,使用组态王软件设计人机对话界面,完成上下限参数的在线设置,通过在组太王工程浏览器中的命令语言编辑对话框里输入控制程序,并且经过不断地调试运行,实现计算机在线自动监控。
在实际的原油生产中,该监控软件系统必须和外部硬件设备连接,通过RS232/485通讯电缆进行计算机与现场设备之间的数据交换,从而实现了对过程控制装置液位的实时数据采集和实时控制。
通过分析储油罐液位监控软件系统的设计要求,文章详细阐述了该系统的设计方法和制作流程,并进行了模拟仿真运行,最终达到了液位自动监控。
本次设计的重点是组态画面的建立以及命令语言程序的编写,只有准确地完成这两个方面,才能有效地实现液位的自动控制功能。
仿真测试结果表明:该系统满足了设计需求,能够按照给定值进行储油罐液位的实时自动监控,具有良好的稳定性。
关键词:监控;组态王;液位The design of Tank level control monitoring software system Abstract: The monitoring software system developed by the Kingview is a new type of industrial automatic control system, which is an integrated system having standard industrial computer software and hardware platform. It has replaced the traditional closed system. The monitoring software based on the Kingview plays a very important role in the petrochemical industry.In this paper, aiming at the tank level in the production process, the PC monitoring software system based on the kingview has been designed and developed. The system implement the PC interface configuration using the Kingview produced by Bejing Asia control company. It can complete the real-time operation and monitoring of the system. The oil level control in the whole process does not require the the next crew. The tank level monitoring software system achives the direct control of the host computer. It completes the on-line set of the upper and lower parameters using the interactive interface designed by the Kingview. By importing the control program in the command language editing dialog of the engineering browser of the Kingview, continuously commissioning and operationing, the system can come true the computer on-line automatic monitoring. In the actual production of the crude oil, the monitoring software system must be connected to the external hardware equipment. Exchanging the data between the computer and the field devices via RS232 / 485 communication cable, the system can achive the real-time data acquisition and control of the level of the process control devices.By analyzing the design requirements of the monitoring software system of the tank level, the article elaborated the system design methods and production processes. After the simulation of the system runned, it ultimately reached the liquid level automatic monitoring. The emphasis of the design is to buid the configurationscreen and write a command language program, only these two aspects were completed, the system couldeffectively achieve the automatic control function of the level.The simulation results show that: the system meets the design requirements. It is also able to complete real-time automatic monitoring of the tank level with the given values. The system has a good stability.Keywords: monitoring; Kingview; level目录1 绪论........................................................................1.1 课题研究的背景及意义..................................................1.2 国内外研究现状........................................................1.3 课题研究的目的........................................................1.4 课题研究的内容........................................................1.5 课题研究的准备工作....................................................2 液位监控系统的整体分析......................................................2.1 位式控制简介..........................................................2.1.1 位式控制的概念 ..................................................2.1.2 位式控制与PID控制的区别.........................................2.2 液位监控系统的结构分析................................................2.3 液位监控系统的控制方案................................................2.3.1 控制方案的选择 ..................................................2.3.2 控制方案的基本原理 ..............................................2.4 液位控制系统的程序设计................................................3 液位监控系统的硬件选型......................................................3.1 液位传感器............................................................3.2 数据采集卡............................................................3.3 监控主机..............................................................3.4 继电器................................................................3.5 电磁阀................................................................3.6 电源..................................................................3.7 放大电路..............................................................4 液位监控系统的软件设计......................................................4.1 组态软件的介绍........................................................4.1.1 组态软件的概念和产生的背景.......................................4.1.2 组态软件的特点和功能 ............................................4.1.3 组态软件现状和使用组态软件的步骤.................................组态软件的现状......................................................使用组态软件的一般步骤..............................................4.2KingviewV6.55概述.....................................................4.2.1 工程管理器 ......................................................4.2.2 工程浏览器 ......................................................4.2.3 画面运行系统 ....................................................4.3 组态王监控软件系统的设计..............................................4.3.1 系统设计任务与要求 ..............................................4.3.2 工程的建立 ......................................................4.2.1 定义外部设备和变量 ..............................................定义外部设备........................................................定义变量............................................................4.2.2 画面制作 ........................................................主画面的制作........................................................历史曲线画面的制作..................................................数据报表画面的制作..................................................4.2.3 动画连接 ........................................................主画面的连接........................................................历史曲线画面的连接..................................................数据报表画面的连接..................................................5 系统运行测试................................................................5.1 硬件连接和通讯........................................................5.2 上位机仿真运行........................................................5.2.1 主画面的运行 ....................................................自动上升过程........................................................自动下降过程........................................................手动操作过程........................................................5.2.2 历史曲线画面的运行 ..............................................5.2.3 数据报表画面的运行 ..............................................6 设计结果与分析..............................................................6.1 设计结果..............................................................6.2 设计分析..............................................................7 结论........................................................................ 参考文献....................................................................... 致谢..........................................................................1 绪论1.1 课题研究的背景及意义我国石油资源丰富,采油炼油企业众多,储油罐是储存油品的重要设备,储油罐液位的精确计量对生产厂库存管理及经济运行影响很大。
组态王-对液位及温度的监控
组态王-对液位及温度的监控自动化软件实训课程设计1绪论计算机技术和网络技术的飞速发展,为工业自动化开辟了广阔的发展空间,用户可以方便组建优质高效的监控系统,并且通过采用远程监控机诊断、双机热备等先进技术,使系统更加安全可靠,在这方面,组态王软件将为你提供请有力的软件支持。
2系统需求分析本设计要求用组态软件对给定的水位及温度对象的监控系统进行设计,此设计要求有按照实际题目设计监控画面及动态模拟、在数据字典中定义需要的内存变量和I/O 变量、实现监控系统的实时、历史曲线显示、实现参数报表打印功能、进行其余功能的扩展。
3系统法案论证在组态王软件中新建要满足以上功能的监控画面及动态模拟,首先设计总的监控中心,要包含实时监控画面,其次建立各个模块的监控画面,包括;液位显示、温度显示、实时曲线、历史曲线、实时报表、报表打印以及扩展的报警显示。
对于各个子模块进行设计和赋值以满足设计要求。
4系统监控界面设计4.1监控中心设计监控中心要包括所有的操作设备和和动态模拟图,而且要求具有总控制和显示功能,其中包含:水罐、储水罐、管道、阀门、泵以及温度传感器和液位传感器。
另外在控制方面要有菜单项里切换动画,以显示不同的显示画面。
如下图4.1所示。
图4.1监控中心4.2温度显示温度传感器获得水罐的实时温度,通过仪表的显示屏显示出来,如图4.2所示。
图4.2温度显示4.3液位显示液位传感器获得水罐液位的实时情况,通过仪表显示出来,如图4.3所示。
图4.3液位显示4.4实时曲线对于水罐的液位以及温度实时输出的曲线的范围都是0~100,输出的曲线都是实际值,输出的实时曲线如图4.4所示。
图4.4实时曲线4.5实时报表实时报表对水罐液位及水罐温度进行实时以报表的形式输出,对温度和野外进行实时跟踪。
如图4.5所示。
图4.5实时报表4.6报警显示报警界面是对于水罐的温度和水罐的液位进行报警,主要是对水罐的液位和水罐的温度设定正常值和非正常值进行区别和提醒,本设计对温度和液位的正常值都设定在10~90之间,超出这个范围就需要报警,报警界面如图4.6所示。
毕业设计基于组态王的储液罐温度控制设计
基于组态王的储液罐温度控制设计主要重点:掌握组态王的PID控件的应用和I/O设备的管理。
1.I/O点分配此系统有3个人模拟量输入,1个模拟量输出,6路开关量输出。
其中3个模拟量输入信号为:储液罐温度T1储液罐液位L1储液罐压力P11个模拟量输出信号为:蒸汽调节阀FV6个开关量输出信号为:液位开关输出:LL ,LH,主要有进料泵和出料泵控制。
温度开关输出:TL,TH,主要有蒸汽调节阀控制。
压力开关输出:PL,PH。
2.PLC的选择选择”板卡”研发PCL----812PG3.变量定义:储液罐温度:I/O实型,初值0,量程0-100储液罐液位:I/O实型,初值0,量程0-250储液罐压力:I/O实型,初值0,量程0-200蒸汽调节阀:I/O实型,初值0,开度0-100.储液罐温度高:I/O离散,初值0,最高95度。
储液罐温度低:I/O离散,初值0,最低90度。
储液罐液位高:I/O离散储液罐液位低:I/O离散储液罐压力高:I/O离散储液罐压力低:I/O离散进料泵运行:I/O离散if(\\本站点\系统启动==1){if(\\本站点\储液罐液位<10){\\本站点\进料泵运行=1;}if(\\本站点\储液罐液位>80){\\本站点\进料泵运行=0;}}else{\\本站点\进料泵运行=0;}if(\\本站点\$时==0 &&\\本站点\$分==0 &&\\本站点\$秒==0)\\本站点\温度0=\\本站点\储液罐温度;if(\\本站点\$时==1 &&\\本站点\$分==0 &&\\本站点\$秒==0)\\本站点\温度1=\\本站点\储液罐温度;if(\\本站点\$时==2 &&\\本站点\$分==0 &&\\本站点\$秒==0)\\本站点\温度2=\\本站点\储液罐温度;if(\\本站点\$时==3 &&\\本站点\$分==0 &&\\本站点\$秒==0)\\本站点\温度3=\\本站点\储液罐温度;if(\\本站点\$时==4 &&\\本站点\$分==0 &&\\本站点\$秒==0)\\本站点\温度4=\\本站点\储液罐温度;if(\\本站点\$时==5 &&\\本站点\$分==0 &&\\本站点\$秒==0)\\本站点\温度5=\\本站点\储液罐温度;if(\\本站点\$时==6 &&\\本站点\$分==0 &&\\本站点\$秒==0)\\本站点\温度6=\\本站点\储液罐温度;if(\\本站点\$时==7 &&\\本站点\$分==0 &&\\本站点\$秒==0)\\本站点\温度7=\\本站点\储液罐温度;if(\\本站点\$时==8 &&\\本站点\$分==0 &&\\本站点\$秒==0)\\本站点\温度8=\\本站点\储液罐温度;if(\\本站点\$时==9 &&\\本站点\$分==0 &&\\本站点\$秒==0)\\本站点\温度9=\\本站点\储液罐温度;if(\\本站点\$时==10 &&\\本站点\$分==0 &&\\本站点\$秒==0)\\本站点\温度10=\\本站点\储液罐温度;if(\\本站点\$时==11 &&\\本站点\$分==0 &&\\本站点\$秒==0)\\本站点\温度11=\\本站点\储液罐温度;if(\\本站点\$时==12 &&\\本站点\$分==0 &&\\本站点\$秒==0)\\本站点\温度12=\\本站点\储液罐温度;if(\\本站点\$时==12 &&\\本站点\$分==0 &&\\本站点\$秒==0)\\本站点\温度12=\\本站点\储液罐温度;if(\\本站点\$时==13 &&\\本站点\$分==0 &&\\本站点\$秒==0)\\本站点\温度13=\\本站点\储液罐温度;if(\\本站点\$时==14 &&\\本站点\$分==0 &&\\本站点\$秒==0)\\本站点\温度14=\\本站点\储液罐温度;if(\\本站点\$时==15&&\\本站点\$分==0 &&\\本站点\$秒==0)\\本站点\温度15=\\本站点\储液罐温度;if(\\本站点\$时==16 &&\\本站点\$分==0 &&\\本站点\$秒==0)\\本站点\温度16=\\本站点\储液罐温度;if(\\本站点\$时==17 &&\\本站点\$分==0 &&\\本站点\$秒==0)\\本站点\温度17=\\本站点\储液罐温度;if(\\本站点\$时==18 &&\\本站点\$分==0 &&\\本站点\$秒==0)\\本站点\温度18=\\本站点\储液罐温度;if(\\本站点\$时==19 &&\\本站点\$分==0 &&\\本站点\$秒==0)\\本站点\温度19=\\本站点\储液罐温度;if(\\本站点\$时==20 &&\\本站点\$分==0 &&\\本站点\$秒==0)\\本站点\温度20=\\本站点\储液罐温度;if(\\本站点\$时==21 &&\\本站点\$分==0 &&\\本站点\$秒==0)\\本站点\温度21=\\本站点\储液罐温度;if(\\本站点\$时==22 &&\\本站点\$分==0 &&\\本站点\$秒==0)\\本站点\温度22=\\本站点\储液罐温度;if(\\本站点\$时==23 &&\\本站点\$分==0 &&\\本站点\$秒==0)\\本站点\温度23=\\本站点\储液罐温度;。
组态王储油罐液位控制
1绪论随着工业自动化技术的不断发展,人们对系统监测性能的要求越来越高,组态王作为一个开发型的通用工业来监控系统,拥有良好的图形化操作界面,便于生产的组织与管理;同时,作为工业控制软件,它又可以很好的保证系统的可靠性与实时性。
组态王开发监控系统软件是新型的工业自动控制系统正以标准的工业计算机软、硬件平台构成的集成系统取代传统的封闭式系统,它具有适应性强、开放性好、易于扩展、经济、开发周期短等优点。
通常可以把这样的系统划分为控制层、监控层、管理层三个层次结构。
其中监控层对下连接控制层,对上连接管理层,它不但实现对现场的实时监测与控制,且在自动控制系统中完成上传下达、组态开发的重要作用。
尤其考虑三方面问题:画面、数据、动画。
通过对监控系统要求及实现功能的分析,采用组态王对监控系统进行设计。
组态软件也为试验者提供了可视化监控画面,有利于试验者实时现场监控。
而且,它能充分利用Windows 的图形编辑功能,方便地构成监控画面,并以动画方式显示控制设备的状态,具有报警窗口、实时趋势曲线等,可便利的生成各种报表。
它还具有丰富的设备驱动程序和灵活的组态方式、数据链接功能。
2系统需求分析在石油、化工、工矿等企业一般都有油库,这些油库是企业重要的燃料基地,是一个重要的生产环节。
各种油库的建设规模越来越大,造价也越来越高,为了确保油库的安全,必须要对影响油库安全的部分物理参数进行实时的数据采集,实现油库的自动化管理。
能及时掌握油库油罐的液位、温度、压力、油气浓度等状态参数可以大大提高油库的进油,储油和管理的工作效率,极大的提高安全保障,因此有广泛的应用价值。
通过对液位、温度、压力、油气浓度等状态量的实时监测,在智能仪表上实时显示并设置报警值,在越过限值时即可产生声光报警。
此外这些状态值也可以通过互联网传输,有访问权限的管理者可以在任何地方通过浏览器查看油库的安全参数,实现无人职守的远程监测系统。
3 系统方案论证在本设计中,为了实现对液位的控制,我使用了一个原油库,用来储存大量的原油,一个催化剂库用来存储大量的催化剂,它们分别在原料油罐催化剂罐液位少于20的时候进料,成品油罐用来存储成品油。
基于组态王的双储液罐单水位PID控制系统设计课程设计报告
专业方向课程设计报告题目:基于组态王的双储液罐单水位PID控制系统设计摘要本文主要实现基于组态王的双储液罐单水位PID控制系统,通过对实验系统结构的研究,运用所学的MATLAB知识建立了单容水箱实验系统的数学模型,并对系统的参数进行了辨识,用工业控制软件组态王6.5,使其具有报警画面,历史曲线,实时曲线,报表画面。
关键词:双储液罐,PID控制系统,单容水箱,组态王6.5ABSTRACTThis paper based on the configuration of the double tank water level single PID control system ,make water tank water level, water tank temperature detection, and water tank level control at a given value.Through the study on the structure of the experimental system, uselearned knowledge of MATLAB to establish a single volume tank experimental system mathematical model, and the parameters of the system are identified,use industrial control software kingview 6.5, enables it to have the alarm screen, historical curve, real-time curve, statements frame.KEY WORDS:Double liquid storage tank,PID control system,single volume tank,Configuration king 6.5目录摘要 (Ⅰ)ABSTRACT (Ⅱ)第1章绪论 0第2章系统总体方案 (1)2.1控制系统构成 (1)2.1控制系统过程 (1)第3章水箱建模及参数整定 (2)3.1 水箱的建模过程 (2)3.2 水箱液位的PID整定 (4)第4章组态王6.5简介与操作界面的设计 (5)4.1组态软件介绍 (5)4.2基于组态王6.5的液位控制系统上位机部分设计 (6)4.2.1上位机主控画面 (6)4.2.2上位机功能画面 (9)第5章结论与展望 (8)致谢 (9)参考文献 (10)第1章绪论随着现代科学技术的迅猛发展,工业生产的规模越来越大,结构也越来越复杂,从而使控制对象、控制器以及控制任务和目的日益复杂,而对系统的精度、响应速度和稳定性的要求却越来越高。
基于组态王液位控制系统设计课程设计
过程控制课程设计摘要组态王软件指一些数据采集与过程控制地专用软件,它们是在自动控制系统监控层一级地软件平台和开发环境,能以灵活多样地组态方式(而不是编程方式)提供良好地用户开发界面和简捷地使用方法.它们通常有强大地界面显示组态功能和良好地开放性功能.组态王软件包由工程管理器ProjectManager、工程浏览器TouchExplorer、画面开发系统Touchruak(内嵌于工程浏览器)和运行系统Touchvcw四部分组成,具有动画连接、实时控制、实时曲线与历史曲线、报警功能、报表功能等.本次设计主要内容是利用提供地被控对象单容水槽和相关仪器仪表,设计液位控制系统,利用组态王软件编写控制算法实现控制系统地上位机监控.关键词:组态王液位监控上位机监控一、设计任务:液位监控:完成一个液位监控系统设计,(对象自己定)要求有流程图画面,报警画面,历史曲线,实时曲线,报表画面.各画面间能实现灵活切换,所以画面都能实现动画效果或数据或曲线显示.二、实验目地:1.熟悉组态王软件,达到熟练使用组态软件地常用工具.2.学会完成组态工程地设计步骤.3.锻炼动手能力和分析问题解决问题地能力.三、实验步骤:1、系统设计:A.启动浏览器,新建工程.“组态王”采用面向对象地编程技术,使用户可以方便地建立画面地图形界面. 用户构图时可以像搭积木那样利用系统提供地图形对象完成画面地生成.同时支持画面之间地图形对象拷贝,可重复使用以前地开发结果. 在工程浏览器中左侧地树型视图中选择“界面”,在右侧视图中双击“新建”.B.设备定义:把地理上分散地物理硬件在软件上变成集中地逻辑硬件.C.变量定义:完成所有想到地变量定义,对于没有想到地后面设计过程遇到再定义.D.画面绘制:完成各种需要画面地绘制.E.动画连接及按键地程序编写.动画连接地引入是设计人机接口地一次突破,它把工程人员从重复地图形编程中解放出来,为工程人员提供了标准地工业控制图形界面,并且由可编程地命令语言连接来增强图形界面地功能.图形对象与变量之间有丰富地连接类型,给工程人员设计图形界面提供了极大地方便.“组态王”系统还为部分动画连接地图形对象设置了访问权限,这对于保障系统地安全具有重要地意义. 图形对象可以按动画连接地要求改变颜色、尺寸、位置、填充百分数等,一个图形对象又可以同时定义多个连接.把这些动画连接组合起来,应用程序将呈现出令人难以想象地图形动画效果.1水泵地动画连接及其程序编写2水管地动画连3启动按键地定义4停止按键地定义5历史曲线地按键定义6实时曲线地定义7报警按键定义为保证工业现场安全生产,报警和事件地产生和记录是必不可少地.“组态王”提供了强有力地报警和事件系统,并且操作方法简单. 报警是指当系统中某些量地值超过了所规定地界限时,系统自动产生相应警告信息,表明该量地值已经超限,提醒操作人员.如炼油厂地油品储罐,如果往罐中输油时,如果没有规定油位地上限,系统就产生不了报警,无法有效提醒操作人员,则有可能会造成“冒罐”,形成危险.有了报警,就可以提示操作人员注意.报警允许操作人员应答.、6报表按键定义数据报表是反应生产过程中地数据、状态等,并对数据进行记录地一种重要形式.是生产过程必不可少地一个部分.它既能反映系统实时地生产情况,也能对长期地生产过程进行统计、分析,使管理人员能够实时掌握和分析生产情况. 组态王提供内嵌式报表系统,工程人员可以任意设置报表格式,对报表进行组态.组态王为工程人员提供了丰富地报表函数,实现各种运算、数据转换、统计分析、报表打印等.既可以制作实时报表,也可以制作历史报表.组态王还支持运行状态下单元格地输入操作,在运行状态下通过鼠标拖动改变行高、列宽.另外,工程人员还可以制作各种报表模板,实现多次使用,以免重复工作.我们应用报表系统,制作了符合要求地分子膜过滤系统地过程报表,并保存到了工程目录下,以便查询.报表功能是指生产过程中地参数可以按一定地格式打印输出.可以自动或者手动打印组态报表、历史数据报表和实时数据报表.F.配置系统程序编写if(\\本站点\状态==1){if(\\本站点\液位>=80) {\\本站点\水泵=0。
基于PLC和组态王的液位PID控制系统教材
目录1 《控制系统集成实训》任务书 (2)2 总体设计方案 (4)2.1 系统组成 (4)2.2 水箱液位控制系统构成 (4)2.3 水箱液位控制系统工作原理 (5)2.4 仪表选型 (6)2.4.1 GK-01电源控制屏 (6)2.4.2 GK-02传感器输出与显示 (7)2.4.3 GK-03单片机控制 (7)2.4.4 GK-07交流变频调速 (8)2.4.4 GK-08 PLC可编程控制 (8)2.5 PLC设计流程图 (9)3 外部接线图 (10)4 I/0分配 (10)5 梯形图 (11)6 组态王界面 (15)6.1 主界面 (16)6.2 数据词典 (16)6.3 曲线监控 (17)6.4 水流动画程序 (18)7 调试和运行结果 (19)7.1 比例控制 (19)7.2 比例积分调节 (19)心得体会 (21)参考文献 (22)1.《控制系统集成实训》任务书题目:基于PLC和组态王的液位PID控制系统一、实训任务本课题要求设计液位PID控制系统,它的任务是使水箱液位等于给定值所要求的高度,并通过PID控制减小或消除来自系统内部或外部扰动的影响。
1.实训模块:1、THKGK-1过程控制实验装置GK-02、GK-07、GK-08。
2、计算机及STEP7运行环境(安装好演示程序)、MPI电缆线,组态王软件。
2.控制原理和控制要求:控制原理如图所示,测量值信号由S7-200PLC的AI通道进入,经程序比较测量值与设定值的偏差,然后通过对偏差的P或PI或PID调节得到控制信号(即输出值),并通过S7-200PLC 的AO通道输出。
用此控制信号控制变频器的频率,以控制交流电机的转速,从而达到控制水位的目的。
S7-200PLC和上位机进行通讯,并利用上位机组态王软件实现给定值和PID参数的设置、手动/自动无扰动切换、实时过程曲线的绘制等功能。
二、实训目的通过本次实训使学生掌握:1)实际控制方案的设计;2)编程软件的使用方法和梯形图语言的运用;2)程序的设计及实现方法;3)程序的调试和运行操作技术。
基于组态王的储液罐液位自动控制
新建画面,调用实时趋势曲线,进行相应的属性设置和文字标注,然后保存,以进 行后续操作。
2.4
新建画面,调用历史趋势曲线,进行相应的属性设置和文字标注,然后保存,以进 行后续操作。
2.5
新建画面,调用报警窗口,选择实时报警窗,进行相应的属性设置和文字标注,然 后保存,以进行后续操作。
2.6
新建画面,调用报警窗口,选择历史报警窗,进行相应的属性设置和文字标注,然 后保存,以进行后续操作。
2
2.1
打开组态王首先新建立工程“课程工程”,进入画面界面,进入画面界面,点击新
建工程画面,进入开发系统界面,确定背景属性。如图1所示
图1建立工程
22
打开“控制中心”画面,调用所需要的器件,然后调整好各器件的位置,进行相应
的管道连接,使得整个画面安排合理、紧凑。如图2所示。
图2储蓄罐液位自动控制系统主监控界面
2.7
新建画面,调用报表窗口,进行相应的属性设置和文字标注,然后保存,以进行后 续操作。
3
选中数据字典,然后双击新建来定义变量,按要求定义相应的变量,并注意其变量 类型及其后续设置。最后结果如图3所示。
4
命令代码设计见附录A。
5
所有设定完成后, 进入工程浏览器双击“应用程序命令语言”输入命令代码。使系统监控界面能实现动态 仿真。主监控界面如图4所示,实时趋势曲线、实时报警图、历史报警图与实时报表
6
这次课程设计使我熟悉了组态王软件的应用, 可以利用组态王设计出储液罐液位自 动控制系统。让我对使用专业知识、专业技能来分析和解决实际问题有了比较全面系统 的锻炼。相信以后在使用组态软件设计能够更全面,设计出更方便的实现监控和控制的 功能,同时让我在使用编程技巧的熟悉度向前迈了一大步。在课程设计的期间,我学到 了很多课本上学不到的知识,拓展了自己的视野和拓宽了自己的知识面,这让我受益匪
组态王的液位控制系统的设计
摘要组态王是一种组态软件,分析了组态王的特点。
本文介绍了一种基于组态王技术的对液位控制系统的设计本设计主要分为以下几个部分:①组态软件的介绍,主要介绍了组态软件的发展情况,以及组态王软件在组态软件中的地位和特点。
②组态王的液位监控系统的设计方案的确定,主要从技术要求,整个控制系统,温度压力,四个流程,流量,电场等方面综合考虑来确定。
③定义外部设备和数据库,主要包含项目的建立,定义外部设备,定义外部变量。
④设计图形界面,以建立欢迎画面,总体监控画面为例来设计图形界面。
⑤建立动画连接,把建立好的界面(画面)连接成一个动画界面(人机控制界面)。
⑥运行和调试,生成报表,运行动画界面(人机控制界面),调试,得到报表。
关键词:组态王,液位,控制目录摘要 (1)第一章组态软件的介绍 (3)第二章基于组态王的液位控制系统的设计 (7)2.1监控系统的组成 (7)2.1.1监控系统的任务 (7)2.1.2监控系统的硬件组成 (8)2.2监控系统的设计 (8)2.2.1监控中心主画面的建立 (8)2.2.2数据库变量的定义 (9)2.2.3趋势曲线的建立 (11)2.2.4报表系统的建立 (12)2.2.5棒图控件的建立 (13)2.2.6参数设置 (13)2.3程序的设计 (14)2.3.1两种运行方式 (14)2.3.2上位机监控程序 (14)第三章上位机的组态 (16)3.1定义外部设备 (16)3.2主界面的制作 (18)3.2.1建立新界面 (18)3.2.2使用图形工具箱 (19)3.2.3系统管理界面制作 (19)3.3动画连接 (20)3.4报警功能 (21)3.5报表功能 (22)结论 (23)参考文献 (23)附录一详细设备表 (24)致谢 (25)第一章组态软件的介绍组态软件指一些数据采集与过程控制的专用软件,它们是在自动控制系统监控层一级的软件平台和开发环境,能以灵活多样的组态方式(而不是编程方式)提供良好的用户开发界面和简捷的使用方法。
基于组态王的液位过程控制系统设计
《控制系统分析与综合》任务书题目:液位控制系统设计一、工程训练任务本实训综合运用自动化原理、PLC技术以及组态软件等相关课程,通过本实训的锻炼,使学生掌握自动化系统的基础理论、技术与方法,巩固和加深对理论知识的理解。
本课题针对液位控制系统作初步设计和基本研究,该系统能对水箱液位信号进行采集,以PLC为下位机,以工控组态软件组态王设计上位机监控画面, 运用PID控制算法对水箱液位进行控制。
二、工程训练目的通过本次工程训练使学生掌握运用组态王软件及PLC构建工业控制系统的能力,增强学生对PLC控制系统以及组态王软件的应用能力,培养学生解决实际问题的能力,为今后从事工程技术工作、科学研窕打下坚实的基础.三、工程训练内容1)确定PLC的I/O分配表:2)根据PID控制算法理论,运用PLC程序实现PID控制算法:3)编写整个液位控制系统实训项目的PLC控制程序;4)在组态王中定义输入输出设备:5)在组态王中定义变量;6)设计上位机监控画面;7)进行系统调试。
四、工程训练报告要求报告中提供如下内容:1、目录2、任务书3、正文4、收获、体会5、参考文献五、工程训练进度安排周次工作日工作内容1布置课程设计任务,查找相关资料第2完成总体设计方案—3完成PLC程序设计周45完成监控画面设计第1调试2二3准备训练报告周4完成训练报告并于下午两点之前上交5答辩六、工程训练考核办法本工程训练满分为IOO分,从工程训练平时表现、工程训练报告及工程训练答辩三个方面进行评分,其所占比例分别为20%、40%、40%o总体设计方案2o 1关于组态王的概述组态王软件是一种通用的工业监控软件,它融过程控制设计、现场操作以及工厂资源管理于一体,将一个企业内部的各种生产系统和应用以及信息交流汇集在一起,实现最优化管理.它基于Microsoft Windows XP/NT/2000操作系统,用户可以在企业网络的所有层次的各个位置上都可以及时获得系统的实时信息。
基于组态王的液位控制系统设计
1《控制系统分析与综合》任务书题目:液位控制系统设计一、工程训练任务本实训综合运用自动化原理、PLC技术以及组态软件等相关课程,通过本实训的锻炼,使学生掌握自动化系统的基础理论、技术与方法,巩固和加深对理论知识的理解。
本课题针对液位控制系统作初步设计和基本研究,该系统能对水箱液位信号进行采集,以PLC为下位机,以工控组态软件组态王设计上位机监控画面,运用PID控制算法对水箱液位进行控制。
二、工程训练目的通过本次工程训练使学生掌握运用组态王软件及PLC构建工业控制系统的能力,增强学生对PLC控制系统以及组态王软件的应用能力,培养学生解决实际问题的能力,为今后从事工程技术工作、科学研究打下坚实的基础。
三、工程训练内容1) 确定PLC的I/O分配表;2) 根据PID控制算法理论,运用PLC程序实现PID控制算法;3) 编写整个液位控制系统实训项目的PLC控制程序;4) 在组态王中定义输入输出设备;5) 在组态王中定义变量;6)设计上位机监控画面;7)进行系统调试。
四、工程训练报告要求报告中提供如下内容:1、目录2、任务书3、正文4、收获、体会5、参考文献五、工程训练进度安排六、工程训练考核办法本工程训练满分为100分,从工程训练平时表现、工程训练报告及工程训练答辩三个方面进行评分,其所占比例分别为20%、40%、40%。
2总体设计方案2.1 关于组态王的概述组态王软件是一种通用的工业监控软件,它融过程控制设计、现场操作以及工厂资源管理于一体,将一个企业内部的各种生产系统和应用以及信息交流汇集在一起,实现最优化管理。
它基于Microsoft Windows XP/NT/2000 操作系统,用户可以在企业网络的所有层次的各个位置上都可以及时获得系统的实时信息。
采用组态王软件开发工业监控工程,可以极大地增强用户生产控制能力、提高工厂的生产力和效率、提高产品的质量、减少成本及原材料的消耗。
它适用于从单一设备的生产运营管理和故障诊断,到网络结构分布式大型集中监控管理系统的开发。
基于组态王的储油罐液位控制的监控软件系统设计
基于组态王的储油罐液位控制的监控软件系统设计储油罐液位控制是油田生产过程中非常重要的一环,它直接关系到油田生产的安全和效率。
为了提高储油罐液位控制的精度和可靠性,需要设计一种基于组态王的监控软件系统。
首先,该监控软件系统需要实现对储油罐液位的实时监控功能。
通过传感器可以实时获取液位数据,并通过硬件接口与监控软件系统进行通信。
监控软件系统可以实时显示储油罐液位的数据,并根据预设的上下限值进行报警和控制。
其次,该监控软件系统需要具备数据采集和存储功能。
由于储油罐液位的数据量较大,需要通过数据采集技术将其实时采集并存储到数据库中。
监控软件系统可以提供数据查询和统计分析功能,以便管理人员对储油罐液位数据进行分析和决策。
第三,该监控软件系统需要实现液位控制功能。
通过软件界面,管理人员可以对液位控制参数进行设置,并且可以手动控制储油罐液位。
当监控软件系统检测到液位超出预设的上下限值时,可以通过逻辑控制器控制液位传感器,自动进行液位补充或排放操作。
第四,该监控软件系统需要具备远程监控和控制功能。
通过网络通信技术,监控软件系统可以实现对储油罐液位的远程监控和控制。
管理人员可以通过远程终端设备实时监测储油罐液位,并对液位进行远程控制操作。
第五,该监控软件系统需要具备报警功能。
当液位超出预设的上下限值时,监控软件系统可以通过声音、图像或短信等方式进行报警,以提醒管理人员及时采取措施。
最后,该监控软件系统需要具备良好的界面设计和用户友好性。
通过组态王的图形化界面设计功能,可以设计出直观、简洁、易于操作的监控软件界面,方便管理人员进行操作和管理。
总之,基于组态王的储油罐液位控制的监控软件系统设计可以实现液位实时监控、数据采集和存储、液位控制、远程监控和控制、报警功能等,提高储油罐液位控制的精度和可靠性,提高油田生产的安全和效率。
组态王油罐液位控制课设
【下载本文档,可以自由复制内容或自由编辑修改内容,更多精彩文章,期待你的好评和关注,我将一如既往为您服务】目录任务书 (3)第一章火电发电厂的介绍 (6)1.1设计目的 (6)1.2 厂用电的设计 (6)1.3厂用电的设计原则 (6)1.4主接线中设备配置的一般准则 (6)1.4.1开关的配置 (6)1.4.2电压互感器的配置 (6)1.4.3电流互感器的配置 (7)第二章基于组态王的油罐液位控制 (8)2.1 设计目的 (8)2.2 组态王简介 (8)2.3 控制要求 (8)2.4组态软件在油罐液位中的应用 (8)2.4.1定义外部设备 (8)2.4.2数据词典定义 (9)2.4.3创建组态画 (12)2.4.4动画连接 (12)2.4.5阀门动画设 (13)2.4.6液体流动动画设置 (14)2.4.7 命令语 (17)2.4.8 报警和件 (17)2.4.8.1 报警和事件窗口用 (17)2.4.8.2 建立报警和事件窗口 (18)2.4.9趋势曲线 (20)2.4.9.1实时趋势曲线 (20)2.4.9.2历史趋势曲线 (21)2.4.9.3定义历史数据文件的存储目录 (21)2.4.10运行结果图 (21)第三章心得体会 (22)第四章参考文献 (22)第一章火电发电厂的介绍1.1设计目的(1)对发电厂各子系统有明确的认识和了解;(2)学会厂用电的设计;(3)学会发电厂如何并网。
1.2厂用电的设计发电厂在启动、运转、停役、检修过程中,有大量由电动机拖动的机械设备,用以保证机组的主要设备(如锅炉、气轮机或水轮机、发电机等)和输煤、碎煤、除灰、除尘及水处理的正常运行。
这些电动机以及全厂的运行、操作、试验、检修、照明用电设备等都属于厂用负荷,总的耗电量,统称为厂用电。
1.3厂用电设计原则厂用电的设计原则与主接线的设计原则基本相同,主要有:(1)接线应保证对厂用负荷可靠和连续供电,使发电厂主机安全运转。
组态王水位课程设计
南京工程学院课程设计说明书(论文) 题目组态王课程设计—水位控制系统课程名称集散控制系统院系电力工程学院专业电气工程及自动化班级电气081学生姓名张鑫伟学号 206080944设计地点 8-216指导教师朱建忠设计起止时间:2011年11月07日至2012年01月05日目录一、前言 (5)二、工程设计 (5)(一)设计要求 (5)(二)设计过程 (5)1、新建工程 (5)2、新建画面 (6)3、建立仿真PLC (6)4、完善数据词典 (7)5、画面单位具体设置与动画连接 (8)6、按钮参数设置 (8)7、多权限登录设置 (9)8、主画面外其余画面的设置 (9)9、总体命令语言设置 (13)三、运行效果 (14)四、课程设计体会 (17)五、参考文献 (18)南京工程学院课程设计任务书题目组态王课程设计—水位控制系统课程名称集散控制系统院(系、部、中心)电力工程学院专业电气工程及其自动化班级电气081 起止日期 2011.11.7~2011.12.31 指导教师朱建忠水箱水位控制系统一、前言“组态王”是运行于microsoft windows 200/NT4.0.XP中文平台的中文界面软件,充分利用了windows图形功能完备、界面一致性好、易学易用的特点,并且采用了多线程。
COM组件等新技术,实现了实时多任务,软件运行稳定可靠。
“组态王”软件包括由工程浏览器(TouchExplorer)、工程管理器(Proj-Manager)和画面运行系统(TouchVew)三大部分组成。
在工程浏览中可以查看工程的各个组成部分,也可以完成数据库构造、定义外部设备等工作;工程管理器中内嵌了画面管理系统,用于新工程的创建和已有工程的管理。
画面的开发和运行由工程浏览器调用画面制作系统touchMak和运行系统touchVew来完成。
二、工程设计(一)设计要求做一水位控制系统的组态,要求:动画显示水流运动。
当水位高于或低于警戒水位时,报警界面出现,提示报警,并记录在报警事件中。
基于组态王的双储液罐单水位PID控制系统设计课程设计报告
课程设计报告题目:基于组态王的双储液罐单水位PID控制系统设计毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
涉密论文按学校规定处理。
作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
基于PLC和组态王的液位PID控制系统
目录1 《控制系统集成实训》任务书 (2)2 总体设计方案 (4)2.1 系统组成 (4)2.2 水箱液位控制系统构成 (4)2.3 水箱液位控制系统工作原理 (5)2.4 仪表选型 (6)2.4.1 GK-01电源控制屏 (6)2.4.2 GK-02传感器输出与显示 (7)2.4.3 GK-03单片机控制 (7)2.4.4 GK-07交流变频调速 (8)2.4.4 GK-08 PLC可编程控制 (8)2.5 PLC设计流程图 (9)3 外部接线图 (10)4 I/0分配 (10)5 梯形图 (11)6 组态王界面 (15)6.1 主界面 (16)6.2 数据词典 (16)6.3 曲线监控 (17)6.4 水流动画程序 (18)7 调试和运行结果 (19)7.1 比例控制 (19)7.2 比例积分调节 (19)心得体会 (21)参考文献 (22)1.《控制系统集成实训》任务书题目:基于PLC和组态王的液位PID控制系统一、实训任务本课题要求设计液位PID控制系统,它的任务是使水箱液位等于给定值所要求的高度,并通过PID控制减小或消除来自系统内部或外部扰动的影响。
1.实训模块:1、THKGK-1过程控制实验装置GK-02、GK-07、GK-08。
2、计算机及STEP7运行环境(安装好演示程序)、MPI电缆线,组态王软件。
2.控制原理和控制要求:控制原理如图所示,测量值信号由S7-200PLC的AI通道进入,经程序比较测量值与设定值的偏差,然后通过对偏差的P或PI或PID调节得到控制信号(即输出值),并通过S7-200PLC 的AO通道输出。
用此控制信号控制变频器的频率,以控制交流电机的转速,从而达到控制水位的目的。
S7-200PLC和上位机进行通讯,并利用上位机组态王软件实现给定值和PID参数的设置、手动/自动无扰动切换、实时过程曲线的绘制等功能。
二、实训目的通过本次实训使学生掌握:1)实际控制方案的设计;2)编程软件的使用方法和梯形图语言的运用;2)程序的设计及实现方法;3)程序的调试和运行操作技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录任务书 (3)第一章火电发电厂的介绍 (6)1.1设计目的 (6)1.2 厂用电的设计 (6)1.3厂用电的设计原则 (6)1.4主接线中设备配置的一般准则 (6)1.4.1开关的配置 (6)1.4.2电压互感器的配置 (6)1.4.3电流互感器的配置 (7)第二章基于组态王的油罐液位控制 (8)2.1 设计目的 (8)2.2 组态王简介 (8)2.3 控制要求 (8)2.4组态软件在油罐液位中的应用 (8)2.4.1定义外部设备 (8)2.4.2数据词典定义 (9)2.4.3创建组态画 (12)2.4.4动画连接 (12)2.4.5阀门动画设 (13)2.4.6液体流动动画设置 (14)2.4.7 命令语 (17)2.4.8 报警和件 (17)2.4.8.1 报警和事件窗口用 (17)2.4.8.2 建立报警和事件窗口 (18)2.4.9趋势曲线 (20)2.4.9.1实时趋势曲线 (20)2.4.9.2历史趋势曲线 (21)2.4.9.3定义历史数据文件的存储目录 (21)2.4.10运行结果图 (21)第三章心得体会 (22)第四章参考文献 (22)第一章火电发电厂的介绍1.1设计目的(1)对发电厂各子系统有明确的认识和了解;(2)学会厂用电的设计;(3)学会发电厂如何并网。
1.2厂用电的设计发电厂在启动、运转、停役、检修过程中,有大量由电动机拖动的机械设备,用以保证机组的主要设备(如锅炉、气轮机或水轮机、发电机等)和输煤、碎煤、除灰、除尘及水处理的正常运行。
这些电动机以及全厂的运行、操作、试验、检修、照明用电设备等都属于厂用负荷,总的耗电量,统称为厂用电。
1.3厂用电设计原则厂用电的设计原则与主接线的设计原则基本相同,主要有:(1)接线应保证对厂用负荷可靠和连续供电,使发电厂主机安全运转。
(2)接线应灵活的适应正常、事故、检修等各种运行方式的要求。
(3)厂用电源的对应供电性。
(4)设计还应适当注意其经济性和发展的可能性并积极慎重的采用新技术、新设备,使厂用电接线具有可行性和先进性。
(5)在设计厂用电接线时,还应对厂用电的电压等级、中性点接地方式、厂用电源及其引线和厂用电接线形式等问题,进行分析和论证。
1.4 主接线中设备配置的一般规则1.4.1 开关的配置(1)中小型发电机出口一般应装设隔离开关;容量为200MW及以上大机组与双绕组变压器的单元连接时,其出口不装设隔离开关,但应有可拆连接点。
(2)在出线上装设电抗器的6~10KV配电装置中,当向不同用户供电的两回线共用一台断路器和一组电抗器时,每回线上应各装设一组出线隔离开关。
(3)接在发电机、变压器引出线或中性点上的避雷器可不装设隔离开关。
(4)一台半断路器接线中,视发变电工程的具体情况,进出线可装设隔离开关也可不装设隔离开关。
(5)断路器的两侧均应配置隔离开关,以便在断路器检修时隔离电源。
(6)中性点直接接地的普通型变压器均应通过隔离开关接地;自耦变压器的中性点则不必装设隔离开关。
1.4.2 电压互感器的配置(1)电压互感器的数量和配置与主接线方式有关,并应满足测量、保护、同期和自动装置的要求。
电压互感器的配置应能保证在运行方式改变时,保护装置不得失压,同期点的两侧都能提取到电压。
(2)6~220KV电压等级的每组主母线的三相上应装设电压互感器。
旁路母线上是否需要装设电压互感器,应视各回出线外侧装设电压互感顺的情况和需要确定。
(3)当需要监视和检测线路侧有无电压时,出线侧的一相上应装设电压互感器。
(4)当需要在330KV及以下主变压器回路中提取电压时,可尽量利用变压器电容式套管上的电压抽取装置。
(5)发电机出口一般装设两组电压互感器,供测量、保护和自动电压调整装置需要。
当发电机配有双套自动电压调整装置,且采用零序电压式匝间保护时,可再增设一组电压互感器。
1.4.3 电流互感受器的配置(1)凡装有断路器的回路均应装设电流互感器,其数量应满足测量仪表、保护和自动装置要求。
(2)在未设断路器的下列地点也应装设电流互感器;发电机和变压器的中性点、发电机和变压器的出口、桥形接线的跨条上等。
(3)对直接接地系统,一般按三相配置。
对非直接接地系统,依具体要求按两相或三相配置。
(4)一台半断路器接线中,线路一线路串可装设四组电流互感器,在能满足保护和测量要求的条件下也可装设三组电流互感器可以利用时,可装设三组电流互感器。
在仿真中心,我们学了给发电机并网,我知道了发电机并网的条件:发电机并网就是通过发电机出口开关的合闸,把发电机和电网(也可以认为电网就是好多需要用电的用户)联接起来,让电能源源不断地输送出去.发电机并网有三个条件:发电机的频率、电压、相位必须与电网的频率、电压、相位保持一致,才能并网发电。
第二章基于组态王的油罐液位控制2.1 设计目的(1).熟悉并熟练掌握组态王软件;(2).通过组态王软件的使用,进一步掌握了解过程控制理论基础知识;(3).培养自主查找资料、收索信息的能力;(4).培养实践动手能力与合作精神。
2.2 组态王简介“组态王”是运行于microsoft windows 200/NT4.0.XP中文平台的中文界面软件,充分利用了windows图形功能完备、界面一致性好、易学易用的特点,并且采用了多线程。
COM 组件等新技术,实现了实时多任务,软件运行稳定可靠。
“组态王”软件包括由工程浏览器(TouchExplorer)、工程管理器(Proj-Manager)和画面运行系统(TouchVew)三大部分组成。
在工程浏览中可以查看工程的各个组成部分,也可以完成数据库构造、定义外部设备等工作;工程管理器中内嵌了画面管理系统,用于新工程的创建和已有工程的管理。
画面的开发和运行由工程浏览器调用画面制作系统touchMak和运行系统touchVew来完成。
2.3控制要求(1)能根据具体对象及控制要求,独立设计控制方案,正确选用过程仪表。
(2)能够根据过程控制系统A/D、D/A和开关I/O的需要,正确选用模块。
(3)能运用组态软件,正确设计过程控制系统的组态图、组态画面和组态控制程序。
2.4组态软件在油罐液位中的应用2.4.1定义外部设备1、在组态王工程浏览器树型目录中,选择设备,在右边的工作区中出现了“新建”图标, 双击此“新建”图标,弹出“设备配置向导”对话框。
2、在上述对话框选择亚控提供的“仿真PLC”的“串行”项后单击“下一步”弹出对话框。
3、为仿真PLC 设备取一个名称,如:PLC1 ,单击“下一步”弹出连接串口对话框4、为设备选择连接的串口为COM1,单击“下一步”弹出设备地址对话框在连接现场设备时,设备地址处填写的地址要和实际设备地址完全一致。
5、此处填写设备地址为0,单击“下一步”,弹出通讯参数对话框6、设置通信故障恢复参数(一般情况下使用系统默认设置即可)。
7、请检查各项设置是否正确,确认无误后,单击“完成”。
设备定义完成后,可以在Com1 项下看到新建的设备“PLC1”。
8、双击Com1 口,弹出串口通讯参数设置对话框,如图1 所示:图1数据库是组态王最核心的部分,在Touch Vew运行时,工业现场的生产状况要以动画的形式反映在荧幕上,操作者在计算机前发布的指令也要迅速送达生产现场,所有的这一切都是以实时数据库为中介环节,因此数据库是联系上位机和下位机的桥梁。
数据库中变量的集合形象地称为数据词典,数据词典记录了所有用户可使用的数据变量的详细信息,包括基本类型的内存变量、I/O变量,特殊类型的报警窗口变量、报警组变量、历史趋势曲线变量、时间变量。
对于监控系统中用到的变量的定义为:在目录显示区点击“数据词典”图标,则目录内容显示区显示“新建”图标,双击,即可进入“定义变量”对话框进行变量的定义。
2.4.2数据词典定义图2对于我们将要建立的演示工程,需要从下位机采集原料油罐的液位、原料油罐的压力、催化剂液位和成品油液位,所以需要在数据库中定义这四个变量。
因为这些数据是通过驱动程序采集来的,所以四个变量的类型都是I/O 实型变量,变量定义方法如下:在工程浏览器树型目录中选择“数据词典”,在右侧双击“新建”图标,弹出“变量属性”对话框,如图所示:在对话框中添加变量如下:变量名:原料油液位变量类型:I/O 实数变化灵敏度:0 初始值:0最小值:0 最大值:100最小原始值:0 最大原始值:100转换方式:线性连接设备:PLC1寄存器:DECREA100 数据类型:SHORT采集频率:1000 毫秒读写属性:只读设置完成后单击“确定”。
用类似的方法建立另外三个变量:原料油罐压力、催化剂液位和成品油液位。
图3 图4图5 图6图7 图8图9 图10此外由于演示工程的需要还须建立三个离散型内存变量为:原料油出料阀、催化剂出料阀、成品油出料阀。
在该演示工程中使用的设备为上述建立的仿真PLC,仿真PLC 提供四种类型的内部寄存器:INCREA 、DECREA 、RADOM 、STATIC,寄存器INCREA 、DECREA 、RADOM、STATIC 的编号从1-1000,变量的数据类型均为整型(即SHORT)。
递增寄存器 INCREA100 变化范围 0~100 ,表示该寄存器的值周而复始的由0 递加到100。
递减寄存器 DECREA100 变化范围 0~100 ,表示该寄存器的值周而复始的由100 递减为0。
随机寄存器 RADOM100 变化范围 0~100 ,表示该寄存器的值在0 到100 之间随机的变动。
静态寄存器 STATIC100 该寄存器变量是一个静态变量,可保存用户下发的数据,当用户写入数据后就保存下来,并可供用户读出。
STATIC100 表示该寄存器变量能够接收0-100 之间的任意一个整数。
2.4.3创建组态画面设计画面建立新画面为建立一个新的画面请执行以下操作:1、在工程浏览器左侧的“工程目录显示区”中选择“画面”选项,在右侧视图中双击“新建”图标,弹出新建画面对话框,2、使用工具箱调色板和图库画出液位控制画面图113、选择“文件”菜单的“全部存”命令将所完成的画面进行保存。
2.4.4 动画连接动画连接的作用所谓“动画连接”就是建立画面的图素与数据库变量的对应关系。
液位示值动画设置1、打开“监控中心”画面,在画面上双击“原料油罐”图形,弹出该图库的动画连接对话框。
对话框设置如下:变量名(模拟量):\\本站点\原料油液位填充颜色:绿色最小值:0 占据百分比:0最大值:100 占据百分比:1002、单击“确定”按钮,完成原料油罐的动画连接。
这样建立连接后原料油罐液位的高度随着变量“原料油液位”的值变化而变化。
用同样的方法设置催化剂罐和成品油罐的动画连接,连接变量分别为:\\本站点\催化剂液位、\\本站点\成品油液位。