图论及应用考试复习总结

合集下载

图论总结(超强大)

图论总结(超强大)

图论总结(超强大)-标准化文件发布号:(9556・EUATWK・MWUB-WUNN・INNUL-DDQTY-KII 1.图论Graph Theory1 丄定义与术语Definition and Glossary1.1.1.图与网络Graph and Network1.1.2.图的术语Glossary of Graph1.1.3.路径与回路Path and Cycle1.1.4.连通性Connectivity1.1.5.图论中特殊的集合Sets in graph1.1.6.匹配Matching1.1.7.树Tree1.1.8.组合优化Combinatorial optimization12 图的表示Expressions of graph1.2.1.邻接矩阵Adjacency matrix1.2.2.关联矩阵Incidence matrix1.2.3.邻接表Adjacency list1.2.4.弧表Arc list1.2.5.星形表示Star1・3・图的遍历Traveling in graph1.3.1.深度优先搜索Depth first search (DFS)1.3.1.1・概念1.3.1.2・求无向连通图中的桥Finding bridges in undirected graph1.3.2.广度优先搜索Breadth first search (BFS)14 拓扑排序Topological sort1.5.路径与回路Paths and circuits1.5.1.欧拉路径或回路Eulerian path1.5.1.1.无向图1.5.1.2.有[句图1.5.13. 7昆合图1.5.1.4 ・无权图Un weighted1.5.1.5・有权图Weighed —中国邮路问题The Chinese post problem1.5.2.Hamiltonian Cycle 哈氏路径与回路1.5.2.1.无权图Un weighted1.5.2.2・有权图Weighed —旅行商问题The travelling salesman problem 1.6.网络优化Network optimization1.6.1.最小生成树Minimum spanning trees1.6.1.1.基本算法Basic algorithms1.6.1.1.1.Prim1.6.1.1.2.Kruskal1.6.1.1.3・ Sollin ( Boruvka)1.6.1.2.扩展模型Extended models1.6.1.2.1.度限制生成树Minimum degree-bounded spanning trees1.6.1.2.2.k 小生成树The k minimum spanning tree problem(k-MST)1.6.2.最短路Shortest paths1.6.2.1.单源最短路Single-source shortest paths1.6.2.1.1.基本算法Basic algorithms1.6.2.1.1.1 ...................................................................................... Dijkstra1.6.2・1・1.2 ......................................................................... B ellman-Ford1.6.2.1.1.2.1 ........................... S hortest path faster algorithm(SPFA)1.6.2.1.2. 应用 Applications1.6.2.1.2.1 ......................差分约束系统 System of difference constraints1. 6.2. 1. 2. 2 ........... 有向无环图上的最短路Shortest paths in DAG1. 6.2. 2.所有顶点对间最短路 Al 1-pairs shortest paths1. 6.2. 2. 1 ........................................................ 基本算法 Basic algor it hms1.6.2. 2.1.1 ..................................................................... Floyd-War shall1.6.2. 2.1.2网络流 Flow network 1. 6. 3. 1.最大流 Maximum flow最小费用流Minimum cost flow............... 找最小费用路 Finding minimum cost pathJohnson 1.6.3 16. 3 1.1 ................................................... 1.6. 3.1.1.1 • •••••• 1.6. 3.1 1.1.1.. • ••••••••• 1.6 3. 1. 1. 1 1・ 1・ ・・・・1.6 3. 1. 1. 1 1.2 ..........1.6. 3.1.1.2 • •••••• • ••••••••1.6. 3.1 1.2.1..1.6. 3.1 1.2. 2..1. 6. 3.1.1. 31.6. 3.1.2 ............1.6. 3.1.2.1 • •••••• • •••••••••基本算法 Basic algor it hmsFord-Fulkerson method Edmonds-Karp algorithmMinimum length path Maximum capability path 预流推进算法Pref low pushmethod Push-relabelRelabel-to-front Dinic method 扩展模型 Extendedmodels 有上下界的流冋题 1.6. 3. 2.1. 6. 3.2. 2 .......................................... 找负权圏Finding negative circle1. 6. 3.2. 3 .................................... 网络单纯形Network simplex algorithm1. 6. 4 ....................................................................................................... 匹酉己Matching1. 6. 4. 1.二分图Bipartite Graph1. 6. 4.1.1.无权图-匈牙利算法Unweighted - Hopcroft and Karp algorithm1. 6. 4.1.2...带权图-KM 算法Weighted - Kuhn-Munkres(KM) algorithm1. 6. 4.2. 一般图General Graph1. 6. 4.2.1 ............ 无权图-带花树算法Unweighted - Blossom (Edmonds) 1.图论Graph Theory1.1.定义与术语Definition and Glossary1.1.1.图与网络Graph and Network二元组(H,E)称为图(graph) V为结点(node)或顶点(vertex)集。

(完整版)图论复习提纲

(完整版)图论复习提纲
图论及其应用
复习课件 数学科学学院
1
本次课主要内容 期末复习
(一)、重点概念 (二)、重要结论 (三)、应用
2
(一)、重点概念
1、图、简单图、图的同构与自同构、度序列与图序列、 补图与自补图、两个图的联图、两个图的积图、偶图;
(1) 图:一个图是一个序偶<V,E>,记为G=(V,E),其中: 1) V是一个有限的非空集合,称为顶点集合,其元素称为顶点或点。
G1 G2
例1 指出4个顶点的非同构的所有简单图。 分析:四个顶点的简单图最少边数为0,最多边数为6,所以 可按边数进行枚举。
5
(6) 补图与自补图
1) 对于一个简单图G =(V, E),令集合 E1 uv u v,u,vV
则图H =(V,E1\E)称为G的补图,记为 H G
2) 对于一个简单图G =(V, E),若 G G ,称G为自补图。
(5) 根树
一棵非平凡的有向树T,如果恰有一个顶点的入度为0,而其余所有顶 点的入度为1,这样的的有向树称为根树。其中入度为0的点称为树根, 出度为0的点称为树叶,入度为1,出度大于1的点称为内点。又将内点 和树根统称为分支点。
9
(6) 完全m元树
对于根树T,若每个分支点至多m个儿子,称该根树为m元根树; 若每个分支点恰有m个儿子,称它为完全m元树。
(2) 森林
称无圈图G为森林。
8
(3) 生成树
图G的一个生成子图T如果是树,称它为G的一棵生成树;若T 为森林,称它为G的一个生成森林。
生成树的边称为树枝,G中非生成树的边称为弦。
(4) 最小生成树
在连通边赋权图G中求一棵总权值最小的生成树。该生成树称 为最小生成树或最小代价树。

图论期末考试整理复习资料

图论期末考试整理复习资料

目录第一章图的基本概念 (1)二路和连通性 (3)第二章树 (3)第三章图的连通度 (4)第四章欧拉图与哈密尔顿图 (5)一,欧拉图 (5)二.哈密尔顿图 (6)第五章匹配与因子分解 (9)一.匹配 (9)二.偶图的覆盖于匹配 (10)三.因子分解 (11)第六章平面图 (14)二.对偶图 (16)三.平面图的判定 (17)四.平面性算法 (20)第七章图的着色 (24)一.边着色 (24)二.顶点着色 (25)第九章有向图 (30)二有向树 (30)第一章图的基本概念1.点集与边集均为有限集合的图称为有限图。

2.只有一个顶点而无边的图称为平凡图。

3.边集为空的图称为空图。

4.既没有环也没有重边的图称为简单图。

5.其他所有的图都称为复合图。

6.具有二分类(X, Y)的偶图(或二部图):是指该图的点集可以分解为两个(非空)子集X 和Y ,使得每条边的一个端点在X 中,另一个端点在Y 中。

7.完全偶图:是指具有二分类(X, Y)的简单偶图,其中X的每个顶点与Y 的每个顶点相连,若|X|=m,|Y|=n,则这样的偶图记为Km,n8. 定理1 若n 阶图G 是自补的(即),则n = 0, 1(mod 4)9. 图G 的顶点的最小度。

10. 图G 的顶点的最大度。

11. k-正则图: 每个点的度均为 k 的简单图。

例如,完全图和完全偶图Kn,n 均是正则图。

12. 推论1 任意图中,奇点的个数为偶数。

13.14. 频序列:定理4 一个简单图G 的n 个点的度数不能互不相同。

15. 定理5 一个n 阶图G 相和它的补图有相同的频序列。

16.17.18. 对称差:G1△G2 = (G1∪G2) - (G1∩G2) = (G1-G2)∪(G2-G1)19. 定义: 联图 在不相交的G1和G2的并图G1+G2中,把G1的每个顶点和G2的每个顶点连接起来所得到的图称为G1和G2的联图,记为G1∨G220. 积图:积图 设G1= (V1, E1),G2 = (V2, E2),对点集V = V1×V2中的任意两个点u =(u1,u2)和v = (v1,v2),当(u1 = v1和 u2 adj v2) 或 (u2 = v2 和 u1 adj v1) 时就把 u 和 v 连接起来所得到的图G 称为G1和G2积图。

图论及其应用综述

图论及其应用综述

图论综述一、简介图论是数学的一个分支。

它以图为研究对象。

图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系。

图G=(V,E)是一个二元组(V,E)使得E⊆[V]的平方,所以E的元素是V的2-元子集。

集合V中的元素称为图G的定点(或节点、点),而集合E的元素称为边(或线)。

通常,描绘一个图的方法是把定点画成一个小圆圈,如果相应的顶点之间有一条边,就用一条线连接这两个小圆圈,如何绘制这些小圆圈和连线时无关紧要的,重要的是要正确体现哪些顶点对之间有边,哪些顶点对之间没有边。

图论本身是应用数学的一部份,因此,历史上图论曾经被好多位数学家各自独立地建立过。

关于图论的文字记载最早出现在欧拉1736年的论著中,他所考虑的原始问题有很强的实际背景。

目前,图论已形成很多分支:如随机图论、网络图论、代数图论、拓扑图论、极值图论等。

图论的应用已经涵盖了人类学、计算机科学、化学、环境保护、非线性物理、心理学、社会学、交通管理、电信以及数学本身等。

二、基本内容2.1 图的基本概念本章首先介绍了图的一些基本性质和一些不同模型的图,包括偶图,完全图和补图,引入了定点度的来描述图的性质。

其次介绍了子图的相关概念,介绍了图的一些基本运算规则,对图的路和连通性进行了阐释。

紧接着讲解了最短路算法,定义设G为边赋权图。

u与v是G中两点,在连接u与v的所有路中,路中各边权值之和最小的路,称为u与v间的最短路。

图的代数表示,包括图的邻接矩阵和图的关联矩阵。

最后对极图理论进行了简介,主要介绍了极值图论中的一个经典结论——托兰定理。

2.2 树本章主要介绍了树的概念与性质,阐述了生成树与最小生成树的基本概念与一些常用结论与定理。

树是不含圈的无圈图,也是连通的无圈图。

树是图论中应用最为广泛的一类图。

在理论上,由于树的简单结构,常常是图论理论研究的“试验田”。

离散数学(图论)课后总结

离散数学(图论)课后总结

第八章图论例1、下面哪些数的序列,可能是一个图的度数序列?如果可能,请试画出它的图. 哪些可能不是简单图?a) (1,2,3,4,5) b) (2,2,2,2,2) c) (1,2,3,2,4) d) (1,1,1,1,4) e) (1,2, 2,4,5)解:a)不是, 因为有三个数字是奇数. b) c) d)是.e) 不是简单图,因为它有5个结点, 有一个结点度为5, 必然有环或平行边.例2、已知无向简单图G中,有10条边,4个3度结点,其余结点的度均小于或等于2,问G中至少有多少个结点?为什么?解:已知边数|E|=10, ∑deg(v)=2|E|=20其中有4个3度结点, 余下结点度之和为: 20-3×4=8 因为G是简单图, 其余每个结点度数≤2, 所以至少还有4个结点.所以G中至少有8个结点.强连通、单侧连通和弱连通在简单有向图G中,如果任何两个结点间相互可达, 则称G是强连通. 如果任何一对结点间, 至少有一个结点到另一个结点可达, 则称G是单侧连通. 如果将G看成无向图后(即把有向边看成无向边)是连通的,则称G是弱连通.在简单有向图中,具有强连通的最大子图,称为强分图.具有单侧连通的最大子图,称为单侧分图. 具有弱连通的最大子图,称为弱分图.注:我每次都会被各种分图弄糊涂!!考试时要注意啊,千万不要错了利用可达性矩阵求强分图,注意初等矩阵变换的知识不要忘了!!令图G=<V,E,W>, 集合Si V Si’=V-Si , 令|V|=nSi={u|从u0到u的最短路已求出}Si’={u’|从u0到u’的最短路未求出}Dijkstra算法:(求从u0到各点u的最短路长)第一步. 置初值: d(u0,u0)=0 d(u0,v)=∞(其中v≠u0)i=0 S0={u0} S0’=V-S0 ,第二步.若i=n-1 则停. 否则转第三步第三步. 对每个u’∈Si’计算d(u0,u’)=min{d(u0,u’), d(u0,ui)+c(ui,u’)} ui ∈Si计算min{d(u0,u’)}u’∈S i’并用ui+1记下达到该最小值的那个结点u’置Si+1 =Si∪{ui+1} i=i+1 Si’=V-Si , 转第二步.例3、求最短路解:例.求右图中从v1到v6的最短路1.置初值: u0=v1d(u0,u0)=0d(u0,v2)=d(u0,v3)=d(u0,v4)=d(u0,v5)=d(u0,v6)=∞2.3. i=0 S0={v1} S0’={v2,v3,v4,v5,v6}d(u0,v2)=min{d(u0,v2), d(u0,u0)+c(u0,v2)}=min{∞,0+3}=3d(u0,v3)=min{d(u0,v3),d(u0,u0)+c(u0,v3)}=min{∞,0+∞}=∞d(u0,v4)=min{d(u0,v4), d(u0,u0)+c(u0,v4)}=min{∞,0+5}=5d(u0,v5)=min{d(u0,v5),d(u0,u0)+c(u0,v5)}=min{∞,0+∞}=∞d(u0,v6)=min{d(u0,v6),d(u0,u0)+c(u0,v6)}=min{∞,0+∞}=∞min{3,∞,5, ∞,∞}=3ui+1 =u1=v2 , 实际已求出d(u0,v2)=3, 路是u0v2i=1 S1={v1, v2}S1’={v3,v4,v5,v6}u1=v2d(u0,u1)=3d(u0,v3)=min{d(u0,v3),d(u0,u1)+c(u1,v3)}=min{∞,3+6}=9d(u0,v4)=min{d(u0,v4), d(u0,u1)+c(u1,v4)}=min{5,3+1}=4d(u0,v5)=min{d(u0,v5),d(u0,u1)+c(u1,v5)}=min{∞,3+∞}=∞d(u0,v6)=min{d(u0,v6),d(u0,u1)+c(u1,v6)}=min{∞,3+∞}=∞min{9,4,∞,∞}=4ui+1 =u2=v4 , 实际已求出d(u0,v4)=4, 路是u0v2v4i=2 S2={v1, v2 ,v4}S2’={v3,v5,v6}u2=v4d(u0,u2)=4d(u0,v3)=min{d(u0,v3), d(u0,u2)+c(u2,v3)}=min{9 ,4+3}=7d(u0,v5)=min{d(u0,v5), d(u0,u2)+c(u2,v5)}=min{∞,4+1}=5d(u0,v6)=min{d(u0,v6), d(u0,u2)+c(u2,v6)}=min{∞,4+∞}=∞min{7,5,∞}=5ui+1 =u3=v5 , 实际已求出d(u0,v5)=5, 路是u0v2v4 v5i=3 S3={v1, v2 ,v4 ,v5}S3’={v3,v6}u3=v5d(u0,u3)=5d(u0,v3)=min{d(u0,v3),d(u0,u3)+c(u3,v3)}=min{7 ,5+3}=7d(u0,v6)=min{d(u0,v6),d(u0,u3)+c(u3,v6)}=min{∞,5+6}=11 min{7,11}=7ui+1 =u4=v3 , 实际已求出d(u0,v3)=7, 路是u0v2v4 v3i=4 S3={v1, v2 ,v4 ,v5, v3} S3’={v6} u4=v3 d(u0,u4)=7 d(u0,v6)=min{d(u0,v6),d(u0,u4)+c(u4,v6)}=min{11,7+3}=10min{10}=10ui+1 =u5=v6 , 实际已求出d(u0,v6)=10, 路是u0v2v4 v3 v6i=5 (n-1) 时算法停止.例4、求关键路径。

图论 期末复习

图论 期末复习

图论及其应用总复习第1章图的基本概念•§1.1 图论发展史•§1.2 图的定义•§1.3 顶点的度•§1.4 子图与图的运算•§1.5一些特殊的图•§1.6 图的矩阵表示•§1.7 有向图1、图的定义图--图G=<V(G),E(G),ψ)>是有序三元组,其中V(G)是一个非空有限集合,E(G)与是V(G)不相交的有限集合,ψ)使E(G)中每一个元素对应于V(G)中的一个无序元素对.顶点--V(G)中的元素称为G的顶点,p(G)=|V(G)|称为G的点数.边--E(G)中的元素称为G的边,q(G)=|E(G)|称为G的边数.环--两个端点重合为一个顶点的边。

重边(平行边)--关联于同一对顶点的若干条边。

关联--如果ψ)e =uv ,则称边e 连接顶点u 和v ,u 和v 是e 的端点,u (或v )与e 关联。

相邻--点的相邻:两点间有边边的相邻:两条边有公共端点简单图--不含环和重边的图.有限图--一个图的顶点集和边集都是有限集的图.平凡图--只有一个顶点所构成的图称为平凡图.2、图的同构3、顶点的度最大度Δ(G)=max{d(v)|v∈V}最小度δ(G)=min{d(v)|v∈V}孤立顶点--度为0的顶点。

k-正则图--如果一个图中每个顶点的度是某一个固定整数k,则称该图是k-正则图。

握手定理顶点的度序列4、子图完全图--若图G 中的每一对不同顶点之间恰有一条边连接,则称图G 为完全图,记作K ;.4K 5K 3K 2K 1K 5、特殊图二分图−−G=(V>,V@;E)通常写出G=(X,Y;E),即它的点集可以分解为两个(非空)子集X和Y,使得每条边的一个端点在X中,另一个端点在Y中。

完全二分图--是指具有二分类(X,Y)的简单二部图,其中X 的每个顶点与Y的每个顶点相连,若|X|=p,|Y|=q,则这样的偶图记为K p,q.关联矩阵设图G=(V,E),V=v>,v@,⋯,v;,E=e>,e@,⋯,e G,则称B(G)=(b JK);×G为G的关联矩阵,其中b JK=0v J与e K不关联1v J与e K关联1次2v J与e K关联2次(即e K是以v J为端点的环)6、矩阵表示邻接矩阵设图G=(V,E),V=v>,v@,⋯,v;,用a JK表示G中顶点v J与v K之间的边数,则称M(G)=(a JK);×;为G的邻接矩阵。

图论及应用考试复习总结.讲义

图论及应用考试复习总结.讲义

情形1:假如28在C中,则39,34在C中,从而7(10), 8(10) 在C中
5 6 1 7 8 2 彼得森图 9 3 10
4
但这样得到圈:17(10)821。所以该情形不能存在。
情形2:假如23在C中,则86,8(10)在C中,从而39, 79在C 中.
5 6 1 1 7 8 9 3 彼得森图 2 彼得森图 9 3 10
5 6 1 7 8 2 彼得森图 9 3 10
4
证明: (1) 证明彼得森图是非H图。
若不然,设C是G的H圈。 对于边12, 17,15来说,必然有两条边在C中。不失一般性, 假定17,12在C中,那么,56,54也必然在C中。
5
6 1
7 8 2 9 3 10
4
彼得森图
又对于边28,23来说,在前面情况下,必有一条在C中。 分两种情形讨论。
图论及其应用
任课教师:杨春 Email: yc517922@ 应用数学学院
本次课主要内容
超哈密尔顿图问题
(一)、超H图与超H迹 (二)、E图和H图的关系
(一)、超H图与超H迹
定义1 若图G是非H图,但对于G中任意点v,都有G-v是 H图,则称G是超H图。 定理1 彼得森图是超H图。
5
6 4 10
4
7
8 2
但这样得到圈:123971。所以该情形也不能存在。 上面推理说明,G中不存在H圈,即彼得森图是非H图。
(2) 证明对任意点v,G-v是H图。 由对称性,只需考虑下面两种情形: (a) G-1,(b)G-6
5 6 5
4
1
4
7
8 2 G-1 9
10
7
8 9
10
3

图论总结(超强大)

图论总结(超强大)

图论总结(超强⼤)1.图论Graph Theory1.1.定义与术语Definition and Glossary1.1.1.图与⽹络Graph and Network1.1.2.图的术语Glossary of Graph1.1.3.路径与回路Path and Cycle1.1.4.连通性Connectivity1.1.5.图论中特殊的集合Sets in graph1.1.6.匹配Matching1.1.7.树Tree1.1.8.组合优化Combinatorial optimization1.2.图的表⽰Expressions of graph1.2.1.邻接矩阵Adjacency matrix1.2.2.关联矩阵Incidence matrix1.2.3.邻接表Adjacency list1.2.4.弧表Arc list1.2.5.星形表⽰Star1.3.图的遍历Traveling in graph1.3.1.深度优先搜索Depth first search (DFS)1.3.1.1.概念1.3.1.2.求⽆向连通图中的桥Finding bridges in undirected graph1.3.2.⼴度优先搜索Breadth first search (BFS)1.4.拓扑排序Topological sort1.5.路径与回路Paths and circuits1.5.1.欧拉路径或回路Eulerian path1.5.1.1.⽆向图1.5.1.2.有向图1.5.1.3.混合图1.5.1.4.⽆权图Unweighted2.Hamiltonian Cycle 哈⽒路径与回路1.5.2.1.⽆权图Unweighted1.5.2.2.有权图Weighed —旅⾏商问题The travelling salesman problem1.6.⽹络优化Network optimization1.6.1.最⼩⽣成树Minimum spanning trees1.6.1.1.基本算法Basic algorithms1.6.1.1.1.Prim1.6.1.1.2.Kruskal1.6.1.1.3.Sollin(Boruvka)1.6.1.2.扩展模型Extended models1.6.1.2.1.度限制⽣成树Minimum degree-bounded spanning trees1.6.1.2.2.k⼩⽣成树The k minimum spanning tree problem(k-MST)1.6.2.最短路Shortest paths1.6.2.1.单源最短路Single-source shortest paths1.6.2.1.1.基本算法Basic algorithms1.6.2.1.1.1. ..................................................................................................... D ijkstra1.6.2.1.1.2. .......................................................................................... B ellman-Ford1.6.2.1.1.2.1.....................................Shortest path faster algorithm(SPFA)1.6.2.1.2.应⽤Applications1.6.2.1.2.1. ........................... 差分约束系统System of difference constraints2.1.2.2. .......................... 有向⽆环图上的最短路Shortest paths in DAG1.6.2.2.所有顶点对间最短路All-pairs shortest paths1.6.2.2.1.基本算法Basic algorithms1.6.2.2.1.1. ....................................................................................... F loyd-Warshall1.6.2.2.1.2. .................................................................................................... Johnson 1.6.3.⽹络流Flow network1.6.3.1.最⼤流Maximum flow1.6.3.1.1.基本算法Basic algorithms1.6.3.1.1.1. ........................................................................ Ford-Fulkerson method 1.6.3.1.1.1.1.......................................................... E dmonds-Karp algorithm1.6.3.1.1.1.1.1. ................................................... M inimum length path1.6.3.1.1.1.1.2. ........................................... Maximum capability path1.6.3.1.1.2. ............................................... 预流推进算法Preflow push method1.6.3.1.1.2.1.................................................................................. P ush-relabel1.6.3.1.1.2.2........................................................................... Relabel-to-front1.6.3.1.1.3. .......................................................................................... Dinic method1.6.3.1.2.扩展模型Extended models1.6.3.1.2.1. ............................................................................... 有上下界的流问题1.6.3.2.最⼩费⽤流Minimum cost flow1.6.3.2.1.找最⼩费⽤路Finding minimum cost path1.6.3.2.2.找负权圈Finding negative circle2.3.⽹络单纯形Network simplex algorithm1.6.4.匹配Matching1.6.4.1.⼆分图Bipartite Graph1.6.4.1.1.⽆权图-匈⽛利算法Unweighted - Hopcroft and Karp algorithm1.6.4.1.2.带权图-KM算法Weighted –Kuhn-Munkres(KM) algorithm1.6.4.2.⼀般图General Graph1.6.4.2.1.⽆权图-带花树算法Unweighted - Blossom (Edmonds)1.图论Graph Theory1.1. 定义与术语Definition and Glossary1.1.1.图与⽹络Graph and Network⼆元组(),V E称为图(graph)。

图论及其应用 第一章答案

图论及其应用 第一章答案

)2214(题后两个算法不作要求题,除第图的基本概念<1.>若G 是简单图,证明:()()2V G E G ⎛⎫≤ ⎪⎝⎭。

证明:()()1()()()1v Gd v V G d v V G V G ∈≤-∴≤-∑(当且仅当G 是完全图时取等号) 又11()()()()122v G E G d v V G V G ∈=≤-∑ ()()2V G E G ⎛⎫∴≤ ⎪⎝⎭。

<2.>设G 是(,)p q 简单图,且12p q -⎛⎫>⎪⎝⎭。

求证G 为连通图。

证明:反证法,假设G 为非连通图。

设G 有两个连通分支1G 和2G ,且112212()1,()1,V G p V G p p p p =≥=≥+= 则1212()()22p p E G E G q ⎛⎫⎛⎫+=≤+⎪ ⎪⎝⎭⎝⎭而1211221(1)(1)(1)(2)222222p p p p p p p p p -⎛⎫⎛⎫⎛⎫----+-=+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2222221212121222()2()222p p p p p p p p p p +-+-+-+++-==12(1)(1)0p p =--≤(因为121,1p p ≥≥),矛盾。

<3.>超图H 是有序二元组((),())V H E H ,其中()V H 是顶点非空有限集合,()E H 是()V H 的非空子集簇,且()()i i E E H E V H ∈=。

其中,()E H 中的元素i E 称为超图的边,没有相同边的超图称为简单超图。

证明:若H 是简单超图,则21υε≤-,其中,υε分别是H 的顶点数和边数。

证明:()V H υ=,有一条边的子集个数为1υ⎛⎫ ⎪⎝⎭,有i 条边的子集个数为,1,,.i n i υ⎛⎫= ⎪⎝⎭又02,211i i υυυυυυυ=⎛⎫⎛⎫⎛⎫=∴++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑ 。

<4.>若G 是二部图,则2()()4V G E G ≤。

图论总结(超强大)

图论总结(超强大)

图论总结(超强大) -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII1.图论 Graph Theory1.1.定义与术语 Definition and Glossary1.1.1.图与网络 Graph and Network1.1.2.图的术语 Glossary of Graph1.1.3.路径与回路 Path and Cycle1.1.4.连通性 Connectivity1.1.5.图论中特殊的集合 Sets in graph1.1.6.匹配 Matching1.1.7.树 Tree1.1.8.组合优化 Combinatorial optimization1.2.图的表示 Expressions of graph1.2.1.邻接矩阵 Adjacency matrix1.2.2.关联矩阵 Incidence matrix1.2.3.邻接表 Adjacency list1.2.4.弧表 Arc list1.2.5.星形表示 Star1.3.图的遍历 Traveling in graph1.3.1.深度优先搜索 Depth first search (DFS)1.3.1.1.概念1.3.1.2.求无向连通图中的桥 Finding bridges in undirected graph1.3.2.广度优先搜索 Breadth first search (BFS)1.4.拓扑排序 Topological sort1.5.路径与回路 Paths and circuits1.5.1.欧拉路径或回路 Eulerian path1.5.1.1.无向图1.5.1.2.有向图1.5.1.3.混合图1.5.1.4.无权图 Unweighted1.5.1.5.有权图 Weighed —中国邮路问题The Chinese post problem1.5.2.Hamiltonian Cycle 哈氏路径与回路1.5.2.1.无权图 Unweighted1.5.2.2.有权图 Weighed —旅行商问题The travelling salesman problem1.6.网络优化 Network optimization1.6.1.最小生成树 Minimum spanning trees1.6.1.1.基本算法 Basic algorithms1.6.1.1.1.Prim1.6.1.1.2.Kruskal1.6.1.1.3.Sollin(Boruvka)1.6.1.2.扩展模型 Extended models1.6.1.2.1.度限制生成树 Minimum degree-bounded spanning trees1.6.1.2.2.k小生成树 The k minimum spanning tree problem(k-MST)1.6.2.最短路Shortest paths1.6.2.1.单源最短路 Single-source shortest paths1.6.2.1.1.基本算法 Basic algorithms1.6.2.1.1.1...................................................................................................... Dijkstra1.6.2.1.1.2........................................................................................... Bellman-Ford1.6.2.1.1.2.1. ................................... S hortest path faster algorithm(SPFA)1.6.2.1.2.应用Applications1.6.2.1.2.1............................ 差分约束系统 System of difference constraints1.6.2.1.2.2. ...... 有向无环图上的最短路 Shortest paths in DAG1.6.2.2.所有顶点对间最短路 All-pairs shortest paths1.6.2.2.1................................. 基本算法 Basic algorithms1.6.2.2.1.1. ......................................Floyd-Warshall1.6.2.2.1.2. ............................................. Johnson 1.6.3...................................................... 网络流 Flow network1.6.3.1.最大流 Maximum flow1.6.3.1.1................................. 基本算法 Basic algorithms1.6.3.1.1.1. .............................. F ord-Fulkerson method1.6.3.1.1.1.1....................... Edmonds-Karp algorithm1.6.3.1.1.1.1.1.................... Minimum length path1.6.3.1.1.1.1.2............... Maximum capability path1.6.3.1.1.2. ................. 预流推进算法 Preflow push method1.6.3.1.1.2.1................................... Push-relabel1.6.3.1.1.2.2.............................. Relabel-to-front1.6.3.1.1.3. ........................................ Dinic method1.6.3.1.2.................................. 扩展模型 Extended models1.6.3.1.2.1. ................................... 有上下界的流问题1.6.3.2.最小费用流 Minimum cost flow1.6.3.2.1.................. 找最小费用路 Finding minimum cost path1.6.3.2.2......................... 找负权圈 Finding negative circle1.6.3.2.3.....................网络单纯形 Network simplex algorithm1.6.4............................................................. 匹配 Matching1.6.4.1.二分图 Bipartite Graph1.6.4.1.1.无权图-匈牙利算法Unweighted - Hopcroft and Karpalgorithm1.6.4.1.2... 带权图-KM算法 Weighted –Kuhn-Munkres(KM) algorithm1.6.4.2.一般图General Graph1.6.4.2.1....... 无权图-带花树算法 Unweighted - Blossom (Edmonds) 1.图论 Graph Theory1.1.定义与术语 Definition and Glossary1.1.1.图与网络 Graph and Network,V E称为图(graph)。

图论概念定理知识点梳理

图论概念定理知识点梳理

图论基本知识点梳理第一部分(基本概念)1.G 连通的充分必要条件是1)(=G ω。

或若k G V 2|)(|=,且对)(G V v ∈∀,有k v d ≥)(,则G 是连通图。

4.图G 为二分图当且仅当G 中无奇圈。

5.在仅两个奇次顶点的图中,此二奇次顶点连通。

6.设G 为简单图,若2)(≥G δ,则G 中有圈。

7. 设G 为简单图,若3)(≥G δ,则G 中有偶圈。

具体地,(1)单星妖怪中有偶圈。

(2)在-k 正则图G 中,若3≥k ,则G 中有偶圈。

8.简单图G 与其补图c G 不能都不连通。

9.在2∆的三角剖分中,正常三角形为奇数个。

10.以下等价(1) G 是树(无圈连通图)。

(2) G 中任两顶点间恰有一条轨。

(3) G 无圈,1-=νε。

(4) G 是连通图,1-=νε 。

(5) G 是连通图,且对G 的任意边e ,e G -不连通。

(树每边皆割边)(6) G 无圈,且对任一不在)(G E 的边e ,e G +恰含一个圈。

11. 若G 连通,则1)()(-≥G G νε。

G 的生成树是G 最小的连通生成子图。

12. G 是连通图的充分必要条件是G 有生成树。

13. 2≥ν的树T 至少有两个叶。

14.完全图n K 的生成树个数2)(-=n n n K τ。

15. 图G 可平面嵌入的充分必要条件是G 可以球面嵌入。

(染地球上各国等价于染地图上各国)16. (Euler 公式) G 是连通平面图, 则2=+-φεν.17. 证明:若G 是3≥ν的连通平面图,则63-≤νε。

18. 证明:平面图G 的最小顶点次数5≤δ。

19 3≥ν平面图G 是极大平面图的充要条件是G 的平面嵌入的每个面皆三角形。

3≥ν平面图G 是极大平面图的充要条件是63-=νε。

20 G 是平面图当且仅当G 中不含与5K 和3,3K 同胚的子图。

21M 是图G 的最大匹配当且仅当G 中无M 的可增广轨。

22婚配定理:设G 是具有二分类),(Y X 的偶图,存在把X 中顶点皆许配的匹配的充要条件是|||)(|,S S N X S ≥⊆∀,其中)(S N 是S 中每个顶点的邻点组成的所谓S 的邻集。

图论复习——精选推荐

图论复习——精选推荐

图论复习chapter 1⼀、重要概念1. 图、简单图、图的同构、度序列与图序列、补图与⾃补图、两个图的联图、两个图的积图、偶图简单图:⽆环⽆重边的图称为简单图。

(除此之外全部都是复合图)图的同构:点对应、边对应,两个图完全⼀样!A \cong B图同构的⼏个必要条件:1. 顶点数相同;2. 边数相同;3. 度数相等的顶点个数相同。

偶图(⼆分图):可⼆分类(X, Y)的图,每条边的顶点均不属于同⼀类!指该图的点集可以分解为两个(⾮空)⼦集 X和 Y ,使得每条边的⼀个端点在 X 中,另⼀个端点在Y 中。

判定:不存在奇圈!!完全偶图:不是完全图!是指具有⼆分类(X, Y)的简单偶图,其中 X的每个顶点与 Y 的每个顶点相连记K_{m,n}度序列:图中各个顶点的度构成的⾮负正数组:(d_1, ...d_n)可图(对整数组⽽⾔):存在⼀个简单图以它为度序列可图序列:简称图序列(注意图序列判定和度序列判定的区别,前者仅针对简单图,后者不限!)图序列判定:1)度序列和为偶数2)利⽤公式计算3)简单图的度最⼤为n-1,看度序列是否符合!4)简单图⼀定存在度数相同的顶点!度序列判定:1. 度序列和为偶数!补图:完全图 - 当前图若n阶图G是⾃补的(即G \cong \bar{G},则(n~mod~4=0,1)⼀个n阶图和它的补图有相同的频序列⽣成⼦图:顶点与原图相同,边为原图边的⼦集导出⼦图:顶点为原图⾮空⼦集V',以及原图中所有以V'中顶点为两端的边,记G[V']边导出⼦图:边为原图的⾮空⼦集,以及边对应的顶点,记G[E']简单图 G 中所有不同的⽣成⼦图(包括 G 和空图)的个数是2^m个对称差:G1 △ G2 : G1 △ G2 = (G1 ⋃ G2 ) - (G1 ⋂ G2 ) = (G1 -G2 ) ⋃ (G2 -G1 )联图:设G1,G2是两个不相交的图,作G1+G2,并且将G1中每个顶点和G2中的每个顶点连接,这样得到的新图称为G1与G2的联图。

图论-总结

图论-总结
一是反证法,另一个是数学归纳法。
第一节 图论发展概述-----了解
第二节 图的基本定义
设V是一个非空集合,V的一切二个元素所构成 子集记为P2(V),即P2(V)={A|AV且|A|=2};
2.1无向图
定(义V,1E)设称V为是一一个个无非向空图有。限集合,EP2(V),二元组 2.2 顶点的度 定义2 设v为图G=(V,E)的任一顶点,G中与v邻接的
习题
1. 2.设G是无向图,证明:若δ(G)≥m,则图中包含 长至少为m+1的圈。
3.每个自补图必有4n或4n+1个顶点(n为正整数) 4. 设A={v1,v2,…,vp},q≤p(p-1)/2。试求以V为顶 点集具有q条边的无向图的个数。 5.设m,n是正整数,则 (1) m,n满足什么条件时,Km,n是偶拉图? (2) m,n满足什么条件时,Km,n是哈密顿图? 6. 对于P个顶点的完全图Kp,则 (1)Kp一定是完全图吗? (2)Kp一定是哈密顿图吗?
第二节 生成树 2.1生成树(包含所有顶点的树)
定义1 设G=(V,E)是一个图,若G的一个生成子图T=(V,F)是 树,则称T是G的生成树。
2.2 生成树存在问题
定理1 图G有生成树的充分必要条件是G为一个连通图。
2.3 怎样求(最小)生成树(破圈法) 2.4 树的弦
定义3 设T是连通图G的生成树,G的不是T的边称为T的弦。 说明: (1) 若G是一个(p,q)连通图,T是G的生成树,则T有
个命题正确吗?为什么? 5.设树中有2n个度为1的顶点,有2n个度为2的顶,
有n个度为3的顶点,则这棵树有多少个顶点和多 少条边? 6.恰有两个顶点的度为1的树是一条通路。
第四章 平面图和图的着色

电子科技大学《图论及其应用》复习总结--第一章图的基本概念

电子科技大学《图论及其应用》复习总结--第一章图的基本概念

电⼦科技⼤学《图论及其应⽤》复习总结--第⼀章图的基本概念⼀、重要概念图、简单图、图的同构、度序列与图序列、偶图、补图与⾃补图、两个图的联图、两个图的积图1.1 图⼀个图G定义为⼀个有序对(V, E),记为G = (V, E),其中(1)V是⼀个有限⾮空集合,称为顶点集或边集,其元素称为顶点或点;(2)E是由V中的点组成的⽆序点对构成的集合,称为边集,其元素称为边,且同⼀点对在E中可出现多次。

注:图G的顶点数(或阶数)和边数可分别⽤符号n(G) 和m(G)表⽰。

连接两个相同顶点的边的条数,叫做边的重数。

重数⼤于1的边称为重边。

端点重合为⼀点的边称为环。

1.2 简单图⽆环⽆重边的图称为简单图。

(除此之外全部都是复合图)注: 1.顶点集和边集都有限的图称为有限图。

只有⼀个顶点⽽⽆边的图称为平凡图。

其他所有的图都称为⾮平凡图。

边集为空的图称为空图。

2.n阶图:顶点数为n的图,称为n阶图。

3.(n, m) 图:顶点数为n的图,边数为m的图称为(n, m) 图1.3 邻接与关联:顶点u与v相邻接:顶点u与v间有边相连接(u adj v);其中u与v称为该边的两个端点。

注:1.规定⼀个顶点与⾃⾝是邻接的。

2.顶点u与边e相关联:顶点u是边e的端点。

3.边e1与边e2相邻接:边e1与边e2有公共端点。

1.4 图的同构设有两个图G1=(V1,E1)和G2=(V2,E2),若在其顶点集合间存在双射,使得边之间存在如下关系:u1,v1∈V1,u2,v2∈ V2 ,设u1↔u2,v1↔v2,; u1v1∈E1 当且仅当u2v2∈E2,且u1v1与u2v2的重数相同。

称G1与G2同构,记为:G1≌G2注:1、图同构的两个必要条件: (1) 顶点数相同;(2) 边数相同。

2、⾃⼰空间的理解:通过空间的旋转折叠可以进⾏形态转换1.5 完全图、偶图1、在图论中,完全图是⼀个简单图,且任意⼀个顶点都与其它每个顶点有且只有⼀条边相连接。

高考数学应试技巧之图论与网络优化

高考数学应试技巧之图论与网络优化

高考数学应试技巧之图论与网络优化高考数学是中学生进入大学的重要关卡,其中数学是一个必考科目,而数学中的图论和网络优化是一个比较重要的分支。

图论和网络优化是数学中的一个难点,但是如果我们能够合理利用图论和网络优化的知识,就可以在高考数学中占有绝对优势。

本文将为大家详细介绍高考数学应试技巧之图论和网络优化。

1. 图论图论是研究图及其性质和应用的一门学科。

图由点和边组成,每个点代表一个物体,每个边代表一个物体之间的关系,比如:连通性、距离、强度等等。

图的基本元素是点和边,许多数学问题都可以用图来表示和解决。

我们可以用图的染色、联通性、欧拉回路、哈密顿回路、平面图等知识来进行高考数学的解题。

1.1 染色问题染色问题是图论中的一个重要问题,其本质是将一张图的顶点分配给不同的颜色,使得相邻两个顶点的颜色不同。

如果用a、b、c、d四种颜色来染色,那么染色的方法有多少种呢?我们可以采用数学归纳法来进行求解。

首先,当图只有一个顶点时,它只有一种染色方法。

然后,当图有两个顶点时,它们有四种染色方法。

当图有三个顶点时,它们有12种染色方法。

当图有四个顶点时,它们有24种染色方法。

当图有n个顶点时,它们有n!种染色方法。

1.2 平面图问题平面图是指在平面上被画出的图形,每个边都不相交。

平面图的任何一个区域都被称为一个面,且每个面都由边界组成。

在高考数学中,我们可以利用平面图的知识来求解二维平面图的欧拉公式。

欧拉公式:一个凸多面体的面数F,顶点数V和边数E之间,有一个关系式E+2=F+V,V-E+F=2。

1.3 欧拉回路和哈密顿回路问题对于一张图来说,欧拉回路是指从一个顶点开始,经过所有的边恰好一次后回到起点的回路,而哈密顿回路是指经过一张图上所有顶点恰好一次的回路。

欧拉回路和哈密顿回路是图论中的重要问题,其可应用于公路、楼房物资搬运、旅游指南等具体问题中的寻求最优路径的问题。

2. 网络优化长期以来,网络优化是一项热门的数学领域,其应用范围涵盖了电信、交通、物流、金融等多个领域。

图论及其应用复习

图论及其应用复习
0.5
00
1 0.8
0.6 0.4 x 0.2
一、重要概念
1、图、简单图、图的同构、度序列与图序列、补图与自补 图、两个图的联图、两个图的积图、偶图;
(1) 图:一个图是一个序偶<V,E>,记为G=(V,E),其中: 1) V是一个有限的非空集合,称为顶点集合,其元素称为顶点或点。
用|V|表示顶点数;
注:要求掌握自补图的性质。
5
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
(7) 联图
设G1,G2是两个不相交的图,作G1+G2,并且将G1中每个顶点和G2 中的每个顶点连接,这样得到的新图称为G1与G2的联图。记为 :
G1 G2
(8) 积图
设 G1 (V1, E1), G2 (V2 , E2 ), 是两个图。对点集 V V1 V2
2) E是由V中的点组成的无序对构成的集合,称为边集,其元素称 为边,且同一点对在E中可以重复出现多次。用|E|表示边数。
(2) 简单图:无环无重边的图称为简单图。
2
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
(3) 图的度序列:
一个图G的各个点的度d1, d2,…, dn构成的非负整数组(d1, d2,…, dn) 称为G的度序列 。
1 0.8
0.6 0.4 x 0.2
(4) 因子分解
所谓一个图G的因子分解,是指把图G分解为若干个边不重的因子 之并。
注:要弄清楚因子分解和完美匹配之间的联系与区别。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Coxeter图
5、普鲁默猜想:每个2连通图的平方是H图。 该猜想是正确的,已经得到证明。 定义:图G的平方G2是这样的图:
V (G 2 ) V (G ) (u, v) E (G 2 ) 在G中有:d(u,v) 2
1
2
1
2
4 G
3
4 G2
3
值得一提的是:在H问题研究中,H图中H圈的计数问题 也是一个研究方向。
m( E ( L(G ))
vV ( G )

2 Cd ( v )
1 1 d (v) d (v) 1 m d 2 (v) 2 vV (G ) 2 vV (G )
(3) 一个图同构于它的线图,当且仅当它是圈。 (4) 若图G和G1有同构的线图,则除了一个是K3而另一 个是K1,3外,G和G1同构。(证明比较复杂) 3、从线图的角度考察E图与H图的关系
由(1)与(2),G是超H图。
定义2 若G中没有H路,但是对G中任意点v,G-v存在 H路,则称G是超可迹的。
数学家加莱曾经猜想:不存在超可迹的图。但该猜想被 Horton和Thomassen以构图的方式否定了。 定理2 Thomassen图是超可迹图。
f c Ⅰ e d

b Ⅲ
a Ⅳ
Thomassen图
v4 G
v3
设M={v7v8 , v3v4},则: 路v6v7v8v3v4与v1v7v8v2都是M交错路。其中后者是M 可扩路。
2、贝尔热定理 定理1 (贝尔热,1957) G的匹配M是最大匹配,当且 仅当G不包含M可扩路。 证明:“必要性” 若G包含一条M可扩路P,则可令该可扩路为:
P v1v v 2 k v 1k v 2 2 3
2、线图的性质
(1) 线图L(G)顶点数等于G的边数;若e=u v是G的边, 则e作为L(G)的顶点度数为:d(e)=d(u)+d(v)-2 .
(2) 若G=(n, m), 则线图L(G) 边数为:
m( E ( L(G )) m 1 G ) d 2 (v) 2 vV (
证明:由线图的定义,L(G)有m个顶点。对于G中任一 C d2( v ) 条边。 顶点v,关联于该顶点的d(v)条边将产生L(G)中 所以L(G)中的总边数为:
图论及其应用
任课教师:杨春 Email: yc517922@ 应用数学学院
本次课主要内容
超哈密尔顿图问题
(一)、超H图与超H迹 (二)、E图和H图的关系
(一)、超H图与超H迹
定义1 若图G是非H图,但对于G中任意点v,都有G-v是 H图,则称G是超H图。 定理1 彼得森图是超H图。
G
S2(G)
L3(G)
定理5 (Chartarand)若G 是n个点的非平凡连通 图,且不是一条路,则对所有m≥n-3,Lm(G) 是H图。
G
L(G)
L2(G)
L3(G)
作业
请总结本章内容
图论及其应用
任课教师:杨春 Email: yc517922@ 应用数学学院
第五章 匹配与因子分解
如果G中顶点v是G的匹配 M中某条边的端点,称它 为M饱和点,否则为M非饱和点。 v
7
M1={v6v7}
v6 v5
v1
M2={v6v7, v1v8}
M3={v6v7, v1v8, v3v4} M1,M2,M3等都是G的匹配。
v8
v2
v4 G
v3
(2)、最大匹配 M--- 如果M是图G的包含边数最多的 匹配,称M是G的一个最大匹配。特别是,若最大匹配 饱和了G的所有顶点,称它为G的一个完美匹配。
Thomassen图
断言1: Ⅰ∪{a} 中不存在以a , c , d三点中任意两点 为端点的H路。
若不然,将推出彼得森图是H图。
断言2: Ⅰ∪Ⅱ ∪ {a, b} 中不存在以a 为端点的H 路。 f c 若不然,设Q是一条以a为起点 的Ⅰ∪Ⅱ ∪ {a, b} 中的H路。 那么,从a出发,沿着该路行走 有两种可能: (1) 遍历了Ⅰ中所有 点之后,从c或d进入Ⅱ,但这形 成了Ⅰ ∪{a} 中的以a, c或a, d 为端点的H路,与断言1矛盾!
定理:每个3正则H图至少有3个生成圈。 我院张先迪、李正良教授曾经也研有限循环群上Cayley有向图的H回路”,得到了该类图 的H圈的计数公式。
(二)、E图和H图的关系
从表面上看,E图与H图间没有联系。因为我们可以不 费力地找到: (1) E图但非H图;(2) E图且H图;(3) H图但非 E图; (4) 非E图且非H图.
Ⅰ e d
b
a Ⅳ
Thomassen图
综合上面的论述:得G中没有H路。 (2) 证明对G中任意点v,有G-v存在H路。 由对称性:我们取b和Ⅲ中顶点逐一分析即可。例如:
f c
Ⅱ e d

b Ⅲ
a Ⅳ
Thomassen图
综上所述:得Thomassen图是超可迹图。
关于H图的一些猜想
1、加莱猜想:不存在超可迹的图。
“你们做不到”,Euler大声吼道。
3、纳什—威廉斯猜想:每个4连通4正则图是H图。 该猜想错误。Meredith构图对猜想进行了否定。
Meredith图
Meredith图是由彼得森图的每个顶点嵌入一个K3,4作成。
4、托特猜想:每个3连通3正则偶图是H图。 该猜想错误。Coxeter构图对猜想进行了否定。
加莱猜想是错误的。Thomassen图否定了加莱猜想。 加莱(1912---1992) 匈牙利数学家。他和Erdos, 托兰是 当时匈牙利国家数学竞赛获胜者,后来成为一生的朋友。 加莱深受哥尼的影响而对图论产生极大兴趣,以至于 他对图论基础理论做出了重大贡献,推动了图论与组合数 学的迅速发展。同时,他也是最早认识所谓的“极小--极 大定理”重要性的数学家之一。 加莱为人谦虚低调,很少在公开场合露面。常常在赞扬 别人工作时低估自己的成绩。不喜欢发表自己研究成果。
定理证明分为两部分: (1) 证明G中不存在H路;(2) 证 明对G中任意点v,有G-v存在H路。
f c
(1) 证明G中不存在H路。 如图所示,将G用虚线分成对称 的4部分:Ⅰ,Ⅱ,Ⅲ,Ⅳ 。
Ⅱ e d

b Ⅲ
a Ⅳ
假设G有H路P,设该路的起点为α , 终点为β 。
不失一般性,设α∈ Ⅰ∪{a}。
5 6 1 7 8 2 彼得森图 9 3 10
4
证明: (1) 证明彼得森图是非H图。
若不然,设C是G的H圈。 对于边12, 17,15来说,必然有两条边在C中。不失一般性, 假定17,12在C中,那么,56,54也必然在C中。
5
6 1
7 8 2 9 3 10
4
彼得森图
又对于边28,23来说,在前面情况下,必有一条在C中。 分两种情形讨论。
E图但非H图
E且H图
H但非E图
非E且非H图
1、线图概念
定义3 设G是图,G的线图L(G)定义为:
V ( L(G)) E(G)
(e1 , e2 ) E ( L(G)) 在G中有:边e1与e2邻接
特别地,定义G的n次迭线图Ln(G) 为: n (G) L(Ln1 (G )) L
x1 x2 x3 x2 x4 G1 x4 G2=L(G1) L(G2)=L(L(G1)) x3 x1
Ⅱ e d Ⅰ
b
a Ⅳ

Thomassen图
(2) 没有遍历完Ⅰ ∪{a} 中的顶点,假若从c进入Ⅱ, 那么,必须遍历完Ⅱ ∪ {b} 的所有顶点后,才能从e进 入Ⅰ。但这也会与断言1产生矛盾。
由前面假设:α∈ Ⅰ∪{a}。 情形1:α = a 我们沿着P作如下的行进: (1) 假设是由a进入Ⅰ,要能够走 完P,必须遍历Ⅰ∪Ⅱ 的所有顶点后 由b进入Ⅲ,但这与断言2矛盾! (2) 假设是由a进入Ⅳ,要能够走 完P,必须遍历Ⅲ∪Ⅳ 的所有顶点后 由b进入Ⅱ,但这也与断言2矛盾! 所以,情形1不能成立!
4
7
8 2 彼得森图
但这样得到圈:123971。所以该情形也不能存在。 上面推理说明,G中不存在H圈,即彼得森图是非H图。
(2) 证明对任意点v,G-v是H图。 由对称性,只需考虑下面两种情形: (a) G-1,(b)G-6
5 6 5
4
1
4
7
8 2 G-1 9
10
7
8 9
10
3
2 G-6
3
(a) G-1中有H圈:54328(10)7965 (b) G-6中有H圈:54397(10)8215
托特还喜欢写诗,在1969年写了一首反映图论的诗: 哥尼斯堡的一些市民, 漫步在河畔。 在普雷格尔河旁, 岛屿作为顶点, 四个点有奇数度”。 从哥尼斯堡到哥尼的书, 图论的传说正是如此, 而且越来越精彩, 绽放在密歇根和耶鲁
有七座桥相伴。 “Euler,我们一起散步吧!” 那些市民在召唤。 “我们在这七座桥上漫步, 经过每座桥仅一次。” “结果就是这样,
主要内容 一、偶图的匹配问题 二、图的因子分解 三、匈牙利算法与最优匹配算法 教学时数
安排6学时讲授本章内容
本次课主要内容
偶图的匹配问题
(一)、图的匹配与贝尔热定理 (二)、偶图的匹配与覆盖 (三)、托特定理
(一)、图的匹配与贝尔热定理
1、图的匹配相关概念 (1)、匹配 M--- 如果M是图G的边子集(不含环),且 M中的任意两条边没有共同顶点,则称M是G的一个匹 配或对集或边独立集。
显然,P中M中的边比非M中的边少一条。于是作新 的匹配M1,它当中的边由P中非M中边组成。M1中边比 M中多一条,这与M是G的最大匹配矛盾。 “充分性” 若不然,设M1是G的一个最大匹配,则|M1|>|M|。
令H = M1ΔM。 容易知道:G[H]的每个分支或者是由M1与M中边交 替组成的偶圈,或者是由M1与M中边交替组成的路。 在每个偶圈中,M1与M中边数相等;但因|M1|>|M|, 所以,至少有一条路P,其起点和终点都是M非饱和点, 于是,它是G的一条M可扩路。这与条件矛盾。 注:贝尔热定理给我们提供了扩充G的匹配的思路。 贝尔热(1926---2002) 法国著名数学家。他的《无限图 理论及其应用》(1958) 是继哥尼之后的图论历史上的第 二本图论专著。他不仅在图论领域做出了许多贡献,而 且四处奔波传播图论,推动了图论的普及和发展。
相关文档
最新文档