欧拉方程
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
欧拉方程
第六节、欧拉方程
因为变系数的二阶及二阶以上的线性微分方程还 没有一般的解法,所以本节介绍一类特殊的变系数的 线性微分方程——欧拉方程,通过变量替换可以化为 常系数的线性微分方程,因而容易求解. 形如 xny(n)+p1xn-1y(n-1)+…+pn-1xy′+pny=f(x) (6-33n为常数.
代入原方程,得 a=1/3,
即 y =1/3x2,
所以欧拉方程的通解为 y=1/3x2+C1/x+C2x.
谢谢聆听
第六节、欧拉方程
欧拉方程的特点是:方程中各项未知函数导数的阶数与其 乘积因子自变量的幂次相同. 当自变量x>0时,作变量替换x=et,则t=ln x,有
第六节、欧拉方程
如果来用记号D表示对自变量t求导的运算d/dt,则上述结 果可表示为
xy′=Dy,
一般的,有 xky(k)=D(D-1)…(D-k+1)y.(6-34)
当自变量x<0时,作变换x=-et,可得类似结果. 将式(6-34)代入欧拉方程,则方程(6-33)化为以t为自变 量的常系数线性微分方程,求出该方程的解后,回代t=ln x, 即得到原方程的解.
第六节、欧拉方程
【例1】
求欧拉方程x2y″+xy′-y=x2的通解. 解 作变换x=et(设x>0),原方程化为
D(D-1)y+Dy-y=e2t, 即
D2y-y=e2t 或
方程(6-35)所对应的齐次方程为
其特征方程为
r2-1=0,
(6-35) (6-36)
第六节、欧拉方程
特征根为 r1,2=±1,
所以齐次方程(6-36)的通解为 Y=C1e-t+C2et=C1x+C2x.
方程的特解形式为 y =ae2t,
第六节、欧拉方程
因为变系数的二阶及二阶以上的线性微分方程还 没有一般的解法,所以本节介绍一类特殊的变系数的 线性微分方程——欧拉方程,通过变量替换可以化为 常系数的线性微分方程,因而容易求解. 形如 xny(n)+p1xn-1y(n-1)+…+pn-1xy′+pny=f(x) (6-33n为常数.
代入原方程,得 a=1/3,
即 y =1/3x2,
所以欧拉方程的通解为 y=1/3x2+C1/x+C2x.
谢谢聆听
第六节、欧拉方程
欧拉方程的特点是:方程中各项未知函数导数的阶数与其 乘积因子自变量的幂次相同. 当自变量x>0时,作变量替换x=et,则t=ln x,有
第六节、欧拉方程
如果来用记号D表示对自变量t求导的运算d/dt,则上述结 果可表示为
xy′=Dy,
一般的,有 xky(k)=D(D-1)…(D-k+1)y.(6-34)
当自变量x<0时,作变换x=-et,可得类似结果. 将式(6-34)代入欧拉方程,则方程(6-33)化为以t为自变 量的常系数线性微分方程,求出该方程的解后,回代t=ln x, 即得到原方程的解.
第六节、欧拉方程
【例1】
求欧拉方程x2y″+xy′-y=x2的通解. 解 作变换x=et(设x>0),原方程化为
D(D-1)y+Dy-y=e2t, 即
D2y-y=e2t 或
方程(6-35)所对应的齐次方程为
其特征方程为
r2-1=0,
(6-35) (6-36)
第六节、欧拉方程
特征根为 r1,2=±1,
所以齐次方程(6-36)的通解为 Y=C1e-t+C2et=C1x+C2x.
方程的特解形式为 y =ae2t,