智能变电站整站调试流程
智能变电站调试方案三篇.doc
智能变电站调试方案三篇第1条智能变电站调试计划智能变电站调试计划1概述XX220kV 变电站位于XX市XX镇XX村,距XX镇中心4公里,距高速公路8公里,距212省道90米。
电压等级为220千伏/110千伏/10 .5千伏的主变压器的最终容量为3×180毫安,该阶段建造1×180毫安,最终阶段建造6条出线线路,该阶段建造4条出线线路。
最终阶段有14条110千伏出线,当前阶段有5条出线。
10kV不出线,仅作为无功补偿和变电站变压器。
10kV无功补偿装置的最终容量为12×7500千伏,本期将建设4×7500千伏。
所有电气设备安装完毕后,应根据GB50150-20XX电气设备交接试验标准进行单体试验。
特殊试验应根据业主要求在行业要求的适用范围内进行。
部分试运行是指从单体试验结束、试验验收和整套启动时开始进行的控制、保护和测量功能试验。
整组启动是指完成对整个项目各种参数的测试,使其处于安全、高效、可靠的运行状态。
2、准备工作2.1成立一个调试小组,形成一个有效的、精干的、技术上有保证的调试小组,包括三个高压、继电保护和仪表操作小组和若干技术人员,具体人数视设备类型、数量和工期而定。
2.1.1调试的主要负责人必须具有调试多个变电站的调试经验,熟悉变电站的调试过程和技术标准,组长还应具有一定的调试经验,能够在主要负责人和技术人员的指导下进行操作。
一般工作人员还应了解电气一级、二级设备的基本知识。
2.1.2在工作前,所有操作人员都应学习变电站设计图纸、设计规范和操作说明,以便每个操作人员能够明确各项目的操作程序、分工和具体工作内容。
2.1.3参与调试的人员应通过安全规程考试,并具备一定的安全操作知识。
2.1.4熟悉设计图纸和施工现场环境,相当熟悉设备的性能和操作;测试负责人应具有高度的责任感和相关资质,能够独立领导测试人员调试各种项目。
2.2制定技术措施2.2.1制定调试工作指令2.2.2工作指令交底2.2.3调试工作必须完成安全围栏、警示牌,认真检查试验接线,防止因接线错误或误操作造成设备、人身安全事故。
智能化变电站电气设备安装及调试_4
智能化变电站电气设备安装及调试发布时间:2022-03-23T06:50:45.320Z 来源:《当代电力文化》2021年第25期作者:朱敏峰[导读] 电力资源作为人们生活、生产中必不可少的重要资源,朱敏峰江阴兴澄特种钢铁有限公司摘要:电力资源作为人们生活、生产中必不可少的重要资源,在现阶段已经成为各行业发展的重要基础资源。
在电力资源供应的环节中,智能化变电站的各种硬件和软件功能都需要进行优化和完善,为了能够更好地对电力资源供应质量进行保障,就需要加强变电站电气设备的安装质量,在安装完成后及时开展电气设备调试的工作,将各种特点进行全面的展示。
在智能化变电站建设的阶段中,还需要加强各种基础设施的建设与安装,保证调试结果的有效性和精准性。
本文主要针对智能化变电站,电气设备的安装与调试工作进行阐述,从而更好地保证电力资源供应的实际效果和效率,为电力行业的发展奠定扎实良好的基础。
关键词:智能化变电站;电气设备;安装与调试目前我国城市化建设进程不断加快,传统的变电站已经不能够满足社会的实际发展,为了能够改善人们的生活水平以及生活质量,就需要对变电气设备的应用与发展成为最为重要的阶段,逐渐朝着智能化、信息化、科技化的方向不断发展。
智能变电站中具有多种功能,能够为基础设施的建设形成较为良好的电网结构,对智能变电站的实际运行情况进行在线的监督和控制,减少成本经济的投入,降低变电站维修养护工作开展的效率。
除此之外,智能变电站还能够对电气设备进行保护,确保电气设备运行和使用的安全性、稳定性、有效性以及可靠性,这也成为我国多数地区在对电气设备应用的重点环节,加强电气设备的安装质量以及调试工作质量,能够为相关企业获得更加良好的经济效益。
1、智能化变电站电气设备安装建设的基本内容1.1变压器设备的安装变压器设备作为变电站的核心设备和基础设备,在实际安装的阶段中,如果安装质量出现问题,会对变电站实际运行情况造成严重的影响,因此加强变压器的安装施工质量,对智能化变电站的建设有着一定的促进作用。
智能变电站设备调试流程课件(PPT 70页)
节点输出
• 方法:由测试仪分别发送一组 GOOSE跳、合闸命令,并接收 跳、合闸的硬接点信息,记录报 文发送与硬节点输入时间差。
• 智响能应终G端O应O在SE7命ms令内动可作靠时动间作测。试
智能终端
响应GOOSE命令动作时间测试
GOOSE 跳闸报文
故障录波装置测试
• (1)录波器屏后接线及尾纤检查 • (2)定值核对及检查 • (3)面板指示灯检查 • (4)自检检查 • (5)光接口的检测: • (6)输入量启动检查 • (7)GOOSE启动检查
同步时钟测试
一般智能变电站的同步时钟按双重化配置,可以是两套都 是GPS,也可以一套为GPS对时,一套为北斗对时。 • (1)功能测试 • (2)主时钟(扩展分机)准确度测试 • (3)需授时设备测试
保护功能测试
• (1)保护定值及逻辑测试 • (2)保护装置跳闸矩阵测试 • (3)定值整定功能: • (4)故障录波及事件记录功能检查:
32pt智能变电站调试方法的变化智能变电站与常规站的比较智能变电站调试准备智能变电站设备调试流程智能变电站与常规站的比较32pt设计的不同智能站常规站智能站常规站32pt调试的不同智能站常规站智能站常规站32pt留档的不同智能站常规站智能站常规站32pt维护的不同智能站常规站智能站常规站32pt运行的不同智能站常规站智能站常规站32pt智能变电站调试方法的变化智能变电站与常规站的比较智能变电站调试准备智能变电站设备调试流程智能变电站调试准备32pt常用调试仪器笔记本数字保护测试仪常规保护试验仪高精度变送器校验仪光功率计及光源网络测试仪smartbit网络分析仪手持式智能变电站测试仪gps校验仪光电转换器尾纤若干32pt常用软件配置工具xmlspyxml语言解析器ue万能文本编辑器iedscout装置模型查看工具iedconfigurator装置模型配置工具icdchecktool
2024年变电站电力设备调试方案
《变电站电力设备调试方案》一、项目背景随着电力需求的不断增长,为了确保电力系统的稳定运行,新建的变电站需要进行电力设备的调试工作。
本次调试的变电站为[变电站名称],该变电站采用了先进的电力设备和技术,旨在提高供电的可靠性和稳定性。
本次调试的主要目的是对变电站内的电力设备进行全面的检测和调试,确保设备的性能符合设计要求和国家相关标准。
通过调试,及时发现和解决设备存在的问题,为变电站的正式投入运行提供保障。
二、施工步骤1. 准备阶段(1)组织调试人员熟悉设备的技术资料、调试大纲和相关标准规范。
(2)准备调试所需的仪器仪表、工具和材料,确保其性能完好、精度符合要求。
(3)对调试现场进行清理和布置,确保安全通道畅通,消防设施齐全。
2. 一次设备调试(1)变压器调试- 测量变压器的绕组直流电阻,检查各相电阻是否平衡,与出厂值相比是否符合要求。
- 检查变压器的绝缘电阻,包括绕组对地绝缘电阻、铁芯对地绝缘电阻等,确保绝缘性能良好。
- 进行变压器的变比测量,核对变压器的实际变比与铭牌值是否一致。
- 进行变压器的空载试验和负载试验,测量变压器的空载损耗和负载损耗,检查变压器的运行性能。
(2)断路器调试- 检查断路器的外观,确保无损伤、变形和锈蚀。
- 测量断路器的绝缘电阻,包括断口间绝缘电阻和对地绝缘电阻等。
- 进行断路器的机械特性试验,测量断路器的分合闸时间、同期性、分合闸速度等参数,确保断路器的操作性能符合要求。
- 进行断路器的低电压动作试验,检查断路器在低电压下的动作可靠性。
(3)隔离开关调试- 检查隔离开关的外观,确保无损伤、变形和锈蚀。
- 测量隔离开关的绝缘电阻,包括断口间绝缘电阻和对地绝缘电阻等。
- 进行隔离开关的机械操作试验,检查隔离开关的分合闸操作是否灵活、可靠。
- 测量隔离开关的接触电阻,确保接触良好。
3. 二次设备调试(1)继电保护装置调试- 检查继电保护装置的外观,确保无损伤、变形和锈蚀。
- 核对继电保护装置的定值,确保定值设置正确。
智能变电站现场调试及试验方法
智能变电站现场调试及试验方法[摘要]智能变电站在信号采集和传输方式上的变革,使得其现场调试和试验方法与常规站有了较大的差异。
从分系统的角度出发探讨了适应智能变电站二次设备的调试要点和方法,对推动智能变电站的建设与发展有积极的指导意义。
[关键词]智能变电站;现场调试;试验;方法1现场调试总体要求智能变电站一次设备本体的调试与试验,可参考常规变电站开展。
根据国网公司“智能变电站自动化系统现场调试导则”要求,自动化系统具体包括:继电保护系统、站内网络系统、计算机监控系统、远动通信系统、全站同步对时系统、网络状态监测系统以及采样值系统等调试内容。
各分系统功能调试工作,应在系统网络恢复并按要求配置完成、智能设备单体调试完成的基础上进行。
智能变电站二次设备的调试与试验,从功能的实现上来看调试方法和传统站基本一致,包括信号对点、单体、整组传动等,主要问题集中在“虚回路”的检测、网络系统的测试、时钟同步系统的测试等方面,与传统变电站调试存在较大差异。
2继电保护系统从保护功能实现上来说,智能继电保护装置的调试和传统保护装置基本一致,与传统变电站保护装置不同之处在于采样值品质位测试、采样值畸变测试、样值传输异常测试和修状态测试。
2.1采样值品质位测试(1)调试要点及要求。
采样值品质位无效标识在指定时间范围内的累计数量或无效频率超过保护允许范围,相关的保护功能应瞬时可靠闭锁,与该异常无关的保护功能应正常投入,采样值恢复正常后,被闭锁的保护功能应及时开放。
(2)调试方法。
通过数字继电保护测试仪按不同的频率将采样值中部分数据品质位设置为无效,模拟mu发送采样值出现品质位无效的情况。
2.2采样值畸变测试(1)调试要点及要求。
电子式互感器双a/d采样数据中,一路采样值畸变时,相关保护应闭锁。
(2)调试方法。
通过数字继电保护测试仪模拟电子式互感器双a/d中保护采样值部分数据进行畸变放大,畸变数值大于保护动作定值,同时品质位有效,模拟一路采样值出现数据畸变的情况。
智能变电站调试
智能变电站检修
两圈变变压器保护,通入电流,且产生的差流超过保护 动作定值,各侧MU及装置检修压板分别如下,主变保护 中各侧mu接收软压板按正常运行摆放,试问主变差动保 护动作情况?
高压合并单元 (检修位)
0 0 0 1 1 1
低压合并单元 (检修位)
0 0 1 1 0 1
保护装置 (检修位)
0 1 1 0 0 1
虚端子
➢规范释义:描述IED设备的GOOSE、SV 输入、 输出信号连接点的总称,用以标识过程层、间隔 层及其之间联系的二次回路信号,等同于传统变 电站的屏端子。 ➢单装置虚端子图:通过ICD导出,是装置功能描 述的另外一种方式。 ➢虚端子连接图:智能变电站的蓝图,做SCD的 依据。
虚端子
线路合并单元采样输入虚端子图
GOOSE发送机制: ➢GOOSE报文以数据集的形式发送,装置平时每隔T0时间发送一次当前状态,
即心跳报文。当装置中有事件发生(如保护动作)时,装置立刻发送该数 据集,然后间隔TI发送第2帧及第3帧,然后间隔T2发送第4帧,然后间隔T3 发送第5帧,其中T2=2T1,T3=2T2=4T1。发送第5帧后报文便继续以T0时 间发送,知道有新的事件发生。现阶段T0一般为5s,TI一般为 2ms(GOOSE网络通信参数中的MinTime),即已0ms-2ms-2ms-4ms-8ms的 时间间隔重发GOOSE报文,连续5帧后便以5s的时间间隔变成心跳报文。 ➢StNum:变化序号,每次报文中的数据有变位时,此值加1,初始值=1,值 0保留。 ➢SqNum:报文(递增)顺序号,初始值=1,StNum变化时值复归到0。 ➢上电初始发送的StNum=1,SqNum=1,某数据有变位时,数据集StNum自 动加1,SqNum从0开始递增。 ➢GOOSE报文中“timeAllowedtoLive”参数应为“MaxTime”配置参数的2 倍(即2T0)。
智能变电站的调试流程及方法
智能变电站的调试流程及方法一、智能变电站智能变电站主要由站控层、间隔层和过程层组成。
其中站控层的作用是对全站设备进行监视、控制、告警和交换信息,并即时完成数据的采集监控、操作闭锁、保护管理;间隔层的作用是对间隔层的所有实时数据信息进行汇总,并对一次设备提供保护和控制;过程层则用于电气数据的检测、设备运行参数的在线检测与统计以及操作控制的执行等。
这三层结构通过以太网、光缆等紧密地联接在一起,使得信息的采集、处理、执行等更加迅速便捷。
由智能化变电站的结构图可以看出,智能变电站是智能电网的基础,在智能电网的体系结构中具有重要的作用。
二、智能变电站调试流程2.1变电站调试流程简述变电站调试流程可分为设备出厂验收、现场调试两大部分。
出厂验收是对即将出售的设备进行质量检查;调试工作是对现场安装的设备进行现场调试,现场调试按照流程可分为单体调试、分系统调试、系统调试。
2.2智能变电站调试流程按照《智能变电站调试规范》执行,职能变电站的调试可按照一下流程:组态配置→系统测试→系统动模(可选)→现场调试→投产试验。
2.2.1组态配置。
组态配置是智能变电站系统设计的一个步奏,是在设计图纸或意图下,进行实例化变电站内各IED设备的ICD文件,并设置为SCD文件。
这项工作一般由系统集成商完成后由用户确认,这里的“用户”可以是设备使用单位,也可以是设备使用单位制定的设计调试单位。
2.2.2系统测试。
系统测试是为了确保设备主要功能的正确性和设备性能指标处于正常值范围的调试实验,调试包括装置单体调试和变电站各分系统调试。
2.2.3系统动模。
系统动模是为了验证继电保护等整体系统的性能和可靠性进行的变电站动态模拟试验。
系统动模是在国家认定的实验机构或者具备相应实验资质的实验室进行的实验工作。
动模试验的一次接线方式尽可能的与实际工程相一致,实验系统规模较大是,可以减少规模,但应保证能完成各类型保护的所有故障类型的测试。
2.2.4现场调试。
数字化变电站实战篇_调试流程介绍
数字化变电站实战篇调试流程介绍V1.001.概述 (1)1.1.数字化变电站的调试环境分析 (1)1.2.数字化变电站工程配置过程 (2)1.3.调试的准备工作 (2)2.数字化变电站调试流程介绍 (3)2.1.调试的流程图 (3)2.2.icd文本的编辑 (3)3.SCD文本的编辑 (8)3.1.简介 (8)3.1.1.安装及运行 (11)3.2.SCD配置前准备工作 (11)3.3.制作SCD文件 (11)3.3.1.Header记录 (11)3.3.2.Substation配置 (12)munication配置 (12)3.3.4. GOOSE连线 (28)3.3.4.1. 选择外部信号 (28)3.3.4.2. 连接内部信号 (29)数字化变电站调试流程1.概述数字化变电站间隔层和站控层通过MMS交换事件和状态数据,间隔层内部以及间隔层与过程层之间通过GOOSE信号交换控制和状态数据,过程层和间隔层之间交换采样值数据SMV。
GOOSE和SMV 二者结合起来相当于传统变电站的二次回路部分,是数字化变电站的核心。
在做数字化变电站的时候,首先我们要对其调试环境进行分析。
1.1.数字化变电站的调试环境分析图 1-1 数字化变电站测试环境数字化变电站按功能可分为过程层、间隔层、站控层。
与常规变电站最大的区别是过程层的变化。
其GOOSE网取代了原来的信号二次回路及控制回路,SMV网取代了原来的交流回路,并经过光电数字转化,通过光缆进行网络化的传输。
因此数字化变电站的测试环境也相应地发生了变化。
主要有以下几个方面:①过程层的GOOSE、SMV调试。
②过程层EVCT、合并单元的调试。
③间隔层的互操作性、保护功能测试。
④站控层以61850规约MMS信息服务传输调试。
⑤站控层的五防、顺控、网络交换机的调试。
1.2.数字化变电站工程配置过程图 1-2 数字化变电站配置流程图在调试数字化变电站时,要以SCD为核心对变电站进行配置。
智能化变电站的调试流程
智能化变电站的调试流程目录智能化变电站的调试流程 (1)一.前期工作 (3)准备工作 (3)收集各种装置的原始模型 (4)1.1.保护模型: (4)1.2.测控模型: (4)1.3.测保一体的模型: (7)二.制作scd文件同时建立实时库 (9)2.1.打开配置工具,新建工程 (9)2.2.保存scd文件 (9)2.3.增加电压等级 (10)2.4.增加间隔 (11)2.5.增加装置 (12)三.修改各个数据集的信息 (15)3.1以前的方法 (15)3.2现在的方法 (17)四.连虚端子 (19)4.1.步骤一: (19)4.2.步骤二: (19)4.3.步骤三: (20)五.生成所需文件 (21)5.1生成配置文件 (21)5.2导出装置的配置文件 (23)5.3测控配置文件说明 (24)5.3.1 测控管理板(板号125) (24)5.3.2测控GOOSE板(板号258) (27)5.3.3测控SV板(板号388) (29)5.4高压保护配置文件说明 (30)5.4.1高压管理板 (30)5.4.2高压保护GOOSE板(板号为343) (30)5.4.3高压保护SV板(板号374) (32)5.5中压保护配置文件 (33)5.5.1中压管理板(板号125) (33)5.5.2中压GOOSE板(板号343) (33)5.5.3中压SV板(板号317) (34)5.6低压装置配置文件说明 (35)5.6.1带COM板的低压装置 (35)5.6.2不带COM板的低压装置 (35)6.1.插件带VXWORKS系统 (39)6.2.插件不带VXWORKS系统 (40)七.网络组建 (42)7.1.过程层网络 (42)7.2.间隔层网络 (42)7.3.对时网络 (42)八.保护装置的设置 (43)8.1.保护装置 (43)8.2测控装置 (43)附录1:东土电信交换机设置 (43)1、连接方法: (43)(1)、Console口连接: (43)(2)、telnet远程登录: (44)(3)、IE浏览器远程登录: (44)2、交换机常用设置: (45)(1)、IP地址设置: (45)(2)、VLAN设置: (46)(3)、广播风暴抑制: (47)3、交换机的配置备份: (47)(1)、IE方式: (47)(2)、命令方式: (47)附录2:罗杰康交换机设置方法 (48)1、连接方法: (48)(1)、Console口连接: (48)(2)、telnet远程登录: (49)(3)、IE浏览器远程登录: (49)2、交换机常用设置: (50)(1)、Administration: (51)(2)、Ethernet Ports: (51)(3)、Virtual LANs: (52)(4)、Spanning tree: (53)3、交换机的配置备份: (53)(1)、软件方式: (54)(2)、命令方式: (56)附录3:各种插件的升级方法 (58)1. SV/GOOSE插件5200芯片升级方法 (58)2.保护或测控CPU 32192芯片程序升级 (61)3.开入开出板面板升级 (64)附录4:mms-ethereal工具的使用方法 (66)附录5:GOOSE报文简析 (69)1.关于GOOSE及其报文的一些解释: (69)2.GOOSE收发机制 (70)3.GOOSE报文简析 (70)附录7:MMS报文简析 (72)1.装置的初始化过程 (72)2.变位遥信上送 (80)3.保护动作信号 (81)一.前期工作准备工作(一)查看技术协议、图纸等资料,了解变电站的具体情况,例如:全站规模、接线方式、组网方式(包括GOOSE和SV及MMS)、对时方式、顺控方案、五防方案等;以及故障录波器,子站,网络记录仪的配置情况。(二)分析各个厂家的供货范围,列出全站需要的信息参数表。信息参数表的过程层部分应包括以下内容:(黄色部分为默认,表中可以不体现)1.应用间隔2.装置型号3.生产厂家4.实例化名称(IED NAME)5.GOOSE数据集(可能是多个,例如JFZ600就有6个数据集)的目的MAC地址6.GOOSE数据集的APPID7.GOOSE数据集的VLAN-IDGOOSE数据集的VLAN-PRIORITY(默认为4)表中不体现8.由于咱们JFZ600的源MAC地址是按照IP地址的后两个字节取的,所以还需要增加主从GOOSE板的IP信息9.SV数据集的目的MAC地址10.SV数据集的APPID11.SV数据集的VLAN-IDSV数据集的VLAN-PRIORITY(默认为4)表中不体现12.SV数据集的SVID信息参数表的间隔层部分应包括以下内容:1.应用间隔2.装置型号3.生产厂家4.实例化名称(IED NAME)5.MMS的IP地址信息参数表的站控层部分应包括以下内容:1.监控主机节点的IP地址、报告实例号2.远动主机的装置型号、生产厂家、IP地址、报告实例号3.子站主机的装置型号、生产厂家、IP地址、报告实例号4.故障录波器的装置型号、生产厂家5.网络记录仪的装置型号、生产厂家收集各种装置的原始模型1.1.保护模型:归档软件对应的模型文件,如未归档,联系负责保护程序的研发人员获取。1.2.测控模型:使用CSI200EManage工具建模获取,CSI200EManage版本应为4.05以上。具体方法如下:常规插件按照常规配置方法进行配置如采样为数字输入,如下图在交流板的“数字输入”菜单下选择“是”现在一般需要接入多少个MU就配几块交流板(类型为4U3I)就可以如有GOOSE板,如下图在GOOSE板的“GOOSE板数量”中选择“1”根据实际需要选择GO CPU个数,包括GO开入(1个cpu含96路开入)、GO直流(1个cpu 含16路直流)、GO档位(1为不分相3为分相)点击IEC61850 自动建模,在开出板菜单中选择开出板的数量、通道数目(按装置所含的开出板配置)。高级配置中的设置为“投入顺控功能”(为分布式顺控预留):如何导出模型:导出GOOSE模型中的常用配置设置需要选4项1.3.测保一体的模型:侧保一体的装置研发只提供保护部分的模型,测控部分需要按工程实际加到研发提供的模型里,需要用到后缀为dct的文件(会和icd文件一起归档),方法是:打开CscAMT(V2.22以上版本)工具选择打开配置,选择后缀为dct的文件双击开入选项,双击需要选择双位置的开入添加完成工程所需要的双位置遥信后再双击“无返回遥控”添加操作箱复归和一些备用遥控修改GOOSE订阅开入,将开关刀闸等改为双位置按照工程配置完成后保存一下配置,建立或选择路径导出新的模型(会导出icd和dct 两个文件)二.制作scd文件同时建立实时库2.1.打开配置工具,新建工程选择删除2.2.保存scd文件修改变电站名称,保存当前工程的SCD,选择保存路径为CSC2100_HOME/PROJECT/61850cfg选择保存路径为CSC2100_HOME/PROJECT/61850cfg2.3.增加电压等级在变电站上单击右键,选“增加电压等级”填写电压等级2.4.增加间隔在电压等级上单击右键,选“增加间隔”输入间隔名(scd文件中的名字)和描述(实时库中的名字)2.5.增加装置在对应间隔上单击右键,选“增加装置”按指定的全站的装置参数表填写对应部分只选择A1,或S1访问点,点确定不做修改,点添加、保存退出,添加装置完成因为合并单元和智能终端不入实时库,可以把合并单元和智能终端都加到对应的间隔层装置的间隔下这样在实时库中不会有空间隔(如果单独创建合并单元或者智能终端的间隔,就会在实时库中生成对应的空间隔)同理添加其他间隔,直至添加所有装置。如果icd文件是相同的可以用间隔复制举例如下:添加间隔时,选中“间隔复制”,选择复制的间隔,点下一步填写新增间隔的装置IEDNAME,点确定点确定后按下图所示,找到复制完成的间隔双击,修改装置的地址三.修改各个数据集的信息3.1以前的方法打开菜单工具▶GOOSE配置在对应的数据集上单击右键,选择“修改GOOSE”按指定的全站的装置参数表填写对应部分3.2现在的方法配置工具的版本在如下图的版本之上就可以在“配置”菜单下修改各个数据集的MAC地址、APPID、VLAN-ID等信息,打开方法是:出现如下界面,如果外厂家的模型中没有“communication”部分可通过单击下面的“查找并创建所有未建立访问连接的控制块”按钮来增加全站所有的IED设备可以到XML树中去查看下面红色字体部分是在不入实时库的ied四.连虚端子4.1.步骤一:按下图所示,打开虚端子配置4.2.步骤二:在左侧选中数据接收方,在右侧选中数据发布方,用鼠标左键点住右边的数据点,拖动到左侧对应的虚端子上,如果是两边的数据类型不一致,比如开关刀闸等,会弹出下面的提示,按接收方的要求选择对应的类型4.3.步骤三:虚端子的间隔匹配:第一步,在虚端子列打开连接好的虚端子鼠标左键单击复制所有连接的虚端子;第二步,在虚端子列打开需要连接虚端子的新的IED鼠标左键单击智能匹配粘贴按钮;第三步,鼠标左键单击修改装置的所有虚端子;第四步按照虚端子修改发布的IED。鼠标放在按钮上会有按钮的功能提示五.生成所需文件5.1生成配置文件不要改变路径,点保存。Ctrl61850通讯进程需要用后出现下面的提示,表示生成配置文件完成5.2导出装置的配置文件选中需要导出的装置选择保存路径,建议选择在61850cfg下建立一个文件夹导出完成后会在所选的路径下以iedname命名的文件夹,各个文件夹中包含各自ied所需的配置文件5.3测控配置文件说明测控MASTER板是带操作系统的,一般区分是否带操作系统的方法为:能用FTP登陆的就是带操作系统,上传下载文件通过FTP;不能用FTP登陆的就是不带操作系统,下载上传文件可用PiiLink。5.3.1 测控管理板(板号125)➢其中logcfg.xml、osicfg.xml、sys.cfg为公共文件,也就是说所有测控的MASTER板都需要这三个文件而且相同。vxworks为操作系统文件,其他测控也为同一个文件。➢dataoutput1.cfg为程序自动生成,装置每次重启后会自动生成最新的dataoutput1.cfg,可以通过装置是否会生成dataoutput1.cfg来判断生成的cid文件是否有问题。➢CSI200E_220_20A1.cid和sys_go_CSI200E_220_20.cfg是我们从后台导出来的,要下到测控MASTER板中去的文件。5.3.1.1测控管理板的sys.cfg文件解析sys.cfg文件[GateWay]IP1GateWay=255.255.255.0(B类网段需要修改)IP2GateWay=255.255.255.0IP3GateWay=255.255.255.0[sntp]IP1=192.168.1.200(Sntp对时地址设置,A网)IP2=192.168.2.200(Sntp对时地址设置,B网)[TIME]ZONE=8(时区,8时区默认)[REPORT]MODE=05.3.1.2测控管理板的**A1.cid文件解析➢直接看这个文件不大好看明白,这个时候我们可以看**A1.ini,这两个文件实质内容是一样的,只是格式不同而已。从这里可以看出GOOSE的订阅发布信息。➢CSI200E_220_20A1.ini文件[SystemCfg]LD_name=CSI200E_220_20A1RecordEnable=0[DiDocfg]DIStAddr=DIBrdNum=DOSpBlockOp=0,0,0,0,0,0,0,0DORedundanceAnd=0,0,0,0,0,0,0,0DORedundanceOr=0,0,0,0,0,0,0,0DOSendPtp=1,1,1,1,1,1,1,1Goose_net_port=1[Eth1]MAC=00 a0 b0 c0 d0 e0IP=192.168.1.88GateWay=255.255.255.0[GoosePub]Goose_pub_number=1 (发布数据集1个)Goose_pub1=CSI200E_220_20CTRL/LLN0$GO$dev20,5000,CSI200E_220_2 0CTRL/LLN0$Pub_dev20,CSI200E_220_20CTRL/LLN0$GO$dev20,0x20,1,3,0,4 Goose_pub1_Addr=01 0C CD 01 00 20,00 a0 b0 c0 d0 e0,0x2,100,5000,1,0Goose_pub1_1=0,1,2,0,1,10,3,CSI200E_220_20CTRL/Go1CBCSWI1.Pos. stVal,GO1 DI1开关合位Goose_pub1_2=1,1,2,0,9,10,3,CSI200E_220_20CTRL/Go1DSCSWI9.Pos. stVal,GO1 DI9 1G隔离刀闸合位Goose_pub1_3=2,1,2,0,11,10,3,CSI200E_220_20CTRL/Go1DSCSWI11.Po s.stVal,GO1 DI11 2G隔离刀闸合位(注:以上几行一直到[GoosePub],内容就是本间隔发布的开关、1G刀闸、2G刀闸位置到MMS网了,间隔层的GOOSE。)[GooseSub]Goose_sub_number=1 (注:发布数据集1个。)Goose_sub1=CSI200E_220_29CTRL/LLN0$GO$dev29,CSI200E_220_29CTRL /LLN0$Pub_dev29,CSI200E_220_29CTRL/LLN0$GO$dev29,0x29,9,5000,1,0,0,1 (注:以上几行一直到[GooseSub],内容就是本间隔的订阅,订阅了母线间隔发布的信息,间隔层的GOOSE。)5.3.1.3测控管理板的sys_go_**.cfg文件解析➢sys_go_CSI200E_220_20.cfg文件[GooseTime]MinTime=100 (注:监控GOOSE配置的最小时间0.1秒。)MaxTime=5000 (注:监控GOOSE配置的最大时间5秒。)[GoosePub] (注:本间隔间隔层的GOOSE发布。)1,0020,20,2,4,CSI200E_220_20CTRL/LLN0$GO$dev20, 5000, 2[GooseTimePro]MinTime=2MaxTime=5000[GoosePubPro] (注:本间隔过程层的GOOSE发布。)1,0004,4,3,4,CSI200E_220_20TRIP/LLN0$GO$GoCBDigOut, 5000, 2[GooseSub] (注:本间隔间隔层的GOOSE订阅Sub。)1,0029,CSI200E_220_29CTRL/LLN0$GO$dev29,CSI200E_220_29CTRL/LLN 0$GO$dev29,CSI200E_220_29CTRL/LLN0$Pub_dev29,29,1,CSI200E_220_20CTRL/ LLN0$GO$dev2029, 285, 5000[GooseSubPro] (注:本间隔过程层的GOOSE订阅Sub。)1,0061,IB220_ML_ARPIT/LLN0$GO$Pub_OPST,RPIT/LLN0$GO$Pub_OPST,I B220_ML_ARPIT/LLN0$dsOPST,61,1,CSI200E_220_20TRIP/LLN0$GO$Sub_1, 0, 50002,0062,IB220_ML_ARPIT/LLN0$GO$Pub_In,RPIT/LLN0$GO$Pub_In,IB220 _ML_ARPIT/LLN0$dsIn,62,1,CSI200E_220_20TRIP/LLN0$GO$Sub_2, 0, 5000 3,0063,IB220_ML_ARPIT/LLN0$GO$Pub_Self,RPIT/LLN0$GO$Pub_Self,I B220_ML_ARPIT/LLN0$dsSelf,63,1,CSI200E_220_20TRIP/LLN0$GO$Sub_3, 0, 50004,0101,MU220_ML_AMU/LLN0$GO$gocb1,dsGOOSE1,MU220_ML_AMU/LLN0$d sGOOSE1,101,1,CSI200E_220_20TRIP/LLN0$GO$Sub_4, 0, 5000(注:从这里可以看出本测控订阅了4个数据集,分别对应测控面板报出的01H、02H、03H、04H。)[GooseRevMms]1,CSI200E_220_29,CSI200E_220_29[GooseRevPro]1,IB220_ML_A,IB220_ML_A2,IB220_ML_A,IB220_ML_A3,IB220_ML_A,IB220_ML_A4,MU220_ML_A,MU220_ML_A5.3.2测控GOOSE板(板号258)➢其中logcfg.xml、osicfg.xml、sys.cfg为公共文件,也就是说所有测控的GOOSE板都需要这三个文件而且相同。vxworks为操作系统文件,其他测控也为同一个文件。5.3.2.1测控GOOSE板的sys.cfg文件解析[GateWay]IP1GateWay=255.255.0.0IP2GateWay=255.255.0.0IP3GateWay=255.255.0.0[sntp]IP1=192.168.1.100(这个sntp对时的IP地址不用设置,默认什么就什么。)IP2=192.168.2.100[TIME]ZONE=8[REPORT]MODE=0[GOOSE]PortNum=1(测控报警的端口个数)关于PortNum的解释:➢PortNum默认为2,表示GOOSE告警的端口报文个数>GoComWarnNum默认为1,表示每个告警逻辑的端口个数>>PortNum=1>GoComWarnNum=2>(表示只有“A网通信中断”报文,任何一个端口收到GOOSE报文均不报通信中断)。>>PortNum=2>GoComWarnNum=2>表示有“A口通信中断”和“B口通信中断”报文,任何一个端口收到GOOSE报文均不报通信中断。和上种方式的区别在于一次报2条报文,同时报出来。(注:此时测控会报1个数据集的1网和2网。如:01H,1网中断/恢复,2网中断恢复。)(注意:如果删除了PortNum=2和GoComWarnNum=1这两行,默认为这种模式。)>>PortNum=1>GoComWarnNum=1>表示只有“A口通信中断”报文,只有A口收到GOOSE报文才不报通信中断,此方式一般不用。>>PortNum=2>GoComWarnNum=1>表示有“A网通信中断”和“B网通信中断”报文,A口收不到GOOSE报文才报“A口通信中断”,B口收不到GOOSE报文才报“B口通信中断”。默认为这种配置。5.3.3测控SV板(板号388)下面是应城变220kV彭湾线测控出厂的sv配置[SystemCfg]LD_name=PII_DEMO_00919CfgVersion=1.0.00919;时区,单位:minminTimeZone=480[SvIn];保护的SV接入模式(0=点对点,1=网络,2=同源双网)pro_SvMode=0;保护同步采样频率pro_freq=4000;保护同步插值的额定时延(需要覆盖9-2固有时间+网络传输及内部处理时间,us)pro_syncDly=3000;测量同步采样频率,一般与接收SV的频率相同mea_freq=4000;需要解码的SV帧配置数目Sv_in_number=1;Sv_in1=sv_type,SVID,appid,smp_freq,tdr_seat,ConfRev,AsduChildNum,link_mode,DlyTmOffset, MuInEp;sv_type:0x91=(9-1),0x92=(9-2);AsduChildNum:原始数据包中,每个ASDU含数据单元总数;link_mode:0x55=点对点,0xaa=网络;tdr_seat:固有时间在数据集中的位置,-1=不适用;DlyTmOffset:两帧间允许抖动时间(us),点对点一般为30,网络一般为1000;MuInEp:对应的MU压板序号,0=不使用MU压板(目前测控没有判建议写0);Sv_in1_1=seat_id,chnType,lsb_val,phase_rate,innerRate,pro1_innerChn,pro2_innerChn,cpu3_in nerChn,mea_innerChn,refrence,desc;chnType:1=电压,2=保护电流,3=零序电流,4=测量电流;lsb_val:1个lsb代表的一次值大小(电流:mA,电压:mV);phase_rate:相电流/电压的一次额定值(电流:A,电压:V);innerRate:转换后的内部额定值(保护电流:463,电压:11585,测量电流:11585,零序电流:11585);;需要现场修改一次额定电流;一次额定电压;延时通道;;;母联,Sv_in1=0x92,xn01MUnn11,0x4011,4000,-1,1,36,0x55,60,1,1Sv_in1_Addr=01 0c cd 04 00 11Sv_in1_1=14,2,1.0,1200.0,11585,3,-1,-1,-1,0,0,0, 1,IA,IASv_in1_2=16,2,1.0,1200.0,11585,4,-1,-1,-1,0,0,0, 1,IB,IBSv_in1_3=18,2,1.0,1200.0,11585,5,-1,-1,-1,0,0,0, 1,IC,ICSv_in1_4=20,1,10.0,127021,11585,0,-1,-1,-1,0,0,0, 1,UA,UASv_in1_5=22,1,10.0,127021,11585,1,-1,-1,-1,0,0,0, 1,UA,UASv_in1_6=24,1,10.0,127021,11585,2,-1,-1,-1,0,0,0, 1,UB,UBSv_in1_7=34,1,10.0,127021,11585,11,-1,-1,-1,0,0,0, 1,UX,UX;;[MuEp]Mu_enpin_number=1;Mu_ep1=seat_id(1..),tab_seq,refrence,descMu_ep1=1,201,MuEp_1,测控MU压板_1;Mu_ep2=2,202,MuEp_2,支路2MU压板_2;Mu_ep3=3,203,MuEp_3,支路3MU压板_3;Mu_ep4=4,204,MuEp_4,支路4MU压板_4;Mu_ep5=5,205,MuEp_5,主变MU压板_5;Mu_ep6=6,206,MuEp_6,电压MU压板_65.4高压保护配置文件说明5.4.1高压管理板管理板中的文件同测控的管理板的文件5.4.2高压保护GOOSE板(板号为343)下面是应城220kV彭湾线A套保护CSC103B出厂时的配置文件[SystemCfg]LD_name=PL2211AG1RecordEnable=0[DiDocfg]DIStAddr=52DIBrdNum=1DOSpBlockOp=65535,0,8135,57400,0,65535,0,65535 DORedundanceAnd=0,65535,0,65535,0,65535,0,65535 DORedundanceOr=0,65535,0,65535,0,65535,0,65535 DOSendPtp=31,65504,4,65531,0,65535,0,65535Goose_net_port=1[Eth1]MAC=00 a0 b0 c0 d0 e0IP=192.168.1.88GateWay=255.255.255.0[GoosePub]Goose_pub_number=1Goose_pub1=PL2211API/LLN0$GO$GoCBTrip,5000,PL2211API/LLN0$dsGOOSE1,PI/LLN0$GO$Go CBTrip,0x0011,1,29,0,4Goose_pub1_Addr=01 0C CD 01 00 11,00 a0 b0 c0 d0 e0,0x3,2,5000,1,0Goose_pub1_1=0,0,1,0,1,10,1,PL2211API/PTRC2.Tr.general,跳A相Goose_pub1_2=1,0,1,0,2,10,1,PL2211API/PTRC3.Tr.general,跳B相Goose_pub1_3=2,0,1,0,3,10,1,PL2211API/PTRC4.Tr.general,跳C相Goose_pub1_4=3,0,1,0,4,10,1,PL2211API/PTRC5.Tr.general,跳三相Goose_pub1_5=4,0,1,0,5,10,1,PL2211API/PTRC6.Tr.general,永跳Goose_pub1_6=5,0,1,0,6,10,1,PL2211API/PTRC7.Tr.general,GO开出6Goose_pub1_7=6,0,1,0,7,10,1,PL2211API/RBRF8.Str.general,A相启动失灵Goose_pub1_8=7,0,1,0,8,10,1,PL2211API/RBRF9.Str.general,B相启动失灵Goose_pub1_9=8,0,1,0,9,10,1,PL2211API/RBRF10.Str.general,C相启动失灵Goose_pub1_10=9,0,1,0,10,10,1,PL2211API/PTRC11.Tr.general,GO开出10Goose_pub1_11=10,0,1,0,11,10,1,PL2211API/PTRC12.Tr.general,GO开出11Goose_pub1_12=11,0,1,0,12,10,1,PL2211API/PTRC13.Tr.general,GO开出12Goose_pub1_13=12,0,1,0,13,10,1,PL2211API/PTRC14.Tr.general,GO开出13Goose_pub1_14=13,0,1,0,14,10,1,PL2211API/PTRC15.Tr.general,GO开出14Goose_pub1_15=14,0,1,0,15,10,1,PL2211API/PTRC16.Tr.general,沟通三跳Goose_pub1_16=15,0,1,0,16,10,1,PL2211API/PTRC17.Str.general,单跳启动重合Goose_pub1_17=16,0,1,0,17,10,1,PL2211API/PTRC18.Str.general,三跳启动重合Goose_pub1_18=17,0,1,0,18,10,1,PL2211API/PTRC19.Tr.general,闭锁重合闸Goose_pub1_19=18,0,1,0,19,10,1,PL2211API/PTRC20.Tr.general,合闸出口Goose_pub1_20=19,0,1,0,20,10,1,PL2211API/PTRC21.Tr.general,远传命令1Goose_pub1_21=20,0,1,0,21,10,1,PL2211API/PTRC22.Tr.general,远传命令2Goose_pub1_22=21,0,1,0,22,10,1,PL2211API/PTRC23.Tr.general,差动通道告警Goose_pub1_23=22,0,1,0,23,10,1,PL2211API/PTRC24.Tr.general,保护动作信号Goose_pub1_24=23,0,1,0,24,10,1,PL2211API/PTRC25.Tr.general,GO开出24Goose_pub1_25=24,0,1,0,25,10,1,PL2211API/PTRC26.Tr.general,GO开出25Goose_pub1_26=25,0,1,0,26,10,1,PL2211API/PTRC27.Tr.general,GO开出26Goose_pub1_27=26,0,1,0,27,10,1,PL2211API/PTRC28.Tr.general,GO开出27Goose_pub1_28=27,0,1,0,28,10,1,PL2211API/PTRC29.Tr.general,GO开出28Goose_pub1_29=28,0,1,0,29,10,1,PL2211API/PTRC30.Tr.general,GO开出29[GooseSub]Goose_sub_number=2Goose_sub1=IL2211ARPIT2/LLN0$GO$Pub_OPST,IL2211ARPIT2/LLN0$dsOPST,RPIT/LLN0$GO$Pu b_OPST,0x0511,31,5000,1,0,0,1Goose_sub1_Addr=01 0C CD 01 05 11Goose_sub1_1=11,0,1,0,7,45,0,3,IL2211ARPIT2/MstGGIO1.Ind6.stVal,闭锁重合闸,2(2表示通过GOOSE板B光口接收)Goose_sub1_2=17,0,1,0,6,45,0,3,IL2211ARPIT2/MstGGIO1.Ind12.stVal,低气压闭锁重合,2 Goose_sub1_3=21,1,6,0,0,45,0,3,IL2211ARPIT2/XCBR3.Pos.stVal,分相跳闸位置TWJA,2Goose_sub1_4=23,1,6,0,1,45,0,3,IL2211ARPIT2/XCBR5.Pos.stVal,分相跳闸位置TWJB,2Goose_sub1_5=25,1,6,0,2,45,0,3,IL2211ARPIT2/XCBR7.Pos.stVal,分相跳闸位置TWJC,2Goose_sub2=PM2219API/LLN0$GO$GoCBTrip,PM2219API/LLN0$dsGOOSE1,PI/LLN0$GO$GoCBT rip,0x0019,32,5000,1,0,0,1Goose_sub2_Addr=01 0C CD 01 00 19Goose_sub2_1=3,0,1,0,12,45,0,3,PM2219API/PTRC5.Tr.general,远方跳闸,15.4.3高压保护SV板(板号374)下面是应城220kV叼东线保护出厂的sv配置[SystemCfg]LD_name=PII_DEMO_00919CfgVersion=1.0.00919;时区,单位:minminTimeZone=480[SvIn];保护的SV接入模式(0=点对点,1=网络,2=同源双网)pro_SvMode=0;保护同步采样频率pro_freq=1200;保护同步插值的额定时延(需要覆盖9-2固有时间+网络传输及内部处理时间,us)pro_syncDly=2500(当保护计算时保证所有的MU数据都能收到的时间,要留有一定的裕度,在应城变CSC150中为3000);测量同步采样频率,一般与接收SV的频率相同mea_freq=4000;需要解码的SV帧配置数目Sv_in_number=1;Sv_in1=sv_type,SVID,appid,smp_freq,tdr_seat,ConfRev,AsduChildNum,link_mode,DlyTmOffset, MuInEp;sv_type:0x91=(9-1),0x92=(9-2);AsduChildNum:原始数据包中,每个ASDU含数据单元总数;link_mode:0x55=点对点,0xaa=网络;tdr_seat:固有时间在数据集中的位置,-1=不适用(组网保护中或者MU不发送通道延时的时候应为-1,点对点保护中为0);DlyTmOffset:两帧间允许<b></b>抖动时间(us),点对点一般为30,网络一般为1000;MuInEp:对应的MU压板序号,0=不使用MU压板;Sv_in1_1=seat_id,chnType,lsb_val,phase_rate,innerRate,pro1_innerChn,pro2_innerChn,cpu3_innerChn,mea_innerChn,refrence,desc;chnType:1=电压,2=保护电流,3=零序电流,4=测量电流;lsb_val:1个lsb代表的一次值大小(电流:mA,电压:mV);phase_rate:相电流/电压的一次额定值(电流:A,电压:V);innerRate:转换后的内部额定值(保护电流:463,电压:11585,测量电流:11585,零序电流:11585);需要现场修改一次额定电流;一次额定电压;延时通道;;MU1-DLBSv_in1=0x92,xn01MUnn14,0x4014,4000,0(mu的通道延时所对应的通道,保护需要处理),1,44,0x55,60,1,2(由SV2板采样)Sv_in1_Addr=01 0C CD 04 00 14Sv_in1_1=2,2,1.0,1200.0,463,17,-1,-1,-1,0,0,0,1(电流极性设置-1为反极性),Ia1,Ia1Sv_in1_2=6,2,1.0,1200.0,463,18,-1,-1,-1,0,0,0,1,Ib1,Ib1Sv_in1_3=10,2,1.0,1200.0,463,19,-1,-1,-1,0,0,0,1,Ic1,Ic1Sv_in1_4=4,2,1.0,1200.0,463,20,-1,-1,-1,0,0,0,1,Ia1R,Ia1RSv_in1_5=8,2,1.0,1200.0,463,21,-1,-1,-1,0,0,0,1,Ib1R,Ib1RSv_in1_6=12,2,1.0,1200.0,463,22,-1,-1,-1,0,0,0,1,Ic1R,Ic1RSv_in1_7=20,1,10.0,127021,11585,4,-1,-1,-1,0,0,0,1,UA,UASv_in1_8=24,1,10.0,127021,11585,5,-1,-1,-1,0,0,0,1,UB,UBSv_in1_9=28,1,10.0,127021,11585,6,-1,-1,-1,0,0,0,1,UC,UCSv_in1_10=22,1,10.0,127021,11585,13,-1,-1,-1,0,0,0,1,UAR,UARSv_in1_11=26,1,10.0,127021,11585,14,-1,-1,-1,0,0,0,1,UBR,UBRSv_in1_12=30,1,10.0,127021,11585,15,-1,-1,-1,0,0,0,1,UCR,UCRSv_in1_13=32,1,10.0,127021,11585,8,-1,-1,-1,0,0,0,1,UL,UL[MuEp]Mu_enpin_number=1;Mu_ep1=seat_id(1..),tab_seq,refrence,descMu_ep1=1,201,MuEp_1,线路MU压板5.5中压保护配置文件5.5.1中压管理板(板号125)中压管理板中的文件格式同测控的管理板的文件5.5.2中压GOOSE板(板号343)中压GOOSE板的配置格式与高压的GOOSE板一样5.5.3中压SV板(板号317)下面是应城变110kV新河线CSC161A的出厂时sv配置[SystemCfg]LD_name=CSC161A_3DRecordEnable=0[DiDocfg]DIStAddr=16DIBrdNum=4DOSpBlockOp=31,65504,0,65535,0,65535,0,65535DORedundanceAnd=0,65535,0,65535,0,65535,0,65535DORedundanceOr=0,65535,0,65535,0,65535,0,65535DOSendPtp=9,65526,0,65535,0,65535,0,65535Goose_net_port=1[Eth1]MAC=00 a0 b0 c0 d0 e0IP=192.168.1.61GateWay=255.255.255.0[GoosePub][GooseSub][Smv_in];延迟±50us时,表示数据正常DlyTmOffset=50Smv_Number=1;mu通道定义1-传输延时,2-ia,3-i2a,4-ib,5-i2b,6-ic,7-i2c,8-Ima,9-imb,10-imc,11-ua,12-u2a,13-ub,14-u2b,15-uc,16-u2c,1 7-ux,18-u2x;Smv_1=smv_type(0x91=(9-1),0x92=(9-2)),destMAC,LDName(9-1),SVID(9-2),每周波采样点数,通道数目,相电压通道额定值(V),相电流通道额定值(A),额定时间修正(us,可以是负数)Smv_1=0x92,01 0C CD 04 00 3d,0x0901,xn01MUnn3d,80,18,63510,300.0,0;Smv1_channel=1stChan(1=电压,2=保护电流,4=测量电流,0=传输延时),2ndChan,……,12thChanSmv_1_channel=0, 2, 2, 2, 2, 2, 2, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1;;Smv1_proMap=各输入通道对应为保护DPRAM的通道序号,无对应=-1。0-ia,1-ib,2-ic,3-delay,4-ia',5-ib',6-ic',7-ua,8-ub,9-uc,10-empty,11-uxSmv_1_proMap= 3, 0, 4, 1, 5, 2, 6, -1, -1, -1, 7, -1, 8, -1, 9, -1, 11, -1;Smv1_meaMap=各输入通道对应为测控DPRAM的通道序号,无对应=-1,4-ima,5-imb,6-imc,7-ua,8-ub,9-uc,11-uxSmv_1_meaMap=-1, -1, -1, -1, -1, -1, -1, 4, 5, 6, 7, -1, 8, -1, 9, -1, 11, -15.6低压装置配置文件说明5.6.1带COM板的低压装置由COM板完成与监控的通信和普通61850的装置一样,不能实现GOOSE的发布订阅。5.6.2不带COM板的低压装置CPU板的网口可以直接出61850规约,不能由虚端子连接的方式实现GOOSE的发布订阅,只能由类似间隔五防的那种方式实现。➢GOOSE订阅:订阅:如本例是CSC326GL订阅了CSC211线路保护的保护动作信息EVT(EVENT),点击订阅,选择保护动作信息;然后Dataset name和GSEControl name需要写上,不要超过12个字节,越短越好,两项名称可以一致;命名原则:简洁看的懂,;如dev6961(源地址是69,目标地址是61);最后GSEControl confRev 即版本为:1即可,一般默认为1,不用改。➢【工具】->【生成CID文件】选择低压部分装置,选择路径保存导出。这部分生成的CID文件是再需要专门配置工具再进行订阅发布。➢【工具】->【GOOSE配置】->导出GOOSE配置。这里导出的文件为sys_go_CSI200E_110_41.cfg等文件。这个是要直接下到低压装置中去的。➢低压订阅发布简易母差CSC326GL要订阅10kV线路、电容器及所用变的保护动作信息10kV线路保护要订阅低压减载CSS100BE动作信息使用工具Csc200AMT打开工具后,如下界面:打开配置(打开DCT配置),注意要做哪个装置的订阅就打开哪个装置的,比如现在是CSC326GL要订阅线路保护信息,所以先打开CSC326GL的dct文件(模型文件自带的有)。点击【视图】---【GOOSE订阅】点击【查询订阅】---找到经过后台导出的CID文件,即第一步导出的CID按照先点左边,再点右边,这样左边就把右边所有间隔的信息都订阅过来了点击【导出模型】,生成新的CID文件。最后登录到10kV装置中去,把最后导出的CID文件及sys_go_CSI200E_110_41.cfg下装到低压装置的MASTER中。➢低压装置MASTER文件其中sys文件需要改SNTP对时IP,10kV对时一般用SNTP网络对时;logcfg、osicfg为公用文件;vxworks为镜像文件。六.各种配置文件的下装6.1.插件带VXWORKS系统用ftp工具上传到装置(包括GOOSE和MASTER插件)ftp中新建站点,站点名称以装置的ip地址命名,用户名:target,密码:12345678选择需要上传的文件(**.cid和sys_go_**.cfg “**”表示iedname)6.2.插件不带VXWORKS系统高压装置支持CSPC下传GOOSE或SV配置文件选中装置所含的GOOSE插件,和本装置的GOOSE配置文件(**A2.ini),点下传后,等待下传结束,GOOSE和SV插件没有地址跳线,按插件所在位置选择插件序号。(如果cpu的插件板号与SV的相同,下载SV配置时注意要选上带cpu的插件,先下载sv,后下载goose配置)中压CSC160系列不支持CSPC下传,用PII_LINK工具下传启动piilink后,选择网卡➢用光纤跳线将间隔层装置SV板光口和光电转换器连接,再将光电转换器通过网线和计算机连接,光电转换器通过USB供电。➢打开调试工具,点击,选择笔记本网卡。菜单栏依次为:打开、连接设置、连接装置、停止日志监视、读取、固化、清除日志、退出程序。当然,每个按钮的功能都在工具界面【左下角】有提示。➢点击,等到变成时,可以读取和固化配置文件。➢点击,可以读取装置goose板中配置文件保存到笔记本上。➢点击,可以固化配置文件,选择要固化的MU110_L3.ini配置文件。等到变成时表示固化成功。七.网络组建7.1.过程层网络按照技术协议要求的组网方案,根据图纸连接各个IED设备到交换机、各个IED之间(主要是保护装置到智能终端及合并单元)的光纤。7.2.间隔层网络和传统的变电站一样,一般都是双网,交换机网络为星型拓扑。7.3.对时网络过程层常见的为光B码(如:江西泰和,福建先农,湖北应城和枣山),有一些为1588(如:天津和畅路,通辽舍伯吐)。间隔层一般为电B码对时,SNTP对时做辅助。站控层为SNTP对时八.保护装置的设置8.1.保护装置在出厂调试菜单的装置选项中把2000规约禁用,61850规约启用。8.2测控装置在出厂调试菜单/参数设置/规约设置中把2000规约禁用,61850规约启用。附录1:东土电信交换机设置1、连接方法:各种连接方法的登录用户名都是admin,密码是123;(1)、Console口连接:Console口位于交换机的前面板,需要交换机的特殊连接线,此线一头为RJ45,一头为9帧串口。其中9帧串口连接到电脑上,电脑通过windows 自带的超级终端,设置方法如下图:(2)、telnet远程登录:交换机的默认管理ip地址为192.168.0.2,将电脑的网段设置为同一网段,如192.168.0.100,然后在cmd中敲入telnet 192.168.0.2即可登录:(3)、IE浏览器远程登录:打开IE浏览器,在地址栏中输入http://192.168.0.2,然后回车,出现以下登录画面,输入用户名和密码(以下举例的交换机IP地址改为了192.168.0.5):2、交换机常用设置:智能化变电站间隔层及过程层常用的设置包括IP地址、vlan设置、广播风暴抑制,下面分别对这些设置加以说明:(1)、IP地址设置:由于出厂交换机默认地址一致,都为192.168.0.2,如果站内交换机有多台直连,建议修改此地址以方便现场维护。进到“设备基本配置\IP地址”后出现以下画面:直接在“IP地址”框中修改即可,其他参数不用修改。(2)、VLAN设置:VLAN设置是智能化变电站很重要的一部分,特别是过程层,是网络数据通讯的基础,在进行这项之前需要首先规划好站内的VLAN分配,规划好后进行此项设置:进入到“设备高级配置\VLAN配置”出现以下画面:点击添加,出现以下画面:输入事先规划好的VLAN名称和VLAN ID,选中该VLAN ID的VLAN成员,将PVLAN设置为“使能”。不同的VLAN ID需要多次添加。(3)、广播风暴抑制:此项设置为限制交换机中广播报文所占用的流量,防止广播报文影响正常报文的传输。进入到“设备高级配置\端口流量配置”出现以下画面:将广播报文的限值设置为1.注意:以上设置修改完后需要保存才能生效,在根目录下的“保存所有修改”里,点击保存。3、交换机的配置备份:由于交换机的设置较多,设备故障更换时重新设置比较麻烦,设置完成后最好将设置做个备份,方法分为两种:(1)、IE方式:在“设备基本配置\配置上传下载”中完成,由于此项需要笔记本安装ftp服务器,设置较麻烦,暂时可以不使用。(2)、命令方式:采用console方式通过超级终端连接时使用,登录后出现“SWITCH>”,此时需要敲入“enable”切换到命令行模式,为“SWITCH#”,然后敲入命令“show run”显示目前的配置,下面出现的所有信息都是目前交换机的配置,将所有信息拷贝出来保存为文档,文档名对应相应的交换机即可。命令行模式下敲入“config ter”,出现“SWITCH(config)#”,此命令用于配置恢复,此时将上面备份的文档中的内容全部拷贝到这,然后回车,即将备份的配置恢复。附录2:罗杰康交换机设置方法1、连接方法:各种连接方法的登录用户名和密码都是admin;(1)、Console口连接:Console口位于交换机的前面板,需要交换机的特殊连接线,此线一头为RJ45,一头为9帧串口(也有两头都是9帧串口的,这种目前较少)。其中9帧串口连接到电脑上,电脑通过windows自带的超级终端,设置方法如下图:(2)、telnet远程登录:交换机的默认管理ip地址为192.168.0.1,将电脑的网段设置为同一网段,如192.168.0.100,然后在cmd中敲入telnet 192.168.0.1即可登录:(3)、IE浏览器远程登录:打开IE浏览器,在地址栏中输入http://192.168.0.1,然后回车,如果出现以下告警点击“是”:然后出现登录画面:2、交换机常用设置:登录到交换机后出现以下管理画面:我们常用的设置包括“Administration”、“Ethernet Ports”、“Virtual LANs”,分别对应地址设置、端口设置以及vlan设置,下面分别对这些设置加以说明:。
智能变电站调试步骤(精)
智能变电站调试大概步骤一、设计联络会召开设联会,召集所有相关厂家并确定工程实施方案,供货时间,技术落实,对整个工程的设计有个总体的概念。
制定调试计划,规划好具体的时间节点。
(系统分公司目前不具备这方面的技术水平,61850和系统构架)二、厂内调试阶段1、全站SCD 文件的配置由集成商收集各厂家ICD 文件,设计院提供一次主接线图、网络布局图、光纤联络图和设计虚端子图(由设计院提供)等。
并由集成商负责全站SCD 文件的配置。
模型文件发布必须受控,纳入程序版本管理。
遇到问题怎么处理?(模型文件有问题尚不能处理)2、过程层调试由各个厂家和用户负责调试网络环境的搭建,过程层调试要实现装置的正确跳闸、遥测采样、遥控、遥信上送、对时等。
并且要根据实际现场要求,实现装置的相关功能,如调试中发现问题,需要及时确立好方案并及时更改。
3、一体化信息平台配置根据全站配置SCD 文件,完成后台导库工作,画面制作,数据库关联、分画面制作、要实现基本的“三遥”功能,保护定值召唤、修改,软压板遥控,录波功能的实现等(所有已发货和在调工程后台都由研发进行装机)。
4、一体化五防。
5、高级应用(一键式顺控、智能告警、源端维护、小电流接地选线、VQC 无功调节等)。
6、智能辅助系统。
7、远动装置及规约转换器的装机、调试(所有已发货和在调工程都由研发进行装机并调试,一个站大约需要两天)。
8、用户验收。
三、现场调试阶段1、清点货物对所发的货进行清点,统计损毁情况,少发、漏发、错发货物清单、并根据清点情况抓紧时间联系家里补发货等。
2、光纤、网络的布置根据设计院所出图纸负责完成现场光纤、网络的布置,并熔接光纤。
3、全站SCD 配置全站根据虚端子图配置SCD ,但是一旦模型更换,与该模型相连的虚端子都需要重新连,各个厂家模型都在不断升级,SCD 不断重复配置,贯穿整个变电站的调试过程。
绵阳东220kV 中等规模的变电站,工程人员现场配置SCD 配合单装置调试已花费60人天。
智能化变电站电气设备的安装及调试
智能化变电站电气设备的安装及调试摘要:在现代电力系统中,智能化变电站已经变得越来越重要。
智能化变电站采用先进的电气设备和自动控制系统,通过数字化、网络化、智能化技术的应用,实现对电力系统的监测、保护、控制和管理。
智能化变电站的安装及调试是确保其正常运行的关键环节。
基于此,本篇文章对智能化变电站电气设备的安装及调试进行研究,以供参考。
关键词:智能化;变电站;电气设备;安装及调试引言智能化变电站的建设是当前电力行业发展的重要方向之一。
随着科技的进步和智能设备的广泛应用,变电站的电气设备也逐渐实现了智能化、自动化和数字化的升级。
智能化变电站的安装及调试是确保设备正常运行、稳定供电的关键环节。
1智能化变电站概念智能化变电站是指使用先进的信息技术和控制系统,以实现自动化、智能化管理和运行的变电站。
它通过集成各种传感器、监控设备、通信系统和数据分析平台,实时监测、控制和管理变电站的电气设备。
智能化变电站采用自动化的控制系统,能够实时监测电气设备的运行状态,并根据实际需求进行自动调节和控制,提高运行效率。
智能化变电站通过互联网和通信技术,实现对设备的远程监测和管理,可随时随地获取变电站的实时数据和状态信息。
智能化变电站利用大数据和人工智能技术,对采集到的数据进行分析和挖掘,提供故障预警、优化运行等智能化服务。
智能化变电站通过完善的监控和保护装置,实现对电气设备的实时监测和保护,提高供电可靠性和安全性。
智能化变电站的建设可以提高电力系统的运行效率、降低运维成本,同时也为电力行业的智能化发展提供了技术支持和示范。
2智能化变电站电气设备的安装及调试中面临的问题2.1设备选型如果所选设备的性能参数与实际工程需求不匹配,可能会导致设备无法正常运行或无法满足系统的要求。
例如,电流容量不足导致设备容易过载或故障,功率因数不对导致能效低下等。
智能化变电站的电气设备通常需要与其他设备或系统进行通信和协同工作,若选型过程中未考虑兼容性,可能导致设备之间无法互相交换数据或无法实现良好的协调控制。
智能变电站现场调试及试验方法
智能变电站现场调试及试验方法智能变电站是国家电网发展智能化技术的必然趋势,因此智能变电站的试验工作是确保其安全可靠运行的基础。
文章分析其调试,探讨去维护管理。
标签:智能变电站;现场调试;试验方法引言:智能变电站的改造以及建设工程的推进程度也逐步加快,在智能变电站正式运行之前必须要进行严格的验收程序,只有验收满足相关标准要求才能够允许智能变电站运行工作。
一、现阶段智能变电站存在的问题(一)相关设备不够成熟智能化设备主要是利用网络技术、数字化技术来实现变电站的保护和控制,和变电站的普通设备有着本质性的差别。
现阶段,由于缺乏数字化控制保护装置的实际应用经验,对于智能化設备尤其是电子式互感器来说,在使用过程中可能会出现各种各样的问题。
而且由于不同的试点使用的电子式互感器原理不同,极易导致变电站的稳定性、可靠性等都无法达到设计要求。
和硬接线回路相比,智能变电站在建设的过程中会应用网络技术,因此需增加交换机等设备,而这些设备若不够成熟就会导致变电站可靠性降低。
(二)调试时间长智能变电站在运行的过程中对配置模型的依赖程度比较高。
和普通的变电站相比,智能变电站在减少二次接线的同时,还需要进行额外的系统集成工作。
除了需要进一步提升设备互操作性和通信信息统一性之外,智能变电站还要开展大量的调试工作,如果按照常规模式进行,就会导致施工周期延长。
二、调试方法的创新点(一)使用传统实验仪进行数字式保护装置调试方法数模转换,在常规变电站调试保护装置时,可直接将试验台输出的模拟量加人保护装置进行模拟故障;而智能变必须要经过一个模数转换设备将模拟量转化成数字量,再进人合并器,然后再由装置进行模拟故障实验”就可以完成模拟量输人工作,使用常规实验仪正确输入故障量再结合常规主变保护装置的调试方法,即可完成保护装置的调试工作。
(二)光口对应表装置背板上光纤口有很多,每个光口功能都不一样,调试员很容易会记混,针对该问题编制了光口对应表,具体到哪块板卡的哪个口,该光口的用途、光纤的编号与衰耗等重要信息,方便了现场调试与投运后智能变电运行维护。
智能变电站调试流程之规范篇
智能变电站调试准备与规范智能变电站调试准备与规范编制:刘高峰校核:审定:版本信息目录1.智能变电站概述与准备 (1)1.1.网络结构解析 (1)1.2.文档资料准备 (2)1.3.工具准备 (2)1.4.现场设备验收 (4)2.全站装置参数分配规范 (4)2.1.IEDNAME分配 (4)2.2.IP地址的分配 (5)2.3.MAC与APPID地址 (5)2.4.VLAN-ID分配 (6)2.5.VLAN- PRORITY分配 (7)智能变电站,是当前电力行业的大趋势!作为集成商,需要首先对全站的网络结构以及工作内容有一个清晰的概念,现在就各个阶段相关工作进行说明。
1.智能变电站概述与准备目前智能变电站采用的结构基本上都是三层两网。
所谓三层指的是站控层、间隔层、过程层;所谓两网指的是GOOSE网、MMS网。
结构示意图如下:图1-11.1.网络结构解析站控层:设备包括主站设备,如监控主机、监控备机、工程师站、远动机、故障录波、网络分析仪、信息子站等。
间隔层:设备包括保护、测控、电度表、直流、UPS、电度采集器等。
过程层:设备包括合并单元、智能终端、光/电CT、PT、智能机构等。
MMS网:保护、测控等设备与监控通讯的网络,走61850协议。
设备包括保护、测控、监控、故障录波等。
GOOSE网:合并单元、智能终端通过光纤上GOOSE交换机,同时保护、测控也上了GOOSE网,进行信息交换。
GOOSE网相当于取代了原来常规站测控、保护的电缆接线工作。
连接设备包括MU、智能终端、测控、保护、网络分析仪、故障录波器等。
MU与互感器:目前规约为私有协议。
1.2.文档资料准备在进行施工时,要尽量充分准备好现场所用的资料,如表1-1:表1-11.3.工具准备在现场施工,主要包含硬件和软件两大部分:硬件部分:表 1-2软件部分:表 1-31.4.现场设备验收在到一个现场之后,都要根据公司提供的物料清单,找到现场的物料管理员,与之一起核对到达现场的设备物资,并做好相关的标示,按要求进行放置到指定区域。
智能变电站调试方案三篇
智能变电站调试方案三篇篇一:智能变电站调试方案1概述XX220kV变电站位于XX市XX镇XX村,距XX镇中心直线距离4km,公路距离约8km,距212省道约90m。
电压等级为220kV/110kV/10.5kV:主变最终容量为3X180MVA,本期建设1X180MVA,220kV终期出线6回,本期建设4回;110kV终期出线14回,本期建设5回;10kV不出线,仅作为无功补偿和站用变用;10kV 无功补偿装置最终容量为12X7500kvar,本期建设4X7500kvar。
所有电气设备安装结束后按GB50150-20XX《电气设备交接试验标准》进行单体试验。
特殊试验在行业要求适用范围内按业主要求进行。
分部试运指从单体试验结束,经验收合格后至整套启动过程中所进行的控制、保护和测量功能试验。
整组启动指完成对整个工程的各种参数的测试和使之处于安全、高效、可靠的运行状态。
2、工作准备2.1建立调试班组:组建一个有效、精干和确有技术保障的调试班组,包括高压、继保和仪表三个作业小组以及技术人员若干名,具体人数视设备的类型、数量和工期而定。
2.1.1调试主要负责人必须具有调试过多个变电站的调试经验,熟悉变电站的调试过程及技术标准,小组负责人也应具有一定的调试经验,能在主要负责人和技术员的指导下进行作业;一般工作人员也应了解电气一、二次设备的基本知识。
2.1.2工作前全体作业人员应对变电站设计图、设计说明书及作业指导书进行学习,使每个作业人员明确各项目的作业程序、分工及具体工作内容。
2.1.3参加调试的人员应通过安全规程的考试,具备一定的安全作业知识。
2.1.4熟悉设计图及施工现场的环境,对设备的性能及操作相当了解;试验负责人员要有高度的责任心和相关资格,能独立带领试验人员进行对各项目的调试。
2.2制定工作技术措施2.2.1编制调试作业指导书2.2.2作业指导书交底2.2.3调试作业必须做好安全围栏、警示标志,认真仔细检查试验接线,防止接线错误或误操作引起设备、人身安全事故。
【干货】智能变电站的调试流程及方法
【干货】智能变电站的调试流程及方法智能变电站的调试流程及方法一、智能变电站智能变电站主要由站控层、间隔层和过程层组成。
其中站控层的作用是对全站设备进行监视、控制、告警和交换信息,并即时完成数据的采集监控、操作闭锁、保护管理;间隔层的作用是对间隔层的所有实时数据信息进行汇总,并对一次设备提供保护和控制;过程层则用于电气数据的检测、设备运行参数的在线检测与统计以及操作控制的执行等。
这三层结构通过以太网、光缆等紧密地联接在一起,使得信息的采集、处理、执行等更加迅速便捷。
由智能化变电站的结构图可以看出,智能变电站是智能电网的基础,在智能电网的体系结构中具有重要的作用。
二、智能变电站调试流程2.1变电站调试流程简述变电站调试流程可分为设备出厂验收、现场调试两大部分。
出厂验收是对即将出售的设备进行质量检查;调试工作是对现场安装的设备进行现场调试,现场调试按照流程可分为单体调试、分系统调试、系统调试。
2.2智能变电站调试流程按照《智能变电站调试规范》执行,职能变电站的调试可按照一下流程:组态配置→系统测试→系统动模(可选)→现场调试→投产试验。
2.2.1组态配置。
组态配置是智能变电站系统设计的一个步奏,是在设计图纸或意图下,进行实例化变电站内各IED设备的ICD文件,并设置为SCD文件。
这项工作一般由系统集成商完成后由用户确认,这里的“用户”可以是设备使用单位,也可以是设备使用单位制定的设计调试单位。
2.2.2系统测试。
系统测试是为了确保设备主要功能的正确性和设备性能指标处于正常值范围的调试实验,调试包括装置单体调试和变电站各分系统调试。
2.2.3系统动模。
系统动模是为了验证继电保护等整体系统的性能和可靠性进行的变电站动态模拟试验。
系统动模是在国家认定的实验机构或者具备相应实验资质的实验室进行的实验工作。
动模试验的一次接线方式尽可能的与实际工程相一致,实验系统规模较大是,可以减少规模,但应保证能完成各类型保护的所有故障类型的测试。
智能化变电站电气设备安装及调试
智能化变电站电气设备安装及调试一、引言随着信息技术的快速发展和智能化技术的不断成熟,智能化变电站已经逐渐成为电力系统建设的重要组成部分。
智能化变电站具有设备可视化、远程监控、自动化调度等特点,能够提高变电站的运行效率和可靠性,降低运维成本,适应电力系统的智能化发展趋势。
在智能化变电站中,电气设备的安装及调试工作是关键环节,对于确保变电站的正常运行具有重要意义。
本文将从智能化变电站电气设备的特点入手,对其安装及调试工作进行详细介绍,希望能够对从事电气设备安装及调试工作的人员提供一定的指导和帮助。
1. 设备可视化:智能化变电站采用先进的监控系统,可以实现对电气设备的远程监控和实时数据显示,提高了设备的可视化程度。
2. 远程监控:智能化变电站具有远程监控功能,可以对设备的运行状态进行实时监测,并及时采取措施,降低了操作人员的工作强度。
3. 自动化调度:智能化变电站采用先进的自动化调度系统,可以根据电网运行情况实现设备的自动调节和控制,提高了电力系统的运行效率和可靠性。
4. 数据采集:智能化变电站具有数据采集功能,可以实时采集设备的运行数据,并利用数据分析技术对设备状态进行评估,提高了设备的维护管理水平。
5. 系统集成:智能化变电站各种设备之间实现了信息的无缝集成,形成了一个整体的智能化系统,提高了设备间的协同作用和运行效率。
1. 前期准备工作在进行安装工作之前,需要做好充分的前期准备工作。
首先需要对设备的安装位置进行认真的勘察和测量,保证设备的安装位置准确无误。
同时需要对设备的运输和搬运工作进行设计和准备,确保设备的运输过程中不受损坏或者变形。
2. 安装过程在进行设备的安装过程中,需要按照设备的安装说明书和技术要求进行操作。
对于智能化设备,需要特别注意设备之间的连接和通讯方式,保证设备之间的信息交互和数据传输。
需要对设备的固定和安装进行严格的检查和测试,保证设备的安装牢固可靠。
3. 安装验收在设备安装完成后,需要进行安装验收工作。
智能化变电站电气设备安装及调试
智能化变电站电气设备安装及调试1. 引言1.1 智能化变电站电气设备安装及调试简介智能化变电站电气设备安装及调试是电力系统建设中非常重要的环节之一,其质量直接关系到变电站的安全稳定运行。
随着科技的不断进步,智能化变电站的电气设备越来越复杂,安装调试过程也变得越来越关键。
智能化变电站电气设备安装流程包括:设备验收、基础安装、设备吊装、电气连接等。
在安装过程中需要严格按照技术要求和规范进行操作,确保设备安装的准确性和稳定性。
智能化变电站电气设备调试步骤一般包括:设备检查、接线检查、设备调试、系统测试等。
调试过程中需要关注设备连接是否准确,系统运行是否正常,确保设备的性能达到设计要求。
安装调试过程中常见问题包括设备故障、接线错误、系统不稳定等,需要及时发现并解决。
在安装调试中需注意的事项包括安全操作、设备保护、质量检查等,确保安装调试过程安全顺利进行。
智能化变电站电气设备安装调试的重要性体现在保证电气设备的正常运行、提高系统效率、确保安全稳定运行等方面。
只有认真贯彻执行安装调试流程和要求,才能保证智能化变电站电气设备的质量和性能达标。
【字数:257】2. 正文2.1 智能化变电站电气设备安装流程智能化变电站电气设备的安装是一个复杂而关键的过程,需要经过一系列严谨的步骤来确保设备的正常运行和安全性。
下面将详细介绍智能化变电站电气设备的安装流程:1. 设备验收和准备工作:在安装之前,需要对所需的电气设备进行验收,确保设备完好无损。
准备好安装所需的工具和材料,确保安装工作的顺利进行。
2. 安装设备基础:首先需要确定设备的安装位置,并进行基础施工。
确保设备底座平整稳固,以确保设备的稳定性和安全性。
3. 安装主要设备:根据设备的安装图纸和说明书,进行主要设备的安装工作。
每个设备都有特定的安装方式和要求,需要按照规定的步骤进行安装,确保设备安装正确。
4. 连接设备电缆:接下来是设备电缆的连接工作。
根据电缆接线图进行连接,确保每根电缆接线正确,无误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
过程层 网络
智能化 变电站
站控层 网络
9
概述
2、调试方法的变化(相对传统站) 采用电子式互感器及合并单元引起的调试方法的变化。
模拟量
10
数字量
概述
2、调试方法的变化(相对传统站) 功能自由分布引起的调试方法的不同。
智 能 化 变 电 站
集中式保护 站域保护
分布式保护
……
11
概述
常规综合自动化站电气二次图含电流电压回路图、控制信号回路图、端子 排图、电缆清册等,所有不同设备间的连接均通过从端子到端子的电缆连接 实现。这些图纸反映了二次设备的原理及功能,一、二次设备间的连接关系, 以及可用于指导施工接线和运行的检修维护。
做站流程
统计1136光口分配情况
• 一般在每个柜子的白图都会提供1136的光口分配图 ,一方面作为出厂试验插多少光模块的依据,另一 方面作为现场光纤跳线及SCD光口配置的依据。
装置 220线路保护A 220线路保护B 光口1 220A网 220B网 光口2 合并单元 合并单元 光口3 智能终端 智能终端 光口4 光口5 光口6 光口7 光口8
220母线保护A B05 220母线保护A B11 220母线保护B B05 220母线保护B B11 220合并单元A 220合并单元B 220智能终端A 220智能终端B 220母线合并单元A 220母线合并单元B 220PT智能终端A 220PT智能终端B 110kV线路保护 110kV智能终端 主变A B07 主变A B09 主变B B07
母线直跳 高压侧合并单 220A网 元A 高中间隙合并 低压侧合并单元A 单元A 高压侧合并单 220A网 元B
高压侧智能 110A网 终端A
高压侧智能 110A网 终端B
中压侧合并 中压侧智能 单元B 终端B
做站流程
从SCD导出配置 • 导出CID和GOOSE下到装置 • 如其他公司集成的SCD还需加工后导出 • 下到装置要正常运行
做站流程
全站联调 • 装置之间无断链报警 • GOOSE联调和SV联调 • 装置和后台信号对点 • 装置与远动对信号 • 后台一些高级应用
智能变电站调试方案
1
•FAT •SAT
28
2
智能化变电站的调试流程
• 常规变电站是厂家单屏或者单装置调试完成,直接发货到现场,然后安 装调试、投运。
• 智能化变电站引入了FAT(工厂验收测试 factory acceptance test) ,SAT(现场验收测试 site acceptance test)
30
智能变电站调试方案-工厂调试
1.2 61850测试 1.2.1 模型测试: (1)装置ICD文件的合法性静态检测 模型合法性检查 SCL内部合法性检查 SCL 引用检查 要求:ICD模型必须符合DL/T 860-6《变电站通信网络和系统》的要求。 ⑵数据模型内外描述的一致性 要求:装置在线获得的配置必须与模型文件一致。
SCD制作
否
获得虚端子图
获得全站ICD文件
ICD检测正常?
SCD导入后台及远动
• 全站IEDName及地址 分配表
• ICD检测 • ICD的修改 • 网络创建 • 发送块的创建 • 光口的配置 • 描述的修改
使用SCD工具配置 SCD文件
否 后台、远动试验 正常?
否
否
GOOSE连线正常?
是 是否增加新配置
④ 光缆谁来熔接,如果是我们来熔接,联系客服安排熔接人员到现场,如 果不是我们督促现场积极熔接。现场不到万不得已不建议对软缆压接, 因为无法保证其质量,容易出现问题。 ⑤ 一般尾纤由我们提供,需要核实尾纤的数量,尾纤的接口类型,以及是 否需要非常长的尾纤(常见开关内需要跨好几个间隔给终端盒熔接的尾 纤)。
• FAT和SAT的目的:明确设联会上未确定的事情;消除各厂家对于61850 认知的差异性导致设备互操作性的缺失。
智能变电站调试方案-工厂调试
1、工厂调试
1.1 工厂调试应具备的要求 根据网络布置图,进行网络连接; 根据虚端子图配置SCD,由SCD生成CID文件分发至各装置,并把 SCD导入后台监控、远动、保信子站、录波器、网络分析仪等; 网络设备的配置,如:Vlan的划分或采用GMRP组播注册协议; 试验仪器的准备。 制定单装置调试方案以及系统联调方案。
支路4SV
支路8SV
支路4GOOSE
支路8GOOSE
支路12SV 支路12GOOSE 母线合并 组网 单元
B11用于组网,当15个间隔配置全时仅能组单网,当不足 15个间隔可利用最后一个间隔组双网
做站流程
搭建全站网络 • 结合SCD文件按全站通讯图放通讯线 • MMS网(单双网) • SMV网(组网、点对点) • GOOSE网(组网、点对点) • 光纤的铺设 • 交换机VLAN划分
使用SCD工具导出配 置并下载
流程结束
否
试验正常?
做站流程:一个间隔的举例
断路器பைடு நூலகம்
间 隔 电 子 电 流 电 压 互 感 器
间隔电 流电压 同期电压
母线电压 合并单元
电 子 母 线 电 压 互 感 器
传统的一次 电缆
线路保护 测控装置
户外智 能终端
跳闸信号 位置信号
间隔 合并单元
电流电压和 同期电压
智能变电站整站调试流程
1
目录
1
• •
概 做站流程
述
2
3
•
智能变电站调试方案
概述 1、背景
智能变电站应具有如下特征:一次设备智能化、 二次设备网络化、基础数据完备化、信息交换标准化 、运行控制自动化、信息展示可视化、分析决策在线 化、设备检修状态化、保护决策协同化、设备安装就 地化、系统设计统一化、二次系统一体化。
过程层
ECVT 电子式互感器
传统开关
传统互感器
传统开关
传统变电站结构图
智能化变电站结构图
5
传统变电站设备功能分布
交 流 输 入 组 件
转 换 组 件
保 护 逻 辑 (CPU)
开 入 开 出 组 件
人机对话模件
A/D
端子箱
传统微机保护测控
二次设备和一次设备功能重新定位。
智能变电站设备功能分布
二次设备和一次设备功能重新定位: 一次设备智能化
做站流程
制作SCD过程的注意点
• 智能变电站中的核心文件SCD是整个变电站的唯一数据源,为保证数据 的同源性,所有信号描述修改都是在SCD中进行的(在修改描述方面是 有技巧的,有同事在ICD中修改描述,然后导入到SCD中,这样相同间隔 可以公用ICD文本;其实SCD也可以这样做到,修改一个间隔描述后,导 出CID,删除控制块及连线信息,再更新到其他间隔也是一样的,对SCD 的描述修改有助于提高对ICD,CID,SCD文本格式的认识),一般后台, 远动,子站,PCS装置的配置必须从同一个SCD文件中统一导出生成,这 样才能保证站内信息的统一性。 • 现阶段SCD文件的完善是个不断完善的过程,这个文件的修改伴随着变 电站的整个调试流程,造成修改的原因有:某厂家ICD不断变化,虚端子 连线错误,增加测控联锁的GOOSE信息等。 • 目前SCD基本上都是集成商做,但是以后的趋势是设计院做。 • 虚端子的获取原则是设计院提供,但不排除设计院的设计错误,所以要 辩证的看待虚端子设计图
做站流程
了解全站设备到货情况及联调方案 • 联调的规模 • 联调的方式 • 目前装置的具备情况(本公司和外公司) • 制定合理的联调时间表
做站流程
收集资料 • 对照主接线图收集全站设备信息 • 全站通讯图 • 对应全站设备收集相关ICD文件 • 我公司装置需要通过相关途径等到的程序
• 已归档程序可通过X3获取,未归档程序需要向研发人员直接索取
32
智能变电站调试方案-工厂调试
后台与装置建立关联,然后断开网络线,检查后台与装置是否能够检 出通讯故障,记录检出故障的时间。
31
智能变电站调试方案-工厂调试
1.2.2 关联测试:
后台与装置建立关联,然后释放关联,测试连接是否能够正确建
立和释放。 后台运行多个客户端同时与装置建立关联,测试装置最大能够建 立的关联数。 后台与装置建立关联,然后重启后台, 检查后台与装置是否能够 恢复连接,记录恢复所需时间。 后台与装置建立关联,然后重启装置, 检查后台与装置是否能够 恢复连接,记录恢复所需时间。
交 流 输 入 组 件
保
SMV 光纤 ECT
转 换 组 件
护 逻 辑 (CPU)
开 入 GOOSE 开 出 组 件
A/D
MU
端子箱
人机对话模件 IED 传统微机保护 数字化保护
智能终端
概述
2、调试方法的变化(相对传统站)
规约的变化引起的调试方法的不同。
103
8
61850
概述
2、调试方法的变化(相对传统站) 网络的变化引起的调试方法的不同
做站流程
光口分配情况注意事项 • 915的光口分配需要特别注意,因为一般915的goose文件都 受strap控制,所有915的光口是固定的,请务必按照如下 配置,(其他多1136板卡装置如978目前多不使用strap可 随意分配光口):
B05
B07 B09 B11
母联SV
支路5SV 支路9SV 支路13SV
3
概述
高级 应用
4
一次设备 智能化
概述
工作站1 GPS 工作站2 远动站
工作站1 GPS
工作站2
远动站
站控层
IEC60870 IEC61850 -5- 103
MMS
RCS 保护
RCS 测控