2017年广东省深圳市中考数学模拟试卷一

合集下载

2017年广东省深圳市福田区中考数学一模试卷(解析版)

2017年广东省深圳市福田区中考数学一模试卷(解析版)

2017年广东省深圳市福田区中考数学一模试卷一、选择题(每题3分,共26分)1.2016年深圳市生产总值同比增长9%,记作+9%,而尼日利亚国内生产总值同比下滑2.24%,应记作()A.2.24% B.﹣2.24% C.2.24 D.﹣2.242.很多美味的食物,它们的包装盒也很漂亮,观察banana boat、可爱多冰激凌、芒果原浆以及玫瑰饴的包装盒,从正面看、从上面看分别得到的平面图形是长方形、圆的是()A.B. C.D.3.2016年6月21日,京东宣布与沃尔玛达成深度战略合作,京东向沃尔玛发行近1.45亿股A类普通股,而京东则获得1号店第三方平台1号商城的主要资产,1.45亿用科学记数法表示为()A.1.45×1010B.0.145×109C.1.45×108D.14.5×1084.下列计算正确的是()A.3x﹣2x=1 B.(﹣a3)2=﹣a6C.x6÷x2=x3D.x3•x2=x55.下表是全国7个城市2017年3月份某日空气质量指数(AQI)的统计结果:城市北京成都深圳长沙上海武汉广州AQI指数25724924162 18549该日空气质量指数的中位数是()A.49 B.62 C.241 D.976.一次函数y=kx+b图象如图所示,则关于x的不等式kx+b<0的解集为()A.x<﹣5 B.x>﹣5 C.x≥﹣5 D.x≤﹣57.某校举办诗词大会有4名女生和6名男生获奖,现从中任选1人去参加区诗词大会,则选中女生的概率是()A.B.C.D.8.如图,已知E′(2,﹣1),F′(,),以原点O为位似中心,按比例尺1:2把△EFO扩大,则E′点对应点E的坐标为()A.(﹣4,2)B.(4,﹣2)C.(﹣1,﹣1)D.(﹣1,4)9.下列命题中,正确的是()A.对角线相等的平行四边形是菱形B.有两边及一角相等的两个三角形全等C.同位角相等D.直角三角形斜边上的中线等于斜边的一半10.如图,在△ABC中,∠C=90°,AB=8,AC=4,以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F,再分别以点E、F为圆心,大于EF长为半径画弧,两弧交于点G,作射线AG,交BC于点D,则D到AB的距离为()A.2 B.4 C.D.11.如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为6,则阴影部分的面积为()A.12πB.6πC.9πD.18π12.在边长为2的正方形ABCD中,P为AB上的一动点,E为AD中点,FE交CD 延长线于Q,过E作EF⊥PQ交BC的延长线于F,则下列结论:①△APE≌△DQE;②PQ=EF;③当P为AB中点时,CF=;④若H为QC的中点,当P从A移动到B时,线段EH扫过的面积为,其中正确的是()A.①②B.①②④C.②③④D.①②③二、填空题(每题3分,共12分)13.分解因式:5x2﹣20=.14.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,∠B=70°,则∠DAC=.15.在实数范围内规定新运算“△”其规则是:a△b=a+b﹣1,则x△(x﹣2)>3的解集为.16.如图,A,B是反比例函数y=图象上的两点,过点A作AC⊥y轴,垂足为C,AC交OB于点D.若D为OB的中点,△AOD的面积为3,则k的值为.三、解答题(共7小题,共52分)17.计算:|﹣9|+(﹣3)0﹣(﹣)﹣2+sin45°.18.分式的化简求值:•(1+),其中x=﹣2.19.原创大型文化情感类节目《朗读者》在中央电视台综合频道、综艺频道播出后引起社会各界强烈反响,小明想了解本小区居民对《朗读者》的看法,进行了一次抽样调查,把居民对《朗读者》的看法分为四个层次:A.非常喜欢;B.较喜欢;C.一般;D.不喜欢;并将调查结果绘制了图1和图2两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)本次调查的居民总人数为=人;(2)将图1和图2补充完整;(3)图2中“C”层次所在扇形的圆心角的度数为;(4)估计该小区4000名居民中对《朗读者》的看法表示喜欢(包括A层次和B 层次)的大约有人.20.深圳市民中心广场上有旗杆如图①所示,某学校兴趣小组测量了该旗杆的高度,如图②,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为16米,落在斜坡上的影长CD为8米,AB⊥BC;同一时刻,太阳光线与水平面的夹角为45°.1米的标杆EF竖立在斜坡上的影长FG为2米,求旗杆的高度.21.为提升青少年的身体素质,深圳市在全市中小学推行“阳光体育”活动,某学校为满足学生的需求,准备再购买一些篮球和足球,已知用800元购买篮球的个数比购买足球的个数少2个,足球的单价为篮球单价的.(1)求篮球、足球的单价分别为多少元?(2)如果计划用不多于5200元购买篮球、足球共60个,那么至少要购买多少个足球?22.如图,在△OAB中,OA=OB,C为AB中点,以O为圆心,OC长为半径作圆,AO与⊙O交于点E,直线OB与⊙O交于点F和D,连接EF、CF与OA交于点G.(1)求证:直线AB是⊙O的切线;(2)求证:OD•EG=OG•EF;(3)若AB=8,BD=2,求⊙O的半径.23.已知抛物线y=ax2+bx﹣3经过A(﹣1,0)、B(3,0)两点,与y轴交于C 点.(1)求抛物线的解析式;(2)如图①,抛物线的对称轴上有一点P,且点P在x轴下方,线段PB绕点P 顺时针旋转90°,点B的对应点B′恰好落在抛物线上,求点P的坐标.(3)如图②,直线y=x+交抛物线于A、E两点,点D为线段AE上一点,连接BD,有一动点Q从B点出发,沿线段BD以每秒1个单位的速度运动到D,再沿DE以每秒2个单位的速度运动到E,问:是否存在点D,使点Q从点B到E的运动时间最少?若存在,请求出点D的坐标;若不存在,请说明理由.2017年广东省深圳市福田区中考数学一模试卷参考答案与试题解析一、选择题(每题3分,共26分)1.2016年深圳市生产总值同比增长9%,记作+9%,而尼日利亚国内生产总值同比下滑2.24%,应记作()A.2.24% B.﹣2.24% C.2.24 D.﹣2.24【考点】11:正数和负数.【分析】利用相反意义量的定义判断即可.【解答】解:2016年深圳市生产总值同比增长9%,记作+9%,而尼日利亚国内生产总值同比下滑2.24%,应记作﹣2.24%,故选B2.很多美味的食物,它们的包装盒也很漂亮,观察banana boat、可爱多冰激凌、芒果原浆以及玫瑰饴的包装盒,从正面看、从上面看分别得到的平面图形是长方形、圆的是()A.B. C.D.【考点】U2:简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,从上面看得到的图形是俯视图,可得答案.【解答】解:A、从正面看是梯形,从上面看是圆环,故A错误;B、从正面看是三角形,从上面看是圆,故B错误;C、从正面看是长方形,从上面看是圆,故C正确;D、从正面看是长方形,从上面看是长方形,故D错误;故选:C.3.2016年6月21日,京东宣布与沃尔玛达成深度战略合作,京东向沃尔玛发行近1.45亿股A类普通股,而京东则获得1号店第三方平台1号商城的主要资产,1.45亿用科学记数法表示为()A.1.45×1010B.0.145×109C.1.45×108D.14.5×108【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:1.45亿=1.45×108,故选C.4.下列计算正确的是()A.3x﹣2x=1 B.(﹣a3)2=﹣a6C.x6÷x2=x3D.x3•x2=x5【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】直接利用同底数幂的乘除运算法则和幂的乘方运算法则、合并同类项法则分别判断求出答案.【解答】解:A、3x﹣2x=1,故此选项错误;B、(﹣a3)2=a6,故此选项错误;C、x6÷x2=x4,故此选项错误;D、x3•x2=x5,故此选项正确.故选:D.5.下表是全国7个城市2017年3月份某日空气质量指数(AQI)的统计结果:城市北京成都深圳长沙上海武汉广州AQI指数25724924162 18549该日空气质量指数的中位数是()A.49 B.62 C.241 D.97【考点】W4:中位数.【分析】根据中位数的定义先把这些数从小到大排列,再找出最中间两个数的平均数,即可得出答案.【解答】解:把这些数从小到大排列为:25,49,49,62,72,185,241,最中间的数是:62,则该日空气质量指数的中位数是62.故选B.6.一次函数y=kx+b图象如图所示,则关于x的不等式kx+b<0的解集为()A.x<﹣5 B.x>﹣5 C.x≥﹣5 D.x≤﹣5【考点】FD:一次函数与一元一次不等式;F3:一次函数的图象.【分析】根据一次函数图象即可求出该不等式的解集.【解答】解:当不等式kx+b<0时,一次函数的图象在x轴的下方,所以x<﹣5故选(A)7.某校举办诗词大会有4名女生和6名男生获奖,现从中任选1人去参加区诗词大会,则选中女生的概率是()A.B.C.D.【考点】X4:概率公式.【分析】先求出总的获奖人数,再根据概率公式列出算式,即可得出答案.【解答】解:∵诗词大会有4名女生和6名男生获奖,共10人,则选中女生的概率是=;故选C.8.如图,已知E′(2,﹣1),F′(,),以原点O为位似中心,按比例尺1:2把△EFO扩大,则E′点对应点E的坐标为()A.(﹣4,2)B.(4,﹣2)C.(﹣1,﹣1)D.(﹣1,4)【考点】SC:位似变换;D5:坐标与图形性质.【分析】根据位似变换的性质计算即可.【解答】解:∵E′(2,﹣1),以原点O为位似中心,按比例尺1:2把△EFO扩大,∴E′点对应点E的坐标为(2×2,﹣1×2),即(4,﹣2),故选:B.9.下列命题中,正确的是()A.对角线相等的平行四边形是菱形B.有两边及一角相等的两个三角形全等C.同位角相等D.直角三角形斜边上的中线等于斜边的一半【考点】O1:命题与定理.【分析】根据矩形的判定、全等三角形的判定、平行线的性质、直角三角形的性质进行判断,即可得出结论.【解答】解:∵对角线相等的平行四边形是矩形,∴选项A错误;∵有两边及一角相等的两个三角形不一定全等,∴选项B错误;∵两直线平行,内错角相等,∴选项C错误;∵直角三角形斜边上的中线等于斜边的一半,∴选项D正确;故选:D.10.如图,在△ABC中,∠C=90°,AB=8,AC=4,以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F,再分别以点E、F为圆心,大于EF长为半径画弧,两弧交于点G,作射线AG,交BC于点D,则D到AB的距离为()A.2 B.4 C.D.【考点】N2:作图—基本作图;KF:角平分线的性质.【分析】如图,作DH⊥AB于H,设DM=DC=x,由S△ABC =S△ADC+S△ADB,可得AC•BC=•AB•DM+CD•AC,列出方程即可解决问题.【解答】解:如图,作DH⊥AB于H,由题意∠DAC=∠DAB,∵DC⊥AC.DM⊥AB,∴DC=DM,设DM=DC=x,在Rt△ABC中,BC==4,∵S△ABC =S△ADC+S△ADB,∴AC•BC=•AB•DM+CD•AC,∴•4•4=•8•x+•4•x,∴x=,∴DM=,故选C.11.如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为6,则阴影部分的面积为()A.12πB.6πC.9πD.18π【考点】MM:正多边形和圆;MO:扇形面积的计算.【分析】根据图形分析可得求图中阴影部分面积实为求扇形部分面积,将原图阴影部分面积转化为扇形面积求解即可.【解答】解:如图所示:连接BO,CO,OA,∵正六边形ABCDEF内接于⊙O,∴△OAB,△OBC都是等边三角形,∴∠AOB=∠OBC=60°,∴S△ABC =S△OBC,∴S阴=S扇形OBC∴图中阴影部分面积为:S扇形OBC==6π.故选B.12.在边长为2的正方形ABCD中,P为AB上的一动点,E为AD中点,FE交CD 延长线于Q,过E作EF⊥PQ交BC的延长线于F,则下列结论:①△APE≌△DQE;②PQ=EF;③当P为AB中点时,CF=;④若H为QC的中点,当P从A移动到B时,线段EH扫过的面积为,其中正确的是()A.①②B.①②④C.②③④D.①②③【考点】LE:正方形的性质;KD:全等三角形的判定与性质.【分析】利用正方形的性质、全等三角形的性质、勾股定理等知识一一判断即可;【解答】解:①∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠A=∠B=90°,∵∠A=∠EDQ,∠AEP=∠QED,AE=ED,∴△AEP≌△DEQ,故①正确,②作PG⊥CD于G,EM⊥BC于M,∴∠PGQ=∠EMF=90°,∵EF⊥PQ,∴∠PEF=90°,∴∠PEN+∠NEF=90°,∵∠NPE+∠NEP=90°,∴∠NPE=∠NEF,∵PG=EM,∴△EFM≌△PQG,∴EF=PQ,故②正确,③连接QF.则QF=PF,PB2+BF2=QC2+CF2,设CF=x,则(2+x)2+12=32+x2,∴x=1,故③错误,④当P在A点时,Q与D重合,QC的中点H在DC的中点S处,当P运动到B 时,QC的中点H与D重合,故EH扫过的面积为△ESD的面积的一半为,故④正确.故选B.二、填空题(每题3分,共12分)13.分解因式:5x2﹣20=5(x+2)(x﹣2).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式5,再对余下的多项式利用平方差公式继续分解.【解答】解:5x2﹣20,=5(x2﹣4),=5(x+2)(x﹣2).故答案为:5(x+2)(x﹣2).14.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,∠B=70°,则∠DAC=20°.【考点】M5:圆周角定理.【分析】由AD是⊙O的直径,得到∠ACD=90°,根据圆周角定理得到∠D=∠B=70°,于是得到结论.【解答】解:∵AD是⊙O的直径,∴∠ACD=90°,∵∠D=∠B=70°,∴∠DAC=20°,故答案为:20°.15.在实数范围内规定新运算“△”其规则是:a△b=a+b﹣1,则x△(x﹣2)>3的解集为x>3.【考点】C6:解一元一次不等式;2C:实数的运算.【分析】根据新定义列出不等式,依据不等式的基本性质解之可得.【解答】解:根据题意,得:x+x﹣2﹣1>3,即2x﹣3>3,∴2x>6,解得:x>3,故答案为:x>3.16.如图,A,B是反比例函数y=图象上的两点,过点A作AC⊥y轴,垂足为C,AC交OB于点D.若D为OB的中点,△AOD的面积为3,则k的值为8.【考点】G5:反比例函数系数k的几何意义;G7:待定系数法求反比例函数解析式.【分析】先设点D坐标为(a,b),得出点B的坐标为(2a,2b),A的坐标为(4a,b),再根据△AOD的面积为3,列出关系式求得k的值.【解答】解:设点D坐标为(a,b),∵点D为OB的中点,∴点B的坐标为(2a,2b),∴k=4ab,又∵AC⊥y轴,A在反比例函数图象上,∴A的坐标为(4a,b),∴AD=4a﹣a=3a,∵△AOD的面积为3,∴×3a×b=3,∴ab=2,∴k=4ab=4×2=8.故答案为:8三、解答题(共7小题,共52分)17.计算:|﹣9|+(﹣3)0﹣(﹣)﹣2+sin45°.【考点】2C:实数的运算;15:绝对值;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】本题要分清运算顺序,先把绝对值,乘方计算出来,再进行加减运算.【解答】解:原式=9+1﹣9+×=1+1=2.18.分式的化简求值:•(1+),其中x=﹣2.【考点】6D:分式的化简求值.【分析】根据分式的加法和乘法可以化简题目中的式子,然后将x的值代入即可解答本题.【解答】解:•(1+)==x+2,当x=﹣2时,原式=﹣2+2=.19.原创大型文化情感类节目《朗读者》在中央电视台综合频道、综艺频道播出后引起社会各界强烈反响,小明想了解本小区居民对《朗读者》的看法,进行了一次抽样调查,把居民对《朗读者》的看法分为四个层次:A.非常喜欢;B.较喜欢;C.一般;D.不喜欢;并将调查结果绘制了图1和图2两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)本次调查的居民总人数为=300人;(2)将图1和图2补充完整;(3)图2中“C”层次所在扇形的圆心角的度数为72°;(4)估计该小区4000名居民中对《朗读者》的看法表示喜欢(包括A层次和B 层次)的大约有2800人.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据A层次的有90人,所占的百分比是30%,据此即可求得调查的总人数;(2)利用总人数乘以对应的百分比求得C层次的人数,然后用总人数减去其它层次的人数求得B层次的人数,从而补全直方图;(3)利用360°乘以对应的百分比求得所在扇形的圆心角的度数;(4)利用总人数乘以对应的比例即可求解.【解答】解:(1)抽查的总人数是90÷30%=300(人);故答案为:300,;(2)C层次的人数是300×20%=60(人),则B层次的人数是300﹣90﹣60﹣30=120(人),所占的百分比是=40%,D层次所占的百分比是=10%.;(3)“C”层次所在扇形的圆心角的度数是360°×=72°;故答案为:72°;(4)对“广场舞”的看法表示赞同(包括A层次和B层次)的大约4000×=2800(人).答:估计对“广场舞”的看法表示赞同的大约有2800人.故答案为:2800.20.深圳市民中心广场上有旗杆如图①所示,某学校兴趣小组测量了该旗杆的高度,如图②,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为16米,落在斜坡上的影长CD为8米,AB⊥BC;同一时刻,太阳光线与水平面的夹角为45°.1米的标杆EF竖立在斜坡上的影长FG为2米,求旗杆的高度.【考点】SA:相似三角形的应用;U5:平行投影.【分析】如图作CM∥AB交AD于M,MN⊥AB于N,根据=,求出CM,在RT△AMN中利用等腰直角三角形的性质求出AN即可解决问题.【解答】解:如图作CM∥AB交AD于M,MN⊥AB于N.∵△MCD∽△PQR,∴=,即=,CM=4(米),又∵MN∥BC,AB∥CM,∴四边形MNBC是矩形,∴MN=BC=16米,BN=CM=4米.∵在直角△AMN中,∠AMN=45°,∴AN=MN=16米,∴AB=AN+BN=20米.21.为提升青少年的身体素质,深圳市在全市中小学推行“阳光体育”活动,某学校为满足学生的需求,准备再购买一些篮球和足球,已知用800元购买篮球的个数比购买足球的个数少2个,足球的单价为篮球单价的.(1)求篮球、足球的单价分别为多少元?(2)如果计划用不多于5200元购买篮球、足球共60个,那么至少要购买多少个足球?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【分析】(1)设篮球的单价为x元/个,则足球的单价为0.8x元/个,根据用800元购买篮球的个数比购买足球的个数少2个,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)购买m个足球,则购买(60﹣m)个篮球,根据总价=单价×购买数量结合总价钱不多于5200元,即可得出关于m的一元一次不等式,解之即可得出m 的取值范围,取其内的最小正整数即可.【解答】解:(1)设篮球的单价为x元/个,则足球的单价为0.8x元/个,根据题意得: +2=,解得:x=100,经检验,x=100是原方程的解,∴0.8x=80.答:篮球的单价为100元/个,足球的单价为80元/个.(2)设购买m个足球,则购买(60﹣m)个篮球,根据题意得:80m+100(60﹣m)≤5200,解得:m≥40.答:至少要购买40个足球.22.如图,在△OAB中,OA=OB,C为AB中点,以O为圆心,OC长为半径作圆,AO与⊙O交于点E,直线OB与⊙O交于点F和D,连接EF、CF与OA交于点G.(1)求证:直线AB是⊙O的切线;(2)求证:OD•EG=OG•EF;(3)若AB=8,BD=2,求⊙O的半径.【考点】ME:切线的判定与性质;KH:等腰三角形的性质;S9:相似三角形的判定与性质.【分析】(1)利用等腰三角形的性质,证明OC⊥AB即可;(2)证明OC∥EG,推出△GOC∽△GEF即可解决问题;(3)设OC=OD=r,在Rt△BOC中,根据OB2=OC2+BC2,列出方程即可解决问题;【解答】(1)证明:∵OA=OB,AC=BC,∴OC⊥AB,∴⊙O是AB的切线.(2)证明:∵OA=OB,AC=BC,∴∠AOC=∠BOC,∵OE=OF,∴∠OFE=∠OEF,∵∠AOB=∠OFE+∠OEF,∴∠AOC=∠OEF,∴OC∥EF,∴△GOC∽△GEF,∴=,∵OD=OC,∴OD•EG=OG•EF.(3)解:设OC=OD=r,在Rt△BOC中,∵OB2=OC2+BC2,∴(r+2)2=r2+42,∴r=3,∴⊙O的半径为3.23.已知抛物线y=ax2+bx﹣3经过A(﹣1,0)、B(3,0)两点,与y轴交于C 点.(1)求抛物线的解析式;(2)如图①,抛物线的对称轴上有一点P,且点P在x轴下方,线段PB绕点P 顺时针旋转90°,点B的对应点B′恰好落在抛物线上,求点P的坐标.(3)如图②,直线y=x+交抛物线于A、E两点,点D为线段AE上一点,连接BD,有一动点Q从B点出发,沿线段BD以每秒1个单位的速度运动到D,再沿DE以每秒2个单位的速度运动到E,问:是否存在点D,使点Q从点B到E的运动时间最少?若存在,请求出点D的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)将点A和点B的坐标代入抛物线的解析式可得到关于a、b的方程组,从而可求得a、b的值;(2)先求得抛物线的对称轴为x=1.过点B′作B′M⊥对称轴,垂足为M.然后证明△BNP≌△PMB,依据全等三角形的性质可知BN=PM=3,PN=MB′.设P(1,m),则点B′的坐标为(1﹣m,m﹣2),最后将点B′的坐标代入抛物线的解析式求解即可;(3)过点E作EF∥x轴,作点DF∥y轴,则∠EFD=90°.先求得点G的坐标,则可得到OG=,在Rt△AGO中,利用特殊锐角三角函数值可求得∠A的度数,则∠FED=30°,依据函数30°直角三角形的性质可得到DF=DE.则动点Q沿DE 以每秒2个单位的速度运动到E与它一每秒1个单位的速度运动东F所用时间相等.故此当BD+DF最短时,所用时间最短,依据两点之间线段最短可知当B,D,F在一条直线上时,所用时间最短,此时BE⊥BF,则点D的横坐标为3,然后由函数解析式再求得点D的纵坐标即可.【解答】解:(1)将点A和点B的坐标代入得:,解得:a=1,b=﹣2.∴抛物线的解析式为y=x2﹣2x﹣3.(2)∵A(﹣1,0),B(3,0),∴抛物线的对称轴为x=1.如图所示:过点B′作B′M⊥对称轴,垂足为M.∵∠BPB′=90°,∴∠BPN+∠B′PM=90°.∵∠BPN+∠PBN=90°,∴∠PNB=∠B′PM.在△BPN和△PB′M中.∴△BNP≌△PMB.∴BN=PM=3,PN=MB′.设P(1,m),则点B′的坐标为(1﹣m,m﹣2).将点B′的坐标代入抛物线的解析式得:(1﹣m)2﹣2(1﹣m)﹣3=m﹣2,解得:m1=﹣1,m2=2.∵点P在x轴的下方,∴m=﹣1.∴P(1,﹣1).(3)存在.如图所示:过点E作EF∥x轴,作点DF∥y轴,则∠EFD=90°.将x=0代入直线AE的解析式得y=,∴OG=.∴tan∠GAO=.∴∠FEA=∠GAO=30°.∴DF=DE.∴动点Q沿DE以每秒2个单位的速度运动到E与它一每秒1个单位的速度运动东F所用时间相等.∴当BD+DF最短时,所用时间最短.∴当B,D,F在一条直线上时,所用时间最短.∴点D的横坐标为3.将x=3代入直线AE的解析式得:y=.∴D(3,).。

广东省深圳市2017年中考数学模拟试卷(一) 及参考答案

广东省深圳市2017年中考数学模拟试卷(一)    及参考答案

不变,且与x轴交于C,D两点(C在D的左侧),给出下列结论:①c<3;②当x<﹣3时,y随x的增大而增大;③若点D的
横坐标最大值为5,则点C的横坐标最小值为﹣5;④当四边形ACDB为平行四边形时,
.其中正确的是( )
A . ②④ B . ②③ C . ①③④ D . ①②④ 12. 如图,在矩形ABCD中,O为AC中点,EF过O点且EF⊥AC分别交DC于F,交AB于E,点G是AE中点且∠AOG=3 0°,则下列结论正确的个数为( ) ⑴DC=3OG;(2)OG= BC;(3)△OGE是等边三角形;(4)S△AOE= SABCD .
广东省深圳市2017年中考数学模拟试卷(一)
一、选择题
1. ﹣3的倒数是( ) A . ﹣ B . C . ﹣3 D . 3 2. 石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m,这个数用科学记数法表示正确的是( )
A . 3.4×10﹣9 B . 0.34×10﹣9 C . 3.4×10﹣10 D . 3.4×10﹣11 3. 下列四个几何体中,主视图是三角形的是( )
若CD=AC,∠A=50°,则∠ACB的度数为( )
A . 90° B . 95° C . 100° D . 105° 10. 观察如图所示前三个图形及数的规律,则第四个□的数是 ( )
A. B.3C. D.
11. 点A,B的坐标分别为(﹣2,3)和(1,3),抛物线y=ax2+bx+c(a<0)的顶点在线段AB上运动时,形状保持
A.
B.
C.
D.
4. 下列运算中,正确的是( ) A . 4x﹣x=2x B . 2x•x4=x5 C . x2y÷y=x2 D . (﹣3x)3=﹣9x3 5. 一条葡萄藤上结有五串葡萄,每串葡萄的粒数如图所示(单位:粒).则这组数据的中位数为( )

2017届深圳市中考一模模拟测试数学试卷含答案

2017届深圳市中考一模模拟测试数学试卷含答案

2017届深圳市中考一模模拟拟测试数学一、选择题(本题共有12小题,每小题3分,共36分)1.﹣4的倒数是()A、-4 B、4 C、1/4 D、-1/42.如图是五个相同的小正方体搭成的几何体,这几个几何体的主视图是()A、B、C、D、3. 下列计算正确的是() A、2a3+a2=3a5B、(3a)2=6a2C、(a+b)2=a2+b2D、2a2•a3=2a54. 下列图形中既是轴对称图形又是中心对称图形的是()A、B、C、D、5. 据测算,世博会召开时,上海使用清洁能源可减少二氧化碳排放约16万吨,将16万吨用科学记数法表示为()A、1.6×103吨B、1.6×104吨C、1.6×105吨D、1.6×106吨6. 如图,AB∥CD,∠ABE=60°,∠D=50°,则∠E的度数为()A、40°B、30°C、20°D、10°7. 某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人( ) A、赚16元B、赔16元C、不赚不赔D、无法确定8. 某班级第一小组7名同学积极捐出自己的零花钱支持地震灾区,他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是()A、50元,20元B、50元,40元C、50元,50元D、55元,50元9.如图,观察二次函数y=ax2+bx+c的图象,下列结论:①a+b+c>0,②2a+b>0,③b2﹣4ac>0,④ac>0.其中正确的是()A 、①②B 、①④C 、②③D 、③④10. 如图,正六边形ABCDEF 内接于⊙O,半径为4,则这个正六边形的边心距OM 和的长分别为( )A 、2,3/2πB 、2,πC 、2,3πD 、2,4π11. 如图,在▱ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E .若BF=6,AB=5,则AE 的长为( )A 、4 B 、6 C 、8 D 、1012. 如图,G ,E 分别是正方形ABCD 的边AB ,BC 的点,且AG=CE ,AE⊥EF,AE=EF ,现有如下结论:①BE=GE ; ②△AGE≌△ECF; ③∠FCD=45°; ④△GBE∽△ECH,其中,正确的结论有( )A 、1个 B 、2个 C 、3个 D 、4个11题图 12题图二、填空题(本题共有4小题,每小题3分,共12分) 13. 因式分解:a 3﹣4a= ________.14. 从﹣3、1、﹣2这三个数中任取两个不同的数,积为正数的概率是________15. 用同样大小的黑色五角星按图所示的方式摆图案,按照这样的规律摆下去,第99个图案需要的黑色五角星________ 个.16. 如图,△ABC 的内心在x 轴上,点B 的坐标是(2,0),点C 的坐标是(0,﹣2),点A 的坐标是(﹣3,b ),反比例函数y=(x <0)的图象经过点A ,则k= ________.三、解答题(本题共7小题,其中第17题6分,第18题6分,第19题7分,第20题8分,第21题8分,第22题8分,第23题9分,共52分) 17. 计算:sin30°+(﹣1)2013﹣+(π﹣3)0﹣cos60° .18. 解不等式组并写出它的所有非负整数解.⎪⎩⎪⎨⎧-≤-〉+x x x x 996344932319. 丹东是个美丽的旅游城市,吸引了很多外地游客,某旅行社对今年五月接待的外地游客来丹东旅游的首选景点做了一次抽样调查,根据收集到的数据,绘制成如下统计图(不完整),请根据图中提供的信息,完成下列问题:(1)此次共调查了人(2)请将两幅统计图补充完整.(3)“凤凰山”部分的圆心角是度。

2017年深圳市南山区十校联考中考第一次模拟数学试题含答案

2017年深圳市南山区十校联考中考第一次模拟数学试题含答案

深圳市2017中考南山区十校联考第一次模拟考试一、选择题(本部分共12小题,每小题3分,共36分) 1.下列四个数中,无理数是( ) A .32-B. 3-C. 0D. 2- 2.下列全国各地地铁标志图中,既是轴对称图形又是中心对称图形的是( ) A . B . C . D .3.过度包装既浪费资源又污染环境,据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量,把数据3120000用科学记数法表示为( ) A .312×104 B .0.312×107 C .3.12×106 D .3.12×107 4.下列运算结果为a 6的是( )A .a 2+a 3B .a 2•a 3C .(﹣a 2)3D .a 8÷a 25.如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B=30°,则∠C 的度数为( ) A .50° B .40° C .30° D .20° 6.请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB 的示意图,要说明∠D′O′C′=∠DOC,需要证明△D′O′C′≌△DOC,则这两个三角形全等的依据是( )A .边边边B .边角边C .角边角D .角角边 7.对于双曲线y=,当x >0时,y 随x 的增大而减小,则m 的取值范围为( )A .m >0B .m >1C .m <0D .m <18.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y 人.下面所列的方程组正确的是( ) A .B .C .D .9.如图,AB 为⊙O 的直径,点C 在⊙O 上,若∠OCA=50°,AB=4,则的长为( ) A .π B .π C .πD .π10.下列命题正确是( )A. 点(1,3)关于x 轴的对称点是1(-,)3.B. 函数 32+-=x y 中,y 随x 的增大而增大.C. 若一组数据3,x ,4,5,6的众数是3,则中位数是3.D. 同圆中的两条平行弦所夹的弧相等. 11.下列图形中都是由同样大小的小圆圈按一定规律组成的,其中第1个图形中一共有6个小圆圈,第2个图形中一共有9个小圆圈,第3个图形中一共有12个小圆圈,…,按此规律排列,则第7个图形中小圆圈的个数为( )A .21B .24C .27D .3012.如图,将矩形ABCD 沿AF 折叠,使点D 落在BC 边的点E 处,过点E 作EG ∥CD 交AF 于点G ,连接DG .给出以下结论: ①DG=DF ; ②四边形EFDG 是菱形; ③AF GF EG ⨯=212;④当,6=AG 52=EG 时,BE 的长为5512,其中正确的结论个数是( )A. 1B. 2C. 3D. 4 二、填空题(本题共4小题,每小题3分,共12分)13.分解因式:2x 2-8= . 14.小明用S 2=101[(x 1﹣3)2+(x 2﹣3)2+…+(x 10﹣3)3]计算一组数据的方差,那么x 1+x 2+x 3+…+x 10= .15.如图,测量河宽AB (假设河的两岸平行),在C 点测得∠ACB=30°,D 点测得∠ADB=60°,又CD=60m ,则河宽AB 为 m (结果保留根号).16.如图,10个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l 将这10个正方形分成面积相等的两部分,则该直线l 的解析式为 .三、解答题(本大题共7题,其中17题5分,18题5分,19题7分,20题7分,21题8分,22题10分,23题10分,共52分)17.(5分)计算:()()32cos60332π-︒--+---.18.(5分)先化简,再求值:(1﹣)÷,其中a=﹣1.19.(本题8分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表: 组别 成绩x 分频数(人数)第1组 50≤x <60 6第2组 60≤x <708第3组 70≤x <8014 第4组 80≤x <90a第5组 90≤x <100 10 请结合图表完成下列各题:(1)①求表中a 的值; ②频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.20.(本题7分)如图,在矩形OABC 中,OA=3,OC=2,F 是AB 上的一个动点(F 不与A ,B 重合),过点F的反比例函数y=(k >0)的图象与BC 边交于点E . (1)当F 为AB 的中点时,求该函数的解析式;(2)当k 为何值时,△EFA 的面积最大,最大面积是多少?频数(人数)50 60 70 80 90 100 测试成绩16 128 421.(本题8分)某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商城准备一次购进这两种家电共100台,设购进电冰箱x 台,这100台家电的销售总利润为y 元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,请分析合理的方案共有多少种?并确定获利最大的方案以及最大利润.22.(本题9分)已知,如图(1),PAB 为⊙O 的割线,直线PC 与⊙O 有公共点C , 且PB PA PC ⨯=2,(1)求证: ① PBC PCA ∠=∠; ② 直线PC 是⊙O 的切线;(2)如图(2) , 作弦CD ,使,AB CD ⊥ 连接AD 、BC,若6,2==BC AD ,求⊙O 的半径;(3)如图(3),若⊙O 的半径为2,10=PO ,2=MO ,090=∠POM ,⊙O 上是否存在一点Q , 使得QM PQ 22+有最小值?若存在,请求出这个最小值;若不存在,说明理由。

2017深圳中考数学模拟试卷十套

2017深圳中考数学模拟试卷十套

中考数学模拟测试卷一一、选择题(共10小题,每题3分,计30分.每题只有一个选项是符合题意的)1.32-的倒数为 【 】 A . 23- B .23 C .32 D . 32-2.下面四个几何体中,同一几何体的主视图和俯视图相同的共有 【 】A 、1个B 、2个C 、3个D 、4个3.我国第六次人口普查显示,全国人口为1370536875人,将那个总人口数(保留三个有效数字)用科学计数法表示为 【 】A 、 91037.1⨯B 、71037.1⨯ C 、81037.1⨯ D 、 101037.1⨯4、以下四个点,在正比例函数X Y 52-=的图像上的点是 【 】 A 、( 2, 5 ) B 、( 5, 2) C 、(2,-5) D 、 ( 5 , -2 )5.在△ABC 中,假设三边BC ,CA,AB 知足 BC :CA :AB=5:12:13,那么cosB= 【 】 A 、125B 、512 C 、135 D 、13126.某校男子男球队10名队员的身高(厘米)如下:179,182,170,174,188,172,180,195,185,182,那么这组数据的中位数和众数别离是 【 】正方体 圆锥 球 圆柱 (第二题图)A 、181,181B 、182,181C 、180,182D 、181,1827.同一平面内的两个圆,他们的半径别离为2和3 ,圆心距为d,当51 d 时,两圆的位置关系是 【 】A 、外离B 、相交C 、内切或外切D 、内含 8.如图,过y 轴上任意一点p ,作x 轴的平行线,别离与反比例函数xy x y 24=-=和的图像交于A 点和B 点,假设C 为x 轴上任意一点,连接AC,BC 那么△ABC 的面积为 【 】九、 如图,在ABCD 中EF 别离是AD 、 CD 边上的点,连接BE 、AF,他们相交于G ,延长BE 交CD 的延长线于点H,那么图中的相似三角形有 【 】 A 、2对 B 、3对 C 、4对 D 、5对10、假设二次函数c x x y +-=62的图像过)321,23(),,2(),,1(Y C Y B Y A +-,那么321,,y y y 的大小关系是第Ⅱ卷(非选择题 共70分)二、填空题(共4小题,每题3分,计12分) 11.计算:23-= .(结果保留根号)12.如图,AC ∥BD,AE 平分∠BAC 交BD 于点E ,假设0641=∠ 那么=∠1 .13、分解因式:=+-a ab ab 442.14、如图,在梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD ,假设AD=3,BC=7,那么梯形ABCD 面积的最大值(第8题图) (第9题图)三、解答题(共8小题,计58分.解许诺写出进程) 15.(此题总分值5分)解分式方程:xx x -=--2312416.(此题总分值6分)某校有三个年级,各年级的人数别离为七年级600人,八年级540人,九年级565人,学校为了解学生生活适应是不是符合低碳观念,在全校进行了一次问卷调查,假设学生生活适应符合低碳观念,那么称其为“低碳族”;不然称其为“非低碳族”,通过统计,将全校的低碳族人数依照年级绘制成如下两幅统计图:(1)依照图①、图②,计算八年级“低碳族”人数,并补全上面两个统计图;(2)小丽依据图①、图②提供的信息通过计算以为,与其他两个年级相较,九年级的“低碳族”人数在今年级全部学生中所占的比例较大,你以为小丽的判定正确吗?说明理由。

2017年深圳市中考一模数学试卷【七校联考】

2017年深圳市中考一模数学试卷【七校联考】

【七校联考】2016_2017学年深圳市中考一模数学试卷一、选择题(共12小题;共60分)1. 的计算结果是A. B. C. D.2. 如图是小明用八块小正方体搭的积木,该几何体的俯视图是A. B.C. D.3. 下列计算正确的是A. B. C. D.4. 一个盒子装有除颜色外其它均相同的个红球和个白球,现从中任取个球,则取到的是一个红球,一个白球的概率为A. B. C. D.5. 为了了解某班学生每天使用零花钱的情况,随机调查了名同学,结果如下,下列说法正确的是每天零花钱元人数A. 众数是元B. 平均数是元C. 极差是元D. 中位数是元6. 直线,直角三角形如图放置,若,则的度数为A. B. C. D.7. 已知,是反比例函数图象上的两个点,当时,,那么一次函数的图象不经过A. 第一象限B. 第二象限C. 第三象限D. 第四象限8. 下列说法正确的是A. 将抛物线向左平移个单位后,再向下平移个单位,则此时抛物线的解析式是B. 方程有两个不相等的实数根C. 平行四边形既是中心对称图形又是轴对称图形D. 平分弦的直径垂直于弦,并且平分这条弦所对的两条弧9. 若整数同时满足不等式与,则该整数是A. B. C. D. 和10. 初三学生周末去距离学校的某地游玩,一部分学生乘慢车先行小时后,另一部分学生乘快车前往,结果他们同时到达目的地,已知快车的速度是慢车的倍,求慢车的速度,设慢车的速度是,根据题意列方程为A. B. C. D.11. 如图,内接于,于点,若,,的半径,则的值为A. B. C. D.12. 已知菱形在平面直角坐标系的位置如图所示,,,,点是对角线上的一个动点,,当周长最小时,点的坐标为A. B. C. D.二、填空题(共4小题;共20分)13. 将分解因式得.14. 含角的直角三角板如图放置在平面直角坐标系中,其中,,则直线的解析式为.15. 如图,正方形的面积为,对角线交于点,以,为邻边做平行四边形,对角线交于点,以,为邻边做平行四边形,,依此类推,则平行四边形的面积为.16. 如图,反比例函数的图象上有一动点,连接并延长交图象的另一支于点,在第二象限内有一点,满足,当点运动时,点始终在函数的图象上运动,,则关于的方程的解为.三、解答题(共7小题;共91分)17. 计算:.18. 先化简,再求值:,其中,.19. 小宇想测量位于池塘两端的、两点的距离.他沿着与直线平行的道路行走,当行走到点处,测得,再向前行走米到点处,测得.若直线与之间的距离为米,求、两点的距离.20. 为了解南山荔枝的销售情况,某部门对该市场的三种荔枝品种A,B,C在月上半月的销售进行调查统计,绘制成如下两个统计图(均不完整),请你结合图中的信息,解答下列问题:(1)该市场月上半月共销售这三种荔枝多少吨?(2)补全图的统计图并计算图中A所在扇形的圆心角的度数;(3)某商场计划六月下半月进货A,B,C 三种荔枝共千克,根据该市场月上半月的销售情况,求该商场应购进C品种荔枝多少千克比较合理?21. 四边形的对角线交于点,且,,以为直径的过点.(1)求证:四边形是菱形;(2)若的延长线与圆相切于点,已知直径,求阴影部分的面积.22. 某商场经营A种品牌的玩具,购进时的单价是元,据市场调查,在一段时间内,销售单价是元时,销售量是件,而销售单价每涨元,就会少售出件玩具.(1)不妨设该种品牌玩具的销售单价为元,请用含的代数式表示该玩具的销售量;(2)若玩具厂规定该品牌玩具销售单价不低于元,且商场要完成不少于件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?(3)该商场计划将()中所得的利润的一部分资金用于采购一批B种玩具并转手出售,根据市场调查准备两种方案,方案①:如果月初出售,可获利,并可用本和利再投资C种玩具,到月末又可获利;方案②:如果只到月末出售可直接获利,但要另支付仓库保管费元,请问商场如何使用这笔资金,采用哪种方案获利较多?23. 如图,抛物线经过点和,对称轴为直线.(1)求抛物线的解析式;(2)抛物线与轴的另一个交点为,点在线段上,已知,若动点从出发沿线段以每秒个单位长度的速度匀速运动,同时另一动点以某一速度从出发沿线段匀速运动,问是否存在某一时刻,使线段被直线垂直平分?若存在,求出点的运动速度;若不存在,请说明理由.(3)在()的前提下,过点的直线与轴的负半轴交于点,是否存在点,使以,,为顶点的三角形与相似?如果存在,请直接写出的坐标;若不存在,请说明理由.答案第一部分1. D2. D3. D4. C5. B6. C7. C8. A9. B 10. B11. D 12. D 第二部分13. 14.15.16. , 第三部分17.原式18.原式当 , 时,原式19. 作 于点 ,作 于点 ,如图所示,由题意可得, 米, 米, , ,米,米,米, 即 、 两点的距离是 米. 20. (1) (吨).答:该市场 月上半月共销售这三种荔枝 吨. (2) C 品种的零售量为 (吨),图中A所在扇形的圆心角的度数为,补全统计图如下:(3)(千克).答:该商场应购进C品种荔枝千克比较合理.21. (1),,四边形是平行四边形,为直径,,即,四边形是菱形;(2)连接,为的切线,,,,四边形是菱形,,过作于,则,,四边形是菱形,,,,,扇形阴影半圆扇形22. (1)根据题意,得:销售单价为元时,销售量为.(2)由题意可得,利润,化简,得,即与的函数关系式是:,,当时,;获得最大利润为元.(3)设取用资金为元,则:;;当时,即,解得,此时获利相同;当时,即,解得,此时方案①获利多;当时,即,解得,此时方案②获利多.23. (1)设抛物线的解析式为,把点和代入得到解得,.(2)令得到,解得或,,,,,,,如图,过点作于点,于点,,,被垂直平分,,,,或.,,,,.即点的速度为每秒个单位长度.(3)存在.或.。

广东省深圳市2017年中考数学试题(含答案)

广东省深圳市2017年中考数学试题(含答案)

图160° 12深圳市2017年初中毕业生学业考试数 学 试 卷第一部分 选择题(本部分共12小题,每小题3分,共36分。

每小题给出的4个选项中,其中只有一个是正确的)1.-3的倒数是( )A .3B .-3C .13 D .132.第八届中国(深圳)文博会以总成交额143 300 000 000 元再创新高,将数143 300 000 000 用科学记数法表示为( )A .1.433×1010B .1.433×1011C .1.433×1012D .0.1433×1012 3.下列图形中,既是轴对称图形,又是中心对称图形的是( )A B C D 4.下列运算正确的是( )A .2a +3b = 5abB .a 2·a 3= a 5C .(2a ) 3 = 6a 3D .a 6+a 3= a 9 5.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较这两名学生成绩的( )A .平均数B .频数分布C .中位数D .方差 6.如图1所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形, 则∠1+∠2的度数为( )A .120°B .180°C .240°D .300°7.端午节吃粽子是中华名族的传统习俗,妈妈买了2只红豆粽、3只碱水粽、5只咸肉粽,粽子除内部馅料不同外其它均相同,小颖随意吃一个,吃到红豆粽的概率是( ) A .110B .15C .13D .128.下列命题:①方程x 2=x 的解是x =1 ②4的平方根是2③有两边和一角相等的两个三角形全等图3图2 ④连接任意四边形各边中点的四边形是平行四边形 其中真命题有( )A .4个B .3个C .2个D .1个9.如图2,⊙C 过原点,且与两坐标轴分别交于点A 、点B ,点A 的坐标为(0,3), M 是第三象限内OMB 上一点,∠BMO =120°,则⊙C 的半径为( ) A .6 B .5 C .3D .10.已知点P (a +1,2a -3)关于x 轴的对称点在第一象限,则a 的取值范围是( ) A .a < -1 B .-1 < a <32C .-32< a < 1 D .a >3211.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图3,此时测得地面上的影长为8米,坡面上的影长为4米。

2017年广东省深圳市中考数学试卷含答案.docx

2017年广东省深圳市中考数学试卷含答案.docx

2017 年广东省深圳市中考数学试卷一、选择题1.﹣ 2 的绝对值是()A.﹣ 2 B.2C.﹣D.2.图中立体图形的主视图是()A.B.C.D.3.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达 8200000 吨,将 8200000 用科学记数法表示为()A.8.2×105B.82×105 C.8.2×106 D.82×1074.观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.5.下列选项中,哪个不可以得到l1∥ l2?()A.∠ 1=∠2 B.∠ 2=∠3 C.∠ 3=∠5 D.∠ 3+∠4=180°6.不等式组的解集为()A.x>﹣ 1 B.x<3 C. x<﹣ 1 或 x>3D.﹣ 1< x< 37.一球鞋厂,现打折促销卖出330 双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程()A.10%x=330 B.(1﹣10%) x=330C.( 1﹣ 10%)2x=330 D.(1+10%)x=330 8.如图,已知线段 AB,分别以 A、B 为圆心,大于 AB 为半径作弧,连接弧的交点得到直线 l,在直线 l 上取一点 C,使得∠ CAB=25°,延长 AC 至 M,求∠ BCM的度数为()A.40°B.50°C.60°D.70°9.下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣ 2)关于 y 轴的对称点为(﹣ 3, 2)D.抛物线 y=x2﹣4x+2017 对称轴为直线 x=210.某共享单车前 a 公里1 元,超过 a 公里的,每公里 2 元,若要使使用该共享单车50%的人只花 1 元钱, a 应该要取什么数()A.平均数B.中位数C.众数D.方差11.如图,学校环保社成员想测量斜坡 CD 旁一棵树 AB 的高度,他们先在点 C 处测得树顶 B 的仰角为 60°,然后在坡顶 D 测得树顶 B 的仰角为 30°,已知斜坡CD的长度为 20m,DE的长为 10cm,则树 AB 的高度是()m.A.20B.30 C. 30D. 4012.如图,正方形 ABCD的边长是 3,BP=CQ,连接 AQ,DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,下列结论:① AQ⊥DP;② OA2=OE?OP;③ S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是()A.1B.2C.3D.4二、填空题13.因式分解:a3﹣4a=.14.在一个不透明的袋子里,有 2 个黑球和 1 个白球,除了颜色外全部相同,任意摸两个球,摸到 1 黑1 白的概率是.15.阅读理解:引入新数i,新数i 满足分配律,结合律,交换律,已知i2=﹣1,那么( 1+i)?(1﹣i) =.16.如图,在 Rt△ABC中,∠ ABC=90°,AB=3,BC=4, Rt△MPN,∠ MPN=90°,点 P 在 AC上, PM 交 AB 于点 E,PN 交 BC于点 F,当 PE=2PF时, AP=.三、解答题17.计算: |﹣2|﹣2cos45°+(﹣1)﹣2+.18.先化简,再求值:(+)÷,其中x=﹣1.19.深圳市某学校抽样调查, A 类学生骑共享单车, B 类学生坐公交车、私家车等, C 类学生步行, D 类学生(其它),根据调查结果绘制了不完整的统计图.类型频数频率A30xB180.15C m0.40D n y( 1)学生共人, x=, y=;( 2)补全条形统计图;( 3)若该校共有 2000 人,骑共享单车的有人.20.一个矩形周长为56 厘米.(1)当矩形面积为 180 平方厘米时,长宽分别为多少?(2)能围成面积为 200 平方米的矩形吗?请说明理由.2017 年中考数学真题试题21.如图,一次函数y=kx+b 与反比例函数y= (x>0)交于 A(2,4), B( a,1),与 x 轴, y 轴分别交于点 C,D.(1)直接写出一次函数 y=kx+b 的表达式和反比例函数 y= (x>0)的表达式;(2)求证: AD=BC.22.如图,线段 AB 是⊙ O 的直径,弦 CD⊥AB 于点 H,点 M 是上任意一点,AH=2,CH=4.(1)求⊙ O 的半径 r 的长度;(2)求 sin∠CMD;(3)直线 BM 交直线 CD于点 E,直线 MH 交⊙ O 于点 N,连接 BN 交 CE于点 F,求 HE?HF的值.2017 年中考数学真题试题23.如图,抛物线 y=ax2+bx+2 经过点 A(﹣ 1,0),B( 4,0),交 y 轴于点 C;( 1)求抛物线的解析式(用一般式表示);( 2)点 D 为y 轴右侧抛物线上一点,是否存在点 D 使S△ABC= S△ABD?若存在请直接给出点 D 坐标;若不存在请说明理由;( 3)将直线 BC绕点 B 顺时针旋转 45°,与抛物线交于另一点E,求 BE的长.2017 年中考数学真题试题2017 年广东省深圳市中考数学试卷参考答案与试题解析一、选择题1.﹣ 2 的绝对值是()A.﹣ 2 B.2C.﹣D.【考点】 15:绝对值.【分析】根据绝对值的定义,可直接得出﹣ 2 的绝对值.【解答】解: | ﹣2| =2.故选 B.2.图中立体图形的主视图是()A.B.C.D.【考点】 U2:简单组合体的三视图.【分析】根据主视图是从正面看的图形解答.【解答】解:从正面看,共有两层,下面三个小正方体,上面有一个小正方体,在中间.故选 A.3.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达 8200000 吨,将 8200000 用科学记数法表示为()A.8.2×105B.82×105 C.8.2×106 D.82×107【考点】 1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a× 10n的形式,其中 1≤a< 10,n 为整数.确||定n 的值时,要看把原数变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n是负数.【解答】解:将 8200000 用科学记数法表示为: 8.2×106.故选: C.4.观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.【考点】 R5:中心对称图形; P3:轴对称图形.【分析】根据中心对称图形的定义旋转 180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、是中心对称图形,不是轴对称图形,选项不符合题意;B、是轴对称图形,不是中心对称图形,选项不符合题意;C、是中心对称图形,不是轴对称图形,选项不符合题意;D、是中心对称图形,也是轴对称图形,选项符合题意.故选 D.5.下列选项中,哪个不可以得到l1∥ l2?()A.∠ 1=∠2 B.∠ 2=∠3 C.∠ 3=∠5 D.∠ 3+∠4=180°【考点】 J9:平行线的判定.【分析】分别根据平行线的判定定理对各选项进行逐一判断即可.【解答】解: A、∵∠ 1=∠2,∴ l1∥l2,故本选项错误;B、∵∠ 2=∠ 3,∴ l1∥l2,故本选项错误;C、∠ 3=∠5 不能判定 l1∥l2,故本选项正确;D、∵∠ 3+∠ 4=180°,∴ l1∥l2,故本选项错误.故选 C.6.不等式组的解集为()A.x>﹣ 1 B.x<3 C. x<﹣ 1 或 x>3D.﹣ 1< x< 3【考点】 CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式 3﹣ 2x<5,得: x>﹣ 1,解不等式 x﹣ 2< 1,得: x<3,∴不等式组的解集为﹣ 1<x<3,故选: D.7.一球鞋厂,现打折促销卖出330 双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程()A.10%x=330 B.(1﹣10%) x=330C.( 1﹣ 10%)2x=330D.(1+10%)x=330【考点】 89:由实际问题抽象出一元一次方程.【分析】设上个月卖出x 双,等量关系是:上个月卖出的双数×(1+10%) =现在卖出的双数,依此列出方程即可.【解答】解:设上个月卖出x 双,根据题意得(1+10%) x=330.故选 D.8.如图,已知线段AB,分别以 A、B 为圆心,大于AB 为半径作弧,连接弧的交点得到直线 l,在直线 l 上取一点 C,使得∠ CAB=25°,延长 AC 至 M,求∠ BCM的度数为()2017 年中考数学真题试题A.40°B.50°C.60°D.70°【考点】 N2:作图—基本作图; KG:线段垂直平分线的性质.【分析】根据作法可知直线 l 是线段 AB 的垂直平分线,故可得出 AC=BC,再由三角形外角的性质即可得出结论.【解答】解:∵由作法可知直线l 是线段 AB 的垂直平分线,∴AC=BC,∴∠ CAB=∠CBA=25°,∴∠ BCM=∠CAB+∠ CBA=25°+25°=50°.故选 B.9.下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣ 2)关于 y 轴的对称点为(﹣ 3, 2)D.抛物线 y=x2﹣4x+2017 对称轴为直线 x=2【考点】 O1:命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解: A、五边形外角和为360°是真命题,故 A 不符合题意;B、切线垂直于经过切点的半径是真命题,故 B 不符合题意;C、(3,﹣ 2)关于 y 轴的对称点为(﹣ 3, 2)是假命题,故C 符合题意;D、抛物线 y=x2﹣4x+2017 对称轴为直线 x=2 是真命题,故 D 不符合题意;故选: C.10.某共享单车前 a 公里 1 元,超过 a 公里的,每公里 2 元,若要使使用该共享单车 50%的人只花 1 元钱, a 应该要取什么数()A.平均数B.中位数C.众数D.方差【考点】 WA:统计量的选择.【分析】由于要使使用该共享单车 50%的人只花 1 元钱,根据中位数的意义分析即可【解答】解:根据中位数的意义,故只要知道中位数就可以了.故选 B.11.如图,学校环保社成员想测量斜坡 CD 旁一棵树 AB 的高度,他们先在点 C 处测得树顶 B 的仰角为 60°,然后在坡顶 D 测得树顶 B 的仰角为 30°,已知斜坡CD的长度为 20m,DE的长为 10cm,则树 AB 的高度是()m.A.20B.30 C. 30D. 40【考点】 TA:解直角三角形的应用﹣仰角俯角问题.【分析】先根据 CD=20米,DE=10m得出∠ DCE=30°,故可得出∠ DCB=90°,再由∠BDF=30°可知∠ DBE=60°,由 DF∥AE 可得出∠ BGF=∠BCA=60°,故∠GBF=30°,所以∠ DBC=30°,再由锐角三角函数的定义即可得出结论.【解答】解:在Rt△CDE中,∵ CD=20m,DE=10m,∴ sin∠DCE= = ,∴∠ DCE=30°.∵∠ ACB=60°,DF∥ AE,∴∠ BGF=60°∴∠ ABC=30°,∠ DCB=90°.∵∠ BDF=30°,∴∠ DBF=60°,∴∠ DBC=30°,∴ BC===20 m,∴ AB=BC?sin60°=20 ×=30m.故选 B.12.如图,正方形 ABCD的边长是 3,BP=CQ,连接 AQ,DP 交于点 O,并分别与边CD, BC 交于点 F, E,连接 AE,下列结论:① AQ⊥DP;② OA2=OE?OP;③ S△AOD=S四边形OECF;④当 BP=1时, tan∠OAE=,其中正确结论的个数是()A.1B.2C.3D.4【考点】 S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质; T7:解直角三角形.【分析】由四边形 ABCD是正方形,得到AD=BC,∠ DAB=∠ ABC=90°,根据全等三角形的性质得到∠ P=∠ Q,根据余角的性质得到AQ⊥DP;故①正确;根据相似三角形的性质得到AO2=OD?OP,由 OD≠OE,得到 OA2≠OE?OP;故②错误;根据全等三角形的性质得到CF=BE,DF=CE,于是得到 S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD四边形OECF;故③正确;根据相似三角形的性质得到BE= ,求得 QE=,=SQO= , OE=,由三角函数的定义即可得到结论.【解答】解:∵四边形 ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵ BP=CQ,∴AP=BQ,在△ DAP与△ ABQ中,,∴△ DAP≌△ ABQ,∴∠ P=∠ Q,∵∠ Q+∠ QAB=90°,∴∠ P+∠ QAB=90°,∴∠ AOP=90°,∴AQ⊥ DP;故①正确;∵∠ DOA=∠AOP=90,∠ADO+∠ P=∠ADO+∠DAO=90°,∴∠ DAO=∠P,∴△ DAO∽△ APO,∴,∴AO2=OD?OP,∵ AE>AB,∴AE>AD,∴OD≠ OE,∴OA2≠OE?OP;故②错误;在△ CQF与△ BPE中,∴△ CQF≌△ BPE,∴CF=BE,∴DF=CE,在△ ADF与△ DCE中,,∴△ ADF≌△ DCE,∴S△ADF﹣ S△DFO=S△DCE﹣S△DOF,即S△AOD=S四边形OECF;故③正确;∵BP=1, AB=3,∴ AP=4,∵△ AOP∽△ DAP,∴,∴BE= ,∴ QE= ,∵△ QOE∽△ PAD,∴,∴QO= ,OE= ,∴AO=5﹣QO= ,∴tan∠ OAE= = ,故④正确,故选 C.二、填空题313.因式分解: a ﹣4a= a(a+2)(a﹣2).【分析】首先提取公因式 a,进而利用平方差公式分解因式得出即可.32【解答】解: a ﹣ 4a=a(a ﹣ 4)=a(a+2)(a﹣2).故答案为: a( a+2)( a﹣ 2).14.在一个不透明的袋子里,有 2 个黑球和 1 个白球,除了颜色外全部相同,任意摸两个球,摸到 1 黑 1 白的概率是.【考点】 X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所摸。

2017年广东省深圳市中考数学试卷(含答案解析版)

2017年广东省深圳市中考数学试卷(含答案解析版)

2017年广东省深圳市中考数学试卷一、选择题1.(3分)﹣2的绝对值是()A.﹣2 B.2 C.﹣D.2.(3分)图中立体图形的主视图是()A. B. C.D.3.(3分)随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为()A.8.2×105B.82×105 C.8.2×106D.82×1074.(3分)观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.5.(3分)下列选项中,哪个不可以得到l1∥l2?()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°6.(3分)不等式组的解集为()A.x>﹣1 B.x 3 C.x ﹣1或x>3 D.﹣1x 37.(3分)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330 B.(1﹣10%)x=330 C.(1﹣10%)2x=330 D.(1+10%)x=3308.(3分)如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°9.(3分)下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+2017对称轴为直线x=210.(3分)某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A.平均数B.中位数C.众数D.方差11.(3分)如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10cm,则树AB的高度是()m.A.20B.30 C.30D.4012.(3分)如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE?OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题13.(3分)因式分解:a3﹣4a=.14.(3分)在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是.15.(3分)阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)?(1﹣i)=.16.(3分)如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=.三、解答题17.(5分)计算:|﹣2|﹣2cos45°+(﹣1)﹣2+.18.(6分)先化简,再求值:(+)÷,其中x=﹣1.19.(7分)深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.类型频数频率A 30 xB 18 0.15C m 0.40D n y(1)学生共人,x=,y=;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有人.20.(8分)一个矩形周长为56厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方米的矩形吗?请说明理由.21.(8分)如图,一次函数y=kx+b与反比例函数y=(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y=(x>0)的表达式;(2)求证:AD=BC.22.(9分)如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE?HF的值.23.(9分)如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y 轴于点C;(1)求抛物线的解析式(用一般式表示);(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC=S△ABD?若存在请直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.2017年广东省深圳市中考数学试卷参考答案与试题解析一、选择题1.(3分)(2017?深圳)﹣2的绝对值是()A.﹣2 B.2 C.﹣D.【考点】15:绝对值.【分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解答】解:|﹣2|=2.故选B.【点评】本题考查了绝对值的定义,关键是利用了绝对值的性质.2.(3分)(2017?深圳)图中立体图形的主视图是()A. B. C.D.【考点】U2:简单组合体的三视图.【分析】根据主视图是从正面看的图形解答.【解答】解:从正面看,共有两层,下面三个小正方体,上面有一个小正方体,在中间.故选A.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.3.(3分)(2017?深圳)随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为()A.8.2×105B.82×105 C.8.2×106D.82×107【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值 1时,n是负数.【解答】解:将8200000用科学记数法表示为:8.2×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017?深圳)观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、是中心对称图形,不是轴对称图形,选项不符合题意;B、是轴对称图形,不是中心对称图形,选项不符合题意;C、是中心对称图形,不是轴对称图形,选项不符合题意;D、是中心对称图形,也是轴对称图形,选项符合题意.故选D.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.5.(3分)(2017?深圳)下列选项中,哪个不可以得到l1∥l2?()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°【考点】J9:平行线的判定.【分析】分别根据平行线的判定定理对各选项进行逐一判断即可.【解答】解:A、∵∠1=∠2,∴l1∥l2,故本选项错误;B、∵∠2=∠3,∴l1∥l2,故本选项错误;C、∠3=∠5不能判定l1∥l2,故本选项正确;D、∵∠3+∠4=180°,∴l1∥l2,故本选项错误.故选C.【点评】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.6.(3分)(2017?深圳)不等式组的解集为()A.x>﹣1 B.x 3 C.x ﹣1或x>3 D.﹣1x 3【考点】CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3﹣2x5,得:x>﹣1,解不等式x﹣21,得:x3,∴不等式组的解集为﹣1x3,故选:D.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.(3分)(2017?深圳)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330 B.(1﹣10%)x=330 C.(1﹣10%)2x=330 D.(1+10%)x=330【考点】89:由实际问题抽象出一元一次方程.【分析】设上个月卖出x双,等量关系是:上个月卖出的双数×(1+10%)=现在卖出的双数,依此列出方程即可.【解答】解:设上个月卖出x双,根据题意得(1+10%)x=330.故选D.【点评】本题考查了由实际问题抽象出一元一次方程,理解题意找到等量关系是解决本题的关键.8.(3分)(2017?深圳)如图,已知线段AB,分别以A、B为圆心,大于AB 为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°【考点】N2:作图—基本作图;KG:线段垂直平分线的性质.【分析】根据作法可知直线l是线段AB的垂直平分线,故可得出AC=BC,再由三角形外角的性质即可得出结论.【解答】解:∵由作法可知直线l是线段AB的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选B.【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法是解答此题的关键.9.(3分)(2017?深圳)下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+2017对称轴为直线x=2【考点】O1:命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、五边形外角和为360°是真命题,故A不符合题意;B、切线垂直于经过切点的半径是真命题,故B不符合题意;C、(3,﹣2)关于y轴的对称点为(﹣3,2)是假命题,故C符合题意;D、抛物线y=x2﹣4x+2017对称轴为直线x=2是真命题,故D不符合题意;故选:C.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.(3分)(2017?深圳)某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A.平均数B.中位数C.众数D.方差【考点】WA:统计量的选择.【分析】由于要使使用该共享单车50%的人只花1元钱,根据中位数的意义分析即可【解答】解:根据中位数的意义,故只要知道中位数就可以了.故选B.【点评】本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.11.(3分)(2017?深圳)如图,学校环保社成员想测量斜坡CD旁一棵树AB 的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10cm,则树AB的高度是()m.A.20B.30 C.30D.40【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】先根据CD=20米,DE=10m得出∠DCE=30°,故可得出∠DCB=90°,再由∠BDF=30°可知∠DBE=60°,由DF∥AE可得出∠BGF=∠BCA=60°,故∠GBF=30°,所以∠DBC=30°,再由锐角三角函数的定义即可得出结论.【解答】解:在Rt△CDE中,∵CD=20m,DE=10m,∴sin∠DCE==,∴∠DCE=30°.∵∠ACB=60°,DF∥AE,∴∠BGF=60°∴∠ABC=30°,∠DCB=90°.∵∠BDF=30°,∴∠DBF=60°,∴∠DBC=30°,∴BC===20m,∴AB=BC?sin60°=20×=30m.故选B.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.12.(3分)(2017?深圳)如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE?OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是()A.1 B.2 C.3 D.4【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质;T7:解直角三角形.【分析】由四边形ABCD是正方形,得到AD=BC,∠DAB=∠ABC=90°,根据全等三角形的性质得到∠P=∠Q,根据余角的性质得到AQ⊥DP;故①正确;根据相似三角形的性质得到AO2=OD?OP,由OD≠OE,得到OA2≠OE?OP;故②错误;根据全等三角形的性质得到CF=BE,DF=CE,于是得到S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四边形OECF;故③正确;根据相似三角形的性质得到BE=,求得QE=,QO=,OE=,由三角函数的定义即可得到结论.【解答】解:∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵BP=CQ,∴AP=BQ,在△DAP与△ABQ中,,∴△DAP≌△ABQ,∴∠P=∠Q,∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;故①正确;∵∠DOA=∠AOP=90,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴,∴AO2=OD?OP,∵AE>AB,∴AE>AD,∴OD≠OE,∴OA2≠OE?OP;故②错误;在△CQF与△BPE中,∴△CQF≌△BPE,∴CF=BE,∴DF=CE,在△ADF与△DCE中,,∴△ADF≌△DCE,∴S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四边形OECF;故③正确;∵BP=1,AB=3,∴AP=4,∵△AOP∽△DAP,∴,∴BE=,∴QE=,∵△QOE∽△PAD,∴,∴QO=,OE=,∴AO=5﹣QO=,∴tan∠OAE==,故④正确,故选C.【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,三角函数的定义,熟练掌握全等三角形的判定和性质是解题的关键.二、填空题13.(3分)(2017?深圳)因式分解:a3﹣4a=a(a+2)(a﹣2).【考点】55:提公因式法与公式法的综合运用.【专题】44 :因式分解.【分析】首先提取公因式a,进而利用平方差公式分解因式得出即可.【解答】解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).【点评】此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.14.(3分)(2017?深圳)在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是.【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所摸到1黑1白的情况,再利用概率公式即可求得答案.【解答】解:依题意画树状图得:∵共有6种等可能的结果,所摸到的球恰好为1黑1白的有4种情况,∴所摸到的球恰好为1黑1白的概率是:=.故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.解题时注意:概率=所求情况数与总情况数之比.15.(3分)(2017?深圳)阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)?(1﹣i)=2.【考点】4F:平方差公式;2C:实数的运算.【专题】23 :新定义.【分析】根据定义即可求出答案.【解答】解:由题意可知:原式=1﹣i2=1﹣(﹣1)=2故答案为:2【点评】本题考查新定义型运算,解题的关键是正确理解新定义,本题属于基础题型.16.(3分)(2017?深圳)如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt △MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=3.【考点】S9:相似三角形的判定与性质.【分析】如图作PQ⊥AB于Q,PR⊥BC于R.由△QPE∽△RPF,推出==2,可得PQ=2PR=2BQ,由PQ∥BC,可得AQ:QP:AP=AB:BC:AC=3:4:5,设PQ=4x,则AQ=3x,AP=5x,BQ=2x,可得2x+3x=3,求出x即可解决问题.【解答】解:如图作PQ⊥AB于Q,PR⊥BC于R.∵∠PQB=∠QBR=∠BRP=90°,∴四边形PQBR是矩形,∴∠QPR=90°=∠MPN,∴∠QPE=∠RPF,∴△QPE∽△RPF,∴==2,∴PQ=2PR=2BQ,∵PQ∥BC,∴AQ:QP:AP=AB:BC:AC=3:4:5,设PQ=4x,则AQ=3x,AP=5x,BQ=2x,∴2x+3x=3,∴x=,∴AP=5x=3.故答案为3.【点评】本题考查相似三角形的判定和性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.三、解答题17.(5分)(2017?深圳)计算:|﹣2|﹣2cos45°+(﹣1)﹣2+.【考点】2C:实数的运算;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】因为2,所以|﹣2|=2﹣,cos45°=,=2,分别计算后相加即可.【解答】解:|﹣2|﹣2cos45°+(﹣1)﹣2+,=2﹣﹣2×+1+2,=2﹣﹣+1+2,=3.【点评】本题考查了有关负整数指数、特殊的三角函数值、乘方等知识的计算,属于常考题型,此类计算题要细心,熟练掌握特殊角的三角函数值,明确实数的运算法则.18.(6分)(2017?深圳)先化简,再求值:(+)÷,其中x=﹣1.【考点】6D:分式的化简求值.【分析】根据分式的运算法则即可求出答案.【解答】解:当x=﹣1时,原式=×=3x+2=﹣1【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(7分)(2017?深圳)深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.类型频数频率A 30 xB 18 0.15C m 0.40D n y(1)学生共120人,x=0.25,y=0.2;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有500人.【考点】VC:条形统计图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据B类学生坐公交车、私家车的人数以及频率,求出总人数,再根据频数与频率的关系一一解决即可;(2)求出m、n的值,画出条形图即可;(3)用样本估计总体的思想即可解决问题;【解答】解:(1)由题意总人数==120人,x==0.25,m=120×0.4=48,y=1﹣0.25﹣0.4﹣0.15=0.2,n=120×0.2=24,(2)条形图如图所示,(3)2000×0.25=500人,故答案为500.【点评】本题考查条形图、频率分布表、样本估计总体等知识,解题的关键是记住频率=频数总人数,频率之和为1,属于中考常考题型.20.(8分)(2017?深圳)一个矩形周长为56厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方米的矩形吗?请说明理由.【考点】AD:一元二次方程的应用.【分析】(1)设出矩形的一边长为未知数,用周长公式表示出另一边长,根据面积列出相应方程求解即可.(2)同样列出方程,若方程有解则可,否则就不可以.【解答】解:(1)设矩形的长为x厘米,则另一边长为(28﹣x)厘米,依题意有x(28﹣x)=180,解得x1=10(舍去),x2=18,28﹣x=28﹣18=10.故长为18厘米,宽为10厘米;(2)设矩形的长为x厘米,则宽为(28﹣x)厘米,依题意有x(28﹣x)=200,即x2﹣28x+200=0,则△=282﹣4×200=784﹣8000,原方程无解,故不能围成一个面积为200平方厘米的矩形.【点评】考查一元二次方程的应用;用到的知识点为:长方形的长=周长的一半﹣宽.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.21.(8分)(2017?深圳)如图,一次函数y=kx+b与反比例函数y=(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y=(x>0)的表达式;(2)求证:AD=BC.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)先确定出反比例函数的解析式,进而求出点B的坐标,最后用待定系数法求出直线AB的解析式;(2)由(1)知,直线AB的解析式,进而求出C,D坐标,构造直角三角形,利用勾股定理即可得出结论.【解答】解:(1)将点A(2,4)代入y=中,得,m=2×4=8,∴反比例函数的解析式为y=,将点B(a,1)代入y=中,得,a=8,∴B(8,1),将点A(2,4),B(8,1)代入y=kx+b中,得,,∴,∴一次函数解析式为y=﹣x+5;(2)∵直线AB的解析式为y=﹣x+5,∴C(10,0),D(0,5),如图,过点A作AE⊥y轴于E,过点B作BF⊥x轴于F,∴E(0,4),F(8,0),∴AE=2,DE=1,BF=1,CF=2,在Rt△ADE中,根据勾股定理得,AD==,在Rt△BCF中,根据勾股定理得,BC==,∴AD=BC.【点评】此题是反比例函数与一次函数交点坐标问题,主要考查了待定系数法,勾股定理,解(1)的关键是掌握待定系数法求函数的解析式,解(2)的关键是构造直角三角形.22.(9分)(2017?深圳)如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE?HF的值.【考点】MR:圆的综合题.【分析】(1)在Rt△COH中,利用勾股定理即可解决问题;(2)只要证明∠CMD=△COA,求出sin∠COA即可;(3)由△EHM∽△NHF,推出=,推出HE?HF=HM?HN,又HM?HN=AH?HB,推出HE?HF=AH?HB,由此即可解决问题.【解答】解:(1)如图1中,连接OC.∵AB⊥CD,∴∠CHO=90°,在Rt△COH中,∵OC=r,OH=r﹣2,CH=4,∴r2=42+(r﹣2)2,∴r=5.(2)如图1中,连接OD.∵AB⊥CD,AB是直径,∴==,∴∠AOC=∠COD,∵∠CMD=∠COD,∴∠CMD=∠COA,∴sin∠CMD=sin∠COA==.(3)如图2中,连接AM.∵AB是直径,∴∠AMB=90°,∴∠MAB+∠ABM=90°,∵∠E+∠ABM=90°,∴∠E=∠MAB,∴∠MAB=∠MNB=∠E,∵∠EHM=∠NHFM∴△EHM∽△NHF,∴=,∴HE?HF=HM?HN,∵HM?HN=AH?HB,∴HE?HF=AH?HB=2?(10﹣2)=16.【点评】本题考查圆综合题、垂径定理、勾股定理、相似三角形的判定和性质、相交弦定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考压轴题.23.(9分)(2017?深圳)如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC=S△ABD?若存在请直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.【考点】HF:二次函数综合题.【分析】(1)由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)由条件可求得点D到x轴的距离,即可求得D点的纵坐标,代入抛物线解析式可求得D点坐标;(3)由条件可证得BC⊥AC,设直线AC和BE交于点F,过F作FM⊥x轴于点M,则可得BF=BC,利用平行线分线段成比例可求得F点的坐标,利用待定系数法可求得直线BE解析式,联立直线BE和抛物线解析式可求得E点坐标,则可求得BE的长.【解答】解:(1)∵抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)由题意可知C(0,2),A(﹣1,0),B(4,0),∴AB=5,OC=2,∴S△ABC=AB?OC=×5×2=5,∵S△ABC=S△ABD,∴S△ABD=×5=,设D(x,y),∴AB?|y|=×5|y|=,解得|y|=3,当y=3时,由﹣x2+x+2=3,解得x=1或x=2,此时D点坐标为(1,3)或(2,3);当y=﹣3时,由﹣x2+x+2=﹣3,解得x=﹣2(舍去)或x=5,此时D点坐标为(5,﹣3);综上可知存在满足条件的点D,其坐标为(1,3)或(2,3)或(5,﹣3);(3)∵AO=1,OC=2,OB=4,AB=5,∴AC==,BC==2,∴AC2+BC2=AB2,∴△ABC为直角三角形,即BC⊥AC,如图,设直线AC与直线BE交于点F,过F作FM⊥x轴于点M,由题意可知∠FBC=45°,∴∠CFB=45°,∴CF=BC=2,∴=,即=,解得OM=2,=,即=,解得FM=6,∴F(2,6),且B(4,0),设直线BE解析式为y=kx+m,则可得,解得,∴直线BE解析式为y=﹣3x+12,联立直线BE和抛物线解析式可得,解得或,∴E(5,﹣3),∴BE==.【点评】本题为二次函数的综合应用,涉及待定系数法、三角形面积、勾股定理及其逆定理、平行线分线段成比例、函数图象的交点、等腰直角三角形的性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中求得D点的纵坐标是解题的关键,在(3)中由条件求得直线BE的解析式是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,有一定的难度.。

2017深圳中考数学真题试卷(含答案和详解)

2017深圳中考数学真题试卷(含答案和详解)

【答案】 D
5. 下列选项中,哪个不可以得到 l1∥l 2?(

2
C. 1 10% x 330
【考点】 一元一次方程,销售利润问题 【解析】 根据这个月的球鞋数量列等式关系. 【答案】 D
D . 1 10% x 330
1 8. 如图,已知线段 AB ,分别以 A、B 为圆心,大于 AB 为半径作弧,连接弧的
2
交点得到直线 l ,在直线 l 上取一点 C,使得∠ CAB = 25°,延长 AC 至 M ,
求∠ BCM 的度数(

A .40°
B. 50
C. 60° 【考点】 尺规作图 【解析】 根据尺规作图可知 【答案】 B 9. 下列哪一个是假命题(
D. 70° CA =CB ,再利用三角形外角和求出∠
EB DA 3
4
4
13
则 QO OE QE PA AD PD
4 ,解得 QO
13 , OE
39 , AO = 5- QO = 12 ,∴ tan OAE
OE
13 ,故④正确.
5
5
20
5
OA 16
【答案】 C
【考点】 三角函数的实际应用
【解析】 在 Rt△CDE 中, CD =20, DE= 10,∴ sin DCE
【答案】 D
1 x 3.
7. 一球鞋厂,现打折促销卖出 330 双球鞋,比上个月多卖 10%,设上个月卖出 x 双,列出方程(

A . 10%x 330
B . 1 10% x 330
3. 随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)
运输量达 8200000 吨,将 8200000 用科学计数法表示为(

广东省深圳市2017年中考数学真题试卷(含答案)

广东省深圳市2017年中考数学真题试卷(含答案)

2017年广东省深圳市中考数学试卷一、选择题1.-2的绝对值是( )A .-2B .2C .−12D .122.图中立体图形的主视图是( )A .B .C .D .3.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为( ) A .8.2×105B .82×105C .8.2×106D .82×1074.观察下列图形,其中既是轴对称又是中心对称图形的是( )A .B .C .D .5.下列选项中,哪个不可以得到 l 1//l 2 ?( )A .∠1=∠2B .∠2=∠3C .∠3=∠5D .∠3+∠4=180∘第5题图 第8题图6.不等式组 {3−2x <5x −2<1 的解集为( ) A .x >−1B .x <3C .x <−1或 x >3D .−1<x<37.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出 x 双,列出方程( )A .10%x =330B .(1−10%)x =330C .(1−10%)2x =330D .(1+10%)x =3308.如图,已知线段 AB ,分别以 A 、B 为圆心,大于 12AB 为半径作弧,连接弧的交点得到直线 l ,在直线 l 上取一点 C ,使得 ∠CAB =25∘ ,延长 AC 至 M ,求 ∠BCM 的度数为( ) A .40∘B .50∘C .60∘D .70∘9.下列哪一个是假命题()A.五边形外角和为360∘B.切线垂直于经过切点的半径C.(3,−2)关于y轴的对称点为(−3,2)D.抛物线y=x2−4x+2017对称轴为直线x=2 10.某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A.平均数B.中位数C.众数D.方差11.如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60∘,然后在坡顶D测得树顶B的仰角为30∘,已知斜坡CD的长度为20m,DE的长为10m,则树AB的高度是()mA.20√3B.30C.30√3D.40第11题图第12题图12.如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE.下列结论:①AQ⊥DP;②OA2=OE·OP;③SΔAOD=S四边形OECF;④当BP=1时,tan∠OAE=1316.其中正确结论的个数是()A.1B.2C.3D.4二、填空题13.因式分解:a3−4a=.14.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是.15.阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=−1,那么(1+i)·(1−i)=.16.如图,在RtΔABC中,∠ABC=90∘,AB=3,BC=4,RtΔMPN,∠MPN=90∘,点P 在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=.三、解答题17.计算|√2−2|−2cos45∘+(−1)−2+√8.18.先化简,再求值:(2xx−2+xx+2)÷xx2−4,其中x=−1.19.深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.类型频数频率A30xB180.15C m0.40D n y(1)学生共人,x=,y=;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有人.20.一个矩形周长为56厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方厘米的矩形吗?请说明理由.21.如图一次函数y=kx+b与反比例函数y=mx(x>0)交于A(2,4)、B(a,1),与x轴,y轴分别交于点C、D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y=mx(x>0)的表达式;(2)求证:AD=BC.22.如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是弧CBD上任意一点,AH= 2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE·HF的值.23.如图,抛物线y=ax2+bx+2经过点A(−1,0),B(4,0),交y 轴于点C:(1)求抛物线的解析式(用一般式表示).(2)点D为y轴右侧抛物线上一点,是否存在点D使SΔABC=23SΔABD,若存在请直接给出点D坐标;若不存在请说明理由.(3)将直线BC绕点B顺时针旋转45∘,与抛物线交于另一点E,求BE的长.答案解析部分1.【答案】B【解析】【解答】解:依题可得:|-2|=2.故答案为B.【分析】根据正数和0的绝对值是它们本身,负数的绝对值是它的相反数.2.【答案】A【解析】【解答】解:主视图是指从前往后看所得到的平面图形.由此可得出正确答案.故答案为A.【分析】由主视图的定义即可选出正确答案.3.【答案】C【解析】【解答】解:8200000=8.2×106.故答案为C.【分析】科学记数法的定义:将一个数字表示成a×10n的形式;其中1≤|a|<10,n为整数.由此可得出正确答案.4.【答案】D【解析】【解答】解:A为中心对称图形,B为轴对称图形,C为中心对称图形,D是轴对称图形又是中心对称图形.故答案为D.【分析】轴对称图形:是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,这条直线就叫做对称轴;中心对称图形:如果把一个图形绕某一点旋转180度后能与自身重合,这个图形就是中心对称图形;根据它们的定义即可得出答案.5.【答案】C【解析】【解答】解:A. ∵∠1=∠2.∴l1//l2.B.∵∠2=∠3.∴l1//l2.C.∠3=∠5并不能得到l1//l2.D.∵∠3+∠4=180∠.∴l1//l2.故答案选C.【分析】根据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;从而得出答案.6.【答案】D【解析】【解答】解:解第一个不等式得:x>-1.解第二个不等式得:x<3.∴原不等式组的解集为:-1<x<3.故答案为D.【分析】解两个不等式,根据“大小小大取中间”,从而得出答案.7.【答案】D【解析】【解答】解:依题可得:x(1+10%)=330.故答案为D.【分析】根据题意即可列出方程.8.【答案】B【解析】【解答】解:依题可得:l是AB的垂直平分线,∴CA=CB,∵∠CAB=25°,∴∠CAB=∠CBA=25°∴∠BCM=25°+25°=50°.故答案为B.【分析】依题可得l是AB的垂直平分线,再由垂直平分线上的点到两端点的距离相等,从而得到∠CAB 为等腰三角形,在根据三角形的外角即可得出答案.9.【答案】C【解析】【解答】解:A.多边形的外角和为360°,故本选项正确.B.切线垂直于过切点的半径,故本选项正确.C.(3,-2)关于y的对称点为(-3,-2),故本选项错误.D.抛物线y=x2-4x+2017对称轴为直线x=2.故本选项正确.故答案为C.【分析】根据多边形的外角和定理,切线的性质,点的坐标特征,以及抛物线的顶点坐标公式即可得出答案.10.【答案】B【解析】【解答】解:中位数:一组数据按从小到大(或从大到小)的顺序依次排列,处在中间位置的一个数(或最中间两个数据的平均数);结合题意可知答案为B.【分析】根据中位数的定义即可得出答案.11.【答案】B【解析】【解答】解:在Rt∠DEC中,∵CD=20,DE=10.∴ ∠DCE=30°,∠CDE=60°.∴ ∠CDF=30°.又∵∠BDF=30°.∠BCA=60°.∴ ∠BCD=30°.∠BDC=60°.在Rt∠BCD中,∴ tan60°=BC DC.∴ BC=DCtan60°=20√3.在Rt∠BAC中,∴ sin60°=BA BC.∴ BA=BCsin60°=20√3×√32=30(m).故AB的高度为30m.【分析】依题可得CD=20,DE=10.∠BDF=30°.∠BCA=60°.在Rt∠BCD中和Rt∠BAC中,利用锐角三角函数即可求出CB,BA12.【答案】C【解析】【解答】解:①∵正方形ABCD 的边长是3,BP=CQ.∴∠DAP∠∠ABQ.∴∠P=∠Q.∴∠P+∠QAB=∠Q+∠QAB=90°.∴AQ∠DP.故①正确.②在Rt∠DAP中,AO∠DP.∴∠AOD∠∠POA∴AOPO=ODOA.∴OA2=PO.OD.∵OD≠OE.故②错误.③∵正方形ABCD 的边长是3,BP=CQ.∴∠QCF∠∠PBE.∴CF=BE.∵BC=DC.∴DF=CE.∴∠ADF∠∠DEC.∴S∠ADF-S∠DOF=S∠DEC-S∠DOF.∴S ΔAOD =S 四边形OECF. 故③正确.④∵BP=1时,AP=4. ∴∠AOP∠∠DAP. ∴PB EB =PA DA =43.BE=34 ∴QE=134∴∠QOP∠∠PAD.∴QO PA =OE AD =QE PD =1345. 解得QO=135,OE=3920,AO=5-QO=125∴tanOAE=OE OA =1316. 故④正确. 故答案为C.【分析】①由正方形 ABCD 的边长是3, BP=CQ 易证∠DAP∠∠ABQ ,可得∠P=∠Q ,∠P+∠QAB=∠Q+∠QAB=90°;AQ∠DP.故①正确.②在Rt∠DAP 中,AO∠DP 可得∠AOD∠∠POA ;根据相似三角形的性质可得OA 2=PO.OD.OD≠OE;故②错误.③由正方形 ABCD 的边长是3, BP=CQ 易证∠QCF∠∠PBE ;∠ADF∠∠DEC ;所以S ∠ADF -S ∠DOF =S ∠DEC -S ∠DOF ;即S ΔAOD =S 四边形OECF.故③正确.④由题可证∠AOP∠∠DAP ,求出BE=34,QE=134,从而得到∠QOP∠∠PAD ,利用相似三角形的性质易得QO=135,OE=3920,AO=5-QO=125;所以tanOAE=OE OA =1316;故④正确.13.【答案】a (a+2)(a-2)【解析】【解答】解:原式=a (a+2)(a-2).故答案为a (a+2)(a-2).【分析】根据因式分解的提公因式法和公式法中的平方差公式即可得出答案.14.【答案】23【解析】【解答】解:依题可得任意摸两个球的情况有:黑1白,黑1黑2,黑2白三种情况,摸到1黑1白的情况有2种,所以P=23.故答案为23.【分析】依题可得任意摸两个球的情况有:黑1白,黑1黑2,黑2白三种情况,摸到1黑1白的情况有2种,从而得出答案.15.【答案】2【解析】【解答】解:原式=1-i 2.∵i 2=-1.∴原式=1-(-1).=2. 故答案为2.【分析】根据平方差公式即可得出式子,再把i 2=-1代入即可求出答案.16.【答案】3【解析】【解答】解:如图:作PQ∠AB 于点Q ,PR∠BC 于点R ,∵∠ABC=∠MPN=90°. ∴∠PEB+∠PFB=180°. 又∵∠PEB+∠PEQ=180°. ∴∠PFB=∠PEQ. ∴∠QPE∠∠RPF. ∵PE=2PF. ∴PQ=2PR=2BQ. ∴∠AQP∠∠ABC.∴AQ :QP :AP=AB :BC :AC=3:4:5. 设PQ=4x ,∴AQ=3x ,AP=5x ,PR=BQ=2x. ∴AB=AQ+BQ=5x=3.∴x=35.∴AP=5x=3. 故答案为3.【分析】如图:作PQ∠AB 于点Q ,PR∠BC 于点R ,由题易得∠PFB=∠PEQ ;可得∠QPE∠∠RPF ;∠AQP∠∠ABC ;根据相似三角形的性质与已知条件即可求出AP.17.【答案】解:原式=2-√2-2×√22+1+2√2.=3.【解析】【分析】根据二次根式,负指数幂,绝对值,特殊角的三角函数值等性质计算即可得出答案.18.【答案】解:原式=2x (x+2)+x (x−2)(x−2)(x+2)×(x−2)(x+2)x =2x 2+4x+x 2−2x x =3x 2+2x x=3x+2.∵x=-1.∴原式=3×(-1)+2 =-1.【解析】【分析】根据分式的加减乘除运算法则即可化简该分式,将x 的值代入即可得出答案.19.【答案】(1)120;0.25;0.2(2)解:补全的条形统计图如下:(3)500【解析】【解答】解:(1)18÷0.15=120(人)x=30÷120=0.25.m=120×0.4=48.y=1-0,25-0.4-0.15=0.2.n=120×0.2=24(3)2000×0.25=500(人)【分析】(1)根据频数÷频率=总数;频率=频数÷总数;频数=总数×频率即可补全统计表.(2)由(1)中的数据即可补全条形统计图.(3)根据2000乘以共享单车的频率即可求出人数.20.【答案】(1)解:设长为x 厘米,则宽为28-x 厘米;依题可列方程得:x (28-x )=180.化简得:x 2-28x+180=0.解得:x 1=10(舍去),x 2=18.答:长为18厘米,宽为10厘米.(2)解:设长为y 厘米,宽为28-y 厘米,依题可列方程得:y (28-y )=200.化简得:y 2-28y+200=0.∵∠=b 2-4ac=282-4×200=-16<0.∴原方程无解.∴不能围成面积为200平方厘米的矩形.【解析】【分析】(1)设长为x 厘米,则宽为28-x 厘米;依题可列方程得:x (28-x )=180.求解即可得出答案.(2)设长为y 厘米,宽为28-y 厘米,依题可列方程得:y (28-y )=200.由根的判别式可知此方程无解;故不能围成面积为200平方厘米的矩形21.【答案】(1)解:将A (2,4)代入y=m x .∴ m=2×4=8.∴ 反比例函数解析式为y=8x.∴将B (a ,1)代入上式得a=8.∴B (8,1).将A (2,4),B (8,1)代入y=kx+b 得:{2k +b =48k +b =1. ∴{k =−12b =5∴一次函数解析式为:y=-12x+5. (2)证明:由(1)知一次函数解析式为y=-12x+5.∴C (10,0),D (0,5). 如图,过点A 作AE∠y 轴于点E ,过B 作BF∠x 轴于点F.∴E (0,4),F (8,0).∴AE=2,DE=1,BF=1,CF=2∴在Rt∠ADE 和Rt∠BCF 中,根据勾股定理得:AD=√AE 2+DE 2=√5,BC=√CF 2+BF 2=√5.∴AD=BC.【解析】【分析】(1)将A (2,4)代入y=m x 求出m 得到反比例函数解析式;再将B (a ,1)代入得a ,将A (2,4),B (8,1)代入y=kx+b 得一个二元一次方程组求解即可得一次函数解析式.(2)由(1)可得C (10,0),D (0,5);如图,过点A 作AE∠y 轴于点E ,过B 作BF∠x 轴于点F ;从而得到E (0,4),F (8,0);AE=2,DE=1,BF=1,CF=2在Rt∠ADE 和Rt∠BCF 中,根据勾股定理得AD=BC.22.【答案】(1)解:连接OC ,在Rt∠COH 中,∵CH=4,OH=r-2,OC=r.∴ (r-2)2+42=r 2.∴ r=5(2)解:∵弦CD 与直径AB 垂直,∴ 弧AD=弧AC=12弧CD. ∴ ∠AOC=12∠COD. ∴∠CMD=12∠COD. ∴ ∠CMD=∠AOC.∴sin∠CMD=sin∠AOC.在Rt∠COH 中,∴sin∠AOC=CH OC =45. ∴sin∠CMD=45. (3)解:连接AM ,∴∠AMB=90°.在Rt∠AMB 中,∴∠MAB+∠ABM=90°.在Rt∠EHB 中,∴∠E+∠ABM=90°.∴∠MAB=∠E.∵弧BM=弧BM ,∴∠MNB=∠MAB=∠E.∵∠EHM=∠NHF.∴∠EHM∠∠NHF∴HE HN =HM HF. ∴HE.HF=HM.HN.∵AB 与MN 交于点H ,∴HM.HN=HA.HB=HA.(2r-HA )=2×(10-2)=16.∴HE.HF=16.【解析】【分析】(1)连接OC ,在Rt∠COH 中,根据勾股定理即可r.(2)根据垂径定理即可得出弧AD=弧AC=12弧CD ;再根据同弧所对的圆周角等于圆心角的一半;得出 ∠CMD=∠AOC ;在Rt∠COH 中,根据锐角三角函数定义即可得出答案.(3)连接AM ,则∠AMB=90°.在Rt∠AMB 中和Rt∠EHB 中,根据同角的余角相等即可∠MAB=∠E ;再由三角形相似的判定和性质即可得HE.HF=HM.HN.又由AB 与MN 交于点H ,得出HM.HN=HA.HB=HA.(2r-HA )=2×(10-2)=16;从而求出HE.HF=16.23.【答案】(1)解:依题可得:{a −b +2=016a +4b +2=0解得:{a =−12b =32∴y=-12x 2+32x+2. (2)解:依题可得:AB=5,OC=2,∴S ∠ABC =12AB×OC=12×2×5=5. ∵S ∠ABC =23S ∠ABD. ∴S ∠ABD =32×5=152. 设D (m ,-12m 2+32m+2)(m >0). ∵S ∠ABD =12AB|y D |=152.| 12×5×|-12m 2+32m+2|=152. ∴m=1或m=2或m=-2(舍去)或m=5∴D 1(1,3),D 2(2,3),D 3(5,-3).(3)解:过C 作CF∠BC 交BE 于点F ;过点F 作FH∠y 轴于点H.∵∠CBF=45°,∠BCF=90°.∴CF=CB.∵∠BCF=90°,∠FHC=90°.∴∠HCF+∠BCO=90°,∠HCF+∠HFC=90°∴∠HFC=∠OCB.∵{∠CHF =∠COB ∠HFC =∠OCB FC =CB∴∠CHF∠∠BOC (AAS ).∴HF=OC=2,HC=BO=4,∴F (2,6).设直线BE 解析式为y=kx+b.∴{2k +b =64k +b =0解得{k =−3b =12∴直线BE 解析式为:y=-3x+12. ∴{y =−12x 2+32x +2y =−3x +12解得:x 1=5,x 2=4(舍去)∴E (5,-3).BE=√(5−4)2+(−3−0)2=√10.【解析】【分析】(1)用待定系数法求二次函数解析式.(2)依题可得:AB=5,OC=2,求出S ∠ABC =12AB×OC=12×2×5=5;根据S ∠ABC =23S ∠ABD ;求出S ∠ABD =32×5=152. 设D (m ,-12m 2+32m+2)(m >0).根据三角形的面积公式得到一个关于m 的方程,求解即可. (3)过C 作CF∠BC 交BE 于点F ;过点F 作FH∠y 轴于点H ;根据同角的余角相等得到∠HFC=∠OCB ;再根据条件得到∠CHF∠∠BOC (AAS );利用其性质可求出HF=OC=2,HC=BO=4,从而得到F (2,6);用待定系数法求直线BE 解析式;再把抛物线解析式和直线BE 解析式联立得到方程组求E 点坐标,再根据勾股定理求出BE 长.。

2017年广东省深圳市27校联考中考模拟数学试卷

2017年广东省深圳市27校联考中考模拟数学试卷

2017年广东省深圳市27校联考中考模拟数学试卷一、选择题。

1. -的倒数是()A、-B、C、-3D、3 +2.人民网北京1月24日电(记者杨迪)财政部23日公布了2016年财政收支数据。

全国一般公共预算收入159600亿元,将159600亿元用科学记数法表示为().A、1.596×105元B、1.596×1013元C、15.96×1013元D、0.1596×106元+3.下列四个图案中,具有一个共有的性质,那么下面四个数中,满足上述共有性质的一个是()A、228B、707C、808D、609+4.下列运算正确的是()A、8a﹣a=8B、(﹣a)4=a4C、a3 a2=a6D、(a-b)2=a2-b2+5.如图,现分别旋转两个标准的转盘,则转盘所转到的两个数字之积为奇数的概率是()A、B、C、D、+6.一家服装店将某种服装按进价提高50%后标价,又以八折销售,售价为360 元,则每件服装的进价是()A、168元B、300元C、60元D、400元+7.定义:点A(x,y)为平面直角坐标系内的点,若满足x=y,则把点A叫做“平衡点”.例如:M(1,1),N(﹣2,-2)都是“平衡点”.当﹣1≤x≤3时,直线y=2x+m上有“平衡点”,则m的取值范围是()A、0≤m≤1B、﹣1≤m≤0C、﹣3≤m≤3D、﹣3≤m≤1+8.如图,已知△ABC(AB<BC<AC),用尺规在AC上确定一点P,使PB+PC=AC ,则下列选项中,一定符合要求的作图痕迹是()A、B、C、D、+9.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF ∥AC,若△ABC的周长为36,则PD+PE+PF=()A、12B、8C、4D、3+10.如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ∥BD交BE于点Q,连接QD.设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是()A、B、C、D、+11.如图,□ABCD中,AE平分∠BAD,交BC于E,DE⊥AE,下列结论:①DE平分∠ADC;②E是BC的中点;③AD=2CD;④四边形ADCE的面积与△ABE的面积比是3:1,其中正确的结论的个数有()A、4B、3C、2D、1+二、填空题12.分解因式:2x2-8= 。

广东省深圳市中考数学一模试卷

广东省深圳市中考数学一模试卷

广东省深圳市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)数轴上在表示﹣2.5与的两点之间,表示整数的点个数是()A . 3B . 4C . 5D . 62. (2分)(2020·昆明) 由5个完全相同的正方体组成的几何体的主视图是()A .B .C .D .3. (2分) (2016高一下·重庆期中) 据科学家估计,地球的年龄大约是4600000000年,这个数用科学记数法表示为()A . 4.6×108B . 46×108C . 4.6×109D . 0.46×10104. (2分)(2017·深圳模拟) 下列运算正确的是()A . 3ab-2ab=1B . x4·x2=x6C . (x2)3=x5D . 3x2÷x=2x5. (2分)(2019·岐山模拟) 将一副三角板如图放置,使点A在DE上,BC∥DE,则∠AFC的度数是()A . 45°B . 50°C . 60°D . 75°6. (2分)已知反比例函数,在每个象限内y随着x的增大而增大,点P(a-1, 2)在这个反比例函数上,a的值可以是()A . 0B . 1C . 2D . 37. (2分) (2017九下·宜宾期中) 分式方程的解是()A . x=3B . x=-3C . xD . x8. (2分)下列说法正确的是()A . 商家卖鞋,最关心的是鞋码的中位数B . 365人中必有两人阳历生日相同C . 要了解全市人民的低碳生活状况,适宜采用抽样调查的方法D . 随机抽取甲、乙两名同学的5次数学成绩,计算得平均分都是90分,方差分别是=5,=12,说明乙的成绩较为稳定9. (2分)如图,△ABC内接于⊙O,若sin∠BA C= ,BC=2 ,则⊙O的半径为()A . 3B . 6C . 4D . 210. (2分)如图,已知二次函数的图象与正比例函数的图象交于点A(3,2),与x轴交于点B(2,0),若0<y1<y2 ,则x的取值范围是()A . 0<x<2B . 0<x<3C . 2<x<3D . x<0或x>3二、填空题 (共9题;共10分)11. (1分)函数的定义域为 ________.12. (1分)如图,,,,则的度数是________.13. (1分)(2020·成华模拟) 第一象限的点A(a,b)和它关于x轴的对称点B分别在双曲线y=和y =上,则k1+k2的值为________.14. (1分) (2018八上·东台期中) 如图,在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,连接AE.若BC=7,AC=4,则△ACE的周长为________.15. (1分) (2019七上·萧山月考)(1)写出一个比-2小的无理数________.(2)写出一个次数为3的单项式________.16. (1分)(2019·成都模拟) 某课外小组调查了20户家庭某月的用电量,如下表所示用电量(千瓦时)120140160180200户数23672则这20户家庭该月用电量的平均数是________(千瓦时),中位数是________(千瓦时).17. (1分)如果是一元二次方程的两个实数根,则 ________.18. (1分)(2020·成都模拟) 如图,反比例函数的图像与矩形ABCO的边AB交于点G,与边BC交于点D ,过点 A , D作DE//AF ,交直线y = yy (y < 0)于点 E , F ,若 OE=OF ,yy=3yy,则四边形 ADEF 的面积为________;19. (2分) (2019八上·金坛月考) 关于x的函数y=(m+1)x﹣(4m﹣3)的图象在第一、二、四象限,那么m的取值范围是________.三、解答题 (共9题;共96分)20. (10分) (2020七下·新乡期中) 计算:(1);(2) .21. (5分) (2018八上·黑龙江期末) 先化简,再求值:,其中x=322. (11分) (2020九下·常州月考) 我市实施城乡生活垃圾分类管理,推进生态文明建设. 为增强学生的环保意识.随机抽取8名学生,对他们的垃圾分类投放情况进行调查,这8名学生分别标记为A,B,C,D,E,F,G,H,其中“√”表示投放正确,“×”表示投放错误,统计情况如下表.(1)求8名学生中至少有三类垃圾投放正确的概率;(2)为进一步了解垃圾分类投放情况,现从8名学生里“有害垃圾”投放错误的学生中随机抽取两人接受采访,试用标记的字母列举所有可能抽取的结果,并求出刚好抽到C、G两位学生的概率.23. (5分) (2017九上·亳州期末) 如图,一艘海轮位于灯塔P的南偏东60°方向,距离灯塔40海里的A 处,它计划沿正北方向航行,去往位于灯塔P的北偏东45°方向上的B处.问B处距离灯塔P有多远?(结果精确到0.1海里)(参考数据:≈1.414,≈1.732,≈2.449)24. (10分) (2017九上·海宁开学考) 为预防甲型H1N1流感,某校对教室喷洒药物进行消毒.已知喷洒药物时每立方米空气中的含药量y(毫克)与时间x(分钟)成正比,药物喷洒完后,y与x成反比例(如图所示).现测得10分钟喷洒完后,空气中每立方米的含药量为8毫克.(1)求喷洒药物时和喷洒完后,y关于x的函数关系式;(2)若空气中每立方米的含药量低于2毫克学生方可进教室,问消毒开始后至少要经过多少分钟,学生才能回到教室?(3)如果空气中每立方米的含药量不低于4毫克,且持续时间不低于10分钟时,才能杀灭流感病毒,那么此次消毒是否有效?为什么?25. (15分)(2018·泸州) 如图,已知二次函数的图象经过点A(4,0),与y轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.(1)求a的值和直线AB的解析式;(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1 , S2 ,若S1=4S2 ,求m的值;(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱周长取最大值时,求点G的坐标.26. (15分) (2019九上·中山期中) 市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量(千克)是销售单价(元)的一次函数,且当 =40时, =120; =50时, =100.在销售过程中,每天还要支付其他费用500元.(1)求出y与x的函数关系式,并写出自变量的取值范围;(2)求该公司销售该原料日获利(元)与销售单价(元)之间的函数关系式;(3)当销售单价为多少元时,该公司日获利最大.最大获利是多少元.27. (15分) (2019七下·南海期末) 如图1,△ABC和△DBE是等腰直角三角形,且∠ABC=∠DBE=90°,D 点在AB上,连接AE与CD的延长线交于点F,(1)直接写出线段AE与CD的数量关系.(2)若将图1中的△DBE绕点B逆时针旋转一个锐角,如图2所示,问图2中的线段AE、CD之间有怎样的数量和位置关系?(3)拓展:若将图1中的△DBE绕点B逆时针旋转一个锐角,将“∠ABC=∠DBE=90°”改为“∠ABC=∠DBE=α(α为锐角)”,其他条件均不变,如图3所示,问:线段AE、CD所在直线的夹角大小是否随着图形的旋转而发生变化?若不变,其值多少?28. (10分)(2020·余姚模拟) 如图1,直线l:y= x+4与x轴交于点A,与y轴交于点B,以AB为直线作⊙M,点P为线段OA上一动点(与点O、A不重合),作PC⊥AB于C,连结BP并延长交⊙O于点D。

2017年广东省深圳市龙岗区中考数学一模试卷

2017年广东省深圳市龙岗区中考数学一模试卷

2017年广东省深圳市龙岗区中考数学一模试卷一、选择题1.若关于x的方程x2+3x+a=0有一个根为﹣1,则a的值为(??)A、2B、﹣1C、﹣2D、1+2.如图是一个用于防震的L形的包装用泡沫塑料,当俯视它时看到的图形形状是()A、B、C、D、+3.如图,在地面上的点A处测得树顶B的仰角α=75°,若AC=6米,则树高BC为()A、6sin75°米B、米C、米D、6tan75°米+4.对于反比例函数y=﹣,下列说法不正确的是(??)A、图象经过点(1,﹣3)B、图象分布在第二、四象限C、当x>0时,y随x的增大而增大D、点A(x1,y1)、B(x2、y2)都在反比例函数y=﹣的图象上,若x1<x2,则y1<y2+5.周星驰拍摄的电影《美人鱼》取景地在深圳杨梅坑,据称是深圳最美的溪谷,为估计全罗湖区8000名九年级学生去过杨梅坑的人数,随机抽取400名九年级学生,发现其中有50名学生去过该景点,由此估计全区九年级学生中有(?? )个学生去过该景点.A、1000人B、800人C、720人D、640人+6.将y=x2向上平移2个单位后所得到的抛物线的解析式为(??)A、y=x2﹣2B、y=x2+2C、y=(x﹣2)2D、y=(x+2)2+7.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为(??)A、3:4B、9:16C、4:9D、1:3+8.若二次函数的解析式为y=2x2﹣4x+3,则其函数图象与x轴交点的情况是(??)A、没有交点B、有一个交点C、有两个交点D、以上都不对+9.如图,一农户要建一个矩形花圃,花圃的一边利用长为12m的住房墙,另外三边用25m长的篱笆围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,花圃面积为80m2,设与墙垂直的一边长为xm(已标注在图中),则可以列出关于x的方程是()A、x(26﹣2x)=80B、x(24﹣2x)=80C、(x﹣1)(26﹣2x)=80D、x(25﹣2x)=80+10.如图,在平面直角坐标系中,设点P到原点O的距离为ρ,OP与x轴正方向的交角为a,则用[ρ,a]表示点P的极坐标,例如:点P的坐标为(1,1),则其极坐标为[ ,45°].若点Q的极坐标为[4,120°],则点Q的平面坐标为(??)A 、(﹣2,﹣2 )B 、(2,﹣2 )C 、(﹣2 ,﹣2)D 、(﹣4,﹣4 ) +11.如图,二次函数y=ax 2+bx+c (a≠0)的图象与x 轴交于点A 、B 两点,与y 轴交于点 C ,对称轴为直线x=﹣1,点B 的坐标为(1,0),则下列结论:①AB=4;②b 2﹣4ac > 0;③ab <0;④a 2﹣ab+ac <0,其中正确的结论 有()个.A 、1个B 、2个C 、3个D 、4个 +12.如图,已知正方形ABCD 的边长为4,点E 、F 分别在边AB 、ABC 上,且AE=BF= 1,CE 、DF 相交于点O ,下列结论:①∠DOC=90°,②OC=OE ,③tan ∠OCD=,④△COD 的面积等于四边形BEOF 的面积中,正确的有(??)A 、1个B 、2个C 、3个D 、4个+二、填空题13.已知3x=4y ,则 = .+14.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则EF= cm.+15.如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,A O为半径画弧,两弧交于点B,画射线OB,则sin∠AOB的值等于.+16.如图,两个反比例函数y1=(其中k1>0)和y2=在第一象限内的图象依次是C1和C2,点P在C1上,矩形PCOD交C2于A、B两点,OA的延长线交C1于点E,EF⊥x轴于F点,且图中四边形BOAP的面积为6,则EF:AC为.+三、解答题|+(2016﹣π)0﹣2sin45°+()﹣2. 17.计算:|﹣ +18.2017年深圳市男生体育中考考试项目为二项,在200米和1000米两个项目中 选一个项目;另外在运球上篮、实心球、跳绳、引体向上四个项目中选一个.(1)、每位男考生一共有种不同的选择方案; (2)、若必胜,必成第一个项目都恰好选了200米,然后在第二组四个项目中各 任意选取另外一个用画树状图或列表的方法求必胜和必成选择同种方案的概 率.(友情提醒:各种方案可用A 、B 、C 、…或①、②、③、…等符号来代表可简化 解答过程) +19.如图,一次函数y=ax+b (a≠0)的图形与反比例函数y=(k≠0)的图象交于第二、四象限内的A 、B 两点,与y 轴交于C 点,过点A 作AH ⊥y 轴,垂足为H ,OH=3,tan ∠AOH=,点B 的坐标为(m ,﹣2).(1)、求该反比例函数和一次函数的解析式.(2)、求△AOC 的面积. +20.黄岩岛自古以来就是中国的领土,如图,为维护海洋利益,三沙市一艘海监船 在黄岩岛附近海域巡航,某一时刻海监船在A 处测得该岛上某一目标C 在它 的北偏东45°方向,海监船以30海里每小时的速度沿北偏西30°方向航行2小时 后到达B 处,此时测得该目标C 在它的南偏东75°方向.求:(1)、∠C的度数;(2)、求该船与岛上目标C之间的距离即CB的长度(结果保留根号)+21.大梅沙国际风筝节于2016年10月29﹣30日在大梅沙海滨公园举行,老李决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,但每天需支付各种费用共200元,请回答以下问题:(1)、用表达式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);(2)、当售价定为多少时,老李每天获得利润最大,每天的最大利润是多少?+22.如图,点F在?ABCD的对角线AC上,过点F、B分别作AB、AC的平行线相交于点E,连接BF,∠ABF=∠FBC+∠FCB.(1)、求证:四边形ABEF是菱形;(2)、若BE=5,AD=8,sin∠CBE=,求AC的长.+23.如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P 是直线AC下方抛物线上的动点.(1)、求抛物线的解析式;(2)、过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)、当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.+。

广东省深圳市2017年中考数学真题试题(含扫描答案)

广东省深圳市2017年中考数学真题试题(含扫描答案)

深圳市2017年初中毕业生学业考试数学试题解析第Ⅰ卷(共60分)一、选择题1.-2的绝对值是( )A .-2B .2C .12-D .12 2.图中立体图形的主视图是( )A .B .C .D .3.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为( )A .58.210⨯B .58210⨯C .68.210⨯D .78210⨯ 4.观察下列图形,其中既是轴对称又是中心对称图形的是( ) A . B . C . D .5.下列选项中,哪个不可以..得到12//l l ?( )A .12∠=∠B .23∠=∠C . 35∠=∠D .34180∠+∠=o6.不等式组32521x x -<⎧⎨-<⎩的解集为( )A .1x >-B .3x <C .1x <-或3x >D .13x -<<7.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程( )A .10%330x =B .(110%)330x -=C . 2(110%)330x -=D .(110%)330x +=8.如图,已知线段AB ,分别以A B 、为圆心,大于12AB 为半径作弧,连接弧的交点得到直线l ,在直线l 上取一点C ,使得25CAB ∠=o ,延长AC 至M ,求BCM ∠的度数为( )A .40oB .50oC . 60oD .70o9.下列哪一个是假命题( )A .五边形外角和为360oB .切线垂直于经过切点的半径C . (3,2)-关于y 轴的对称点为(3,2)-D .抛物线242017y x x =-+对称轴为直线2x =10.某共享单车前a 公里1元,超过a 公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a 应该要取什么数( )A .平均数B .中位数C .众数D .方差11.如图,学校环保社成员想测量斜坡CD 旁一棵树AB 的高度,他们先在点C 处测得树顶B 的仰角为60o,然后在坡顶D 测得树顶B 的仰角为30o ,已知斜坡CD 的长度为20m ,DE 的长为10m ,则树AB 的高度是( )mA .203.30 C . 303.4012.如图,正方形ABCD 的边长是3,BP CQ =,连接,AQ DP 交于点O ,并分别与边,CD BC 交于点,F E ,连接AE .下列结论:①AQ DP ⊥;②2OA OE OP =g ;③AOD OECF S S ∆=四边形;④当1BP =时,13tan 16OAE ∠=.其中正确结论的个数是( )A .1B .2C .3D .4二、填空题13.因式分解:34a a -= .14.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是 . 15.阅读理解:引入新数i ,新数i 满足分配律,结合律,交换律,已知21i =-,那么(1)(1)i i +-=g .16.如图,在Rt ABC ∆中,90ABC ∠=o ,3AB =,4BC =,Rt MPN ∆,90MPN ∠=o ,点P 在AC 上,PM 交AB 于点E ,PN 交BC 于点F ,当2PE PF =时,AP = .三、解答题17.计算2|22|2cos45(1)8--+-o18.先化简,再求值:22()224x x x x x x +÷-+-,其中1x =-. 19.深圳市某学校抽样调查,A 类学生骑共享单车,B 类学生坐公交车、私家车等,C 类学生步行,D 类学生(其它),根据调查结果绘制了不完整的统计图.类型频数 频率 A30 x B18 0.15 Cm 0.40 D n y(1)学生共__________人,x =__________,y =__________;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有___________人.20.一个矩形周长为56厘米,(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方厘米的矩形吗?请说明理由.21.如图一次函数y kx b =+与反比例函数(0)m y x x=>交于(2,4)A 、(,1)B a ,与x 轴,y 轴分别交于点C D 、.(1)直接写出一次函数y kx b =+的表达式和反比例函数(0)m y x x=>的表达式;(2)求证:AD BC =. 22.如图,线段AB 是O e 的直径,弦CD AB ⊥于点H ,点M 是弧CBD 上任意一点,2,4AH CH ==.(1)求O e 的半径r 的长度;(2)求sin CMD ∠;(3)直线BM 交直线CD 于点E ,直线MH 交O e 于点N ,连接BN 交CE 于点F ,求HE HF g 的值.23.如图,抛物线22y ax bx =++经过点(1,0),(4,0)A B -,交y 轴于点C :(1)求抛物线的解析式(用一般式表示).(2)点D为y轴右侧抛物线上一点,是否存在点D使23ABC ABDS S∆∆=,若存在请直接给出点D坐标;若不存在请说明理由.(3)将直线BC绕点B顺时针旋转45o,与抛物线交于另一点E,求BE的长.。

2017年(深圳版)中考模拟考试数学试题1

2017年(深圳版)中考模拟考试数学试题1

秘密★启用前2017年深圳市初中毕业生学业考试数学模拟试题本试卷分选择题和非选择题两部分,共三大题23小题,满分100分,考试用时90分钟第一部分选择题(本部分共12小题,每小题3分,共36分。

每小题给出4个选项,其中只有一个选项是正确的) 1.20171的相反数是( ) A .2017 B .﹣2017 C . D .﹣2.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为( ) A .3.386³108B .0.3386³109C .33.86³107D .3.386³1093.下列运算正确的是( ) A .3﹣1=﹣3 B .=±3 C .(ab 2)3=a 3b 6 D .a 6÷a 2=a 34.下面四个手机应用图标中是中心对称图形的是( )A .B .C .D .5.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( ) A .120元B .100元C .80元D .60元6.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为( ) A .4,5 B .5,4 C .4,4 D .5,57.如图所示,向一个半径为R 、容积为V 的球形容器内注水,则能够反映容器内水的体积y 与容器内水深x 间的函数关系的图象可能是( )A .B .C .D .8.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD=8,则点P 到BC 的距离是( ) A .8B .6C .4D .29.已知6是关于x 的方程x 2﹣7mx+24n=0的一个根,并且这个方程的两个根恰好是菱形ABCD 两条对角线的长,则菱形ABCD 的周长为( ) A .20 B .24 C .32 D .5610.对于实数x ,我们规定[x]表示不大于x 的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:82[]=9[]=3[]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1( ) A .1B .2C .3D .411.如图①是一个直角三角形纸片,∠A=30°,将其折叠,使点C 落在斜边上的点C 处,折痕为BD ,如图②,再将②沿DE 折叠,使点A 落在DC ′的延长线上的点A ′处,如图③,若折痕DE 的长是cm ,则BC 的长是( )A .3cmB .4cmC .5cmD .6cm12.如图,在圆心角为90°的扇形OAB 中,半径OA=4cm ,C 为弧AB 的中点,D 、E 分别是OA 、OB 的中点,则图中阴影部分的面积为( )cm 2. A .4π﹣2﹣2 B .4π﹣2 C .2π+2﹣2 D .2π+2第二部分非选择题填空题(本题共4小题,每小题3分,共12分) 13.分解因式:x x x 1512323--=__________________.14.小明把如图所示的平行四边形纸板挂在墙上,完飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是 .15.在三角形纸片ABC 中,∠C=90°,∠B=30°,点D(不与B ,C 重合)是BC 上任意一点,将此三角形纸片按下列方式折叠,若EF 的长度为a ,则△DEF 的周长为 (用含a 的式子表示).16.如图,双曲线y=(x >0)经过△OAB 的顶点A 和OB 的中点C ,AB ∥x 轴,点A 的坐标为(2,3),求△OAC 的面积是_________.解答题(本题共7小题,其中第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分) 17.计算:20170﹣|﹣|+1)31(--+2sin45°.18.先化简,再求值:(﹣x+1)÷,其中x=﹣2.19.某中学在实施快乐大课间之前组织过“我最喜欢的球类”的调查活动,每个学生仅选择一项,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制成的不完整统计图. (1)被调查的学生人数为; (2)把折线统计图补充完整; (3)小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.如果确定小亮打第一场,其余三人用“手心、手背”的方法确定谁获胜谁打第一场若三人中有一人出的与其余两人不同则获胜;若三人出的都相同则平局.已知大刚出手心,请用树状图分析大刚获胜的概率是多少?20.某商场门前的台阶截面如图中阴影部分所示,已知台阶有四级小台阶且每一级小台阶高度相等,台阶高度EF为1.6米,现要做一个不锈钢的扶手AB及两根与FG垂直且长度均为1米的不锈钢架杆AD和BC(杆子的低端分别为D,C),且∠DAB=66.5°(cos66.5°≈0.4).(1)求点D与点C的高度差DH;(2)求所用不锈钢材料的总长度(即AD+AB+BC的长)21.骑自行车旅行越来越受到人们的喜爱,共享单车恰好能解决部分市民出行需求,各种品牌的共享单车相继投放市场.我市某共享单车平台去年6月份购进A型自行车花费32万元,今年经过改造升级后A型车每辆进价比去年增加50元,若今年6月份与去年6月份购进的A型车数量相同,则今年6月份A型车购买费用将比去年6月份购买费用增加25%.(1)求该共享单车平台今年6月份A型车每辆进价多少元(用列方程的方法解答);(2)该共享单车平台计划7月份新进一批A型车和B型车共5000辆,预计A型车的营业收入为去年6月A型车进价的3倍,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如表:22.如图,AB 是圆O 的直径,D 、E 为圆O 上位于AB 异侧的两点,连接BD 并延长至点C ,使得CD =BD.连接AC 交圆O 于点F ,连接AE 、DE 、DF. (1)证明:∠E =∠C ;(2)若∠E =55°,求∠BDF 的度数;(3)设DE 交AB 于点G ,若DF =4,cosB =23,E 是弧AB 的中点,求EG ²ED 的值.23.已知抛物线y=a (x+3)(x ﹣1)(a ≠0),与x 轴从左至右依次相交于A 、B 两点,与y 轴相交于点C ,经过点A 的直线y=﹣x+b 与抛物线的另一个交点为D .(1)若点D 的横坐标为2,求抛物线的函数解析式;(2)若在第三象限内的抛物线上有点P ,使得以A 、B 、P 为顶点的三角形与△ABC 相似,求点P 的坐标; (3)在(1)的条件下,设点E 是线段AD 上的一点(不含端点),连接BE .一动点Q 从点B 出发,沿线段BE 以每秒1个单位的速度运动到点E ,再沿线段ED 以每秒个单位的速度运动到点D 后停止,问当点E 的坐标是多少时,点Q 在整个运动过程中所用时间最少?答案22.解:(1)证明:连接AD.∵AB 是⊙O 的直径,∴∠ADB =90°,即AD ⊥BC.∵CD =BD ,∴AD 垂直平分BC.∴AB =AC.∴∠B =∠C. ∵∠B =∠E ,∴∠E =∠C.(2)∵四边形AE DF 是⊙O 的内接四边形, ∴∠AFD =180°-∠E.又∠CFD =180°-∠AFD ,∴∠CFD =∠E =55°. 又∵∠E =∠C =55°,∴∠BDF =∠C +∠CFD =110°. (3)连接OE.∵∠CFD =∠AEG =∠C ,∴FD =CD =BD =4. 在Rt △ABD 中,cosB =23,BD =4,∴AB =6.∵E 是AB ︵的中点,AB 是⊙O 的直径, ∴∠AOE =90°.∵AO =OE =3,∴AE =3 2.∵E 是AB ︵的中点,∴∠ADE =∠EAB , ∴△AEG ∽△DEA. ∴AE EG =DEAE,即EG·ED =AE 2=18. 23.【考点】二次函数综合题.【分析】(1)根据二次函数的交点式确定点A 、B 的坐标,进而求出直线AD 的解析式,接着求出点D 的坐标,将D 点坐标代入抛物线解析式确定a 的值;(2)由于没有明确说明相似三角形的对应顶点,因此需要分情况讨论:①△ABC ∽△BAP ;②△ABC ∽△PAB ; (3)作DM ∥x 轴交抛物线于M ,作DN ⊥x 轴于N ,作EF ⊥DM 于F ,根据正切的定义求出Q 的运动时间t=BE +EF 时,t 最小即可.【解答】解:(1)∵y=a (x +3)(x ﹣1),∴点A 的坐标为(﹣3,0)、点B 两的坐标为(1,0), ∵直线y=﹣x +b 经过点A ,∴b=﹣3,∴y=﹣x ﹣3,当x=2时,y=﹣5,则点D 的坐标为(2,﹣5),∵点D 在抛物线上,∴a (2+3)(2﹣1)=﹣5,解得,a=﹣, 则抛物线的解析式为y=﹣(x +3)(x ﹣1)=﹣x 2﹣2x +3; (2)如图1中,作PH ⊥x 轴于H ,设点 P 坐标(m ,n ), 当△BPA ∽△ABC 时,∠BAC=∠PBA , ∴tan ∠BAC=tan ∠PBA ,即=,∴=,即n=﹣a (m ﹣1),∴解得m=﹣4或1(舍弃),当m=﹣4时,n=5a,∵△BPA∽△ABC,∴=,∴AB2=AC•PB,∴42=,解得a=﹣或(舍弃),则n=5a=﹣,∴点P坐标(﹣4,﹣).当△PBA∽△ABC时,∠CBA=∠PBA,∴tan∠CBA=tan∠PBA,即=,∴=,∴n=﹣3a(m﹣1),∴,解得m=﹣6或1(舍弃),当m=﹣6时,n=21a,∵△PBA∽△ABC,∴=,即AB2=BC•PB,∴42=•,解得a=﹣或(不合题意舍弃),则点P坐标(﹣6,﹣3),综上所述,符合条件的点P的坐标(﹣4,﹣)和(﹣6,﹣3).(3)如图2中,作DM∥x轴交抛物线于M,作DN⊥x轴于N,作EF⊥DM于F,则tan∠DAN===,∴∠DAN=60°,∴∠EDF=60°,∴DE==EF,∴Q的运动时间t=+=BE+EF,∴当BE和EF共线时,t最小,则BE⊥DM,此时点E坐标(1,﹣4).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年广东省深圳市中考数学模拟试卷(一)一、选择题1.(3分)﹣3的倒数是()A.﹣ B.C.﹣3 D.32.(3分)石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00 000 000 034m,这个数用科学记数法表示正确的是()A.3.4×10﹣9B.0.34×10﹣9C.3.4×10﹣10D.3.4×10﹣113.(3分)下列四个几何体中,主视图是三角形的是()A.B.C.D.4.(3分)下列运算中,正确的是()A.4x﹣x=2x B.2x•x4=x5 C.x2y÷y=x2D.(﹣3x)3=﹣9x35.(3分)一条葡萄藤上结有五串葡萄,每串葡萄的粒数如图所示(单位:粒).则这组数据的中位数为()A.37 B.35 C.33.8 D.326.(3分)掷一质地均匀的正方体骰子,朝上一面的数字,与3相差1的概率是()A.B.C.D.7.(3分)下列美丽的图案,不是中心对称图形的是()A.B.C.D.8.(3分)如图,已知AD∥BC,∠B=32°,DB平分∠ADE,则∠DEC=()A.64°B.66°C.74°D.86°9.(3分)如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为()A.90°B.95°C.100° D.105°10.(3分)观察如图所示前三个图形及数的规律,则第四个□的数是()A.B.3 C.D.11.(3分)点A,B的坐标分别为(﹣2,3)和(1,3),抛物线y=ax2+bx+c(a <0)的顶点在线段AB上运动时,形状保持不变,且与x轴交于C,D两点(C 在D的左侧),给出下列结论:①c<3;②当x<﹣3时,y随x的增大而增大;③若点D的横坐标最大值为5,则点C的横坐标最小值为﹣5;④当四边形ACDB 为平行四边形时,.其中正确的是()A.②④B.②③C.①③④D.①②④12.(3分)如图,在矩形ABCD中,O为AC中点,EF过O点且EF⊥AC分别交DC于F,交AB于E,点G是AE中点且∠AOG=30°,则下列结论正确的个数为()=S ABCD.(1)DC=3OG;(2)OG=BC;(3)△OGE是等边三角形;(4)S△AOEA.1个 B.2个 C.3个 D.4个二、填空题13.(3分)分解因式:3x3﹣27x=.14.(3分)如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为(度).15.(3分)如图,在矩形ABCD中,AD=6,AB=4,点E、G、H、F分别在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连接PE、PF、PG、PH,则△PEF和△PGH的面积和等于.16.(3分)如图,在直角坐标系xOy中,点A,B分别在x轴和y轴上,,∠AOB的角平分线与OA的垂直平分线交于点C,与AB交于点D,反比例函数y=的图象过点C,若以CD为边的正方形的面积等于,则k的值是.三、解答题17.(6分)计算:|2﹣|+(﹣2016)0+2cos30°+()﹣1.18.(8分)先化简:(x﹣)÷(1+),然后在﹣1,0,1,2四个数中选一个你认为合适的数代入求值.19.(10分)某班13位同学参加每周一次的卫生大扫除,按学校的卫生要求需要完成总面积为60m2的三个项目的任务,三个项目的面积比例和每人每分钟完成各所示:项目的工作量如图:(1)从统计图中可知:擦玻璃的面积占总面积的百分比为,每人每分钟擦课桌椅m2;(2)扫地拖地的面积是m2;(3)他们一起完成扫地和拖地任务后,把这13人分成两组,一组去擦玻璃,一组去擦课桌椅,如果你是卫生委员,该如何分配这两组的人数,才能最快地完成任务?20.(10分)如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA,BC的平行线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若AC=2DE,求sin∠CDB的值.21.(12分)甲、乙两个仓库向A、B两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A地需70吨,B地需110吨水泥,两库到A,B两地的路程和费用如下表:(表中运费“元/吨•千米”表示每吨水泥运送1千米所需要人民币).路程(千米)运费(元/吨•千米)甲库乙库甲库乙库A地20151212B地2520108设甲库运往A地水泥x吨,总运费W元.(1)写出w关于x的函数关系式,并求x为何值时总运费最小?(2)如果要求运送的水泥数是10吨的整数倍,且运费不能超过38000元,则总共有几种运送方案?22.(12分)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB 的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC=AB;(3)点M 是的中点,CM交AB于点N,若AB=4,求MN•MC的值.23.(14分)如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC 的一边BC,使点B落在OA边上的点E处.分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c经过O,D,C三点.(1)求AD的长及抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.2017年广东省深圳市中考数学模拟试卷(一)参考答案与试题解析一、选择题1.(3分)﹣3的倒数是()A.﹣ B.C.﹣3 D.3【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.2.(3分)石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00 000 000 034m,这个数用科学记数法表示正确的是()A.3.4×10﹣9B.0.34×10﹣9C.3.4×10﹣10D.3.4×10﹣11【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.=3.4×10﹣10,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)下列四个几何体中,主视图是三角形的是()A.B.C.D.【分析】主视图是从几何体的正面看,主视图是三角形的一定是一个锥体,是长方形的一定是柱体,由此分析可得答案.【解答】解:主视图是三角形的一定是一个锥体,只有B是锥体.故选:B.【点评】此题主要考查了几何体的三视图,主要考查同学们的空间想象能力.4.(3分)下列运算中,正确的是()A.4x﹣x=2x B.2x•x4=x5 C.x2y÷y=x2D.(﹣3x)3=﹣9x3【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=3x,不符合题意;B、原式=2x5,不符合题意;C、原式=x2,符合题意;D、原式=﹣27x3,不符合题意,故选:C.【点评】此题考查了整式的混合运算,熟练掌握运算法则及公式是解本题的关键.5.(3分)一条葡萄藤上结有五串葡萄,每串葡萄的粒数如图所示(单位:粒).则这组数据的中位数为()A.37 B.35 C.33.8 D.32【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:先对这组数据按从小到大的顺序重新排序:28,32,35,37,37,位于最中间的数是35,∴这组数的中位数是35.故选:B.【点评】本题主要考查了确定一组数据的中位数的能力,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,难度适中.6.(3分)掷一质地均匀的正方体骰子,朝上一面的数字,与3相差1的概率是()A.B.C.D.【分析】由一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为与点数3相差1的有2种情况,直接利用概率公式求解即可求得答案.【解答】解:∵一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为点数3相差1的有2种情况,∴掷一次这枚骰子,向上的一面的点数为点数3相差1的概率是:=.故选:D.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.7.(3分)下列美丽的图案,不是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形.故本选项错误;B、不是中心对称图形.故本选项正确;C、是中心对称图形.故本选项错误;D、是中心对称图形.故本选项错误.故选:B.【点评】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.8.(3分)如图,已知AD∥BC,∠B=32°,DB平分∠ADE,则∠DEC=()A.64°B.66°C.74°D.86°【分析】由AD∥BC,∠B=32°,根据平行线的性质,可得∠ADB=32°,又由DB 平分∠ADE,可求得∠ADE的度数,继而求得答案.【解答】解:∵AD∥BC,∠B=32°,∴∠ADB=∠B=32°,∵DB平分∠ADE,∴∠ADE=2∠ADB=64°,∵AD∥BC,∴∠DEC=∠ADE=64°.故选:A.【点评】此题考查了平行线的性质以及角平分线的定义,解题时注意掌握数形结合思想的应用.9.(3分)如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为()A.90°B.95°C.100° D.105°【分析】由CD=AC,∠A=50°,根据等腰三角形的性质,可求得∠ADC的度数,又由题意可得:MN是BC的垂直平分线,根据线段垂直平分线的性质可得:CD=BD,则可求得∠B的度数,继而求得答案.【解答】解:∵CD=AC,∠A=50°,∴∠ADC=∠A=50°,根据题意得:MN是BC的垂直平分线,∴CD=BD,∴∠BCD=∠B,∴∠B=∠ADC=25°,∴∠ACB=180°﹣∠A﹣∠B=105°.故选:D.【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.注意垂直平分线上任意一点,到线段两端点的距离相等.10.(3分)观察如图所示前三个图形及数的规律,则第四个□的数是()A.B.3 C.D.【分析】根据观察前三个图形及数字规律:两个三角里数字之和除以两个圆里数字之差等于方块里的数字.【解答】解:由两个三角里数字之和除以两个圆里数字之差等于方块里的数字,得(2+)÷(﹣)=3÷(3﹣)=3÷2=,故选:D.【点评】本题考查了规律型:数字的变化类,观察图形发现规律是解题关键.11.(3分)点A,B的坐标分别为(﹣2,3)和(1,3),抛物线y=ax2+bx+c(a <0)的顶点在线段AB上运动时,形状保持不变,且与x轴交于C,D两点(C 在D的左侧),给出下列结论:①c<3;②当x<﹣3时,y随x的增大而增大;③若点D的横坐标最大值为5,则点C的横坐标最小值为﹣5;④当四边形ACDB 为平行四边形时,.其中正确的是()A.②④B.②③C.①③④D.①②④【分析】根据顶点在线段AB上抛物线与y轴的交点坐标为(0,c)可以判断出c的取值范围,得到①错误;根据二次函数的增减性判断出②正确;先确定x=1时,点D的横坐标取得最大值,然后根据二次函数的对称性求出此时点C的横坐标,即可判断③错误;令y=0,利用根与系数的关系与顶点的纵坐标求出CD 的长度的表达式,然后根据平行四边形的对边平行且相等可得AB=CD,然后列出方程求出a的值,判断出④正确.【解答】解:∵点A,B的坐标分别为(﹣2,3)和(1,3),∴线段AB与y轴的交点坐标为(0,3),又∵抛物线的顶点在线段AB上运动,抛物线与y轴的交点坐标为(0,c),∴c≤3,(顶点在y轴上时取“=”),故①错误;∵抛物线的顶点在线段AB上运动,∴当x<﹣2时,y随x的增大而增大,因此,当x<﹣3时,y随x的增大而增大,故②正确;若点D的横坐标最大值为5,则此时对称轴为直线x=1,根据二次函数的对称性,点C的横坐标最小值为﹣2﹣4=﹣6,故③错误;根据顶点坐标公式,=3,令y=0,则ax2+bx+c=0,CD2=(﹣)2﹣4×=,根据顶点坐标公式,=3,∴=﹣12,∴CD2=×(﹣12)=,∵四边形ACDB为平行四边形,∴CD=AB=1﹣(﹣2)=3,∴=32=9,解得a=﹣,故④正确;综上所述,正确的结论有②④.故选:A.【点评】本题考查了二次函数的综合题型,主要利用了二次函数的顶点坐标,二次函数的对称性,根与系数的关系,平行四边形的对边平行且相等的性质,①要注意顶点在y轴上的情况.12.(3分)如图,在矩形ABCD中,O为AC中点,EF过O点且EF⊥AC分别交DC于F,交AB于E,点G是AE中点且∠AOG=30°,则下列结论正确的个数为()=S ABCD.(1)DC=3OG;(2)OG=BC;(3)△OGE是等边三角形;(4)S△AOEA.1个 B.2个 C.3个 D.4个【分析】根据直角三角形斜边上的中线等于斜边的一半可得OG=AG=GE=AE,再根据等边对等角可得∠OAG=30°,根据直角三角形两锐角互余求出∠GOE=60°,从而判断出△OGE是等边三角形,判断出(3)正确;设AE=2a,根据等边三角形的性质表示出OE,利用勾股定理列式求出AO,从而得到AC,再求出BC,然后利用勾股定理列式求出AB=3a,从而判断出(1)正确,(2)错误;再根据三角形的面积和矩形的面积列式求出判断出(4)正确.【解答】解:∵EF⊥AC,点G是AE中点,∴OG=AG=GE=AE,∵∠AOG=30°,∴∠OAG=∠AOG=30°,∠GOE=90°﹣∠AOG=90°﹣30°=60°,∴△OGE是等边三角形,故(3)正确;设AE=2a,则OE=OG=a,由勾股定理得,AO===a,∵O为AC中点,∴AC=2AO=2a,∴BC=AC=×2a=a,在Rt△ABC中,由勾股定理得,AB==3a,∵四边形ABCD是矩形,∴CD=AB=3a,∴DC=3OG,故(1)正确;∵OG=a,BC=a,∴BC≠BC,故(2)错误;=a•a=a2,∵S△AOES ABCD=3a•a=3a2,=S ABCD,故(4)正确;∴S△AOE综上所述,结论正确是(1)(3)(4)共3个.故选:C.【点评】本题考查了矩形的性质,直角三角形斜边上的中线等于斜边的一半的性质,等边三角形的判定与性质,等腰三角形的判定与性质,三角形的面积,设出AE、OG,然后用a表示出相关的边更容易理解.二、填空题13.(3分)分解因式:3x3﹣27x=3x(x+3)(x﹣3).【分析】首先提取公因式3x,再进一步运用平方差公式进行因式分解.【解答】解:3x3﹣27x=3x(x2﹣9)=3x(x+3)(x﹣3).【点评】本题考查用提公因式法和公式法进行因式分解的能力.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(3分)如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为55(度).【分析】首先连接OA,OB,由PA、PB分别切⊙O于点A、B,根据切线的性质可得:OA⊥PA,OB⊥PB,然后由四边形的内角和等于360°,求得∠AOB的度数,又由圆周角定理,即可求得答案.【解答】解:连接OA,OB,∵PA、PB分别切⊙O于点A、B,∴OA⊥PA,OB⊥PB,即∠PAO=∠PBO=90°,∴∠AOB=360°﹣∠PAO﹣∠P﹣∠PBO=360°﹣90°﹣70°﹣90°=110°,∴∠C=∠AOB=55°.故答案为:55.【点评】此题考查了切线的性质以及圆周角定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.15.(3分)如图,在矩形ABCD中,AD=6,AB=4,点E、G、H、F分别在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连接PE、PF、PG、PH,则△PEF和△PGH的面积和等于7.【分析】连接EG,FH,根据题目数据可以证明△AEF与△CGH全等,根据全等三角形对应边相等可得EF=GH,同理可得EG=FH,然后根据两组对边相等的四边形是平行四边形可得四边形EGHF是平行四边形,所以△PEF和△PGH的面积和等于平行四边形EGHF的面积的一半,再利用平行四边形EGHF的面积等于矩形ABCD的面积减去四周四个小直角三角形的面积即可求解.【解答】解:∵在矩形ABCD中,AD=6,AB=4,AF=CG=2,BE=DH=1,∴AE=AB﹣BE=4﹣1=3,CH=CD﹣DH=4﹣1=3,∴AE=CH,在△AEF与△CGH中,,∴△AEF≌△CGH(SAS),∴EF=GH,同理可得,△BGE≌△DFH,∴EG=FH,∴四边形EGHF是平行四边形,∵△PEF和△PGH的高的和等于点H到直线EF的距离,∴△PEF和△PGH的面积和=×平行四边形EGHF的面积,平行四边形EGHF的面积=4×6﹣×2×3﹣×1×(6﹣2)﹣×2×3﹣×1×(6﹣2),=24﹣3﹣2﹣3﹣2,=14,∴△PEF和△PGH的面积和=×14=7.故答案为:7.【点评】本题考查了矩形的性质,平行四边形的判定与性质,作出辅助线并证明出四边形EGHF是平行四边形是解题的关键.16.(3分)如图,在直角坐标系xOy中,点A,B分别在x轴和y轴上,,∠AOB的角平分线与OA的垂直平分线交于点C,与AB交于点D,反比例函数y=的图象过点C,若以CD为边的正方形的面积等于,则k的值是7.【分析】设OA=3a,则OB=4a,利用待定系数法即可求得直线AB的解析式,直线CD的解析式是y=x,OA的中垂线的解析式是x=,解方程组即可求得C和D 的坐标,根据以CD为边的正方形的面积为,即CD2=,据此即可列方程求得a2的值,则k即可求解.【解答】解:设OA=3a,则OB=4a,设直线AB的解析式是y=kx+b,则根据题意得:,解得:,则直线AB的解析式是y=﹣x+4a,直线CD是∠AOB的平分线,则OD的解析式是y=x.根据题意得:,解得:,则D的坐标是(a,a),OA的中垂线的解析式是x=,则C的坐标是(,),则k=.∵以CD为边的正方形的面积为,∴2(﹣)2=,则a2=,∴k==7,故答案为:7【点评】本题考查了待定系数法求函数解析式,正确求得C和D的坐标是解决本题的关键.三、解答题17.(6分)计算:|2﹣|+(﹣2016)0+2cos30°+()﹣1.【分析】首先计算乘方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:|2﹣|+(﹣2016)0+2cos30°+()﹣1=2﹣+1+2×+3=6【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.18.(8分)先化简:(x﹣)÷(1+),然后在﹣1,0,1,2四个数中选一个你认为合适的数代入求值.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.【解答】解:原式=÷,=•,=x﹣1.∵x≠0,﹣1,1,∴取x=2,原式=1.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.(10分)某班13位同学参加每周一次的卫生大扫除,按学校的卫生要求需要完成总面积为60m2的三个项目的任务,三个项目的面积比例和每人每分钟完成各所示:项目的工作量如图:(1)从统计图中可知:擦玻璃的面积占总面积的百分比为20%,每人每分钟擦课桌椅m2;(2)扫地拖地的面积是33m2;(3)他们一起完成扫地和拖地任务后,把这13人分成两组,一组去擦玻璃,一组去擦课桌椅,如果你是卫生委员,该如何分配这两组的人数,才能最快地完成任务?【分析】(1)用整体1减去擦课桌椅,扫地拖地所占的百分比,即可求出擦玻璃的面积占总面积的百分比;再根据条形图上的数据可直接得出每人每分钟擦课桌椅的面积;(2)用总面积乘以扫地拖地所占的百分比,即可得出答案;(3)先设擦玻璃x人,则擦课桌椅(13﹣x)人,根据扫地拖地和擦课桌椅的面积比,列出方程,求出x的值即可.【解答】解:(1)根据题意得:擦玻璃的面积占总面积的百分比是:1﹣55%﹣25%=20%;每人每分钟擦课桌椅m2;故答案为:20%,;(2)扫地拖地的面积是60×55%=33(m2);故答案为:33.(3)设擦玻璃x人,则擦课桌椅(13﹣x)人,根据题意得:(x):[(13﹣x)]=12:15,解得:x=8,经检验x=8是原方程的解.答:擦玻璃8人,擦课桌椅5人.【点评】此题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(10分)如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA,BC的平行线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若AC=2DE,求sin∠CDB的值.【分析】(1)由DE∥BC,CE∥AB,可证得四边形DBCE是平行四边形,又由△ABC中,∠BCA=90°,CD是边AB上的中线,根据直角三角形斜边的中线等于斜边的一半,可得CD=AD=BD=CE,然后由CE∥AB,证得四边形ADCE平行四边形的性质,继而证得四边形ADCE是菱形;(2)首先过点C作CF⊥AB于点F,由(1)可知,BC=DE,设BC=x,则AC=2x,然后由勾股定理求得AB,再由三角形的面积,求得CF的长,由勾股定理即可求得CD的长,继而求得答案.【解答】(1)证明:∵DE∥BC,CE∥AB,∴四边形DBCE是平行四边形.∴CE=BD,又∵CD是边AB上的中线,∴BD=AD,∴CE=DA,又∵CE∥DA,∴四边形ADCE是平行四边形.∵∠BCA=90°,CD是斜边AB上的中线,∴AD=CD,∴四边形ADCE是菱形;(2)解:过点C作CF⊥AB于点F,由(1)可知,BC=DE,设BC=x,则AC=2x,在Rt△ABC中,AB==x.∵AB•CF=AC•BC,∴CF==x.∵CD=AB=x,∴sin∠CDB==.【点评】此题考查了菱形的判定与性质、平行四边形的判定与性质以及勾股定理.注意准确作出辅助线是解此题的关键.21.(12分)甲、乙两个仓库向A、B两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A地需70吨,B地需110吨水泥,两库到A,B两地的路程和费用如下表:(表中运费“元/吨•千米”表示每吨水泥运送1千米所需要人民币).路程(千米)运费(元/吨•千米)甲库乙库甲库乙库A地20151212B地2520108设甲库运往A地水泥x吨,总运费W元.(1)写出w关于x的函数关系式,并求x为何值时总运费最小?(2)如果要求运送的水泥数是10吨的整数倍,且运费不能超过38000元,则总共有几种运送方案?【分析】(1)根据题意和表格中的数据可以得到w关于x的函数关系式,并求x 为何值时总运费最小;(2)根据题意可以得到相应的不等式,然后根据(1)中的x的取值范围,即可得到共有几种运送方案.【解答】(1)解:设甲库运往A地水泥x吨,则甲库运到B地(100﹣x)吨,乙库运往A地(70﹣x)吨,乙库运到B地[80﹣(70﹣x)]=(10+x)吨,w=12×20x+10×25(100﹣x)+12×15(70﹣x)+8×20(10+x)=﹣30x+39200(0≤x≤70),∴总运费w(元)关于x(吨)的函数关系式为w=﹣30x+39200(0≤x≤70),∵一次函数中w=﹣30x+39200中,k=﹣30<0,∴w的值随x的增大而减小,∴当x=70吨时,总运费w最省,最省的总运费为:﹣30×70+39200=37100(元),答:从甲库运往A地70吨粮食,往B地运送30吨粮食,从乙库运往B地80吨粮食时,总运费最省为37100元;(2)解:由题意可得,w=﹣30x+39200≤38000,解得,x≥40,∵0≤x≤70,∴40≤x≤70,∴满足题意的x值为40,50,60,70,即总共有4种方案.【点评】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,列出相应的函数关系式和不等式,利用函数的思想解答.22.(12分)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB 的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC=AB;(3)点M是的中点,CM交AB于点N,若AB=4,求MN•MC的值.【分析】(1)已知C在圆上,故只需证明OC与PC垂直即可;根据圆周角定理,易得∠PCB+∠OCB=90°,即OC⊥CP;故PC是⊙O的切线;(2)AB是直径;故只需证明BC与半径相等即可;(3)连接MA,MB,由圆周角定理可得∠ACM=∠BCM,进而可得△MBN∽△MCB,故BM2=MN•MC;代入数据可得MN•MC=BM2=8.【解答】(1)证明:∵OA=OC,∴∠A=∠ACO.又∵∠COB=2∠A,∠COB=2∠PCB,∴∠A=∠ACO=∠PCB.又∵AB是⊙O的直径,∴∠ACO+∠OCB=90°.∴∠PCB+∠OCB=90°.即OC⊥CP,∵OC是⊙O的半径.∴PC是⊙O的切线.(2)证明:∵AC=PC,∴∠A=∠P,∴∠A=∠ACO=∠PCB=∠P.又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,∴∠COB=∠CBO,∴BC=OC.∴BC=AB.(3)解:连接MA,MB,∵点M是的中点,∴,∴∠ACM=∠BCM.∵∠ACM=∠ABM,∴∠BCM=∠ABM.∵∠BMN=∠BMC,∴△MBN∽△MCB.∴.∴BM2=MN•MC.又∵AB是⊙O的直径,,∴∠AMB=90°,AM=BM.∵AB=4,∴BM=2.∴MN•MC=BM2=8.【点评】此题主要考查圆的切线的判定及圆周角定理的运用和相似三角形的判定和性质的应用.23.(14分)如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC 的一边BC,使点B落在OA边上的点E处.分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c经过O,D,C三点.(1)求AD的长及抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.【分析】(1)根据折叠图形的轴对称性,△CED、△CBD全等,首先在Rt△CEO 中求出OE的长,进而可得到AE的长;在Rt△AED中,AD=AB﹣BD、ED=BD,利用勾股定理可求出AD的长.进一步能确定D点坐标,利用待定系数法即可求出抛物线的解析式.(2)由于∠DEC=90°,首先能确定的是∠AED=∠OCE,若以P、Q、C为顶点的三角形与△ADE相似,那么∠QPC=90°或∠PQC=90°,然后在这两种情况下,分别利用相似三角形的对应边成比例求出对应的t的值.(3)由于以M,N,C,E为顶点的四边形,边和对角线都没明确指出,所以要分情况进行讨论:①EC做平行四边形的对角线,那么EC、MN必互相平分,由于EC的中点正好在抛物线对称轴上,所以M点一定是抛物线的顶点;②EC做平行四边形的边,那么EC、MN平行且相等,首先设出点N的坐标,然后结合E、C的横、纵坐标差表示出M点坐标,再将点M代入抛物线的解析式中,即可确定M、N的坐标.【解答】方法一:解:(1)∵四边形ABCO为矩形,∴∠OAB=∠AOC=∠B=90°,AB=CO=8,AO=BC=10.由题意,△BDC≌△EDC.∴∠B=∠DEC=90°,EC=BC=10,ED=BD.由勾股定理易得EO=6.∴AE=10﹣6=4,设AD=x,则BD=ED=8﹣x,由勾股定理,得x2+42=(8﹣x)2,解得,x=3,∴AD=3.∵抛物线y=ax2+bx+c过点D(3,10),C(8,0),O(0,0)∴,解得∴抛物线的解析式为:y=﹣x2+x.(2)∵∠DEA+∠OEC=90°,∠OCE+∠OEC=90°,∴∠DEA=∠OCE,由(1)可得AD=3,AE=4,DE=5.而CQ=t,EP=2t,∴PC=10﹣2t.当∠PQC=∠DAE=90°,△ADE∽△QPC,∴=,即=,解得t=.当∠QPC=∠DAE=90°,△ADE∽△PQC,∴=,即=,解得t=.∴当t=或时,以P、Q、C为顶点的三角形与△ADE相似.(3)假设存在符合条件的M、N点,分两种情况讨论:①EC为平行四边形的对角线,由于抛物线的对称轴经过EC中点,若四边形MENC 是平行四边形,那么M点必为抛物线顶点;则:M(4,);而平行四边形的对角线互相平分,那么线段MN必被EC中点(4,3)平分,则N(4,﹣);②EC为平行四边形的边,则EC MN,设N(4,m),则M(4﹣8,m+6)或M (4+8,m﹣6);将M(﹣4,m+6)代入抛物线的解析式中,得:m=﹣38,此时N(4,﹣38)、M(﹣4,﹣32);将M(12,m﹣6)代入抛物线的解析式中,得:m=﹣26,此时N(4,﹣26)、M(12,﹣32);综上,存在符合条件的M、N点,且它们的坐标为:①M1(﹣4,﹣32),N1(4,﹣38);②M2(12,﹣32),N2(4,﹣26);③M3(4,),N3(4,﹣).方法二:(1)略.(2)∵E(0,6),C(8,0),∴l EC:y=﹣x+6,∵,EP=2t,∴P x=t,∴P(t,﹣t+6),Q(8﹣t,0),∵△PQC∽△ADE,且∠ECO=∠AED,∴PQ⊥OC或PQ⊥PC.当PQ⊥OC时,Px=Qx,即t=8﹣t,∴t1=,当PQ⊥PC时,K PQ•K PC=﹣1,∴t2=.(3)M,N,C,E为顶点的四边形是平行四边形.设N(4,t),C(8,0),E (0,6),∴,∴M1(4,6﹣t),同理M2(﹣4,t+6),M3(12,t﹣6),∴﹣t,∴t=﹣,﹣×(﹣4)2+(﹣4)=t+6,∴t=﹣38,﹣×122+×12=t﹣6,∴t=﹣26,综上,存在符合条件的M、N点,且它们的坐标为:①M1(4,),N1(4,﹣);②M2(12,﹣32),N2(4,﹣26);③M3(﹣4,﹣32),N3(4,﹣38).【点评】考查了二次函数综合题,题目涉及了图形的折叠变换、相似三角形的判定和性质、平行四边形的判定和性质等重点知识.后两问的情况较多,需要进行分类讨论,以免漏解.。

相关文档
最新文档