六年级奥数讲义第27讲表面积与体积(一)
(完整版)六年级奥数--体积、表面积

六年级奥数——体积、表面积一、知识要点解答立体图形的体积问题时,要注意以下几点:(1)物体沉入水中,水面上升部分的体积等于物体的体积。
把物体从水中取出,水面下降部分的体积等于物体的体积。
这是物体全部浸没在水中的情况。
如果物体不全部浸在水中,那么派开水的体积就等于浸在水中的那部分物体的体积。
(2)把一种形状的物体变为另一种形状的物体后,形状变了,但它的体积保持不变。
(3)求一些不规则形体体积时,可以通过变形的方法求体积。
(4)求与体积相关的最大、最小值时,要大胆想象,多思考、多尝试,防止思维定。
二、精讲精练【例题1】有大、中、小三个正方体水池,它们的内边长分别为6米、3米、2米。
把两堆碎石分别沉在中、小水池里,两个水池水面分别升高了6厘米和4厘米。
如果将这两堆碎石都沉在大水池里,大水池的水面升高多少厘米?中、小水池升高部分是一个长方体,它的体积就等同于碎石的体积。
两个水池水面分别升高了6厘米和4厘米,两堆碎石的体积就是3×3×0.06+2×2×0.04=0.7(立方米)。
把它沉到大水池里,水面升高部分的体积也就是0.7立方米,再除以它的底面积就能求得升高了多少厘米。
3×3×0.06+2×2×0.04=0.7(立方米)0.7÷6的平方=7/360(米)=1又17/18(厘米)答:大水池的水面升高了1又17/18厘米。
练习1:1、有大、中、小三个正方体水池,它们的内边长分别为4米、3米、2米。
把两堆碎石分别沉没在中、小水池的水中,两个水池的水面分别升高了4厘米和11厘米,如果将这两堆碎石都沉没在大水池中,那么大水池水面将升高多少厘米?2、用直径为20厘米的圆钢,锻造成长、宽、高分别为30厘米、20厘米、5厘米的长方体钢板,应截取圆钢多长(精确到0.1厘米)?3、将表面积为54平方厘米、96平方厘米、150平方厘米的三个铁质正方体熔铸成一个大正方体(不计损耗),求这个大正方体的体积。
《表面积体积公式》课件

正方体表面积公式的推导过程
添加标题
添加标题
添加标题
添加标题
每个面的面积等于边长的平方
正方体有6个面,每个面的面积相等
正方体的表面积等于6个面的面积之和
正方体的表面积公式为:S=6a²,其中a为正方体的边长
圆柱体表面积公式的推导过程
圆柱体表面积由两个底面和一个侧面组成
底面是圆形,面积等于πr^2
侧面是一个长方形,面积等于2πrh
长方体的体积公式在实际应用中的用途:计算长方体的体积,解决实际问题
正方体体积公式的推导过程
正方体由六个完全相同的正方形组成
每个正方形的面积为边长的平方
正方体的体积为六个正方形的面积之和
正方体的体积公式为:V=a^3,其中a为正方体的边长
圆柱体体积公式的推导过程
假设圆柱体底面半径为r,高为h
圆柱体侧面展开为一个长方形,长为2πr,宽为h
汇报人:PPT
PPT,a click to unlimited possibilities
目录
公式定义
添加标题
添加标题
添加标题
添加标题
体积:物体所占空间的大小
表面积:物体表面所围成的面积
表面积公式:S=2πr^2(适用于球体)
体积公式:V=4/3πr^3(适用于球体)
公式符号说明
表面积:S,表示物体表面的面积
正方体的体积公式
正方体的体积公式:V=a^3
正方体的体积计算方法:V=a*a*a
正方体的体积等于边长的立方
a表示正方体的边长
圆柱体的体积公式
公式:V=πr^2h
π:圆周率,约等于3.14159
r:圆柱的半径
h:圆柱的高
小学六年级奥数第27讲 表面积与体积(一)(含答案分析)

第27讲表面积与体积(一)一、知识要点小学阶段所学的立体图形主要有四种长方体、正方体、圆柱体和圆锥体。
从平面图形到立体图形是认识上的一个飞跃,需要有更高水平的空间想象能力。
因此,要牢固掌握这些几何图形的特征和有关的计算方法,能将公式作适当的变形,养成“数、形”结合的好习惯,解题时要认真细致观察,合理大胆想象,正确灵活地计算。
在解答立体图形的表面积问题时,要注意以下几点:(1)充分利用正方体六个面的面积都相等,每个面都是正方形的特点。
(2)把一个立体图形切成两部分,新增加的表面积等于切面面积的两倍。
反之,把两个立体图形粘合到一起,减少的表面积等于粘合面积的两倍。
(3)若把几个长方体拼成一个表面积最大的长方体,应把它们最小的面拼合起来。
若把几个长方体拼成一个表面积最小的长方体,应把它们最大的面拼合起来。
二、精讲精练【例题1】从一个棱长10厘米的正方体木块上挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是多少?这是一道开放题,方法有多种:①按图27-1所示,沿着一条棱挖,剩下部分的表面积为592平方厘米。
图27--1②按图27-2所示,在某个面挖,剩下部分的表面积为632平方厘米。
图27--2③按图27-3所示,挖通某两个对面,剩下部分的表面积为672平方厘米。
图27--3练习1:1、从一个长10厘米、宽6厘米、高5厘米的长方体木块上挖去一个棱长2厘米的小正方体,剩下部分的表面积是多少?2、把一个长为12分米,宽为6分米,高为9分米的长方体木块锯成两个想同的小厂房体木块,这两个小长方体的表面积之和,比原来长方体的表面积增加了多少平方分米?3、在一个棱长是4厘米的立方体上挖一个棱长是1厘米的小正方体后,表面积会发生怎样的变化?图27—4【例题2】把19个棱长为3厘米的正方体重叠起来,如图27-4所示,拼成一个立体图形,求这个立体图形的表面积。
要求这个复杂形体的表面积,必须从整体入手,从上、左、前三个方向观察,每个方向上的小正方体各面就组合成了如下图形(如图27-5所示)。
六年级《表面积与体积》奥数教案

(六年级)备课教员:第十二讲表面积与体积一、教学目标:知识目标1.进一步理解表面积和体积的含义,掌握常见几何体的表面积的计算方法;能力目标1.进一步加深对相关体积单位实际大小的认识,发展学生的空间观念。
2.在解决问题的过程中,发展学生灵活地应用相关数学知识和方法的能力。
情感目标1.进一步感受数学知识和方法的应用价值,激发学习数学的兴趣。
2.进一步感受数学与生活的密切联系,体会学习数学的重要性。
二、教学重点:进一步加深对相关体积单位实际大小的认识,发展学生的空间观念。
三、教学难点:掌握常见几何体的表面积的计算方法;四、教学准备:PPT、长方形硬纸片、圆形纸片各一张五、教学过程:第一课时(50分钟)一、导入(5分)【设计意图:通过实验观察,让学生深入地意识到体积基础公式是底面积×高,提高学生的空间想象力】师:老师手中有两张纸片,看纸片上贴的是什么?生:红包。
师:你们想要红包吗?每个红包里面的东西都不一样哦。
生:想要。
师:红包不是你们想要就能要。
想获得红包就得经过老师的考验。
这里2张长方形的纸片,老师想看到一个圆柱体和一个长方体?哪位同学告诉老师怎么办?上来操作给老师看看。
生:……(长方形纸片快速地上下平移,我们可以看到一个长方体,圆形纸片水平的快速地上下平移我们可以看到一个圆柱体。
)师:这两位同学想象力非常棒,这两个红包就给这两位优秀的同学,看看里面是什么?生:……师:唉,老师再问问你们,拿着长方形这张纸上移,到这个点高度停止,它运动的轨迹是不是这一段,就是它形成的长方体的高?圆形纸片呢?(不断地平移,加强学生的空间观念)生:……师:不错,那这个形成的长方体和圆柱体底面积是不是就是纸片的面积?生:是的。
师:好像立体图形和平面图形也是有些联系的哦,那我们进一步了解立体图形的奥妙吧。
【探究新知,引入新课:学生已经学习过了小学所有的立体图形,长方体、正方体、圆柱、圆锥,本堂主要是对该知识点进行整理和巩固,并应用到实际解决问题中】【板书课题:表面积与体积】二、探索发现授课(40分)(一)例题1:(10分)一个棱长为20厘米的正方体木块,从它的上方挖去一个半径为5厘米,高10厘米的圆柱形木块,这个木块剩下部分的表面积是多少?讲解重点:回顾和整理正方体、圆柱体概念和表面积计算公式,及了解圆柱体表面积推导过程。
六年级奥数举一反三第27讲 表面积与体积(一)含答案

第27讲表面积与体积(一)一、知识要点小学阶段所学的立体图形主要有四种长方体、正方体、圆柱体和圆锥体。
从平面图形到立体图形是认识上的一个飞跃,需要有更高水平的空间想象能力。
因此,要牢固掌握这些几何图形的特征和有关的计算方法,能将公式作适当的变形,养成“数、形”结合的好习惯,解题时要认真细致观察,合理大胆想象,正确灵活地计算。
在解答立体图形的表面积问题时,要注意以下几点:(1)充分利用正方体六个面的面积都相等,每个面都是正方形的特点。
(2)把一个立体图形切成两部分,新增加的表面积等于切面面积的两倍。
反之,把两个立体图形粘合到一起,减少的表面积等于粘合面积的两倍。
(3)若把几个长方体拼成一个表面积最大的长方体,应把它们最小的面拼合起来。
若把几个长方体拼成一个表面积最小的长方体,应把它们最大的面拼合起来。
二、精讲精练【例题1】从一个棱长10厘米的正方体木块上挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是多少?这是一道开放题,方法有多种:①按图27-1所示,沿着一条棱挖,剩下部分的表面积为592平方厘米。
图27--1②按图27-2所示,在某个面挖,剩下部分的表面积为632平方厘米。
图27--2③按图27-3所示,挖通某两个对面,剩下部分的表面积为672平方厘米。
图27--3练习1:1、从一个长10厘米、宽6厘米、高5厘米的长方体木块上挖去一个棱长2厘米的小正方体,剩下部分的表面积是多少?2、把一个长为12分米,宽为6分米,高为9分米的长方体木块锯成两个想同的小厂房体木块,这两个小长方体的表面积之和,比原来长方体的表面积增加了多少平方分米?3、在一个棱长是4厘米的立方体上挖一个棱长是1厘米的小正方体后,表面积会发生怎样的变化?图27—4【例题2】把19个棱长为3厘米的正方体重叠起来,如图27-4所示,拼成一个立体图形,求这个立体图形的表面积。
要求这个复杂形体的表面积,必须从整体入手,从上、左、前三个方向观察,每个方向上的小正方体各面就组合成了如下图形(如图27-5所示)。
六年级奥数-23表面积与体积(一)

表面积与体积(一)1.掌握基本几何图形的特征和有关计算方法;2.能将公式做适当变形,计算表面积和体积时,养成“数与形”结合的好习惯,解题时要认真细致观察,合理大胆想象,正确灵活地计算。
1.掌握立体图形的特征,能通过分析图形的特征解题。
2.灵活运用公式解题。
一、基本立体图形表面积、体积计算公式立体图形表面积体积266aaaS=⨯⨯=正方体3aaaaV=⨯⨯=)(2hbabahS++=长方体abhV=长方体圆柱hr222π2πS rh r=+=+圆柱侧面积个底面积2πV r h=圆柱圆锥hr22ππ360nS l r=+=+圆锥侧面积底面积注:l是母线,即从顶点到底面圆上的线段长21π3V r h=圆锥体二、在解答立体图形的表面积问题时,要注意以下几点:(1)充分利用正方体六个面的面积都相等,每个面都是正方形的特点。
(2)把一个立体图形切成两部分,新增加的表面积等于切面面积的两倍。
反之,把两个立体图形粘合到一起,减少的表面积等于粘合面积的两倍。
aah b(3)若把几个长方体拼成一个表面积最大的长方体,应把它们最小的面拼合起来。
若把几个长方体拼成一个表面积最小的长方体,应把它们最大的面拼合起来。
三、解答立体图形的体积问题时,要注意以下几点:(1)物体沉入水中,水面上升部分的体积等于物体的体积。
把物体从水中取出,水面下降部分的体积等于物体的体积。
这是物体全部浸没在水中的情况。
如果物体不全部浸在水中,那么派开水的体积就等于浸在水中的那部分物体的体积。
(2)把一种形状的物体变为另一种形状的物体后,形状变了,但它的体积保持不变。
(3)求一些不规则形体体积时,可以通过变形的方法求体积。
(4)求与体积相关的最大、最小值时,要大胆想象,多思考、多尝试,防止思维定式。
“挖”去一部分,计算表面积“挖”去一部分指的是从一个大的物体(一般为正方体,长方体或者圆柱)上挖出一个或者多个小的物体,从而计算剩余物体的表面积。
“挖”出物体后,剩余物体的表面积计算方法:原本物体的表面积+“挖”出物体的表面积-重复部分的表面积。
小学奥数 长方体与正方体(一)

对于小学几何而言,立体图形的表面积和体积计算,既可以很好地考查学生的空间想象能力,又可以具体考查学生在公式应用中处理相关数据的能力,所以,很多重要考试都很重视对立体图形的考查.如右图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱.cba HGFEDCBA①在六个面中,两个对面是全等的,即三组对面两两全等. (叠放在一起能够完全重合的两个图形称为全等图形.) ②长方体的表面积和体积的计算公式是: 长方体的表面积:2()S ab bc ca =++长方体; 长方体的体积:V abc =长方体.③正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形. 如果它的棱长为a ,那么:26S a =正方体,3V a =正方体.板块一 长方体与正方体的表面积【例 1】 右图中共有多少个面?多少条棱?后面前面右面左面下面上面【考点】长方体与正方体 【难度】1星 【题型】解答【巩固】右图中共有多少个面?多少条棱?例题精讲长方体与正方体(一)【例 2】如右图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?【考点】长方体与正方体【难度】2星【题型】解答【巩固】在一个棱长为50厘米的正方体木块,在它的八个角上各挖去一个棱长为5厘米的小正方体,问剩下的立体图形的表面积是多少?【考点】长方体与正方体【难度】2星【题型】解答【例 3】如右图,有一个边长是5的立方体,如果它的左上方截去一个边分别是5,3,2的长方体,那么它的表面积减少了多少?【考点】长方体与正方体【难度】2星【题型】解答【例 4】如图,有一个边长是5的立方体,如果它的左上方截去一个边分别是5,3,2的长方体,那么它的表面积减少了百分之几?【考点】长方体与正方体【难度】2星【题型】解答【关键词】奥林匹克,初赛,10题【例 5】右图是一个边长为4厘米的正方体,分别在前后、左右、上下各面的中心位置挖去一个边长l厘米的正方体,做成一种玩具.它的表面积是多少平方厘米?(图中只画出了前面、右面、上面挖去的正方体)【考点】长方体与正方体【难度】2星【题型】解答【例 6】如图,有一个边长为20厘米的大正方体,分别在它的角上、棱上、面上各挖掉一个大小相同的小立方体后,表面积变为2454平方厘米,那么挖掉的小立方体的边长是多少厘米?【考点】长方体与正方体【难度】2星【题型】解答【例 7】下图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为12厘米的正方形小洞,第三个正方形小洞的挖法和前两个相同为14厘米,那么最后得到的立体图形的表面积是多少平方厘米?【考点】长方体与正方体【难度】3星【题型】解答【例 8】从一个棱长为10厘米的正方形木块中挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是多少?(写出符合要求的全部答案)【考点】长方体与正方体【难度】3星【题型】解答【关键词】小学生数学报图1 图2 图3 图4【例 9】一个正方体木块,棱长是15.从它的八个顶点处各截去棱长分别是1、2、3、4、5、6、7、8的小正方体.这个木块剩下部分的表面积最少是多少?【考点】长方体与正方体 【难度】4星 【题型】解答 【关键词】迎春杯【例 10】 从一个长8厘米、宽7厘米、高6厘米的长方体中截下一个最大的正方体(如下图),剩下部分的表面积之和是 平方厘米.68766【考点】长方体与正方体 【难度】3星 【题型】填空【巩固】一个长、宽、高分别为21厘米、15厘米、12厘米的长方形,现从它的上面尽可能大的切下一个正方体,然后从剩余的部分再尽可能大的切下一个正方体,最后再从第二次剩余的部分尽可能大的切下一个正方体,剩下的体积是多少平方厘米?【考点】长方体与正方体 【难度】3星 【题型】解答【例 11】 一个正方体木块,棱长是1米,沿着水平方向将它锯成2片,每片又锯成3长条,每条又锯成4小块,共得到大大小小的长方体24块,那么这24块长方体的表面积之和是多少?【考点】长方体与正方体 【难度】3星 【题型】解答【巩固】如右图,一个正方体形状的木块,棱长l 米,沿水平方向将它锯成3片,每片又锯成4长条,每条又锯成5小块,共得到大大小小的长方体60块.那么,这60块长方体表面积的和是多少平方米?【考点】长方体与正方体 【难度】3星 【题型】解答【巩固】一个表面积为256cm 的长方体如图切成27个小长方体,这27个小长方体表面积的和是 2cm .【考点】长方体与正方体【难度】3星【题型】填空【关键词】走美杯,六年级,初赛【例 12】右图是一个表面被涂上红色的棱长为10厘米的正方体木块,如果把它沿虚线切成8个正方体,这些小正方体中没有被涂上红色的所有表面的面积和是多少平方厘米?【考点】长方体与正方体【难度】3星【题型】解答【例 13】有n个同样大小的正方体,将它们堆成一个长方体,这个长方体的底面就是原正方体的底面.如果这个长方体的表面积是3096平方厘米,当从这个长方体的顶部拿去一个正方体后,新的长方体的表面积比原长方体的表面积减少144平方厘米,那么n为多少?【考点】长方体与正方体【难度】3星【题型】解答【例 14】边长分别是3、5、8的三个正方体拼在一起,在各种拼法中,表面积最小多少?【考点】长方体与正方体【难度】3星【题型】解答【例 15】如图,25块边长为1的正方体积木拼成一个几何体,表面积最小是多少?25块积木【考点】长方体与正方体【难度】3星【题型】解答【例 16】由六个棱长为1的小正方体拼成如图所示立体,它的表面积是.【考点】长方体与正方体【难度】3星【题型】填空【例 17】将15个棱长为1的正方体堆放在桌子上,喷上红色后再将它们分开。
六年级奥数考点:立体图形的表面积问题

考点:立体图形的表面积问题一、知识要点小学阶段所学的立体图形主要有四种长方体、正方体、圆柱体和圆锥体。
从平面图形到立体图形是认识上的一个飞跃,需要有更高水平的空间想象能力。
因此,要牢固掌握这些几何图形的特征和有关的计算方法,能将公式作适当的变形,养成“数、形”结合的好习惯,解题时要认真细致观察,合理大胆想象,正确灵活地计算。
在解答立体图形的表面积问题时,要注意以下几点:(1)充分利用正方体六个面的面积都相等,每个面都是正方形的特点。
(2)把一个立体图形切成两部分,新增加的表面积等于切面面积的两倍。
反之,把两个立体图形粘合到一起,减少的表面积等于粘合面积的两倍。
(3)若把几个长方体拼成一个表面积最大的长方体,应把它们最小的面拼合起来。
若把几个长方体拼成一个表面积最小的长方体,应把它们最大的面拼合起来。
二、精讲精练【例题1】从一个棱长10厘米的正方体木块上挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是多少?这是一道开放题,方法有多种:①按图27-1所示,沿着一条棱挖,剩下部分的表面积为592平方厘米。
图27--1②按图27-2所示,在某个面挖,剩下部分的表面积为632平方厘米。
图27--2③按图27-3所示,挖通某两个对面,剩下部分的表面积为672平方厘米。
图27--3练习1:1、(课后)从一个长10厘米、宽6厘米、高5厘米的长方体木块上挖去一个棱长2厘米的小正方体,剩下部分的表面积是多少?切下一块后,切口处的表面减少了前、后、上面3个1×1的正方形,新增加了左右下面三个1×1的正方形,所以表面积大小不变。
2、把一个长为12分米,宽为6分米,高为9分米的长方体木块锯成两个想同的小长方体木块,这两个小长方体的表面积之和,比原来长方体的表面积增加了多少平方分米?4×4×6-2×2×2=92平方厘米3、在一个棱长是4厘米的立方体上挖一个棱长是1厘米的小正方体后,表面积会发生怎样的变化?中心挖去的洞的体积是:12×3×3-13×2=7立方厘米,挖洞后木块的体积:33-7=20立方厘米,中心挖洞后每面增加的面积是12×4-12=3平方厘米,挖洞后木块的表面积:(32+3)×6=72平方厘米。
苏教版六年级下册数学2 图形与几何——表面积和体积 (课件)

V=abh=Sh
正方体 S=6a2
V=a3=Sh
圆柱
S表=S侧+2S底=2πrh+2πr2=πdh+2πr2 V=πr2h=Sh
圆锥
V=1Sh
3
三、巩固练习
完成《追梦之旅大课堂》相关练习。
第七单元 总复习
2 图形与几何 第 7 课时 表面积和体积(2)
第七单元 总复习
2 图形与几何 第 6 课时 表面积和体积(1)
一 课时目标
1.进一步理解立体图形的表面积和体积(容积)的意义,掌握相应的表面积和体 积的计算方法,进一步认识常用体积单位及其进率,并掌握体积单位间的简单 换算;能应用表面积和体积计算解决相关的实际问 题。 2.在整理与练习的过程中,进一步培养归纳整理和观察、比较、判断、分析等 思维能力,积累数学活动经验,提高分析、解决实际问题的能力,发展空间观念 。
面积可以怎样计算?计算立体图形表面积的一般方法是什么?
2.(1)什么是物体的体积? 什么是物体的容积? 体积和容积之间有 什么联系和区别?
(2)常用的体积(容积)单位有哪些?用字母怎么表示?相邻单位间 的进率各是多少?
3.回忆一下这些立体图形的体积如何计算?它们的公式是如何推导出 来的?它们之间有什么联系呢?
三、巩固练习
完成相关练习。
授课教师:×××
一 课时目标
1.进一步掌握表面积和体积的计算方法,能灵活应用表面积和体积的知识解 决实际问题。 2.能联系实际说明解决问题的思考过程,培养数学思维能力和分析问题、解 决问题的能力,进一步发展空间观念。
二 重难点
重点:运用表面积、体积的计算方法解决实际问题。 难点:灵活运用知识解决实际问题。
六年级奥数:第27讲 表面积与体积(一)

第27講表面積與體積(一)一、知識要點小學階段所學的立體圖形主要有四種長方體、正方體、圓柱體和圓錐體。
從平面圖形到立體圖形是認識上的一個飛躍,需要有更高水準的空間想像能力。
因此,要牢固掌握這些幾何圖形的特徵和有關的計算方法,能將公式作適當的變形,養成“數、形”結合的好習慣,解題時要認真細緻觀察,合理大膽想像,正確靈活地計算。
在解答立體圖形的表面積問題時,要注意以下幾點:(1)充分利用正方體六個面的面積都相等,每個面都是正方形的特點。
(2)把一個立體圖形切成兩部分,新增加的表面積等於切面面積的兩倍。
反之,把兩個立體圖形粘合到一起,減少的表面積等於粘合面積的兩倍。
(3)若把幾個長方體拼成一個表面積最大的長方體,應把它們最小的面拼合起來。
若把幾個長方體拼成一個表面積最小的長方體,應把它們最大的面拼合起來。
二、精講精練【例題1】從一個棱長10釐米的正方體木塊上挖去一個長10釐米、寬2釐米、高2釐米的小長方體,剩下部分的表面積是多少?這是一道開放題,方法有多種:①按圖27-1所示,沿著一條棱挖,剩下部分的表面積為592平方釐米。
图27--1②按圖27-2所示,在某個面挖,剩下部分的表面積為632平方釐米。
图27--2③按圖27-3所示,挖通某兩個對面,剩下部分的表面積為672平方釐米。
图27--3練習1:1、從一個長10釐米、寬6釐米、高5釐米的長方體木塊上挖去一個棱長2釐米的小正方體,剩下部分的表面積是多少?2、把一個長為12分米,寬為6分米,高為9分米的長方體木塊鋸成兩個想同的小廠房體木塊,這兩個小長方體的表面積之和,比原來長方體的表面積增加了多少平方分米?3、在一個棱長是4釐米的立方體上挖一個棱長是1釐米的小正方體後,表面積會發生怎樣的變化?【例題2】把19個棱長為3釐米的正方體重疊起來,如圖27-4所示,拼成一個立體圖形,求這個立體圖形的表面積。
要求這個複雜形體的表面積,必須從整體入手,從上、左、前三個方向觀察,每個方向上的小正方體各面就組合成了如下圖形(如圖27-5所示)。
六年级数学下册课件立体图形的表面积和体积苏教版1

(8)把一个圆柱沿底面直径切成完全相同的两块,它的 表面积增加了1280平方厘米,如果这个圆柱的高是40 厘米,那么,原来这个圆柱的体积是多少?体积是多少?
(9)沿一个直角三角形(两条直角边分别是4厘米和6厘 米)、长方形(长8厘米、宽4厘米)分别绕着一条边轴 旋转一周,能够形成一个什么图形?它们的体积各是多 少?(单位:厘米)
A 20 B 13 C 6 5、做一个圆柱形的铁皮桶,要用多少铁皮,是求这个铁
皮桶的( ),能装多少水是求( ) A体积 B底面积 C容积 D表面积 6、求长方体,正方体,圆柱体的体积共同的公式是( ) A、V= abh B、V= a3 C、V= Sh
四、解决问题。
(1)一个无盖的长方体水槽,长12分米, 宽5分米,高2分米,做这个水槽至少需要 多少铁皮?这个水槽能盛水多少升?(铁 皮厚度忽略不计)
D、缩小6倍
表面积=(长×宽+长×高+宽×高)×2
体 表面积=(长×宽+长×高+宽×高)×2 S表=6a²
体积=长× 宽×高
V=abh
体积=棱长 ×棱长×棱 长 V=a³
体积=底 面积×高
V=S底a
名称 图形
表面积公式
圆
表面积=侧面积
柱
+2×底面积
S表=S侧+2S底
Hale Waihona Puke 圆 锥体积公式体积=底面积×高 =2×半径的平方 ×高 V柱=S底h=πr²h
名称
图形 表面积公式
统一体积 体积公式 公式
2米,则它的体积是多少?如果每立方分米钢重7.
(完整版)六年级奥数--体积、表面积

六年级奥数——体积、表面积一、知识要点解答立体图形的体积问题时,要注意以下几点:(1)物体沉入水中,水面上升部分的体积等于物体的体积。
把物体从水中取出,水面下降部分的体积等于物体的体积。
这是物体全部浸没在水中的情况。
如果物体不全部浸在水中,那么派开水的体积就等于浸在水中的那部分物体的体积。
(2)把一种形状的物体变为另一种形状的物体后,形状变了,但它的体积保持不变。
(3)求一些不规则形体体积时,可以通过变形的方法求体积。
(4)求与体积相关的最大、最小值时,要大胆想象,多思考、多尝试,防止思维定。
二、精讲精练【例题1】有大、中、小三个正方体水池,它们的内边长分别为6米、3米、2米。
把两堆碎石分别沉在中、小水池里,两个水池水面分别升高了6厘米和4厘米。
如果将这两堆碎石都沉在大水池里,大水池的水面升高多少厘米?中、小水池升高部分是一个长方体,它的体积就等同于碎石的体积。
两个水池水面分别升高了6厘米和4厘米,两堆碎石的体积就是3×3×0.06+2×2×0.04=0.7(立方米)。
把它沉到大水池里,水面升高部分的体积也就是0.7立方米,再除以它的底面积就能求得升高了多少厘米。
3×3×0.06+2×2×0.04=0.7(立方米)0.7÷6的平方=7/360(米)=1又17/18(厘米)答:大水池的水面升高了1又17/18厘米。
练习1:1、有大、中、小三个正方体水池,它们的内边长分别为4米、3米、2米。
把两堆碎石分别沉没在中、小水池的水中,两个水池的水面分别升高了4厘米和11厘米,如果将这两堆碎石都沉没在大水池中,那么大水池水面将升高多少厘米?2、用直径为20厘米的圆钢,锻造成长、宽、高分别为30厘米、20厘米、5厘米的长方体钢板,应截取圆钢多长(精确到0.1厘米)?3、将表面积为54平方厘米、96平方厘米、150平方厘米的三个铁质正方体熔铸成一个大正方体(不计损耗),求这个大正方体的体积。
人教版六年级立体图形表面积和体积ppt精品文档

3
名称
长方体
正方体 圆柱
圆锥
图形
h
r
s=(ab+ah+bh)
表面积 ×2
体积
v=abh
2
s=6a
S=2лrh+ 2лr 2
V=a 3
V=лr 2h
V=
1
3
Sh
形体名称
条件
表面积
体积
长方体 正方体
圆柱 圆锥
长4米宽3米高 1.8米
棱长3米
49.2平方米 54平方米
底面半径8厘米、602.88平方
高4厘米
厘米
底面直径8分 米,高6分米
21.6立方米
27立方米
803.84立 方厘米
100.48立 方分米
1、只列式,不计算: 1)做一个长8分米,宽5分米,高4分米
的抽屉,至少需要多少木板?
8×5+8×4×2+5×4×2
2)做一个底面半径为2分米,高8分米的 圆柱形通风管,至少需要多少铁皮?
2×3.14×2×8
V = Sh
等底等高的:
等底等高的:
等底等高的:
等底等高的:
等底等高的:
等底等高的:
等底等高的:
等底等高的:
等底等高的:
等底等高的:
等底等高的:
等底等高的:
等底等高的:
等底等高的:
等底等高的:
你们发现了什么?
圆柱的体积是与它等底等高圆锥体 积的3倍。
圆锥的体积等于与它等底等高圆柱 体积的 1 。
人教版小学数学总复习 夹河镇中心小学 曹庭翠
一个立体图形所有的面的 面积总和,叫做它的表面 积。
一个立体图形所占空间的 大小,叫做它的体积。
西师大小学六年级数学立体图形的表面积和体积PPT学习教案

第4页/共10页
2021年11月8日星期一
4
例1
时代广场有一个圆柱形水池,
底面直径5m,深0.8m.
(1) 如果要在水池的地面和内壁贴上瓷砖,贴瓷砖的 面积是多少平方米? (2)每平方米瓷砖25.5元,购买瓷砖需要多少元? (3)每立方米水重1吨,这个水池最多能装水多少吨?
第5页/共10页
2021年11月8日星期一
第6页/共10页
2021年11月8日星期一
6
计算下面图形的表面积和体
8
积.(单位:cm)
12
10
15
d=8 10
第7页/共10页
2021年11月8日星期一
7
1、有一个近似圆锥的小麦堆,测得其底面周 长是12.56米,高1.5米。如果每立方米小麦重 0.75吨,这堆小麦大约有多少吨?将这些小麦 装入底面积是3.14平方米的圆柱形粮囤里能装 多高?
2、一间教室长10米,宽8米, 高4米,门窗面积21.5平方米, 粉刷教室的四壁和顶面要用水 泥多少千克?(按每平方米用 水泥15千克计算)
第8页/共10页
2021年11月8日星期一
8
第9页/共10页
2021年11月8日星期一
9
感谢您的观看!
第10页/共10页
2021年11月8日星期一
10
a
h b
V=abh
a
V=a×a×
s
a
h V=sh
S=2(ab+ah+bh) S=6a×a
S=s侧+2s底
h
V=1/3sh
s
第3页/共10页
2021年11月8日星期一
3
做一个圆柱形油桶要用铁皮多少平方分米?需要计算什 么?( 表面积 )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表面积与体积(一)
专题简析:
小学阶段所学的立体图形主要有四种长方体、正方体、圆柱体和圆锥体。
从平面图形到立体图形是认识上的一个飞跃,需要有更高水平的空间想象能力。
因此,要牢固掌握这些几何图形的特征和有关的计算方法,能将公式作适当的变形,养成“数、形”结合的好习惯,解题时要认真细致观察,合理大胆想象,正确灵活地计算。
在解答立体图形的表面积问题时,要注意以下几点:
(1)充分利用正方体六个面的面积都相等,每个面都是正方形的特点。
(2)把一个立体图形切成两部分,新增加的表面积等于切面面积的两倍。
反之,把两个立体图形粘合到一起,减少的表面积等于粘合面积的两倍。
(3)若把几个长方体拼成一个表面积最大的长方体,应把它们最小的面拼合起来。
若把几个长方体拼成一个表面积最小的长方体,应把它们最大的面拼合起来。
例题1:
从一个棱长10厘米的正方体木块上挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是多少?
这是一道开放题,方法有多种:
①按图27-1所示,沿着一条棱挖,剩下部分的表面
积为592平方厘米。
图27--1
②按图27-2所示,在某个面挖,剩下部分的表面积为632平方厘米。
图27--2
③按图27-3所示,挖通某两个对面,剩下部分的表面积为672平方厘米。
图27--3
练习1:
1、从一个长10厘米、宽6厘米、高5厘米的长方体木块上挖去一个棱长2厘米的小正方体,剩下部分的表面积是多少?
2、把一个长为12分米,宽为6分米,高为9分米的长方体木块锯成两个想同的小厂房体木块,这两个小长方体的表面积之和,比原来长方体的表面积增加了多少平方分米?
3、在一个棱长是4厘米的立方体上挖一个棱长是1厘米的小正方体后,表面积会发生怎样的变化?
例题2:
把19个棱长为3厘米的正方体重叠起来,如图27-4所示,拼成一个立体图形,求这个立体图形的表面积。
图27—4
要求这个复杂形体的表面积,必须从整体入手,从上、左、前三个方向观察,每个方向上的小正方体各面就组合成了如下图形(如图27-5所示)。
图27—5从前往后看
从左往右看
从上往下看
而从另外三个方向上看到的面积与以上三个方向的面积是相等的。
整个立
体图形的表面积可采用(S上+S左+S前)×2来计算。
(3×3×9+3×3×8+3×3×10)×2
=(81+72+90)×2
=243×2
=486(平方厘米)
答:这个立体图形的表面积是486平方厘米。
练习2:
1、用棱长是1厘米的立方体拼成图27-6所示的立体图形。
求这个立体图形的表面积。
图27—6
2、一堆积木(如图27-7所示),是由16块棱长是2厘米的小正方体堆成的。
它们的表面积是多少平方厘米?
3、一个正方体的表面积是384平方厘米,把这个正方体平均分割成64个
相等的小正方体。
每个小正方体的表面积是多少平方厘米?
例题3:
把两个长、宽、高分别是9厘米、7厘米、4厘米的相同长方体,拼成一个大长方体,这个大长方体的表面积最少是多少平方厘米?
把两个相同的大长方体拼成一个大厂房体,需要把两个相同面拼合,所得大厂房体的表面积就减少了两个拼合面的面积。
要使大长方体的表面积最小,就必须使两个拼合面的面积最大,即减少两个9×7的面。
(9×9+9×4+7×4)×2×2—9×7×2
=(63+36+28)×4—126
=508—126
=382(平方厘米)
答:这个大厂房体的表面积最少是382平方厘米。
练习3:
1、把底面积为20平方厘米的两个相等的正方体拼成一个长方体,长方体的表面积是多少?
2、将一个表面积为30平方厘米的正方体等分成两个长方体,再将这两个
长方体拼成一个大长方体。
求大长方体的表面积是多少。
3、用6块(如图27-8所示)长方体木块拼成一个大长方体,有许多种做法,其中表面积最小的是多少平方厘米?
3厘米
1厘米
2厘米
例题4:
一个长方体,如果长增加2厘米,则体积增加40立方厘米;如果宽增加3厘米,则体积增加90立方厘米;如果高增加4厘米,则体积增加96立方里,求原长方体的表面积。
我们知道:体积=长×宽×高;由长增加2厘米,体积增加40立方厘米,可知宽×高=40÷2=20(平方厘米);由宽增加3厘米,体积增加90立方厘米,可知长×高=90÷3=30(平方厘米);由高增加4厘米,体积增加96立方厘米,可知长×宽=96÷4=24(平方厘米)。
而长方体的表面积=(长×宽+长×高+宽×高)×2=(20+30+24)×2=148(平方厘米)。
即
40÷2=20(平方厘米)
90÷3=30(平方厘米)
96÷4=24(平方厘米)
(30+20+24)×2
=74×2
=148(平方厘米)
答:原长方体的表面积是148平方厘米。
练习4:
1、一个长方体,如果长减少2厘米,则体积减少48立方厘米;如果宽增加5厘米,则体积增加65立方厘米;如果高增加4厘米,则体积增加96立方厘米。
原来厂房体的表面积是多少平方厘米?
2、一个厂房体木块,从下部和上部分别截去高为3厘米和2厘米的长方体后,便成为一个正方体,其表面积减少了120平方厘米。
原来厂房体的体积是多少立方厘米?
3、有一个厂房体如下图所示,它的正面和上面的面积之和是209。
如果它的
长、宽、高都是质数,这个长方体的体积是多少?
高
宽
长
例题5:
如图27-10所示,将高都是1米,底面半径分别为1.5米、1米和0.5米的三个圆柱组成一个物体。
求这个物体的表面积。
如果分别求出三个圆柱的表面积,再减去重叠部分的面积,这样计算比较麻烦。
实际上三个向上的面的面积和恰好是大圆柱的一个底面积。
这样,这个物体的表面积就等于一个大圆柱的表面积加上中、小圆柱的侧面积。
3.14×1.5×1.5×2+2×3.14×1.5×1+2×3.14×1×1+2×3.14×0.5×1
=3.14×(4.5+3+2+1)
=3.14×10.5
=32.97(平方米)
答:这个物体的表面积是32.97平方米。
练习5:
1、一个棱长为40厘米的正方体零件(如图27-11所示)的上、下两个面
上,各有一个直径为4厘米的圆孔,孔深为10厘米。
求这个零件的表面积。
2、用铁皮做一个如图27-12所示的工件(单位:厘米),需用铁皮多少平方厘米?
3、如图27-13所示,在一个立方体的两对侧面的中心各打通一个长方体的洞,在上、下侧面的中心打通一个圆柱形的洞。
已知立方体棱长为10厘米,侧面上的洞口是边长为4厘米的正方形,上、下侧面的洞口是直径为4厘米的圆,求该立方体的表面积和体积(∏取3.14)。