掌握框架结构在竖向和水平荷载作用下的内力计算方法

合集下载

框架结构的内力和位移计算

框架结构的内力和位移计算

框架梁跨中截面: T型截面
框架梁支座截面: 矩形截面
边框架:I=I0
注:I0为矩形截面框架梁的截面惯性矩
框架结构的内力和位移计算
10
§ 3.2 竖向荷载作用下的近似计算方法——分层法 计算假定:
➢ 多层多跨框架在一般竖向荷载作用下,侧移小, 作为无侧移框架按力矩分配法进行内力分析
➢ 多层框架简化为单层框架,分层作力矩分配计算
17
2 弯矩二次分配法
具体计算步骤: (1)根据各杆件的线刚度计算各节点的杆端弯矩
分配系数,并计算竖向荷载作用下各跨梁的固端弯矩。 (2)计算框架各节点的不平衡弯矩,并对所有节
点的不平衡弯矩同时进行第一次分配(其间不进行弯 矩传递)。
框架结构的内力和位移计算
18
(3)将所有杆端的分配弯矩同时向其远端传递(对 于刚接框架,传递系数均取1/2)。
首先,将多层框架分解成一层一层的单层框架
框架结构的内力和位移计算
12
分层法 例题:
框架结构的内力和位移计算
13
分层法
力学知识回顾
➢转动刚度——对转动的抵抗能力。杆端的转动刚度以S表示 等于杆端产生单位转角时需要施加的力矩。
➢固端弯矩 方向 +
框架结构的内力和位移计算
14
分层法
➢传递系数
➢分配系数
框架结构的内力和位移计算
2
荷载和设计要求
步骤四:内力计算 ➢ 竖向恒荷载作用下内力计算 ➢ 竖向活荷载作用下内力计算 ➢ 水平风荷载作用下内力计算 ➢ 地震作用下内力计算
步骤五:侧移验算 ➢ 侧移不满足要求回到步骤一
步骤六:控制截面及控制截面内力调整 ➢ 梁柱轴线端内力调整至构件边缘端 ➢ 竖向荷载梁端出现塑铰产生的塑性内力重分布

水平荷载作用下框架内力的计算——D值法资料讲解

水平荷载作用下框架内力的计算——D值法资料讲解

水平荷载作用下框架内力的计算——D值法资料讲解D值法是一种常用于计算框架结构在水平荷载作用下的内力的方法。

下面是对D值法进行详细讲解的资料。

一、D值法的基本概念D值法是一种近似计算框架结构内力的方法,其基本思想是通过估算框架结构在水平荷载作用下的刚度来计算内力。

具体而言,D值法通过假设结构刚度的变化与结构的变形呈线性正比关系,将结构的刚度表示为一个D值,再通过对结构的初始刚度和变形的估计,计算出结构在水平荷载作用下的内力。

二、D值的计算步骤(一)计算结构的初始刚度1.根据结构的几何形状和材料特性,计算出结构在初始状态下的刚度矩阵。

2.对刚度矩阵进行变换,得到初始刚度矩阵。

(二)估算结构的变形1.假设结构受到线性弹性变形的影响。

2.估计结构的位移和转角。

(三)计算D值1.根据估算的位移和转角,计算出结构的变形矩阵。

2.根据初始刚度矩阵和变形矩阵,计算出结构的刚度矩阵。

3.将刚度矩阵转化为D值,即刚度指数。

(四)计算内力1.根据D值和水平荷载的大小,计算出结构的内力。

2.对结构的各个部位进行内力平衡计算,得到各个构件的内力。

三、D值法的优缺点D值法在计算框架结构内力时具有一定的优势和局限性。

(一)优点1.简洁易行:D值法不需要进行繁琐的矩阵计算,计算步骤相对简单。

2.适用范围广:D值法适用于一般的框架结构,包括多层和复杂形状的结构。

3.结果可靠:在合理的假设和估计前提下,D值法可以得到较为准确的内力计算结果。

(二)缺点1.假设过于理想化:D值法假设结构的变形与刚度呈线性正比关系,这在实际情况下不一定成立。

2.忽略非线性效应:D值法无法考虑结构中的非线性效应,如材料的非线性和连接件的滑动、屈曲等。

3.精度受限:由于D值法是一种近似计算方法,其精度相对有限,不适用于对结构内力要求较高的情况。

四、D值法的应用领域D值法在实际工程中被广泛应用,特别是在简化计算和快速评估结构内力的情况下。

1.结构抗震设计:D值法常用于抗震设计中,通过快速计算内力,进行结构的抗震性能评估。

12.4多层框架结构在竖向荷载下的内力计算方法

12.4多层框架结构在竖向荷载下的内力计算方法

12.4竖向荷载作用下的内力近似计算
第十二章 多层框架结构房屋
2.计算模型的确定 在计算简图中,框架节点多为刚接,柱子下端在基础顶面,也按刚接 考虑。杆件用轴线表示,梁柱的连接区用节点表示。等截面轴线取截面形 心位置,当上下柱截面尺寸不同时,则取上层柱形心线作为柱轴线。跨度 取柱轴线间的距离。计算简图中的柱高,对楼层取层高;对底层柱,现浇 楼板取基础顶面与二层楼板顶面之间的高度。 当各跨跨度不等但相差不超过10%时,可当作具有平静跨度的等跨框架。
12.4竖向荷载作用下的内力近似计算
第十二章 多层框架结构房屋
4.荷载计算
作用在多、高层建筑结构上的荷载有竖向荷载和水平荷载。竖向 荷载包括恒载和楼(屋)面活荷载、雪荷载,水平荷载包括风荷载和 水平地震作用。 活荷载大小见《建筑结构荷载规范》GB50009-2012第5.1.1条。
12.4竖向荷载作用下的内力近似计算
12.4竖向荷载作用下的内力近似计算
第十二章 多层框架结构房屋
由于计算时假定柱的远端为固定端,实际上除底层柱在基础处为固定 端外,其余各住的远端均有转角而非固定端。为减少由此引起的误差,除 底层柱外,其他各层柱的线刚度均乘以折减系数0.9,并取传递系数为1/3; 底层柱及梁的传递系数仍为1/2。 例12-2 用分层法计算例12-1框架的弯矩,并绘制弯矩图。
1转动刚度第十二章多层框架结构房屋124竖向荷载作用下的内力近似计算2分配系数第十二章多层框架结构房屋124竖向荷载作用下的内力近似计算3传递系数第十二章多层框架结构房屋124竖向荷载作用下的内力近似计算4杆端弯矩第十二章多层框架结构房屋124竖向荷载作用下的内力近似计算例121三跨二层钢筋混凝土框架各层框架梁所承受的竖向荷载设计值如图所示图中括号内数值为各杆件的相对线刚度

多层框架结构的荷载、内力和侧移计算

多层框架结构的荷载、内力和侧移计算

分层法计算内力时,假定上、下柱的远端是固定的, 但实际上除底层柱外,其它各层柱均是弹性支承,有转 角产生。为了减少计算中的误差,将除底层柱以外的其 它各层柱的线刚度乘以折减系数0.9,并取它的传递系数 为1/3;底层柱不折减,传递系数取1/2。
分层法适用于节点梁柱线刚度比,结构和荷 载沿高度变化不大的规则框生单位水平位移
时柱中产生的剪力,与两端约束条件有关。根据 假定②,各柱端转角为零,柱的侧移刚度为
D 12ic / h2
式中: ic —柱的线刚度; h —柱的高度。
(7-2)
③ 同层各柱剪力。
以图7-9(b)为例,将框架沿第i层各柱的反弯点处切
开,令Vi为框架第i层的层间剪力,它等于i层以上所有水 平力之和;Vik为第i层第k根柱分配到的剪力,假定第i层 共有m根柱,由层间水平力平衡条件得
M
d ik
Vik (1/ 2)h
(7-9)
式中:M
u ik
、M
d ik
--柱子上端和下端弯矩;
h —-第 i 层柱的柱高。
⑤ 梁端弯矩。
根据节点平衡条件,梁端弯矩之和等于柱端
弯矩之和,节点左右梁端弯矩大小按其线刚度
2)弯矩分配法。
由分层法的计算可知,多层框架某节点的不 平衡弯矩仅对与其相邻的节点影响较大,对较远 节点的影响较小,因而可将各节点的不平衡弯矩 进行第一次分配,并向远端传递,再将新的不平 衡弯矩进行第二次分配,此即弯矩二次分配法。
具体计算步骤为:
① 根据各杆件的线刚度计算各节点的杆端弯矩分配 系数。
Vik
d ik
m
Vi
dik
(7-6)
k 1
由此可见,同层各柱剪力是按各柱间的侧移刚

第四章 框架结构内力计算

第四章 框架结构内力计算

4、计算和确定梁、柱弯矩分配系数。 按修正后的刚度计算各结点周围杆件的杆 端分配系数。 5、按力矩分配法计算单层梁、柱弯矩。 6、将每个单层框架的计算结果按相应部分迭 加起来便得到原框架的计算结果,即柱的弯矩 取相邻两个单元中同一柱对应弯矩之和,而梁 的弯矩直接采用。
四、计算例题
作业2
3.2 水平荷载下内力的近似计算—反弯点法
d
i 1
m
V pj
ij
4、柱端弯矩的确定 M j V jY j 柱下端弯矩 柱上端弯矩 M j V j (h j Yj )
5、梁端弯矩的确定 M ml (M mt M m1b ) 对于边柱 ibl 对于中柱
M ml ( M mt M m1b ) M mr ibl ibr ibr ( M mt M m1b ) ibl ibr
第3章 框架结构的内力和位移计算
3.1 竖向荷载下内力的近似计算—分层法 3.2 水平荷载下内力的近似计算—反弯点法 3.3 水平荷载下内力的近似计算—D值法 3.4 水平荷载作用下侧移的近似计算
3.1 竖向荷载下内力近似计算—分层法
一、竖向荷载 自重、活荷、雪荷载及施工检修荷载等。 二、分层法的基本假设 1、忽略侧移的影响; 2、忽略每层梁的竖向荷载对其它各层梁 的影响。 三、分层法计算要点 1、将N层框架划分成N个单层框架,柱 端假定为固端, 用力矩分配法计算。
三、柱的侧移刚度D 12ic D 2 h
—为柱侧移刚度修正系数,表示梁柱刚 度比对柱侧移刚度的影响。

四、剪力计算 有了D值后,与反弯点法类似,计算各柱分 配的剪力 Dij Vij V pj Dij 五、确定柱反弯点高度比 影响柱反弯点高度的主要因素是柱上下端的 约束条件。

04 水平荷载作用下框架结构的内力及变形计算

04 水平荷载作用下框架结构的内力及变形计算
对顶层柱不考虑修正值 y2, 对底层柱不考虑修正值 y3。
4 水平荷载作用下框架结构内力和侧移的近似计算
水平荷载作用下框架结构的计算
反弯点法
由上述分析可见,D值法考虑了柱两端节点转动 (由于梁的刚度不同)对其侧向刚度和反弯点位置 的影响,因此,此法是一种合理且计算精度较高的 近似计算方法,适用于一般多、高层框架结构在水 平荷载作用下的内力和侧移计算。
4 水平荷载作用下框架结构内力和侧移的近似计算
水平荷载作用下框架结构的计算
反弯点法
在确定柱的侧向刚度时,反弯点法假定各 柱上、下端都不产生转动,即认为梁柱线刚 度比为无限大。将趋近于无限大代入D值法 的公式,可得 c =1。因此,由式可得反弯 点法的柱侧向刚度,并用D0表示为:
D0

12ic h2
4 水平荷载作用下框架结构内力和侧移的近似计算
水平荷载作用下框架结构的计算
反弯点法
同样,因柱的上、下端都不转动,故除底层
柱外,其他各层柱的反弯点均在柱中点(h/2);
底层柱由于实际是下端固定,柱上端的约束刚度 相对较小,因此反弯点向上移动,一般取离柱下
端2/3柱高处为反弯点位置,即取yh= 2 h
3
用反弯点法计算框架结构内力的 要点与D值法相同。
结 构
相等,而层间剪力自上向下逐层增加,
因而层间侧移自上向下逐层增加,整个
结构的变形曲线类似悬臂构件剪切变形
引起的位移曲线,故称为“剪切型”。
4 水平荷载作用下框架结构内力和侧移的近似计算
水平荷载作用下框架结构的计算 (2)柱轴向变形引起的侧移
框架弯曲变形
4 水平荷载作用下框架结构内力和侧移的近似计算
水平荷载作用下框架结构的计算

框架结构内力与位移计算

框架结构内力与位移计算

《高层建筑结构与抗震》辅导材料四框架结构内力与位移计算学习目标1、熟悉框架结构在竖向荷载和水平荷载作用下的弯矩图形、剪力图形和轴力图形;2、熟悉框架结构内力与位移计算的简化假定及计算简图的确定;3、掌握竖向荷载作用下框架内力的计算方法——分层法;4、掌握水平荷载作用下框架内力的计算方法——反弯点法和D值法,掌握框架结构的侧移计算方法。

学习重点1、竖向荷载作用下框架结构的内力计算;2、水平荷载作用下框架结构的内力及侧移计算。

框架在结构力学中称为刚架,刚架的内力和位移计算方法很多,可分为精确算法和近似算法。

精确法是采用较少的计算假定,较为接近实际情况地考虑建筑结构的内力、位移和外荷载的关系,一般需建立大型的代数方程组,并用电子计算机求解;近似算法对建筑结构引入较多的假定,进行简化计算。

由于近似计算简单、易于掌握,又能反映刚架受力和变形的基本特点,因此近似的计算方法仍为工程师们所常用。

本章内容主要介绍框架结构在荷载作用下内力与位移的近似计算方法。

其中分层法用于框架结构在竖向荷载作用下的内力计算,反弯点法和D值法用于框架结构在水平荷载作用下的内力计算。

既然是近似计算,就需要熟悉框架结构的计算简图和各种计算方法的简化假定。

一、框架结构计算简图的确定一般情况下,框架结构是一个空间受力体系,可以按照第四章所述的平面结构假定的简化原则,忽略结构纵向和横向之间的空间联系,忽略各构件的抗扭作用,将框架结构简化为沿横方向和纵方向的平面框架,承受竖向荷载和水平荷载,进行内力和位移计算。

结构设计时一般取中间有代表性的一榀横向框架进行分析,若作用于纵向框架上的荷载各不相同,则必要时应分别进行计算。

框架结构的节点一般总是三向受力的,但当按平面框架进行结构分析时,则节点也相应地简化。

在常见的现浇钢筋混凝土结构中,梁和柱内的纵向受力钢筋都将穿过节点或锚入节点区,这时节点应简化为刚接节点;对于现浇钢筋混凝土柱与基础的连接形式,一般也设计成固定支座,即为刚性连接。

框架结构内力计算-竖向弯矩二次分配,水平D值法

框架结构内力计算-竖向弯矩二次分配,水平D值法

19.76 23.39 18.47 18.80
18.31 11.01 1.80 2.12 1.68 1.71
11.079 36.52 20.15 54.23
10.08
11
F
(5) 作 弯 矩 图
精选完整ppt课件
12
(6)计算杆端剪力
将各杆分别取出,根据静力平衡条件可解得各杆端的剪 力,分别对两杆端取距可得到杆端剪力
精选完整ppt课件
19
2、柱端剪力计算
Fm
层间剪力 V Fj
F j1
柱端剪力
Fj
F1
V jk
D jk
m
V Fj
D jk
k 1
精选完整ppt课件
20
3、确定修正后柱的反弯点位置
不再是定值,而是与柱的上下端的刚度有关, 反弯点偏向刚度小的一端。 框架各层柱经过修正后的反弯点位置可由下式 计算得到:
弯矩二次分配法
对六层以下无侧移的框架,此法较为方便。具体步骤: (1)首先计算框架各杆件的线刚度及分配系数; (2)计算框架各层梁端在竖向荷载作用下的固定端弯矩; (3)计算框架各节点处的不平衡弯矩,并将每一节点处的
不平衡弯矩同时进行分配并向远端传递,传递系数为1/2; (4)进行两次分配后结束(仅传递一次,但分配两次)。
136计算杆端剪力将各杆分别取出根据静力平衡条件可解得各杆端的剪力分别对两杆端取距可得到杆端剪力7计算两跨中弯矩以36杆为例取出跨中到3节点的左半段对跨中截面取距148框架柱的轴力计算框架柱每层的轴力由三部分组成自重上部传来节点荷载和梁端的剪力取出脱离体进行计算16水平荷载作用下的17wa顶层重力荷载代表值恒载12屋面雪荷载其余层重力荷载代表值恒载12楼面活荷载风荷载水平地震作用ek各质点上横向水平地震作用标准值

毕业设计指导书(框架结构设计)-内力计算及组合

毕业设计指导书(框架结构设计)-内力计算及组合
2.杆件固端弯矩
计算杆件固端弯矩时应带符号,杆端弯矩一律以顺时针方向为正,如图3-6。
图 3-6 杆端及节点弯矩正方向
1)横梁固端弯矩:
(1)顶层横梁
自重作用:
板传来的恒载作用:
(2)二~四层横梁
自重作用:
板传来的恒载作用:
2)纵梁引起柱端附加弯矩:(本例中边框架纵梁偏向外侧,中框架纵梁偏向内侧)
顶层外纵梁
相交于同一点的多个杆件中的某一杆件,其在该节点的弯矩分配系数的计算过程为:
(1)确定各杆件在该节点的转动刚度
杆件的转动刚度与杆件远端的约束形式有关,如图3-1:
(a)杆件在节点A处的转动刚度
(b)某节点各杆件弯矩分配系数
图 3-1 A节点弯矩分配系数(图中 )
(2)计算弯矩分配系数μ
(3)相交于一点杆件间的弯矩分配
(3)求某柱柱顶左侧及柱底右侧受拉最大弯矩——该柱右侧跨的上、下邻层横梁布置活荷载,然后隔跨布置,其它层按同跨隔层布置(图3-4c);
当活荷载作用相对较小时,常先按满布活荷载计算内力,然后对计算内力进行调整的近似简化法,调整系数:跨中弯矩1.1~1.2,支座弯矩1.0。
(a)(b) (c)
图 3-4 竖向活荷载最不利布置
∑Mik/l
V1/A=gl/2+u-∑Mik/l
M=gl/2*l/4+u*1.05-MAB-V1/A*l/2
4
21.9
4.08
2.25
6
12.24
41.06
-30.54
2.55
50.75
-60.24
3
16.61
4.08
2.25
6
12.24
31.14

房屋建筑混凝土结构设计期末复习指导

房屋建筑混凝土结构设计期末复习指导
【考核要求】 1.了解单向板肋梁楼盖的结构组成、结构布置及承重方案的选择,掌握其传力模式。 2.掌握单向板肋梁楼盖按弹性理论的设计计算,理解活荷载不利布置原则。 3.理解塑性铰和塑性内力重分布现象,掌握考虑塑性内力重分布的设计计算方法。 4.掌握双向板按弹性理论的设计计算方法及构造措施。 5.了解其他形式楼盖的设计计算方法。 6.了解楼梯和雨篷的结构类型,掌握其典型构件的设计计算方法。
第 3 章 多层建筑框架结构
【考核知识点】 1.框架结构的组成和布置; 2.框架结构的内力分析; 3.框架结构的荷载组合、内力组合和水平位移验算; 4.框架结构的构件设计及构造。
【考核要求】 1.了解框架结构的特点和适用范围。 2.了解框架结构的布置原则和方法。 3.理解梁、柱截面尺寸及框架计算简图的确定方法。 4. 理解建筑结构上的各类荷载和作用的形式及计算方法。 5.掌握框架结构在竖向和水平荷载作用下的内力计算方法。 6.掌握框架结构的内力组合原则。 7.理解框架结构在水平荷载作用下的侧移验算方法。 8.理解梁、柱的配筋计算和构造要求。
由于屋架(或者屋面梁)与柱顶连接处用螺栓连接或用预埋件焊接,这种连接对抵御转 动的能力很弱,因此可作为铰接考虑。 (3)排架横梁为无限轴向刚性的刚杆,横梁两端处的柱的水平位移相等。
排架横梁为钢筋混凝土屋架或屋面梁时,由于这类构件的下弦刚度较大,在受力后长度 变化很小,可以略去不计,因此可认为横梁是刚性连杆。但当横梁采用下弦刚度较小的组合 式屋架或三绞拱、二绞拱等屋架时,由于变形较大,则应考虑横梁轴向变形对排架内力的影 响。
例 2.作用在厂房结构上的大部分荷载都是通过纵向排架传给基础、再传到地基中去。 (×)
三、简答题(每题 5 分)
例 1.简述现浇楼盖的设计步骤。 答:现浇楼盖的设计步骤: (1)结构布置:根据建筑平面和墙体布置,确定柱网和梁系尺寸。 (2)结构计算:首先根据建筑使用功能确定楼盖上作用的荷载;计算简图;根据不同的楼 盖类型,分别计算板梁的内力;根据板、梁的弯矩计算各截面配筋,根据剪力计算梁的箍筋 或弯起筋;其中内力计算是主要内容,而截面配筋计算与简支梁基本相同。 (3)根据计算和构造要求绘制施工图。

3-1框架内力计算

3-1框架内力计算

q=2.8kN/m (10.21) (1.79) q=3.4kN/m
H
(4.21)
I
3.80m
D
(9.53) (7.11) (4.84)
E
(12.77) (3.64)
F
4.40m
(括号内数字为线刚度相对值)
A
(i=EI/l) 7.50m
B
5.60m
C
解:
上层各柱线刚度×0.9,然后计算各节点的弯矩分配系数
多层与高层建筑结构设计
第三章 框架结构内力与位移计算
土木工程系
框架结构内力与位移计算
• 框架结构的布置与计算简图
• 竖向荷载作用下的近似计算——分层计算法 • 水平荷载作用下的近似计算——反弯点法 • 水平荷载作用下的改进反弯点法——D值法
• 水平荷载作用下侧移的近似计算
框架结构的布置与计算简图
装配整体式楼面
框架柱的截面尺寸估算
框架柱的截面尺寸一般根据柱的轴压比限值按下列公式估算:
N=βAGn
N Ac≤ [ N ] f c
框架柱轴压比限值,对 一级、二级和三级抗震 等级,分别取0.7, 0.8和 0.9。
其中β——考虑地震作用组合后柱轴压力增大系数,边 柱取1.3,不等跨内柱取1.25,等跨内柱取1.2; A——按简支状态计算的柱的负载面积; G——折算在单位建筑面积上的重力荷载代表值, 可根据实际荷载计算,也可近似取12~16 kN/m2; n——验算截面以上楼层层数;
-0.200 0.133
-0.267 0.231
-4.836
0.668
15.045
0.353 0.175
-13.585
0.472
0.733

混凝土框架结构

混凝土框架结构

二、框架构件设计受弯构件的构造要求.
框架梁端负弯矩调幅:
由于框架节点的连接并非完全刚性,支座截面的实际弯 矩要小于计算弯矩.可对竖向荷载作用下的梁端负弯矩进 行调幅,降低支座处的弯矩,跨中弯矩相应增大.
对现浇整体式框架,调幅系数为0.8~0.9. 弯矩调幅主要在竖向荷载作用下的内力调整,应在内力组 合前调幅,再进行内力组合.
解:1、计算各节点分配系数 结点B,N:
BA NM 11.11 53.20.19
BCNO 111 .1.1 553.20.21 BF NJ 11.3 1.2 53.20.60
同理,可计算出其他节点的弯矩分配系数,见图.
2、梁固端弯矩计算
MBF
MFB
MJN
MNJ
1 ql2 12
1 5862kNm 12
174k N m
M C M G G M C D M H H M D K M O O M K L P M PL
17 k4 N m
MFJMJFMGK MKG MHL MLH 1q2l11.4 5624.3 5kN m 12 12
弯 矩 分 配 图
弯 矩 图
4.5 水平荷载作用下框架内力和侧移计算
D值法计算精度高于反弯点法.
1、柱侧移刚度D值的修正
D
c
12ic h2
2、柱的反弯点高度比y的修正
梁、柱的线刚度之比不很大,上、下层横梁 刚度不同,上、下层层高变化,计算柱所在楼层等, 都对柱的反弯点高度有影响.
各柱的反弯点高度比可用以下公式计算:
yyny1y2y3
各柱的反弯点高度为:
h(yny1y2y3)h i
③底层柱
3
V 1 F i9.0 5 1.0 6 5 1.7 3 53.8 8k5N

竖向荷载作用下框架结构的内力计算计算书3:正文6-11章

竖向荷载作用下框架结构的内力计算计算书3:正文6-11章

第6章竖向荷载作用下框架结构的内力计算6.1计算单元的确定取7轴线横向框架进行计算,计算单元宽度为2.75m,如图6.1所示。

传给该框架的楼面荷载如图中的水平阴影线所示,计算单元范围内的其余楼面荷载则通过次梁和纵向框架梁以集中力的形式传给横向框架,作用于各节点上。

由于纵向框架的中心线与柱的中心线不重合,因此在框架节点上还作用有集中力矩。

图6.1 计算单元6.2 竖向荷载计算6.2.1恒荷计算1.1-5层荷载计算:梁自重:梁AB=2.1kN/m梁BD=2.1kN/m梁DE=2.1kN/m挑梁=0.525kN/m板传递给梁的梯形及三角形荷载:板AB(左)=3.742kN/m×1.35m=5.05kN/m板AB(右)=3.742kN/m×1.5m=5.61kN/m板BD(左)=3.742kN/m×1.95m=7.29kN/m板BD(右)=3.742kN/m×2.1m=7.85kN/m板DE(左)=3.742kN/m×1.35m=5.05kN/m板DE(右)=3.742kN/m×1.4m=5.24kN/m悬挑部分的板为单向板,所以直接传递给梁的恒荷载为零墙自重:墙AB =2.12×2.4=5.09kN/m墙BD =2.12×2.4=5.09kN/m墙DE =2.12×2.4=5.09kN/m墙悬挑=2.12×2.6=5.51kN/m恒载:梁自重+板传荷载+墙自重挑梁=梁自重+墙自重柱的集中力:A 3.740.50.5 2.71.350.531.5 2.850.525 2.375 2.6 2.8526.78kNP=⨯⨯⨯⨯+⨯⨯⨯⨯⨯=()++B 3.740.50.5 2.7 1.350.53 1.5 2.850.5250.5 3.743.150.750.50.5 1.95 1.950.5 2.1 3.9 2.12 2.6 2.8538.31k NP =⨯⨯⨯⨯+⨯⨯⨯⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯=()++() D 3.740.50.5 2.71.350.5 2.81.4 2.750.5250.5 3.743.150.750.50.5 1.951.950.5 2.1 3.5 2.12 2.6 2.7536.31kNP =⨯⨯⨯⨯+⨯⨯⨯⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯=()++() E 3.740.50.5 2.71.350.5 2.81.4 2.750.5250.5 3.740.65 5.52.375 2.6 2.8532.8kNP =⨯⨯⨯⨯+⨯⨯⨯⨯⨯⨯+⨯⨯=()++E 0.5 3.740.65 5.5 2.750.525 2.375110.5kN P -=⨯⨯⨯⨯+⨯=+柱所受集中力产生的弯矩:A 26.78(0.450.2)/2 3.35kN m M =⨯-=⋅B 0kN m M =⋅D 36.31(0.450.2)/2 4.45kN m M =⨯-=⋅E 32.8(0.450.2)/2 4.1kN m M =⨯-=⋅ 2.6层荷载计算:梁自重:梁AB=2.1kN/m梁BD=2.1 kN/m 梁DE=2.1kN/m挑梁=0.525 kN/m板传递给梁的梯形及三角形荷载: 板AB (左)=3.742kN/m ×1.35m=5.05kN/m 板AB (右)=3.742kN/m ×1.5m=5.61kN/m 板BD (左)=3.742kN/m ×1.95m=7.29kN/m 板BD (右)=3.742kN/m ×2.1m=7.85kN/m 板DE (左)=3.742kN/m ×1.35m=5.05kN/m 板DE (右)=3.742kN/m ×1.4m=5.24kN/m 悬挑部分的板为单向板,所以直接传递给梁的恒荷载为零 墙自重: 墙AB =2.12×1.925=4.081kN/m墙BD =2.12×3.36=7.12kN/m 墙DE =2.12×1.725=3.657kN/m恒载:梁自重+板传荷载+墙自重挑梁=梁自重 柱的集中力 A 3.740.50.5 2.71.350.531.5 2.850.525 2.3750.6 2.8513.17kN P =⨯⨯⨯⨯+⨯⨯⨯⨯⨯=()++ B 3.740.50.5 2.71.350.531.5 2.850.5250.5 3.74 3.150.750.50.51.951.950.5 2.1 3.922.6kN P =⨯⨯⨯⨯+⨯⨯⨯⨯⨯⨯⨯+⨯⨯+⨯⨯=()++() D 3.740.50.5 2.71.350.5 2.81.4 2.750.5250.5 3.74 3.150.750.50.51.951.950.5 2.1 3.521.15kN P =⨯⨯⨯⨯+⨯⨯⨯⨯⨯⨯⨯+⨯⨯+⨯⨯=()++() E 3.740.50.5 2.71.350.5 2.81.4 2.750.5250.5 3.740.65 5.5 2.375 0.6 2.8519.26 kNP =⨯⨯⨯⨯+⨯⨯⨯⨯⨯⨯+⨯⨯=()++-E 0.5 3.740.65 5.5 2.750.5258.13kN P =⨯⨯⨯⨯=+柱所受集中力产生的弯矩:A 13.17(0.450.2)/2 1.65kN m M =⨯-=⋅B 0kN m M =⋅D 21.15(0.450.2)/2 2.64kN m M =⨯-=⋅E 19.26(0.450.2)/2 2.41kN m M =⨯-=⋅ 3.顶层荷载计算:梁自重:梁AB=2.35 kN/m 梁BD=2.35 kN/m 梁DE=2.35 kN/m板传递给梁的梯形及三角形荷载: 板AB (左)=5.192kN/m ×1.35m=7.01kN/m 板AB (右)=5.192kN/m ×1.5m=7.79kN/m 板BD (左)= 5.192kN/m ×1.95m=7.29kN/m 板BD (右)= 5.192kN/m ×2.1m=10.9kN/m 板DE (左)= 5.192kN/m ×1.35m=7.01kN/m 板DE (右)= 5.192kN/m ×1.4m=7.27kN/m 悬挑部分的板为单向板,所以直接传递给梁的恒荷载为零柱的集中力: A 5.190.50.5 2.71.350.531.5 2.850.5251.1212.24kN P =⨯⨯⨯⨯+⨯⨯⨯⨯=()+ B 5.190.50.5 2.7 1.350.53 1.5 2.850.525 1.120.55.19 3.15 0.750.50.51.951.950.5 2.1 3.915.83kN P =⨯⨯⨯⨯+⨯⨯⨯⨯⨯⨯⨯⨯+⨯⨯+⨯⨯=()++() D 5.190.50.5 2.71.350.5 2.81.4 2.750.5251.120.5 5.19 3.150.750.50.51.951.950.5 2.1 3.528.97kNP =⨯⨯⨯⨯+⨯⨯⨯⨯⨯⨯⨯⨯+⨯⨯+⨯⨯=()++() E 5.190.50.5 2.7 1.350.5 2.8 1.49.82k NP =⨯⨯⨯⨯+⨯⨯=()柱所受集中力产生的弯矩:A 12.24(0.450.2)/2 1.53kN m M =⨯-=⋅B 0kN m M =⋅ D 28.97(0.450.2)/2 3.62kN m M =⨯-=⋅ E 9.82(0.450.2)/2 1.23kN m M =⨯-=⋅6.2.2 活荷载计算活荷载作用下各层框架梁上活载为板传递给梁的荷载。

三种方法计算框架水平作用下的内力(D值法,反弯点法,门架法)

三种方法计算框架水平作用下的内力(D值法,反弯点法,门架法)

C 9.08E+4
21.88
35.01
D 2.38E+4
24.99
42.48
E 4.64E+4 94000 98.7 48.72 1.7
82.82 77.49 81.65 69.40 77.49
F 2.38E+4 1
A
24.99 24.99
42.48 82.47
B
48.72 3.3 160.78
C
24.99
令 i左边梁 为 1.0,梁柱的相对线刚度如图 4 所示。
图.4 梁柱相对线刚度
(3)求修正的反弯点高度(图 5)
图.5 修正的反弯点高度图
反弯点高度比的修正:
y = y0 + y1 + y2 + y3 A、B、C 轴柱的反弯点高度的计算如表 3、表 4 和表 5 所示。
表 3 A 轴框架柱反弯点位置、D 值的计算
=
12
53
= 4.64 ×10 4 kN / m
其余各层边柱:
D余边柱
= 12EI h3
12 × 3.25 ×107 × 1 × 0.55 × 0.553
=
12
3.23
= 9.08 ×104 kN / m
其余各层中柱:
D余中柱
= 12EI h3
12 × 3.25 ×107 × 1 × 0.65 × 0.653
4
3.20 0.56 0.45
0
0
0
0.45 1.44 0.219 90758 19876
3
3.20 0.56 0.480 Nhomakorabea0
0
0.48 1.54 0.219 90758 19876
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对纵向地基不均匀沉 降较有利;
房屋横向刚度小,侧 移大。
主页 目录 上一章
帮助
混凝土结构设计
双向布置
双向承重
第3章
特点: 整体性好,受力好; 适用于整体性要求
较高和楼面荷载较 大的情况。
主页 目录 上一章
帮助
混凝土结构设计
第3章
§3.3 截面尺寸估算
3.3.1 框架梁
框架梁截面尺寸估算
框架自重;粉灰重; 板、次梁、墙体重。
恒载 活载
人群、家具、设备等 荷载,取值见《建筑 结构荷载规范》,可 折减。
风载
wk z s z w0
地震作用
主页 目录 上一章
帮助
混凝土结构设计
第3章
§3.6 内力计算
3.6.1 竖向荷载下的内力计算
楼面荷载分配原则 当采用装配式或装配整体式楼盖时,板上 荷载通过预制板的两端传递给它的支承结 构;
满足人防、消防要求,使水、暖、电各专业的 布置能有效地进行;
结构尽可能简单、规则、均匀、对称,构件类 型少;
主页 目录 上一章
帮助
混凝土结构设计
平面布置
第3章
好 差
主页 目录 上一章
帮助
混凝土结构设计
竖向布置
第3章


主页 目录 上一章
帮助
混凝土结构设计
第3章
妥善地处理温度、地基不均匀沉降以及地震 等因素对建筑的影响;
主页 目录 上一章
帮助
混凝土结构设计
第3章
框架结构受 力变形动画
缺点
抵抗水平荷载能力差; 侧向刚度小,侧移大 ;
受地基的不均匀沉降影 响大 。
主页 目录 上一章
帮助
混凝土结构设计
第3章
§3.2 结构布置方法
3.2.1 结构布置的一般原则
满足使用要求,并尽可能与建筑的平、立剖面 划分相一致;
梁净跨与截面高度之比 不宜小于4
一般情况下:
hb


1 8
~
1 18
l0
…3-1
梁的截面宽度不 宜小于200mm
bb


1 2
~
1 4
hb
…3-2
l0—— 梁的计算跨度; hb—— 梁的截面高度; bb—— 梁的截面宽度。
主页 目录 上一章
帮助
混凝土结构设计
框架梁线刚度
ib
混凝土结构设计
第3章
第十三章 多层框架结构房屋
主页 目录 上一章
帮助
混凝土结构Байду номын сангаас计
本章重点
第3章
了解框架结构的特点和适用范围; 熟悉框架结构的布置原则与方法;
掌握框架结构在竖向和水平荷载作用下的 内力计算方法;
掌握框架结构的内力组合原则与方法; 熟悉框架结构在水平荷载作用下的侧移验
跨上,分别算出内力,再对各控制截面组合其可能 出现的最大内力。
主页 目录 上一章
恒载一次布置
活载分跨布置
帮助
混凝土结构设计
第3章
(2)最不利荷载布置法
恒载一次布置,楼屋面活载根据影响线,直接 确定产生某一指定截面最不利内力的活载布置。此 法用手算方法进行计算很困难。
主页 目录 上一章
最不利荷载的布置
施工简便; 经济合理。
主页 目录 上一章
帮助
混凝土结构设计
第3章
3.2.2 结构布置方法
横向布置
特点
房屋横向刚度大,侧 移小;
横梁高度大,室内有 效净空小。
非抗震时使用
主页 目录 上一章
横向承重
帮助
混凝土结构设计
纵向布置
纵向承重
第3章
特点:
连系梁截面较小,框 架梁截面尺寸大,室 内有效净空高;
力设计值。可近似将楼面板沿柱轴线之间的中 线划分,恒载和活载的分项系数均取1.25,或 近似取12~14 kN/m2进行计算。 fc—— 混凝土轴心抗压强度设计值。
主页 目录 上一章
帮助
混凝土结构设计
框架柱线刚度
第3章
ic

Ec I Hi
…3-7
Ec—— 混凝土弹性模量; I —— 框架柱截面惯性矩。
当采用现浇楼盖时,楼面上的恒载和活载 根据每个区格板两个方向的边长比,沿单 向或双向传递,区格板长边/短边>3时沿 单向传递,长边/短边≤3时沿双向传递。
主页 目录 上一章
帮助
混凝土结构设计
第3章
现浇楼盖荷载传递示意图
主页 目录 上一章
帮助
混凝土结构设计
第3章
竖向活载最不利布置
(1)逐跨布置法 恒载一次布置,楼屋面活载逐跨单独作用在各
算方法; 熟悉梁、柱的配筋计算和构造要求。
主页 目录 上一章
帮助
混凝土结构设计
第3章
§3.1 概 述
房屋按高度和层数分类
低层
1~2层
多层
3~10层
高层
10层或28m
主页 目录 上一章
帮助
混凝土结构设计
框架结构
框架结构
第3章
优点 结构轻巧; 整体性好; 可形成大空间; 施工方便; 较为经济。

H
i
…3-4
截面的高宽比 不宜大于3
hc 1 ~ 2bc
…3-5
Hi—— 第i层层高; hc—— 柱截面高度; bc—— 柱截面宽度。
主页 目录 上一章
帮助
混凝土结构设计
第3章
高层建筑:
N=(1.1~1.2)Nv
N 1.0
fcbchc
…3-6
N—— 柱中轴向力。 Nv—— 柱支承的楼面荷载面积上竖向荷载产生的轴向
I

1 12
bc
hc3
…3-8
主页 目录 上一章
帮助
混凝土结构设计
第3章
§3.4 计算简图的确定
计算单元的选取
计算单元选取
主页 目录 上一章
帮助
混凝土结构设计
计算简图
第3章
l01
l02
实际结构
计算简图
主页 目录 上一章
帮助
混凝土结构设计
§3.5 荷载计算
垂直荷载 框 架 荷 载
水平荷载
第3章

Ec I l
第3章
…3-3
式中:Ec—— 混凝土弹性模量; I —— 框架梁截面惯性矩,见表3.3.1; l —— 框架梁的跨度。
主页 目录 上一章
帮助
混凝土结构设计
第3章
表3.3.1 框架梁惯性矩取值
楼板类型
边框架梁
中框架梁
现浇楼板
I=1.5I0
I=2.0I0
装配整体式楼板
I=1.2I0
I=1.5I0
帮助
混凝土结构设计
第3章
(3)分层布置法或分跨布置法
恒载一次布置,为简化计算,当活载与恒载的 比值不大于3时,可近似将活载一层或一跨做一次 布置,分别进行计算,然后进行最不利内力组合。
q
q
q
q
q
q
主页 目录 上一章
装配式楼板
I=I0
I=I0
注:
I0为梁按矩形截面计算的惯性矩,I0

1 12
bh3 。
主页 目录 上一章
帮助
混凝土结构设计
第3章
3.3.2 框架柱
框架柱的截面边长不宜小于
框架柱截面尺寸估算
多层建筑:
250 mm,圆柱的截面直径 不宜小于350 mm,剪跨比 宜大于2
bc


1 12
~
1 18
相关文档
最新文档